1 /* 2 * Copyright (C) 2016 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include <inttypes.h> 18 19 #include <functional> 20 #include <iomanip> 21 #include <mutex> 22 #include <string> 23 #include <sstream> 24 #include <unordered_map> 25 26 #include <backtrace.h> 27 #include <android-base/macros.h> 28 29 #include "Allocator.h" 30 #include "HeapWalker.h" 31 #include "Leak.h" 32 #include "LeakFolding.h" 33 #include "LeakPipe.h" 34 #include "ProcessMappings.h" 35 #include "PtracerThread.h" 36 #include "ScopedDisableMalloc.h" 37 #include "Semaphore.h" 38 #include "ThreadCapture.h" 39 40 #include "memunreachable/memunreachable.h" 41 #include "bionic.h" 42 #include "log.h" 43 44 const size_t Leak::contents_length; 45 46 using namespace std::chrono_literals; 47 48 class MemUnreachable { 49 public: 50 MemUnreachable(pid_t pid, Allocator<void> allocator) : pid_(pid), allocator_(allocator), 51 heap_walker_(allocator_) {} 52 bool CollectAllocations(const allocator::vector<ThreadInfo>& threads, 53 const allocator::vector<Mapping>& mappings); 54 bool GetUnreachableMemory(allocator::vector<Leak>& leaks, size_t limit, 55 size_t* num_leaks, size_t* leak_bytes); 56 size_t Allocations() { return heap_walker_.Allocations(); } 57 size_t AllocationBytes() { return heap_walker_.AllocationBytes(); } 58 private: 59 bool ClassifyMappings(const allocator::vector<Mapping>& mappings, 60 allocator::vector<Mapping>& heap_mappings, 61 allocator::vector<Mapping>& anon_mappings, 62 allocator::vector<Mapping>& globals_mappings, 63 allocator::vector<Mapping>& stack_mappings); 64 DISALLOW_COPY_AND_ASSIGN(MemUnreachable); 65 pid_t pid_; 66 Allocator<void> allocator_; 67 HeapWalker heap_walker_; 68 }; 69 70 static void HeapIterate(const Mapping& heap_mapping, 71 const std::function<void(uintptr_t, size_t)>& func) { 72 malloc_iterate(heap_mapping.begin, heap_mapping.end - heap_mapping.begin, 73 [](uintptr_t base, size_t size, void* arg) { 74 auto f = reinterpret_cast<const std::function<void(uintptr_t, size_t)>*>(arg); 75 (*f)(base, size); 76 }, const_cast<void*>(reinterpret_cast<const void*>(&func))); 77 } 78 79 bool MemUnreachable::CollectAllocations(const allocator::vector<ThreadInfo>& threads, 80 const allocator::vector<Mapping>& mappings) { 81 ALOGI("searching process %d for allocations", pid_); 82 allocator::vector<Mapping> heap_mappings{mappings}; 83 allocator::vector<Mapping> anon_mappings{mappings}; 84 allocator::vector<Mapping> globals_mappings{mappings}; 85 allocator::vector<Mapping> stack_mappings{mappings}; 86 if (!ClassifyMappings(mappings, heap_mappings, anon_mappings, 87 globals_mappings, stack_mappings)) { 88 return false; 89 } 90 91 for (auto it = heap_mappings.begin(); it != heap_mappings.end(); it++) { 92 ALOGV("Heap mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); 93 HeapIterate(*it, [&](uintptr_t base, size_t size) { 94 heap_walker_.Allocation(base, base + size); 95 }); 96 } 97 98 for (auto it = anon_mappings.begin(); it != anon_mappings.end(); it++) { 99 ALOGV("Anon mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); 100 heap_walker_.Allocation(it->begin, it->end); 101 } 102 103 for (auto it = globals_mappings.begin(); it != globals_mappings.end(); it++) { 104 ALOGV("Globals mapping %" PRIxPTR "-%" PRIxPTR " %s", it->begin, it->end, it->name); 105 