Home | History | Annotate | Download | only in IPO
      1 //===- MergeFunctions.cpp - Merge identical functions ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass looks for equivalent functions that are mergable and folds them.
     11 //
     12 // Order relation is defined on set of functions. It was made through
     13 // special function comparison procedure that returns
     14 // 0 when functions are equal,
     15 // -1 when Left function is less than right function, and
     16 // 1 for opposite case. We need total-ordering, so we need to maintain
     17 // four properties on the functions set:
     18 // a <= a (reflexivity)
     19 // if a <= b and b <= a then a = b (antisymmetry)
     20 // if a <= b and b <= c then a <= c (transitivity).
     21 // for all a and b: a <= b or b <= a (totality).
     22 //
     23 // Comparison iterates through each instruction in each basic block.
     24 // Functions are kept on binary tree. For each new function F we perform
     25 // lookup in binary tree.
     26 // In practice it works the following way:
     27 // -- We define Function* container class with custom "operator<" (FunctionPtr).
     28 // -- "FunctionPtr" instances are stored in std::set collection, so every
     29 //    std::set::insert operation will give you result in log(N) time.
     30 //
     31 // As an optimization, a hash of the function structure is calculated first, and
     32 // two functions are only compared if they have the same hash. This hash is
     33 // cheap to compute, and has the property that if function F == G according to
     34 // the comparison function, then hash(F) == hash(G). This consistency property
     35 // is critical to ensuring all possible merging opportunities are exploited.
     36 // Collisions in the hash affect the speed of the pass but not the correctness
     37 // or determinism of the resulting transformation.
     38 //
     39 // When a match is found the functions are folded. If both functions are
     40 // overridable, we move the functionality into a new internal function and
     41 // leave two overridable thunks to it.
     42 //
     43 //===----------------------------------------------------------------------===//
     44 //
     45 // Future work:
     46 //
     47 // * virtual functions.
     48 //
     49 // Many functions have their address taken by the virtual function table for
     50 // the object they belong to. However, as long as it's only used for a lookup
     51 // and call, this is irrelevant, and we'd like to fold such functions.
     52 //
     53 // * be smarter about bitcasts.
     54 //
     55 // In order to fold functions, we will sometimes add either bitcast instructions
     56 // or bitcast constant expressions. Unfortunately, this can confound further
     57 // analysis since the two functions differ where one has a bitcast and the
     58 // other doesn't. We should learn to look through bitcasts.
     59 //
     60 // * Compare complex types with pointer types inside.
     61 // * Compare cross-reference cases.
     62 // * Compare complex expressions.
     63 //
     64 // All the three issues above could be described as ability to prove that
     65 // fA == fB == fC == fE == fF == fG in example below:
     66 //
     67 //  void fA() {
     68 //    fB();
     69 //  }
     70 //  void fB() {
     71 //    fA();
     72 //  }
     73 //
     74 //  void fE() {
     75 //    fF();
     76 //  }
     77 //  void fF() {
     78 //    fG();
     79 //  }
     80 //  void fG() {
     81 //    fE();
     82 //  }
     83 //
     84 // Simplest cross-reference case (fA <--> fB) was implemented in previous
     85 // versions of MergeFunctions, though it presented only in two function pairs
     86 // in test-suite (that counts >50k functions)
     87 // Though possibility to detect complex cross-referencing (e.g.: A->B->C->D->A)
     88 // could cover much more cases.
     89 //
     90 //===----------------------------------------------------------------------===//
     91 
     92 #include "llvm/Transforms/IPO.h"
     93 #include "llvm/ADT/DenseSet.h"
     94 #include "llvm/ADT/FoldingSet.h"
     95 #include "llvm/ADT/STLExtras.h"
     96 #include "llvm/ADT/SmallSet.h"
     97 #include "llvm/ADT/Statistic.h"
     98 #include "llvm/ADT/Hashing.h"
     99 #include "llvm/IR/CallSite.h"
    100 #include "llvm/IR/Constants.h"
    101 #include "llvm/IR/DataLayout.h"
    102 #include "llvm/IR/IRBuilder.h"
    103 #include "llvm/IR/InlineAsm.h"
    104 #include "llvm/IR/Instructions.h"
    105 #include "llvm/IR/LLVMContext.h"
    106 #include "llvm/IR/Module.h"
    107 #include "llvm/IR/Operator.h"
    108 #include "llvm/IR/ValueHandle.h"
    109 #include "llvm/IR/ValueMap.h"
    110 #include "llvm/Pass.h"
    111 #include "llvm/Support/CommandLine.h"
    112 #include "llvm/Support/Debug.h"
    113 #include "llvm/Support/ErrorHandling.h"
    114 #include "llvm/Support/raw_ostream.h"
    115 #include <vector>
    116 
    117 using namespace llvm;
    118 
    119 #define DEBUG_TYPE "mergefunc"
    120 
    121 STATISTIC(NumFunctionsMerged, "Number of functions merged");
    122 STATISTIC(NumThunksWritten, "Number of thunks generated");
    123 STATISTIC(NumAliasesWritten, "Number of aliases generated");
    124 STATISTIC(NumDoubleWeak, "Number of new functions created");
    125 
    126 static cl::opt<unsigned> NumFunctionsForSanityCheck(
    127     "mergefunc-sanity",
    128     cl::desc("How many functions in module could be used for "
    129              "MergeFunctions pass sanity check. "
    130              "'0' disables this check. Works only with '-debug' key."),
    131     cl::init(0), cl::Hidden);
    132 
    133 namespace {
    134 
    135 /// GlobalNumberState assigns an integer to each global value in the program,
    136 /// which is used by the comparison routine to order references to globals. This
    137 /// state must be preserved throughout the pass, because Functions and other
    138 /// globals need to maintain their relative order. Globals are assigned a number
    139 /// when they are first visited. This order is deterministic, and so the
    140 /// assigned numbers are as well. When two functions are merged, neither number
    141 /// is updated. If the symbols are weak, this would be incorrect. If they are
    142 /// strong, then one will be replaced at all references to the other, and so
    143 /// direct callsites will now see one or the other symbol, and no update is
    144 /// necessary. Note that if we were guaranteed unique names, we could just
    145 /// compare those, but this would not work for stripped bitcodes or for those
    146 /// few symbols without a name.
    147 class GlobalNumberState {
    148   struct Config : ValueMapConfig<GlobalValue*> {
    149     enum { FollowRAUW = false };
    150   };
    151   // Each GlobalValue is mapped to an identifier. The Config ensures when RAUW
    152   // occurs, the mapping does not change. Tracking changes is unnecessary, and
    153   // also problematic for weak symbols (which may be overwritten).
    154   typedef ValueMap<GlobalValue *, uint64_t, Config> ValueNumberMap;
    155   ValueNumberMap GlobalNumbers;
    156   // The next unused serial number to assign to a global.
    157   uint64_t NextNumber;
    158   public:
    159     GlobalNumberState() : GlobalNumbers(), NextNumber(0) {}
    160     uint64_t getNumber(GlobalValue* Global) {
    161       ValueNumberMap::iterator MapIter;
    162       bool Inserted;
    163       std::tie(MapIter, Inserted) = GlobalNumbers.insert({Global, NextNumber});
    164       if (Inserted)
    165         NextNumber++;
    166       return MapIter->second;
    167     }
    168     void clear() {
    169       GlobalNumbers.clear();
    170     }
    171 };
    172 
    173 /// FunctionComparator - Compares two functions to determine whether or not
    174 /// they will generate machine code with the same behaviour. DataLayout is
    175 /// used if available. The comparator always fails conservatively (erring on the
    176 /// side of claiming that two functions are different).
    177 class FunctionComparator {
    178 public:
    179   FunctionComparator(const Function *F1, const Function *F2,
    180                      GlobalNumberState* GN)
    181       : FnL(F1), FnR(F2), GlobalNumbers(GN) {}
    182 
    183   /// Test whether the two functions have equivalent behaviour.
    184   int compare();
    185   /// Hash a function. Equivalent functions will have the same hash, and unequal
    186   /// functions will have different hashes with high probability.
    187   typedef uint64_t FunctionHash;
    188   static FunctionHash functionHash(Function &);
    189 
    190 private:
    191   /// Test whether two basic blocks have equivalent behaviour.
    192   int cmpBasicBlocks(const BasicBlock *BBL, const BasicBlock *BBR);
    193 
    194   /// Constants comparison.
    195   /// Its analog to lexicographical comparison between hypothetical numbers
    196   /// of next format:
    197   /// <bitcastability-trait><raw-bit-contents>
    198   ///
    199   /// 1. Bitcastability.
    200   /// Check whether L's type could be losslessly bitcasted to R's type.
    201   /// On this stage method, in case when lossless bitcast is not possible
    202   /// method returns -1 or 1, thus also defining which type is greater in
    203   /// context of bitcastability.
    204   /// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
    205   ///          to the contents comparison.
    206   ///          If types differ, remember types comparison result and check
    207   ///          whether we still can bitcast types.
    208   /// Stage 1: Types that satisfies isFirstClassType conditions are always
    209   ///          greater then others.
    210   /// Stage 2: Vector is greater then non-vector.
    211   ///          If both types are vectors, then vector with greater bitwidth is
    212   ///          greater.
    213   ///          If both types are vectors with the same bitwidth, then types
    214   ///          are bitcastable, and we can skip other stages, and go to contents
    215   ///          comparison.
    216   /// Stage 3: Pointer types are greater than non-pointers. If both types are
    217   ///          pointers of the same address space - go to contents comparison.
    218   ///          Different address spaces: pointer with greater address space is
    219   ///          greater.
    220   /// Stage 4: Types are neither vectors, nor pointers. And they differ.
    221   ///          We don't know how to bitcast them. So, we better don't do it,
    222   ///          and return types comparison result (so it determines the
    223   ///          relationship among constants we don't know how to bitcast).
    224   ///
    225   /// Just for clearance, let's see how the set of constants could look
    226   /// on single dimension axis:
    227   ///
    228   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    229   /// Where: NFCT - Not a FirstClassType
    230   ///        FCT - FirstClassTyp:
    231   ///
    232   /// 2. Compare raw contents.