heap_walker_.Root(it->begin, it->end); 106 } 107 108 for (auto thread_it = threads.begin(); thread_it != threads.end(); thread_it++) { 109 for (auto it = stack_mappings.begin(); it != stack_mappings.end(); it++) { 110 if (thread_it->stack.first >= it->begin && thread_it->stack.first <= it->end) { 111 ALOGV("Stack %" PRIxPTR "-%" PRIxPTR " %s", thread_it->stack.first, it->end, it->name); 112 heap_walker_.Root(thread_it->stack.first, it->end); 113 } 114 } 115 heap_walker_.Root(thread_it->regs); 116 } 117 118 ALOGI("searching done"); 119 120 return true; 121 } 122 123 bool MemUnreachable::GetUnreachableMemory(allocator::vector<Leak>& leaks, 124 size_t limit, size_t* num_leaks, size_t* leak_bytes) { 125 ALOGI("sweeping process %d for unreachable memory", pid_); 126 leaks.clear(); 127 128 if (!heap_walker_.DetectLeaks()) { 129 return false; 130 } 131 132 133 allocator::vector<Range> leaked1{allocator_}; 134 heap_walker_.Leaked(leaked1, 0, num_leaks, leak_bytes); 135 136 ALOGI("sweeping done"); 137 138 ALOGI("folding related leaks"); 139 140 LeakFolding folding(allocator_, heap_walker_); 141 if (!folding.FoldLeaks()) { 142 return false; 143 } 144 145 allocator::vector<LeakFolding::Leak> leaked{allocator_}; 146 147 if (!folding.Leaked(leaked, num_leaks, leak_bytes)) { 148 return false; 149 } 150 151 allocator::unordered_map<Leak::Backtrace, Leak*> backtrace_map{allocator_}; 152 153 // Prevent reallocations of backing memory so we can store pointers into it 154 // in backtrace_map. 155 leaks.reserve(leaked.size()); 156 157 for (auto& it: leaked) { 158 leaks.emplace_back(); 159 Leak* leak = &leaks.back(); 160 161 ssize_t num_backtrace_frames = malloc_backtrace(reinterpret_cast<void*>(it.range.begin), 162 leak->backtrace.frames, leak->backtrace.max_frames); 163 if (num_backtrace_frames > 0) { 164 leak->backtrace.num_frames = num_backtrace_frames; 165 166 auto inserted = backtrace_map.emplace(leak->backtrace, leak); 167 if (!inserted.second) { 168 // Leak with same backtrace already exists, drop this one and 169 // increment similar counts on the existing one. 170 leaks.pop_back(); 171 Leak* similar_leak = inserted.first->second; 172 similar_leak->similar_count++; 173 similar_leak->similar_size += it.range.size(); 174 similar_leak->similar_referenced_count += it.referenced_count; 175 similar_leak->similar_referenced_size += it.referenced_size; 176 similar_leak->total_size += it.range.size(); 177 similar_leak->total_size += it.referenced_size; 178 continue; 179 } 180 } 181 182 leak->begin = it.range.begin; 183 leak->size = it.range.size(); 184 leak->referenced_count = it.referenced_count; 185 leak->referenced_size = it.referenced_size; 186 leak->total_size = leak->size + leak->referenced_size; 187 memcpy(leak->contents, reinterpret_cast<void*>(it.range.begin), 188 std::min(leak->size, Leak::contents_length)); 189 } 190 191 ALOGI("folding done"); 192 193 std::sort(leaks.begin(), leaks.end(), [](const Leak& a, const Leak& b) { 194 return a.total_size > b.total_size; 195 }); 196 197 if (leaks.size() > limit) { 198 leaks.resize(limit); 199 } 200 201 return true; 202 } 203 204 static bool has_prefix(const allocator::string& s, const char* prefix) { 205 int ret = s.compare(0, strlen(prefix), prefix); 206 return ret == 0; 207 } 208 209 bool MemUnreachable::ClassifyMappings(const allocator::vector<Mapping>& mappings, 210 allocator::vector<Mapping>& heap_mappings, 211 allocator::vector<Mapping>& anon_mappings, 212 allocator::vector<Mapping>& globals_mappings, 213 allocator::vector<Mapping>& stack_mappings) 214 { 215 heap_mappings.clear(); 216 anon_mappings.clear(); 217 globals_mappings.clear(); 218 stack_mappings.clear(); 219 220 allocator::string current_lib{allocator_}; 221 222 for (auto it = mappings.begin(); it != mappings.end(); it++) { 223 if (it->execute) { 224 current_lib = it->name; 225 continue; 226 } 227 228 if (!it->read) { 229 continue; 230 } 231 232 const allocator::string mapping_name{it->name, allocator_}; 233 if (mapping_name == "[anon:.bss]") { 234 // named .bss section 235 globals_mappings.emplace_back(*it); 236 } else if (mapping_name == current_lib) { 237 // .rodata or .data section 238 globals_mappings.emplace_back(*it); 239 } else if (mapping_name == "[anon:libc_malloc]") { 240 // named malloc mapping 241 heap_mappings.emplace_back(*it); 242 } else if (has_prefix(mapping_name, "/dev/ashmem/dalvik")) { 243 // named dalvik heap mapping 244 globals_mappings.emplace_back(*it); 245 } else if (has_prefix(mapping_name, "[stack")) { 246 // named stack mapping 247 stack_mappings.emplace_back(*it); 248 } else if (mapping_name.size() == 0) { 249 globals_mappings.emplace_back(*it); 250 } else if (has_prefix(mapping_name, "[anon:") && mapping_name != "[anon:leak_detector_malloc]") { 251 // TODO(ccross): it would be nice to treat named anonymous mappings as 252 // possible leaks, but naming something in a .bss or .data section makes 253 // it impossible to distinguish them from mmaped and then named mappings. 254 globals_mappings.emplace_back(*it); 255 } 256 } 257 258 return true; 259 } 260 261 template<typename T> 262 static inline const char* plural(T val) { 263 return (val == 1) ? "" : "s"; 264 } 265 266 bool GetUnreachableMemory(UnreachableMemoryInfo& info, size_t limit) { 267 int parent_pid = getpid(); 268 int parent_tid = gettid(); 269 270 Heap heap; 271 272 Semaphore continue_parent_sem; 273 LeakPipe pipe; 274 275 PtracerThread thread{[&]() -> int { 276 ///////////////////////////////////////////// 277 // Collection thread 278 ///////////////////////////////////////////// 279 ALOGI("collecting thread info for process %d...", parent_pid); 280 281 ThreadCapture thread_capture(parent_pid, heap); 282 allocator::vector<ThreadInfo> thread_info(heap); 283 allocator::vector<Mapping> mappings(heap); 284 285 // ptrace all the threads 286 if (!thread_capture.CaptureThreads()) { 287 continue_parent_sem.Post(); 288 return 1; 289 } 290 291 // collect register contents and stacks 292 if (!thread_capture.CapturedThreadInfo(thread_info)) { 293 continue_parent_sem.Post(); 294 return 1; 295 } 296 297 // snapshot /proc/pid/maps 298 if (!ProcessMappings(parent_pid, mappings)) { 299 continue_parent_sem.Post(); 300 return 1; 301 } 302 303 // malloc must be enabled to call fork, at_fork handlers take the same 304 // locks as ScopedDisableMalloc. All threads are paused in ptrace, so 305 // memory state is still consistent. Unfreeze the original thread so it 306 // can drop the malloc locks, it will block until the collection thread 307 // exits. 