    233   /// It ignores types on this stage and only compares bits from L and R.
    234   /// Returns 0, if L and R has equivalent contents.
    235   /// -1 or 1 if values are different.
    236   /// Pretty trivial:
    237   /// 2.1. If contents are numbers, compare numbers.
    238   ///    Ints with greater bitwidth are greater. Ints with same bitwidths
    239   ///    compared by their contents.
    240   /// 2.2. "And so on". Just to avoid discrepancies with comments
    241   /// perhaps it would be better to read the implementation itself.
    242   /// 3. And again about overall picture. Let's look back at how the ordered set
    243   /// of constants will look like:
    244   /// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
    245   ///
    246   /// Now look, what could be inside [FCT, "others"], for example:
    247   /// [FCT, "others"] =
    248   /// [
    249   ///   [double 0.1], [double 1.23],
    250   ///   [i32 1], [i32 2],
    251   ///   { double 1.0 },       ; StructTyID, NumElements = 1
    252   ///   { i32 1 },            ; StructTyID, NumElements = 1
    253   ///   { double 1, i32 1 },  ; StructTyID, NumElements = 2
    254   ///   { i32 1, double 1 }   ; StructTyID, NumElements = 2
    255   /// ]
    256   ///
    257   /// Let's explain the order. Float numbers will be less than integers, just
    258   /// because of cmpType terms: FloatTyID < IntegerTyID.
    259   /// Floats (with same fltSemantics) are sorted according to their value.
    260   /// Then you can see integers, and they are, like a floats,
    261   /// could be easy sorted among each others.
    262   /// The structures. Structures are grouped at the tail, again because of their
    263   /// TypeID: StructTyID > IntegerTyID > FloatTyID.
    264   /// Structures with greater number of elements are greater. Structures with
    265   /// greater elements going first are greater.
    266   /// The same logic with vectors, arrays and other possible complex types.
    267   ///
    268   /// Bitcastable constants.
    269   /// Let's assume, that some constant, belongs to some group of
    270   /// "so-called-equal" values with different types, and at the same time
    271   /// belongs to another group of constants with equal types
    272   /// and "really" equal values.
    273   ///
    274   /// Now, prove that this is impossible:
    275   ///
    276   /// If constant A with type TyA is bitcastable to B with type TyB, then:
    277   /// 1. All constants with equal types to TyA, are bitcastable to B. Since
    278   ///    those should be vectors (if TyA is vector), pointers
    279   ///    (if TyA is pointer), or else (if TyA equal to TyB), those types should
    280   ///    be equal to TyB.
    281   /// 2. All constants with non-equal, but bitcastable types to TyA, are
    282   ///    bitcastable to B.
    283   ///    Once again, just because we allow it to vectors and pointers only.
    284   ///    This statement could be expanded as below:
    285   /// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
    286   ///      vector B, and thus bitcastable to B as well.
    287   /// 2.2. All pointers of the same address space, no matter what they point to,
    288   ///      bitcastable. So if C is pointer, it could be bitcasted to A and to B.
    289   /// So any constant equal or bitcastable to A is equal or bitcastable to B.
    290   /// QED.
    291   ///
    292   /// In another words, for pointers and vectors, we ignore top-level type and
    293   /// look at their particular properties (bit-width for vectors, and
    294   /// address space for pointers).
    295   /// If these properties are equal - compare their contents.
    296   int cmpConstants(const Constant *L, const Constant *R);
    297 
    298   /// Compares two global values by number. Uses the GlobalNumbersState to
    299   /// identify the same gobals across function calls.
    300   int cmpGlobalValues(GlobalValue *L, GlobalValue *R);
    301 
    302   /// Assign or look up previously assigned numbers for the two values, and
    303   /// return whether the numbers are equal. Numbers are assigned in the order
    304   /// visited.
    305   /// Comparison order:
    306   /// Stage 0: Value that is function itself is always greater then others.
    307   ///          If left and right values are references to their functions, then
    308   ///          they are equal.
    309   /// Stage 1: Constants are greater than non-constants.
    310   ///          If both left and right are constants, then the result of
    311   ///          cmpConstants is used as cmpValues result.
    312   /// Stage 2: InlineAsm instances are greater than others. If both left and
    313   ///          right are InlineAsm instances, InlineAsm* pointers casted to
    314   ///          integers and compared as numbers.
    315   /// Stage 3: For all other cases we compare order we meet these values in
    316   ///          their functions. If right value was met first during scanning,
    317   ///          then left value is greater.
    318   ///          In another words, we compare serial numbers, for more details
    319   ///          see comments for sn_mapL and sn_mapR.
    320   int cmpValues(const Value *L, const Value *R);
    321 
    322   /// Compare two Instructions for equivalence, similar to
    323   /// Instruction::isSameOperationAs but with modifications to the type
    324   /// comparison.
    325   /// Stages are listed in "most significant stage first" order:
    326   /// On each stage below, we do comparison between some left and right
    327   /// operation parts. If parts are non-equal, we assign parts comparison
    328   /// result to the operation comparison result and exit from method.
    329   /// Otherwise we proceed to the next stage.
    330   /// Stages:
    331   /// 1. Operations opcodes. Compared as numbers.
    332   /// 2. Number of operands.
    333   /// 3. Operation types. Compared with cmpType method.
    334   /// 4. Compare operation subclass optional data as stream of bytes:
    335   /// just convert it to integers and call cmpNumbers.
    336   /// 5. Compare in operation operand types with cmpType in
    337   /// most significant operand first order.
    338   /// 6. Last stage. Check operations for some specific attributes.
    339   /// For example, for Load it would be:
    340   /// 6.1.Load: volatile (as boolean flag)
    341   /// 6.2.Load: alignment (as integer numbers)
    342   /// 6.3.Load: synch-scope (as integer numbers)
    343   /// 6.4.Load: range metadata (as integer numbers)
    344   /// On this stage its better to see the code, since its not more than 10-15
    345   /// strings for particular instruction, and could change sometimes.
    346   int cmpOperations(const Instruction *L, const Instruction *R) const;
    347 
    348   /// Compare two GEPs for equivalent pointer arithmetic.
    349   /// Parts to be compared for each comparison stage,
    350   /// most significant stage first:
    351   /// 1. Address space. As numbers.
    352   /// 2. Constant offset, (using GEPOperator::accumulateConstantOffset method).
    353   /// 3. Pointer operand type (using cmpType method).
    354   /// 4. Number of operands.
    355   /// 5. Compare operands, using cmpValues method.
    356   int cmpGEPs(const GEPOperator *GEPL, const GEPOperator *GEPR);
    357   int cmpGEPs(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
    358     return cmpGEPs(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
    359   }
    360 
    361   /// cmpType - compares two types,
    362   /// defines total ordering among the types set.
    363   ///
    364   /// Return values:
    365   /// 0 if types are equal,
    366   /// -1 if Left is less than Right,
    367   /// +1 if Left is greater than Right.
    368   ///
    369   /// Description:
    370   /// Comparison is broken onto stages. Like in lexicographical comparison
    371   /// stage coming first has higher priority.
    372   /// On each explanation stage keep in mind total ordering properties.
    373   ///
    374   /// 0. Before comparison we coerce pointer types of 0 address space to
    375   /// integer.
    376   /// We also don't bother with same type at left and right, so
    377   /// just return 0 in this case.
    378   ///
    379   /// 1. If types are of different kind (different type IDs).
    380   ///    Return result of type IDs comparison, treating them as numbers.
    381   /// 2. If types are integers, check that they have the same width. If they
    382   /// are vectors, check that they have the same count and subtype.
    383   /// 3. Types have the same ID, so check whether they are one of:
    384   /// * Void
    385   /// * Float
    386   /// * Double
    387   /// * X86_FP80
    388   /// * FP128
    389   /// * PPC_FP128
    390   /// * Label
    391   /// * Metadata
    392   /// We can treat these types as equal whenever their IDs are same.
    393   /// 4. If Left and Right are pointers, return result of address space
    394   /// comparison (numbers comparison). We can treat pointer types of same
    395   /// address space as equal.
    396   /// 5. If types are complex.
    397   /// Then both Left and Right are to be expanded and their element types will
    398   /// be checked with the same way. If we get Res != 0 on some stage, return it.
    399   /// Otherwise return 0.
    400   /// 6. For all other cases put llvm_unreachable.
    401   int cmpTypes(Type *TyL, Type *TyR) const;
    402 
    403   int cmpNumbers(uint64_t L, uint64_t R) const;
    404   int cmpAPInts(const APInt &L, const APInt &R) const;
    405   int cmpAPFloats(const APFloat &L, const APFloat &R) const;
    406   int cmpInlineAsm(const InlineAsm *L, const InlineAsm *R) const;
    407   int cmpMem(StringRef L, StringRef R) const;
    408   int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
    409   int cmpRangeMetadata(const MDNode* L, const MDNode* R) const;
    410   int cmpOperandBundlesSchema(const Instruction *L, const Instruction *R) const;
    411 
    412   // The two functions undergoing comparison.
    413   const Function *FnL, *FnR;
    414 
    415   /// Assign serial numbers to values from left function, and values from
    416   /// right function.
    417   /// Explanation:
    418   /// Being comparing functions we need to compare values we meet at left and
    419   /// right sides.
    420   /// Its easy to sort things out for external values. It just should be
    421   /// the same value at left and right.
    422   /// But for local values (those were introduced inside function body)
    423   /// we have to ensure they were introduced at exactly the same place,
    424   /// and plays the same role.
    425   /// Let's assign serial number to each value when we meet it first time.
    426   /// Values that were met at same place will be with same serial numbers.
    427   /// In this case it would be good to explain few points about values assigned
    428   /// to BBs and other ways of implementation (see below).
    429   ///
    430   /// 1. Safety of BB reordering.
    431   /// It's safe to change the order of BasicBlocks in function.
    432   /// Relationship with other functions and serial numbering will not be
    433   /// changed in this case.