308 thread_capture.ReleaseThread(parent_tid); 309 continue_parent_sem.Post(); 310 311 // fork a process to do the heap walking 312 int ret = fork(); 313 if (ret < 0) { 314 return 1; 315 } else if (ret == 0) { 316 ///////////////////////////////////////////// 317 // Heap walker process 318 ///////////////////////////////////////////// 319 // Examine memory state in the child using the data collected above and 320 // the CoW snapshot of the process memory contents. 321 322 if (!pipe.OpenSender()) { 323 _exit(1); 324 } 325 326 MemUnreachable unreachable{parent_pid, heap}; 327 328 if (!unreachable.CollectAllocations(thread_info, mappings)) { 329 _exit(2); 330 } 331 size_t num_allocations = unreachable.Allocations(); 332 size_t allocation_bytes = unreachable.AllocationBytes(); 333 334 allocator::vector<Leak> leaks{heap}; 335 336 size_t num_leaks = 0; 337 size_t leak_bytes = 0; 338 bool ok = unreachable.GetUnreachableMemory(leaks, limit, &num_leaks, &leak_bytes); 339 340 ok = ok && pipe.Sender().Send(num_allocations); 341 ok = ok && pipe.Sender().Send(allocation_bytes); 342 ok = ok && pipe.Sender().Send(num_leaks); 343 ok = ok && pipe.Sender().Send(leak_bytes); 344 ok = ok && pipe.Sender().SendVector(leaks); 345 346 if (!ok) { 347 _exit(3); 348 } 349 350 _exit(0); 351 } else { 352 // Nothing left to do in the collection thread, return immediately, 353 // releasing all the captured threads. 354 ALOGI("collection thread done"); 355 return 0; 356 } 357 }}; 358 359 ///////////////////////////////////////////// 360 // Original thread 361 ///////////////////////////////////////////// 362 363 { 364 // Disable malloc to get a consistent view of memory 365 ScopedDisableMalloc disable_malloc; 366 367 // Start the collection thread 368 thread.Start(); 369 370 // Wait for the collection thread to signal that it is ready to fork the 371 // heap walker process. 372 continue_parent_sem.Wait(30s); 373 374 // Re-enable malloc so the collection thread can fork. 375 } 376 377 // Wait for the collection thread to exit 378 int ret = thread.Join(); 379 if (ret != 0) { 380 return false; 381 } 382 383 // Get a pipe from the heap walker process. Transferring a new pipe fd 384 // ensures no other forked processes can have it open, so when the heap 385 // walker process dies the remote side of the pipe will close. 386 if (!pipe.OpenReceiver()) { 387 return false; 388 } 389 390 bool ok = true; 391 ok = ok && pipe.Receiver().Receive(&info.num_allocations); 392 ok = ok && pipe.Receiver().Receive(&info.allocation_bytes); 393 ok = ok && pipe.Receiver().Receive(&info.num_leaks); 394 ok = ok && pipe.Receiver().Receive(&info.leak_bytes); 395 ok = ok && pipe.Receiver().ReceiveVector(info.leaks); 396 if (!ok) { 397 return false; 398 } 399 400 ALOGI("unreachable memory detection done"); 401 ALOGE("%zu bytes in %zu allocation%s unreachable out of %zu bytes in %zu allocation%s", 402 info.leak_bytes, info.num_leaks, plural(info.num_leaks), 403 info.allocation_bytes, info.num_allocations, plural(info.num_allocations)); 404 return true; 405 } 406 407 std::string Leak::ToString(bool log_contents) const { 408 409 std::ostringstream oss; 410 411 oss << " " << std::dec << size; 412 oss << " bytes unreachable at "; 413 oss << std::hex << begin; 414 oss << std::endl; 415 if (referenced_count > 0) { 416 oss << std::dec; 417 oss << " referencing " << referenced_size << " unreachable bytes"; 418 oss << " in " << referenced_count << " allocation" << plural(referenced_count); 419 oss << std::endl; 420 } 421 if (similar_count > 0) { 422 oss << std::dec; 423 oss << " and " << similar_size << " similar unreachable bytes"; 424 oss << " in " << similar_count << " allocation" << plural(similar_count); 425 oss << std::endl; 426 if (similar_referenced_count > 0) { 427 oss << " referencing " << similar_referenced_size << " unreachable bytes"; 428 oss << " in " << similar_referenced_count << " allocation" << plural(similar_referenced_count); 429 oss << std::endl; 430 } 431 } 432 433 if (log_contents) { 434 const int bytes_per_line = 16; 435 const size_t bytes = std::min(size, contents_length); 436 437 if (bytes == size) { 438 oss << " contents:" << std::endl; 439 } else { 440 oss << " first " << bytes << " bytes of contents:" << std::endl; 441 } 442 443 for (size_t i = 0; i < bytes; i += bytes_per_line) { 444 oss << " " << std::hex << begin + i << ": "; 445 size_t j; 446 oss << std::setfill('0'); 447 for (j = i; j < bytes && j < i + bytes_per_line; j++) { 448 oss << std::setw(2) << static_cast<int>(contents[j]) << " "; 449 } 450 oss << std::setfill(' '); 451 for (; j < i + bytes_per_line; j++) { 452 oss << " "; 453 } 454 for (j = i; j < bytes && j < i + bytes_per_line; j++) { 455 char c = contents[j]; 456 if (c < ' ' || c >= 0x7f) { 457 c = '.'; 458 } 459 oss << c; 460 } 461 oss << std::endl; 462 } 463 } 464 if (backtrace.num_frames > 0) { 465 oss << backtrace_string(backtrace.frames, backtrace.num_frames); 466 } 467 468 return oss.str(); 469 } 470 471 // Figure out the abi based on defined macros. 472 #if defined(__arm__) 473 #define ABI_STRING "arm" 474 #elif defined(__aarch64__) 475 #define ABI_STRING "arm64" 476 #elif defined(__mips__) && !defined(__LP64__) 477 #define ABI_STRING "mips" 478 #elif defined(__mips__) && defined(__LP64__) 479 #define ABI_STRING "mips64" 480 #elif defined(__i386__) 481 #define ABI_STRING "x86" 482 #elif defined(__x86_64__) 483 #define ABI_STRING "x86_64" 484 #else 485 #error "Unsupported ABI" 486 #endif 487 488 std::string UnreachableMemoryInfo::ToString(bool log_contents) const { 489 std::ostringstream oss; 490 oss << " " << leak_bytes << " bytes in "; 491 oss << num_leaks << " unreachable allocation" << plural(num_leaks); 492 oss << std::endl; 493 oss << " ABI: '" ABI_STRING "'" << std::endl; 494 oss << std::endl; 495 496 for (auto it = leaks.begin(); it != leaks.end(); it++) { 497 oss << it->ToString(log_contents); 498 oss << std::endl; 499 } 500 501 return oss.str(); 502 } 503 504 std::string GetUnreachableMemoryString(bool log_contents, size_t limit) { 505 UnreachableMemoryInfo info; 506 if (!GetUnreachableMemory(info, limit)) { 507 return "Failed to get unreachable memory\n"; 508 } 509 510 return info.ToString(log_contents); 511 } 512 513 bool LogUnreachableMemory(bool log_contents, size_t limit) { 514 UnreachableMemoryInfo info; 515 if (!GetUnreachableMemory(info, limit)) { 516 return false; 517 } 518 519 for (auto it = info.leaks.begin(); it != info.leaks.end(); it++) { 520 ALOGE("%s", it->ToString(log_contents).c_str()); 521 } 522 return true; 523 } 524 525 526 bool NoLeaks() { 527 UnreachableMemoryInfo info; 528 if (!GetUnreachableMemory(info, 0)) { 529 return false; 530 } 531 532 return info.num_leaks == 0; 533 } 534