    434   /// As follows from FunctionComparator::compare(), we do CFG walk: we start
    435   /// from the entry, and then take each terminator. So it doesn't matter how in
    436   /// fact BBs are ordered in function. And since cmpValues are called during
    437   /// this walk, the numbering depends only on how BBs located inside the CFG.
    438   /// So the answer is - yes. We will get the same numbering.
    439   ///
    440   /// 2. Impossibility to use dominance properties of values.
    441   /// If we compare two instruction operands: first is usage of local
    442   /// variable AL from function FL, and second is usage of local variable AR
    443   /// from FR, we could compare their origins and check whether they are
    444   /// defined at the same place.
    445   /// But, we are still not able to compare operands of PHI nodes, since those
    446   /// could be operands from further BBs we didn't scan yet.
    447   /// So it's impossible to use dominance properties in general.
    448   DenseMap<const Value*, int> sn_mapL, sn_mapR;
    449 
    450   // The global state we will use
    451   GlobalNumberState* GlobalNumbers;
    452 };
    453 
    454 class FunctionNode {
    455   mutable AssertingVH<Function> F;
    456   FunctionComparator::FunctionHash Hash;
    457 public:
    458   // Note the hash is recalculated potentially multiple times, but it is cheap.
    459   FunctionNode(Function *F)
    460     : F(F), Hash(FunctionComparator::functionHash(*F))  {}
    461   Function *getFunc() const { return F; }
    462   FunctionComparator::FunctionHash getHash() const { return Hash; }
    463 
    464   /// Replace the reference to the function F by the function G, assuming their
    465   /// implementations are equal.
    466   void replaceBy(Function *G) const {
    467     F = G;
    468   }
    469 
    470   void release() { F = nullptr; }
    471 };
    472 } // end anonymous namespace
    473 
    474 int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
    475   if (L < R) return -1;
    476   if (L > R) return 1;
    477   return 0;
    478 }
    479 
    480 int FunctionComparator::cmpAPInts(const APInt &L, const APInt &R) const {
    481   if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
    482     return Res;
    483   if (L.ugt(R)) return 1;
    484   if (R.ugt(L)) return -1;
    485   return 0;
    486 }
    487 
    488 int FunctionComparator::cmpAPFloats(const APFloat &L, const APFloat &R) const {
    489   // Floats are ordered first by semantics (i.e. float, double, half, etc.),
    490   // then by value interpreted as a bitstring (aka APInt).
    491   const fltSemantics &SL = L.getSemantics(), &SR = R.getSemantics();
    492   if (int Res = cmpNumbers(APFloat::semanticsPrecision(SL),
    493                            APFloat::semanticsPrecision(SR)))
    494     return Res;
    495   if (int Res = cmpNumbers(APFloat::semanticsMaxExponent(SL),
    496                            APFloat::semanticsMaxExponent(SR)))
    497     return Res;
    498   if (int Res = cmpNumbers(APFloat::semanticsMinExponent(SL),
    499                            APFloat::semanticsMinExponent(SR)))
    500     return Res;
    501   if (int Res = cmpNumbers(APFloat::semanticsSizeInBits(SL),
    502                            APFloat::semanticsSizeInBits(SR)))
    503     return Res;
    504   return cmpAPInts(L.bitcastToAPInt(), R.bitcastToAPInt());
    505 }
    506 
    507 int FunctionComparator::cmpMem(StringRef L, StringRef R) const {
    508   // Prevent heavy comparison, compare sizes first.
    509   if (int Res = cmpNumbers(L.size(), R.size()))
    510     return Res;
    511 
    512   // Compare strings lexicographically only when it is necessary: only when
    513   // strings are equal in size.
    514   return L.compare(R);
    515 }
    516 
    517 int FunctionComparator::cmpAttrs(const AttributeSet L,
    518                                  const AttributeSet R) const {
    519   if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
    520     return Res;
    521 
    522   for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
    523     AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
    524                            RE = R.end(i);
    525     for (; LI != LE && RI != RE; ++LI, ++RI) {
    526       Attribute LA = *LI;
    527       Attribute RA = *RI;
    528       if (LA < RA)
    529         return -1;
    530       if (RA < LA)
    531         return 1;
    532     }
    533     if (LI != LE)
    534       return 1;
    535     if (RI != RE)
    536       return -1;
    537   }
    538   return 0;
    539 }
    540 
    541 int FunctionComparator::cmpRangeMetadata(const MDNode* L,
    542                                          const MDNode* R) const {
    543   if (L == R)
    544     return 0;
    545   if (!L)
    546     return -1;
    547   if (!R)
    548     return 1;
    549   // Range metadata is a sequence of numbers. Make sure they are the same
    550   // sequence.
    551   // TODO: Note that as this is metadata, it is possible to drop and/or merge
    552   // this data when considering functions to merge. Thus this comparison would
    553   // return 0 (i.e. equivalent), but merging would become more complicated
    554   // because the ranges would need to be unioned. It is not likely that
    555   // functions differ ONLY in this metadata if they are actually the same
    556   // function semantically.
    557   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    558     return Res;
    559   for (size_t I = 0; I < L->getNumOperands(); ++I) {
    560     ConstantInt* LLow = mdconst::extract<ConstantInt>(L->getOperand(I));
    561     ConstantInt* RLow = mdconst::extract<ConstantInt>(R->getOperand(I));
    562     if (int Res = cmpAPInts(LLow->getValue(), RLow->getValue()))
    563       return Res;
    564   }
    565   return 0;
    566 }
    567 
    568 int FunctionComparator::cmpOperandBundlesSchema(const Instruction *L,
    569                                                 const Instruction *R) const {
    570   ImmutableCallSite LCS(L);
    571   ImmutableCallSite RCS(R);
    572 
    573   assert(LCS && RCS && "Must be calls or invokes!");
    574   assert(LCS.isCall() == RCS.isCall() && "Can't compare otherwise!");
    575 
    576   if (int Res =
    577           cmpNumbers(LCS.getNumOperandBundles(), RCS.getNumOperandBundles()))
    578     return Res;
    579 
    580   for (unsigned i = 0, e = LCS.getNumOperandBundles(); i != e; ++i) {
    581     auto OBL = LCS.getOperandBundleAt(i);
    582     auto OBR = RCS.getOperandBundleAt(i);
    583 
    584     if (int Res = OBL.getTagName().compare(OBR.getTagName()))
    585       return Res;
    586 
    587     if (int Res = cmpNumbers(OBL.Inputs.size(), OBR.Inputs.size()))
    588       return Res;
    589   }
    590 
    591   return 0;
    592 }
    593 
    594 /// Constants comparison:
    595 /// 1. Check whether type of L constant could be losslessly bitcasted to R
    596 /// type.
    597 /// 2. Compare constant contents.
    598 /// For more details see declaration comments.
    599 int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
    600 
    601   Type *TyL = L->getType();
    602   Type *TyR = R->getType();
    603 
    604   // Check whether types are bitcastable. This part is just re-factored
    605   // Type::canLosslesslyBitCastTo method, but instead of returning true/false,
    606   // we also pack into result which type is "less" for us.
    607   int TypesRes = cmpTypes(TyL, TyR);
    608   if (TypesRes != 0) {
    609     // Types are different, but check whether we can bitcast them.
    610     if (!TyL->isFirstClassType()) {
    611       if (TyR->isFirstClassType())
    612         return -1;
    613       // Neither TyL nor TyR are values of first class type. Return the result
    614       // of comparing the types
    615       return TypesRes;
    616     }
    617     if (!TyR->isFirstClassType()) {
    618       if (TyL->isFirstClassType())
    619         return 1;
    620       return TypesRes;
    621     }
    622 
    623     // Vector -> Vector conversions are always lossless if the two vector types
    624     // have the same size, otherwise not.
    625     unsigned TyLWidth = 0;
    626     unsigned TyRWidth = 0;
    627 
    628     if (auto *VecTyL = dyn_cast<VectorType>(TyL))
    629       TyLWidth = VecTyL->getBitWidth();
    630     if (auto *VecTyR = dyn_cast<VectorType>(TyR))
    631       TyRWidth = VecTyR->getBitWidth();
    632 
    633     if (TyLWidth != TyRWidth)
    634       return cmpNumbers(TyLWidth, TyRWidth);
    635 
    636     // Zero bit-width means neither TyL nor TyR are vectors.
    637     if (!TyLWidth) {
    638       PointerType *PTyL = dyn_cast<PointerType>(TyL);
    639       PointerType *PTyR = dyn_cast<PointerType>(TyR);
    640       if (PTyL && PTyR) {
    641         unsigned AddrSpaceL = PTyL->getAddressSpace();
    642         unsigned AddrSpaceR = PTyR->getAddressSpace();
    643         if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
    644           return Res;
    645       }
    646       if (PTyL)
    647         return 1;
    648       if (PTyR)
    649         return -1;
    650 
    651       // TyL and TyR aren't vectors, nor pointers. We don't know how to
    652       // bitcast them.
    653       return TypesRes;
    654     }
    655   }
    656 
    657   // OK, types are bitcastable, now check constant contents.
    658 
    659   if (L->isNullValue() && R->isNullValue())
    660     return TypesRes;
    661   if (L->isNullValue() && !R->isNullValue())
    662     return 1;
    663   if (!L->isNullValue() && R->isNullValue())
    664     return -1;
    665 
    666   auto GlobalValueL = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(L));
    667   auto GlobalValueR = const_cast<GlobalValue*>(dyn_cast<GlobalValue>(R));
    668   if (GlobalValueL && GlobalValueR) {
    669     return cmpGlobalValues(GlobalValueL, GlobalValueR);
    670   }
    671 
    672   if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
    673     return Res;
    674 
    675   if (const auto *SeqL = dyn_cast<ConstantDataSequential>(L)) {
    676     const auto *SeqR = cast<ConstantDataSequential>(R);
    677     // This handles ConstantDataArray and ConstantDataVector. Note that we
    678     // compare the two raw data arrays, which might differ depending on the host
    679     // endianness. This isn't a problem though, because the endiness of a module
    680     // will affect the order of the constants, but this order is the same
    681     // for a given input module and host platform.
    682     return cmpMem(SeqL->getRawDataValues(), SeqR->getRawDataValues());
    683   }
    684 
    685   switch (L->getValueID()) {
    686   case Value::UndefValueVal:
    687   case Value::ConstantTokenNoneVal:
    688     return TypesRes;
    689   case Value::ConstantIntVal: {
    690     const APInt &LInt = cast<ConstantInt>(L)->getValue();
    691     const APInt &RInt = cast<ConstantInt>(R)->getValue();
    692     return cmpAPInts(LInt, RInt);
    693   }
    694   case Value::ConstantFPVal: {
    695     const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
    696     const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
    697     return cmpAPFloats(LAPF, RAPF);
    698   }
    699   case Value::ConstantArrayVal: {
    700     const ConstantArray *LA = cast<ConstantArray>(L);
    701     const ConstantArray *RA = cast<ConstantArray>(R);
    702     uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
    703     uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
    704     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    705       return Res;
    706     for (uint64_t i = 0; i < NumElementsL; ++i) {
    707       if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
    708                                  cast<Constant>(RA->getOperand(i))))
    709         return Res;
    710     }
    711     return 0;
    712   }
    713   case Value::ConstantStructVal: {
    714     const ConstantStruct *LS = cast<ConstantStruct>(L);
    715     const ConstantStruct *RS = cast<ConstantStruct>(R);
    716     unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
    717     unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
    718     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    719       return Res;
    720     for (unsigned i = 0; i != NumElementsL; ++i) {
    721       if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
    722                                  cast<Constant>(RS->getOperand(i))))
    723         return Res;
    724     }
    725     return 0;
    726   }
    727   case Value::ConstantVectorVal: {
    728     const ConstantVector *LV = cast<ConstantVector>(L);
    729     const ConstantVector *RV = cast<ConstantVector>(R);
    730     unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
    731     unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
    732     if (int Res = cmpNumbers(NumElementsL, NumElementsR))
    733       return Res;
    734     for (uint64_t i = 0; i < NumElementsL; ++i) {
    735       if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
    736                                  cast<Constant>(RV->getOperand(i))))
    737         return Res;
    738     }
    739     return 0;
    740   }
    741   case Value::ConstantExprVal: {
    742     const ConstantExpr *LE = cast<ConstantExpr>(L);
    743     const ConstantExpr *RE = cast<ConstantExpr>(R);
    744     unsigned NumOperandsL = LE->getNumOperands();
    745     unsigned NumOperandsR = RE->getNumOperands();
    746     if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
    747       return Res;
    748     for (unsigned i = 0; i < NumOperandsL; ++i) {
    749       if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
    750                                  cast<Constant>(RE->getOperand(i))))
    751         return Res;
    752     }
    753     return 0;
    754   }
    755   case Value::BlockAddressVal: {
    756     const BlockAddress *LBA = cast<BlockAddress>(L);
    757     const BlockAddress *RBA = cast<BlockAddress>(R);
    758     if (int Res = cmpValues(LBA->getFunction(), RBA->getFunction()))
    759       return Res;
    760     if (LBA->getFunction() == RBA->getFunction()) {
    761       // They are BBs in the same function. Order by which comes first in the
    762       // BB order of the function. This order is deterministic.
    763       Function* F = LBA->getFunction();
    764       BasicBlock *LBB = LBA->getBasicBlock();
    765       BasicBlock *RBB = RBA->getBasicBlock();
    766       if (LBB == RBB)
    767         return 0;
    768       for(BasicBlock &BB : F->getBasicBlockList()) {
    769         if (&BB == LBB) {
    770           assert(&BB != RBB);
    771           return -1;
    772         }
    773         if (&BB == RBB)
    774           return 1;
    775       }
    776       llvm_unreachable("Basic Block Address does not point to a basic block in "
    777                        "its function.");
    778       return -1;
    779     } else {
    780       // cmpValues said the functions are the same. So because they aren't
    781       // literally the same pointer, they must respectively be the left and
    782       // right functions.
    783       assert(LBA->getFunction() == FnL && RBA->getFunction() == FnR);
    784       // cmpValues will tell us if these are equivalent BasicBlocks, in the
    785       // context of their respective functions.
    786       return cmpValues(LBA->getBasicBlock(), RBA->getBasicBlock());
    787     }
    788   }
    789   default: // Unknown constant, abort.
    790     DEBUG(dbgs() << "Looking at valueID " << L->getValueID() << "\n");
    791     llvm_unreachable("Constant ValueID not recognized.");
    792     return -1;
    793   }
    794 }
    795 
    796 int FunctionComparator::cmpGlobalValues(GlobalValue *L, GlobalValue* R) {
    797   return cmpNumbers(GlobalNumbers->getNumber(L), GlobalNumbers->getNumber(R));
    798 }
    799 
    800 /// cmpType - compares two types,
    801 /// defines total ordering among the types set.
    802 /// See method declaration comments for more details.
    803 int FunctionComparator::cmpTypes(Type *TyL, Type *TyR) const {
    804   PointerType *PTyL = dyn_cast<PointerType>(TyL);
    805   PointerType *PTyR = dyn_cast<PointerType>(TyR);
    806 
    807   const DataLayout &DL = FnL->getParent()->getDataLayout();
    808   if (PTyL && PTyL->getAddressSpace() == 0)
    809     TyL = DL.getIntPtrType(TyL);
    810   if (PTyR && PTyR->getAddressSpace() == 0)
    811     TyR = DL.getIntPtrType(TyR);
    812 
    813   if (TyL == TyR)
    814     return 0;
    815 
    816   if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
    817     return Res;
    818 
    819   switch (TyL->getTypeID()) {
    820   default:
    821     llvm_unreachable("Unknown type!");
    822     // Fall through in Release mode.
    823   case Type::IntegerTyID:
    824     return cmpNumbers(cast<IntegerType>(TyL)->getBitWidth(),
    825                       cast<IntegerType>(TyR)->getBitWidth());
    826   case Type::VectorTyID: {
    827     VectorType *VTyL = cast<VectorType>(TyL), *VTyR = cast<VectorType>(TyR);
    828     if (int Res = cmpNumbers(VTyL->getNumElements(), VTyR->getNumElements()))
    829       return Res;
    830     return cmpTypes(VTyL->getElementType(), VTyR->getElementType());
    831   }
    832   // TyL == TyR would have returned true earlier, because types are uniqued.
    833   case Type::VoidTyID:
    834   case Type::FloatTyID:
    835   case Type::DoubleTyID:
    836   case Type::X86_FP80TyID:
    837   case Type::FP128TyID:
    838   case Type::PPC_FP128TyID:
    839   case Type::LabelTyID:
    840   case Type::MetadataTyID:
    841   case Type::TokenTyID:
    842     return 0;
    843 
    844   case Type::PointerTyID: {
    845     assert(PTyL && PTyR && "Both types must be pointers here.");
    846     return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
    847   }
    848 
    849   case Type::StructTyID: {
    850     StructType *STyL = cast<StructType>(TyL);
    851     StructType *STyR = cast<StructType>(TyR);
    852     if (STyL->getNumElements() != STyR->getNumElements())
    853       return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
    854 
    855     if (STyL->isPacked() != STyR->isPacked())
    856       return cmpNumbers(STyL->isPacked(), STyR->isPacked());
    857 
    858     for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
    859       if (int Res = cmpTypes(STyL->getElementType(i), STyR->getElementType(i)))
    860         return Res;
    861     }
    862     return 0;
    863   }
    864 
    865   case Type::FunctionTyID: {
    866     FunctionType *FTyL = cast<FunctionType>(TyL);
    867     FunctionType *FTyR = cast<FunctionType>(TyR);
    868     if (FTyL->getNumParams() != FTyR->getNumParams())
    869       return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
    870 
    871     if (FTyL->isVarArg() != FTyR->isVarArg())
    872       return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
    873 
    874     if (int Res = cmpTypes(FTyL->getReturnType(), FTyR->getReturnType()))
    875       return Res;
    876 
    877     for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
    878       if (int Res = cmpTypes(FTyL->getParamType(i), FTyR->getParamType(i)))
    879         return Res;
    880     }
    881     return 0;
    882   }
    883 
    884   case Type::ArrayTyID: {
    885     ArrayType *ATyL = cast<ArrayType>(TyL);
    886     ArrayType *ATyR = cast<ArrayType>(TyR);
    887     if (ATyL->getNumElements() != ATyR->getNumElements())
    888       return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
    889     return cmpTypes(ATyL->getElementType(), ATyR->getElementType());
    890   }
    891   }
    892 }
    893 
    894 // Determine whether the two operations are the same except that pointer-to-A
    895 // and pointer-to-B are equivalent. This should be kept in sync with
    896 // Instruction::isSameOperationAs.
    897 // Read method declaration comments for more details.
    898 int FunctionComparator::cmpOperations(const Instruction *L,
    899                                       const Instruction *R) const {
    900   // Differences from Instruction::isSameOperationAs:
    901   //  * replace type comparison with calls to isEquivalentType.
    902   //  * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
    903   //  * because of the above, we don't test for the tail bit on calls later on
    904   if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
    905     return Res;
    906 
    907   if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
    908     return Res;
    909 
    910   if (int Res = cmpTypes(L->getType(), R->getType()))
    911     return Res;
    912 
    913   if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
    914                            R->getRawSubclassOptionalData()))
    915     return Res;
    916 
    917   if (const AllocaInst *AI = dyn_cast<AllocaInst>(L)) {
    918     if (int Res = cmpTypes(AI->getAllocatedType(),
    919                            cast<AllocaInst>(R)->getAllocatedType()))
    920       return Res;
    921     if (int Res =
    922             cmpNumbers(AI->getAlignment(), cast<AllocaInst>(R)->getAlignment()))
    923       return Res;
    924   }
    925 
    926   // We have two instructions of identical opcode and #operands.  Check to see
    927   // if all operands are the same type
    928   for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
    929     if (int Res =
    930             cmpTypes(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
    931       return Res;
    932   }
    933 
    934   // Check special state that is a part of some instructions.
    935   if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
    936     if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
    937       return Res;
    938     if (int Res =
    939             cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
    940       return Res;
    941     if (int Res =
    942             cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
    943       return Res;
    944     if (int Res =
    945             cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope()))
    946       return Res;
    947     return cmpRangeMetadata(LI->getMetadata(LLVMContext::MD_range),
    948         cast<LoadInst>(R)->getMetadata(LLVMContext::MD_range));
    949   }
    950   if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
    951     if (int Res =
    952             cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
    953       return Res;
    954     if (int Res =
    955             cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
    956       return Res;
    957     if (int Res =
    958             cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
    959       return Res;
    960     return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
    961   }
    962   if (const CmpInst *CI = dyn_cast<CmpInst>(L))
    963     return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
    964   if (const CallInst *CI = dyn_cast<CallInst>(L)) {
    965     if (int Res = cmpNumbers(CI->getCallingConv(),
    966                              cast<CallInst>(R)->getCallingConv()))
    967       return Res;
    968     if (int Res =
    969             cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes()))
    970       return Res;
    971     if (int Res = cmpOperandBundlesSchema(CI, R))
    972       return Res;
    973     return cmpRangeMetadata(
    974         CI->getMetadata(LLVMContext::MD_range),
    975         cast<CallInst>(R)->getMetadata(LLVMContext::MD_range));
    976   }
    977   if (const InvokeInst *II = dyn_cast<InvokeInst>(L)) {
    978     if (int Res = cmpNumbers(II->getCallingConv(),
    979                              cast<InvokeInst>(R)->getCallingConv()))
    980       return Res;
    981     if (int Res =
    982             cmpAttrs(II->getAttributes(), cast<InvokeInst>(R)->getAttributes()))
    983       return Res;
    984     if (int Res = cmpOperandBundlesSchema(II, R))
    985       return Res;
    986     return cmpRangeMetadata(
    987         II->getMetadata(LLVMContext::MD_range),
    988         cast<InvokeInst>(R)->getMetadata(LLVMContext::MD_range));
    989   }
    990   if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
    991     ArrayRef<unsigned> LIndices = IVI->getIndices();
    992     ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
    993     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
    994       return Res;
    995     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
    996       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
    997         return Res;
    998     }
    999   }
   1000   if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
   1001     ArrayRef<unsigned> LIndices = EVI->getIndices();
   1002     ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
   1003     if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
   1004       return Res;
   1005     for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
   1006       if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
   1007         return Res;
   1008     }
   1009   }
   1010   if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
   1011     if (int Res =
   1012             cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
   1013       return Res;
   1014     return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
   1015   }
   1016 
   1017   if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
   1018     if (int Res = cmpNumbers(CXI->isVolatile(),
   1019                              cast<AtomicCmpXchgInst>(R)->isVolatile()))
   1020       return Res;
   1021     if (int Res = cmpNumbers(CXI->isWeak(),
   1022                              cast<AtomicCmpXchgInst>(R)->isWeak()))
   1023       return Res;
   1024     if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
   1025                              cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
   1026       return Res;
   1027     if (int Res = cmpNumbers(CXI->getFailureOrdering(),
   1028                              cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
   1029       return Res;
   1030     return cmpNumbers(CXI->getSynchScope(),
   1031                       cast<AtomicCmpXchgInst>(R)->getSynchScope());
   1032   }
   1033   if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
   1034     if (int Res = cmpNumbers(RMWI->getOperation(),
   1035                              cast<AtomicRMWInst>(R)->getOperation()))
   1036       return Res;
   1037     if (int Res = cmpNumbers(RMWI->isVolatile(),
   1038                              cast<AtomicRMWInst>(R)->isVolatile()))
   1039       return Res;
   1040     if (int Res = cmpNumbers(RMWI->getOrdering(),
   1041                              cast<AtomicRMWInst>(R)->getOrdering()))
   1042       return Res;
   1043     return cmpNumbers(RMWI->getSynchScope(),
   1044                       cast<AtomicRMWInst>(R)->getSynchScope());
   1045   }
   1046   return 0;
   1047 }
   1048 
   1049 // Determine whether two GEP operations perform the same underlying arithmetic.
   1050 // Read method declaration comments for more details.
   1051 int FunctionComparator::cmpGEPs(const GEPOperator *GEPL,
   1052                                const GEPOperator *GEPR) {
   1053 
   1054   unsigned int ASL = GEPL->getPointerAddressSpace();
   1055   unsigned int ASR = GEPR->getPointerAddressSpace();
   1056 
   1057   if (int Res = cmpNumbers(ASL, ASR))
   1058     return Res;
   1059 
   1060   // When we have target data, we can reduce the GEP down to the value in bytes
   1061   // added to the address.
   1062   const DataLayout &DL = FnL->getParent()->getDataLayout();
   1063   unsigned BitWidth = DL.getPointerSizeInBits(ASL);
   1064   APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
   1065   if (GEPL->accumulateConstantOffset(DL, OffsetL) &&
   1066       GEPR->accumulateConstantOffset(DL, OffsetR))
   1067     return cmpAPInts(OffsetL, OffsetR);
   1068   if (int Res = cmpTypes(GEPL->getSourceElementType(),
   1069                          GEPR->getSourceElementType()))
   1070     return Res;
   1071 
   1072   if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
   1073     return Res;
   1074 
   1075   for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
   1076     if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
   1077       return Res;
   1078   }
   1079 
   1080   return 0;
   1081 }
   1082 
   1083 int FunctionComparator::cmpInlineAsm(const InlineAsm *L,
   1084                                      const InlineAsm *R) const {
   1085   // InlineAsm's are uniqued. If they are the same pointer, obviously they are
   1086   // the same, otherwise compare the fields.
   1087   if (L == R)
   1088     return 0;
   1089   if (int Res = cmpTypes(L->getFunctionType(), R->getFunctionType()))
   1090     return Res;
   1091   if (int Res = cmpMem(L->getAsmString(), R->getAsmString()))
   1092     return Res;
   1093   if (int Res = cmpMem(L->getConstraintString(), R->getConstraintString()))
   1094     return Res;
   1095   if (int Res = cmpNumbers(L->hasSideEffects(), R->hasSideEffects()))
   1096     return Res;
   1097   if (int Res = cmpNumbers(L->isAlignStack(), R->isAlignStack()))
   1098     return Res;
   1099   if (int Res = cmpNumbers(L->getDialect(), R->getDialect()))
   1100     return Res;
   1101   llvm_unreachable("InlineAsm blocks were not uniqued.");
   1102   return 0;
   1103 }
   1104 
   1105 /// Compare two values used by the two functions under pair-wise comparison. If
   1106 /// this is the first time the values are seen, they're added to the mapping so
   1107 /// that we will detect mismatches on next use.
   1108 /// See comments in declaration for more details.
   1109 int FunctionComparator::cmpValues(const Value *L, const Value *R) {
   1110   // Catch self-reference case.
   1111   if (L == FnL) {
   1112     if (R == FnR)
   1113       return 0;
   1114     return -1;
   1115   }
   1116   if (R == FnR) {
   1117     if (L == FnL)
   1118       return 0;
   1119     return 1;
   1120   }
   1121 
   1122   const Constant *ConstL = dyn_cast<Constant>(L);
   1123   const Constant *ConstR = dyn_cast<Constant>(R);
   1124   if (ConstL && ConstR) {
   1125     if (L == R)
   1126       return 0;
   1127     return cmpConstants(ConstL, ConstR);
   1128   }
   1129 
   1130   if (ConstL)
   1131     return 1;
   1132   if (ConstR)
   1133     return -1;
   1134 
   1135   const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
   1136   const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
   1137 
   1138   if (InlineAsmL && InlineAsmR)
   1139     return cmpInlineAsm(InlineAsmL, InlineAsmR);
   1140   if (InlineAsmL)
   1141     return 1;
   1142   if (InlineAsmR)
   1143     return -1;
   1144 
   1145   auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
   1146        RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
   1147 
   1148   return cmpNumbers(LeftSN.first->second, RightSN.first->second);
   1149 }
   1150 // Test whether two basic blocks have equivalent behaviour.
   1151 int FunctionComparator::cmpBasicBlocks(const BasicBlock *BBL,
   1152                                        const BasicBlock *BBR) {
   1153   BasicBlock::const_iterator InstL = BBL->begin(), InstLE = BBL->end();
   1154   BasicBlock::const_iterator InstR = BBR->begin(), InstRE = BBR->end();
   1155 
   1156   do {
   1157     if (int Res = cmpValues(&*InstL, &*InstR))
   1158       return Res;
   1159 
   1160     const GetElementPtrInst *GEPL = dyn_cast<GetElementPtrInst>(InstL);
   1161     const GetElementPtrInst *GEPR = dyn_cast<GetElementPtrInst>(InstR);
   1162 
   1163     if (GEPL && !GEPR)
   1164       return 1;
   1165     if (GEPR && !GEPL)
   1166       return -1;
   1167 
   1168     if (GEPL && GEPR) {
   1169       if (int Res =
   1170               cmpValues(GEPL->getPointerOperand(), GEPR->getPointerOperand()))
   1171         return Res;
   1172       if (int Res = cmpGEPs(GEPL, GEPR))
   1173         return Res;
   1174     } else {
   1175       if (int Res = cmpOperations(&*InstL, &*InstR))
   1176         return Res;
   1177       assert(InstL->getNumOperands() == InstR->getNumOperands());
   1178 
   1179       for (unsigned i = 0, e = InstL->getNumOperands(); i != e; ++i) {
   1180         Value *OpL = InstL->getOperand(i);
   1181         Value *OpR = InstR->getOperand(i);
   1182         if (int Res = cmpValues(OpL, OpR))
   1183           return Res;
   1184         // cmpValues should ensure this is true.
   1185         assert(cmpTypes(OpL->getType(), OpR->getType()) == 0);
   1186       }
   1187     }
   1188 
   1189     ++InstL, ++InstR;
   1190   } while (InstL != InstLE && InstR != InstRE);
   1191 
   1192   if (InstL != InstLE && InstR == InstRE)
   1193     return 1;
   1194   if (InstL == InstLE && InstR != InstRE)
   1195     return -1;
   1196   return 0;
   1197 }
   1198 
   1199 // Test whether the two functions have equivalent behaviour.
   1200 int FunctionComparator::compare() {
   1201   sn_mapL.clear();
   1202   sn_mapR.clear();
   1203 
   1204   if (int Res = cmpAttrs(FnL->getAttributes(), FnR->getAttributes()))
   1205     return Res;
   1206 
   1207   if (int Res = cmpNumbers(FnL->hasGC(), FnR->hasGC()))
   1208     return Res;
   1209 
   1210   if (FnL->hasGC()) {
   1211     if (int Res = cmpMem(FnL->getGC(), FnR->getGC()))
   1212       return Res;
   1213   }
   1214 
   1215   if (int Res = cmpNumbers(FnL->hasSection(), FnR->hasSection()))
   1216     return Res;
   1217 
   1218   if (FnL->hasSection()) {
   1219     if (int Res = cmpMem(FnL->getSection(), FnR->getSection()))
   1220       return Res;
   1221   }
   1222 
   1223   if (int Res = cmpNumbers(FnL->isVarArg(), FnR->isVarArg()))
   1224     return Res;
   1225 
   1226   // TODO: if it's internal and only used in direct calls, we could handle this
   1227   // case too.
   1228   if (int Res = cmpNumbers(FnL->getCallingConv(), FnR->getCallingConv()))
   1229     return Res;
   1230 
   1231   if (int Res = cmpTypes(FnL->getFunctionType(), FnR->getFunctionType()))
   1232     return Res;
   1233 
   1234   assert(FnL->arg_size() == FnR->arg_size() &&
   1235          "Identically typed functions have different numbers of args!");
   1236 
   1237   // Visit the arguments so that they get enumerated in the order they're
   1238   // passed in.
   1239   for (Function::const_arg_iterator ArgLI = FnL->arg_begin(),
   1240                                     ArgRI = FnR->arg_begin(),
   1241                                     ArgLE = FnL->arg_end();
   1242        ArgLI != ArgLE; ++ArgLI, ++ArgRI) {
   1243     if (cmpValues(&*ArgLI, &*ArgRI) != 0)
   1244       llvm_unreachable("Arguments repeat!");
   1245   }
   1246 
   1247   // We do a CFG-ordered walk since the actual ordering of the blocks in the
   1248   // linked list is immaterial. Our walk starts at the entry block for both
   1249   // functions, then takes each block from each terminator in order. As an
   1250   // artifact, this also means that unreachable blocks are ignored.
   1251   SmallVector<const BasicBlock *, 8> FnLBBs, FnRBBs;
   1252   SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
   1253 
   1254   FnLBBs.push_back(&FnL->getEntryBlock());
   1255   FnRBBs.push_back(&FnR->getEntryBlock());
   1256 
   1257   VisitedBBs.insert(FnLBBs[0]);
   1258   while (!FnLBBs.empty()) {
   1259     const BasicBlock *BBL = FnLBBs.pop_back_val();
   1260     const BasicBlock *BBR = FnRBBs.pop_back_val();
   1261 
   1262     if (int Res = cmpValues(BBL, BBR))
   1263       return Res;
   1264 
   1265     if (int Res = cmpBasicBlocks(BBL, BBR))
   1266       return Res;
   1267 
   1268     const TerminatorInst *TermL = BBL->getTerminator();
   1269     const TerminatorInst *TermR = BBR->getTerminator();
   1270 
   1271     assert(TermL->getNumSuccessors() == TermR->getNumSuccessors());
   1272     for (unsigned i = 0, e = TermL->getNumSuccessors(); i != e; ++i) {
   1273       if (!VisitedBBs.insert(TermL->getSuccessor(i)).second)
   1274         continue;
   1275 
   1276       FnLBBs.push_back(TermL->getSuccessor(i));
   1277       FnRBBs.push_back(TermR->getSuccessor(i));
   1278     }
   1279   }
   1280   return 0;
   1281 }
   1282 
   1283 namespace {
   1284 // Accumulate the hash of a sequence of 64-bit integers. This is similar to a
   1285 // hash of a sequence of 64bit ints, but the entire input does not need to be
   1286 // available at once. This interface is necessary for functionHash because it
   1287 // needs to accumulate the hash as the structure of the function is traversed
   1288 // without saving these values to an intermediate buffer. This form of hashing
   1289 // is not often needed, as usually the object to hash is just read from a
   1290 // buffer.
   1291 class HashAccumulator64 {
   1292   uint64_t Hash;
   1293 public:
   1294   // Initialize to random constant, so the state isn't zero.
   1295   HashAccumulator64() { Hash = 0x6acaa36bef8325c5ULL; }
   1296   void add(uint64_t V) {
   1297      Hash = llvm::hashing::detail::hash_16_bytes(Hash, V);
   1298   }
   1299   // No finishing is required, because the entire hash value is used.
   1300   uint64_t getHash() { return Hash; }
   1301 };
   1302 } // end anonymous namespace
   1303 
   1304 // A function hash is calculated by considering only the number of arguments and
   1305 // whether a function is varargs, the order of basic blocks (given by the
   1306 // successors of each basic block in depth first order), and the order of
   1307 // opcodes of each instruction within each of these basic blocks. This mirrors
   1308 // the strategy compare() uses to compare functions by walking the BBs in depth
   1309 // first order and comparing each instruction in sequence. Because this hash
   1310 // does not look at the operands, it is insensitive to things such as the
   1311 // target of calls and the constants used in the function, which makes it useful
   1312 // when possibly merging functions which are the same modulo constants and call
   1313 // targets.
   1314 FunctionComparator::FunctionHash FunctionComparator::functionHash(Function &F) {
   1315   HashAccumulator64 H;
   1316   H.add(F.isVarArg());
   1317   H.add(F.arg_size());
   1318 
   1319   SmallVector<const BasicBlock *, 8> BBs;
   1320   SmallSet<const BasicBlock *, 16> VisitedBBs;
   1321 
   1322   // Walk the blocks in the same order as FunctionComparator::cmpBasicBlocks(),
   1323   // accumulating the hash of the function "structure." (BB and opcode sequence)
   1324   BBs.push_back(&F.getEntryBlock());
   1325   VisitedBBs.insert(BBs[0]);
   1326   while (!BBs.empty()) {
   1327     const BasicBlock *BB = BBs.pop_back_val();
   1328     // This random value acts as a block header, as otherwise the partition of
   1329     // opcodes into BBs wouldn't affect the hash, only the order of the opcodes
   1330     H.add(45798);
   1331     for (auto &Inst : *BB) {
   1332       H.add(Inst.getOpcode());
   1333     }
   1334     const TerminatorInst *Term = BB->getTerminator();
   1335     for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) {
   1336       if (!VisitedBBs.insert(Term->getSuccessor(i)).second)
   1337         continue;
   1338       BBs.push_back(Term->getSuccessor(i));
   1339     }
   1340   }
   1341   return H.getHash();
   1342 }
   1343 
   1344 
   1345 namespace {
   1346 
   1347 /// MergeFunctions finds functions which will generate identical machine code,
   1348 /// by considering all pointer types to be equivalent. Once identified,
   1349 /// MergeFunctions will fold them by replacing a call to one to a call to a
   1350 /// bitcast of the other.
   1351 ///
   1352 class MergeFunctions : public ModulePass {
   1353 public:
   1354   static char ID;
   1355   MergeFunctions()
   1356     : ModulePass(ID), FnTree(FunctionNodeCmp(&GlobalNumbers)), FNodesInTree(),
   1357       HasGlobalAliases(false) {
   1358     initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
   1359   }
   1360 
   1361   bool runOnModule(Module &M) override;
   1362 
   1363 private:
   1364   // The function comparison operator is provided here so that FunctionNodes do
   1365   // not need to become larger with another pointer.
   1366   class FunctionNodeCmp {
   1367     GlobalNumberState* GlobalNumbers;
   1368   public:
   1369     FunctionNodeCmp(GlobalNumberState* GN) : GlobalNumbers(GN) {}
   1370     bool operator()(const FunctionNode &LHS, const FunctionNode &RHS) const {
   1371       // Order first by hashes, then full function comparison.
   1372       if (LHS.getHash() != RHS.getHash())
   1373         return LHS.getHash() < RHS.getHash();
   1374       FunctionComparator FCmp(LHS.getFunc(), RHS.getFunc(), GlobalNumbers);
   1375       return FCmp.compare() == -1;
   1376     }
   1377   };
   1378   typedef std::set<FunctionNode, FunctionNodeCmp> FnTreeType;
   1379 
   1380   GlobalNumberState GlobalNumbers;
   1381 
   1382   /// A work queue of functions that may have been modified and should be
   1383   /// analyzed again.
   1384   std::vector<WeakVH> Deferred;
   1385 
   1386   /// Checks the rules of order relation introduced among functions set.
   1387   /// Returns true, if sanity check has been passed, and false if failed.
   1388   bool doSanityCheck(std::vector<WeakVH> &Worklist);
   1389 
   1390   /// Insert a ComparableFunction into the FnTree, or merge it away if it's
   1391   /// equal to one that's already present.
   1392   bool insert(Function *NewFunction);
   1393 
   1394   /// Remove a Function from the FnTree and queue it up for a second sweep of
   1395   /// analysis.
   1396   void remove(Function *F);
   1397 
   1398   /// Find the functions that use this Value and remove them from FnTree and
   1399   /// queue the functions.
   1400   void removeUsers(Value *V);
   1401 
   1402   /// Replace all direct calls of Old with calls of New. Will bitcast New if
   1403   /// necessary to make types match.
   1404   void replaceDirectCallers(Function *Old, Function *New);
   1405 
   1406   /// Merge two equivalent functions. Upon completion, G may be deleted, or may
   1407   /// be converted into a thunk. In either case, it should never be visited
   1408   /// again.
   1409   void mergeTwoFunctions(Function *F, Function *G);
   1410 
   1411   /// Replace G with a thunk or an alias to F. Deletes G.
   1412   void writeThunkOrAlias(Function *F, Function *G);
   1413 
   1414   /// Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1415   /// of G with bitcast(F). Deletes G.
   1416   void writeThunk(Function *F, Function *G);
   1417 
   1418   /// Replace G with an alias to F. Deletes G.
   1419   void writeAlias(Function *F, Function *G);
   1420 
   1421   /// Replace function F with function G in the function tree.
   1422   void replaceFunctionInTree(const FunctionNode &FN, Function *G);
   1423 
   1424   /// The set of all distinct functions. Use the insert() and remove() methods
   1425   /// to modify it. The map allows efficient lookup and deferring of Functions.
   1426   FnTreeType FnTree;
   1427   // Map functions to the iterators of the FunctionNode which contains them
   1428   // in the FnTree. This must be updated carefully whenever the FnTree is
   1429   // modified, i.e. in insert(), remove(), and replaceFunctionInTree(), to avoid
   1430   // dangling iterators into FnTree. The invariant that preserves this is that
   1431   // there is exactly one mapping F -> FN for each FunctionNode FN in FnTree.
   1432   ValueMap<Function*, FnTreeType::iterator> FNodesInTree;
   1433 
   1434   /// Whether or not the target supports global aliases.
   1435   bool HasGlobalAliases;
   1436 };
   1437 
   1438 } // end anonymous namespace
   1439 
   1440 char MergeFunctions::ID = 0;
   1441 INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
   1442 
   1443 ModulePass *llvm::createMergeFunctionsPass() {
   1444   return new MergeFunctions();
   1445 }
   1446 
   1447 bool MergeFunctions::doSanityCheck(std::vector<WeakVH> &Worklist) {
   1448   if (const unsigned Max = NumFunctionsForSanityCheck) {
   1449     unsigned TripleNumber = 0;
   1450     bool Valid = true;
   1451 
   1452     dbgs() << "MERGEFUNC-SANITY: Started for first " << Max << " functions.\n";
   1453 
   1454     unsigned i = 0;
   1455     for (std::vector<WeakVH>::iterator I = Worklist.begin(), E = Worklist.end();
   1456          I != E && i < Max; ++I, ++i) {
   1457       unsigned j = i;
   1458       for (std::vector<WeakVH>::iterator J = I; J != E && j < Max; ++J, ++j) {
   1459         Function *F1 = cast<Function>(*I);
   1460         Function *F2 = cast<Function>(*J);
   1461         int Res1 = FunctionComparator(F1, F2, &GlobalNumbers).compare();
   1462         int Res2 = FunctionComparator(F2, F1, &GlobalNumbers).compare();
   1463 
   1464         // If F1 <= F2, then F2 >= F1, otherwise report failure.
   1465         if (Res1 != -Res2) {
   1466           dbgs() << "MERGEFUNC-SANITY: Non-symmetric; triple: " << TripleNumber
   1467                  << "\n";
   1468           F1->dump();
   1469           F2->dump();
   1470           Valid = false;
   1471         }
   1472 
   1473         if (Res1 == 0)
   1474           continue;
   1475 
   1476         unsigned k = j;
   1477         for (std::vector<WeakVH>::iterator K = J; K != E && k < Max;
   1478              ++k, ++K, ++TripleNumber) {
   1479           if (K == J)
   1480             continue;
   1481 
   1482           Function *F3 = cast<Function>(*K);
   1483           int Res3 = FunctionComparator(F1, F3, &GlobalNumbers).compare();
   1484           int Res4 = FunctionComparator(F2, F3, &GlobalNumbers).compare();
   1485 
   1486           bool Transitive = true;
   1487 
   1488           if (Res1 != 0 && Res1 == Res4) {
   1489             // F1 > F2, F2 > F3 => F1 > F3
   1490             Transitive = Res3 == Res1;
   1491           } else if (Res3 != 0 && Res3 == -Res4) {
   1492             // F1 > F3, F3 > F2 => F1 > F2
   1493             Transitive = Res3 == Res1;
   1494           } else if (Res4 != 0 && -Res3 == Res4) {
   1495             // F2 > F3, F3 > F1 => F2 > F1
   1496             Transitive = Res4 == -Res1;
   1497           }
   1498 
   1499           if (!Transitive) {
   1500             dbgs() << "MERGEFUNC-SANITY: Non-transitive; triple: "
   1501                    << TripleNumber << "\n";
   1502             dbgs() << "Res1, Res3, Res4: " << Res1 << ", " << Res3 << ", "
   1503                    << Res4 << "\n";
   1504             F1->dump();
   1505             F2->dump();
   1506             F3->dump();
   1507             Valid = false;
   1508           }
   1509         }
   1510       }
   1511     }
   1512 
   1513     dbgs() << "MERGEFUNC-SANITY: " << (Valid ? "Passed." : "Failed.") << "\n";
   1514     return Valid;
   1515   }
   1516   return true;
   1517 }
   1518 
   1519 bool MergeFunctions::runOnModule(Module &M) {
   1520   bool Changed = false;
   1521 
   1522   // All functions in the module, ordered by hash. Functions with a unique
   1523   // hash value are easily eliminated.
   1524   std::vector<std::pair<FunctionComparator::FunctionHash, Function *>>
   1525     HashedFuncs;
   1526   for (Function &Func : M) {
   1527     if (!Func.isDeclaration() && !Func.hasAvailableExternallyLinkage()) {
   1528       HashedFuncs.push_back({FunctionComparator::functionHash(Func), &Func});
   1529     }
   1530   }
   1531 
   1532   std::stable_sort(
   1533       HashedFuncs.begin(), HashedFuncs.end(),
   1534       [](const std::pair<FunctionComparator::FunctionHash, Function *> &a,
   1535          const std::pair<FunctionComparator::FunctionHash, Function *> &b) {
   1536         return a.first < b.first;
   1537       });
   1538 
   1539   auto S = HashedFuncs.begin();
   1540   for (auto I = HashedFuncs.begin(), IE = HashedFuncs.end(); I != IE; ++I) {
   1541     // If the hash value matches the previous value or the next one, we must
   1542     // consider merging it. Otherwise it is dropped and never considered again.
   1543     if ((I != S && std::prev(I)->first == I->first) ||
   1544         (std::next(I) != IE && std::next(I)->first == I->first) ) {
   1545       Deferred.push_back(WeakVH(I->second));
   1546     }
   1547   }
   1548 
   1549   do {
   1550     std::vector<WeakVH> Worklist;
   1551     Deferred.swap(Worklist);
   1552 
   1553     DEBUG(doSanityCheck(Worklist));
   1554 
   1555     DEBUG(dbgs() << "size of module: " << M.size() << '\n');
   1556     DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
   1557 
   1558     // Insert only strong functions and merge them. Strong function merging
   1559     // always deletes one of them.
   1560     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
   1561            E = Worklist.end(); I != E; ++I) {
   1562       if (!*I) continue;
   1563       Function *F = cast<Function>(*I);
   1564       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
   1565           !F->mayBeOverridden()) {
   1566         Changed |= insert(F);
   1567       }
   1568     }
   1569 
   1570     // Insert only weak functions and merge them. By doing these second we
   1571     // create thunks to the strong function when possible. When two weak
   1572     // functions are identical, we create a new strong function with two weak
   1573     // weak thunks to it which are identical but not mergable.
   1574     for (std::vector<WeakVH>::iterator I = Worklist.begin(),
   1575            E = Worklist.end(); I != E; ++I) {
   1576       if (!*I) continue;
   1577       Function *F = cast<Function>(*I);
   1578       if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
   1579           F->mayBeOverridden()) {
   1580         Changed |= insert(F);
   1581       }
   1582     }
   1583     DEBUG(dbgs() << "size of FnTree: " << FnTree.size() << '\n');
   1584   } while (!Deferred.empty());
   1585 
   1586   FnTree.clear();
   1587   GlobalNumbers.clear();
   1588 
   1589   return Changed;
   1590 }
   1591 
   1592 // Replace direct callers of Old with New.
   1593 void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
   1594   Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
   1595   for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
   1596     Use *U = &*UI;
   1597     ++UI;
   1598     CallSite CS(U->getUser());
   1599     if (CS && CS.isCallee(U)) {
   1600       // Transfer the called function's attributes to the call site. Due to the
   1601       // bitcast we will 'lose' ABI changing attributes because the 'called
   1602       // function' is no longer a Function* but the bitcast. Code that looks up
   1603       // the attributes from the called function will fail.
   1604 
   1605       // FIXME: This is not actually true, at least not anymore. The callsite
   1606       // will always have the same ABI affecting attributes as the callee,
   1607       // because otherwise the original input has UB. Note that Old and New
   1608       // always have matching ABI, so no attributes need to be changed.
   1609       // Transferring other attributes may help other optimizations, but that
   1610       // should be done uniformly and not in this ad-hoc way.
   1611       auto &Context = New->getContext();
   1612       auto NewFuncAttrs = New->getAttributes();
   1613       auto CallSiteAttrs = CS.getAttributes();
   1614 
   1615       CallSiteAttrs = CallSiteAttrs.addAttributes(
   1616           Context, AttributeSet::ReturnIndex, NewFuncAttrs.getRetAttributes());
   1617 
   1618       for (unsigned argIdx = 0; argIdx < CS.arg_size(); argIdx++) {
   1619         AttributeSet Attrs = NewFuncAttrs.getParamAttributes(argIdx);
   1620         if (Attrs.getNumSlots())
   1621           CallSiteAttrs = CallSiteAttrs.addAttributes(Context, argIdx, Attrs);
   1622       }
   1623 
   1624       CS.setAttributes(CallSiteAttrs);
   1625 
   1626       remove(CS.getInstruction()->getParent()->getParent());
   1627       U->set(BitcastNew);
   1628     }
   1629   }
   1630 }
   1631 
   1632 // Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
   1633 void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
   1634   if (HasGlobalAliases && G->hasUnnamedAddr()) {
   1635     if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
   1636         G->hasWeakLinkage()) {
   1637       writeAlias(F, G);
   1638       return;
   1639     }
   1640   }
   1641 
   1642   writeThunk(F, G);
   1643 }
   1644 
   1645 // Helper for writeThunk,
   1646 // Selects proper bitcast operation,
   1647 // but a bit simpler then CastInst::getCastOpcode.
   1648 static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
   1649   Type *SrcTy = V->getType();
   1650   if (SrcTy->isStructTy()) {
   1651     assert(DestTy->isStructTy());
   1652     assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
   1653     Value *Result = UndefValue::get(DestTy);
   1654     for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
   1655       Value *Element = createCast(
   1656           Builder, Builder.CreateExtractValue(V, makeArrayRef(I)),
   1657           DestTy->getStructElementType(I));
   1658 
   1659       Result =
   1660           Builder.CreateInsertValue(Result, Element, makeArrayRef(I));
   1661     }
   1662     return Result;
   1663   }
   1664   assert(!DestTy->isStructTy());
   1665   if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
   1666     return Builder.CreateIntToPtr(V, DestTy);
   1667   else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
   1668     return Builder.CreatePtrToInt(V, DestTy);
   1669   else
   1670     return Builder.CreateBitCast(V, DestTy);
   1671 }
   1672 
   1673 // Replace G with a simple tail call to bitcast(F). Also replace direct uses
   1674 // of G with bitcast(F). Deletes G.
   1675 void MergeFunctions::writeThunk(Function *F, Function *G) {
   1676   if (!G->mayBeOverridden()) {
   1677     // Redirect direct callers of G to F.
   1678     replaceDirectCallers(G, F);
   1679   }
   1680 
   1681   // If G was internal then we may have replaced all uses of G with F. If so,
   1682   // stop here and delete G. There's no need for a thunk.
   1683   if (G->hasLocalLinkage() && G->use_empty()) {
   1684     G->eraseFromParent();
   1685     return;
   1686   }
   1687 
   1688   Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
   1689                                     G->getParent());
   1690   BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
   1691   IRBuilder<false> Builder(BB);
   1692 
   1693   SmallVector<Value *, 16> Args;
   1694   unsigned i = 0;
   1695   FunctionType *FFTy = F->getFunctionType();
   1696   for (Argument & AI : NewG->args()) {
   1697     Args.push_back(createCast(Builder, &AI, FFTy->getParamType(i)));
   1698     ++i;
   1699   }
   1700 
   1701   CallInst *CI = Builder.CreateCall(F, Args);
   1702   CI->setTailCall();
   1703   CI->setCallingConv(F->getCallingConv());
   1704   CI->setAttributes(F->getAttributes());
   1705   if (NewG->getReturnType()->isVoidTy()) {
   1706     Builder.CreateRetVoid();
   1707   } else {
   1708     Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
   1709   }
   1710 
   1711   NewG->copyAttributesFrom(G);
   1712   NewG->takeName(G);
   1713   removeUsers(G);
   1714   G->replaceAllUsesWith(NewG);
   1715   G->eraseFromParent();
   1716 
   1717   DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
   1718   ++NumThunksWritten;
   1719 }
   1720 
   1721 // Replace G with an alias to F and delete G.
   1722 void MergeFunctions::writeAlias(Function *F, Function *G) {
   1723   auto *GA = GlobalAlias::create(G->getLinkage(), "", F);
   1724   F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
   1725   GA->takeName(G);
   1726   GA->setVisibility(G->getVisibility());
   1727   removeUsers(G);
   1728   G->replaceAllUsesWith(GA);
   1729   G->eraseFromParent();
   1730 
   1731   DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
   1732   ++NumAliasesWritten;
   1733 }
   1734 
   1735 // Merge two equivalent functions. Upon completion, Function G is deleted.
   1736 void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
   1737   if (F->mayBeOverridden()) {
   1738     assert(G->mayBeOverridden());
   1739 
   1740     // Make them both thunks to the same internal function.
   1741     Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
   1742                                    F->getParent());
   1743     H->copyAttributesFrom(F);
   1744     H->takeName(F);
   1745     removeUsers(F);
   1746     F->replaceAllUsesWith(H);
   1747 
   1748     unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
   1749 
   1750     if (HasGlobalAliases) {
   1751       writeAlias(F, G);
   1752       writeAlias(F, H);
   1753     } else {
   1754       writeThunk(F, G);
   1755       writeThunk(F, H);
   1756     }
   1757 
   1758     F->setAlignment(MaxAlignment);
   1759     F->setLinkage(GlobalValue::PrivateLinkage);
   1760     ++NumDoubleWeak;
   1761   } else {
   1762     writeThunkOrAlias(F, G);
   1763   }
   1764 
   1765   ++NumFunctionsMerged;
   1766 }
   1767 
   1768 /// Replace function F by function G.
   1769 void MergeFunctions::replaceFunctionInTree(const FunctionNode &FN,
   1770                                            Function *G) {
   1771   Function *F = FN.getFunc();
   1772   assert(FunctionComparator(F, G, &GlobalNumbers).compare() == 0 &&
   1773          "The two functions must be equal");
   1774 
   1775   auto I = FNodesInTree.find(F);
   1776   assert(I != FNodesInTree.end() && "F should be in FNodesInTree");
   1777   assert(FNodesInTree.count(G) == 0 && "FNodesInTree should not contain G");
   1778 
   1779   FnTreeType::iterator IterToFNInFnTree = I->second;
   1780   assert(&(*IterToFNInFnTree) == &FN && "F should map to FN in FNodesInTree.");
   1781   // Remove F -> FN and insert G -> FN
   1782   FNodesInTree.erase(I);
   1783   FNodesInTree.insert({G, IterToFNInFnTree});
   1784   // Replace F with G in FN, which is stored inside the FnTree.
   1785   FN.replaceBy(G);
   1786 }
   1787 
   1788 // Insert a ComparableFunction into the FnTree, or merge it away if equal to one
   1789 // that was already inserted.
   1790 bool MergeFunctions::insert(Function *NewFunction) {
   1791   std::pair<FnTreeType::iterator, bool> Result =
   1792       FnTree.insert(FunctionNode(NewFunction));
   1793 
   1794   if (Result.second) {
   1795     assert(FNodesInTree.count(NewFunction) == 0);
   1796     FNodesInTree.insert({NewFunction, Result.first});
   1797     DEBUG(dbgs() << "Inserting as unique: " << NewFunction->getName() << '\n');
   1798     return false;
   1799   }
   1800 
   1801   const FunctionNode &OldF = *Result.first;
   1802 
   1803   // Don't merge tiny functions, since it can just end up making the function
   1804   // larger.
   1805   // FIXME: Should still merge them if they are unnamed_addr and produce an
   1806   // alias.
   1807   if (NewFunction->size() == 1) {
   1808     if (NewFunction->front().size() <= 2) {
   1809       DEBUG(dbgs() << NewFunction->getName()
   1810                    << " is to small to bother merging\n");
   1811       return false;
   1812     }
   1813   }
   1814 
   1815   // Impose a total order (by name) on the replacement of functions. This is
   1816   // important when operating on more than one module independently to prevent
   1817   // cycles of thunks calling each other when the modules are linked together.
   1818   //
   1819   // When one function is weak and the other is strong there is an order imposed
   1820   // already. We process strong functions before weak functions.
   1821   if ((OldF.getFunc()->mayBeOverridden() && NewFunction->mayBeOverridden()) ||
   1822       (!OldF.getFunc()->mayBeOverridden() && !NewFunction->mayBeOverridden()))
   1823     if (OldF.getFunc()->getName() > NewFunction->getName()) {
   1824       // Swap the two functions.
   1825       Function *F = OldF.getFunc();
   1826       replaceFunctionInTree(*Result.first, NewFunction);
   1827       NewFunction = F;
   1828       assert(OldF.getFunc() != F && "Must have swapped the functions.");
   1829     }
   1830 
   1831   // Never thunk a strong function to a weak function.
   1832   assert(!OldF.getFunc()->mayBeOverridden() || NewFunction->mayBeOverridden());
   1833 
   1834   DEBUG(dbgs() << "  " << OldF.getFunc()->getName()
   1835                << " == " << NewFunction->getName() << '\n');
   1836 
   1837   Function *DeleteF = NewFunction;
   1838   mergeTwoFunctions(OldF.getFunc(), DeleteF);
   1839   return true;
   1840 }
   1841 
   1842 // Remove a function from FnTree. If it was already in FnTree, add
   1843 // it to Deferred so that we'll look at it in the next round.
   1844 void MergeFunctions::remove(Function *F) {
   1845   auto I = FNodesInTree.find(F);
   1846   if (I != FNodesInTree.end()) {
   1847     DEBUG(dbgs() << "Deferred " << F->getName()<< ".\n");
   1848     FnTree.erase(I->second);
   1849     // I->second has been invalidated, remove it from the FNodesInTree map to
   1850     // preserve the invariant.
   1851     FNodesInTree.erase(I);
   1852     Deferred.emplace_back(F);
   1853   }
   1854 }
   1855 
   1856 // For each instruction used by the value, remove() the function that contains
   1857 // the instruction. This should happen right before a call to RAUW.
   1858 void MergeFunctions::removeUsers(Value *V) {
   1859   std::vector<Value *> Worklist;
   1860   Worklist.push_back(V);
   1861   SmallSet<Value*, 8> Visited;
   1862   Visited.insert(V);
   1863   while (!Worklist.empty()) {
   1864     Value *V = Worklist.back();
   1865     Worklist.pop_back();
   1866 
   1867     for (User *U : V->users()) {
   1868       if (Instruction *I = dyn_cast<Instruction>(U)) {
   1869         remove(I->getParent()->getParent());
   1870       } else if (isa<GlobalValue>(U)) {
   1871         // do nothing
   1872       } else if (Constant *C = dyn_cast<Constant>(U)) {
   1873         for (User *UU : C->users()) {
   1874           if (!Visited.insert(UU).second)
   1875             Worklist.push_back(UU);
   1876         }
   1877       }
   1878     }
   1879   }
   1880 }
   1881