Home | History | Annotate | Download | only in crankshaft
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
      6 #define V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
      7 
      8 #include "src/allocation.h"
      9 #include "src/crankshaft/lithium.h"
     10 #include "src/zone.h"
     11 
     12 namespace v8 {
     13 namespace internal {
     14 
     15 // Forward declarations.
     16 class HBasicBlock;
     17 class HGraph;
     18 class HPhi;
     19 class HTracer;
     20 class HValue;
     21 class BitVector;
     22 class StringStream;
     23 
     24 class LPlatformChunk;
     25 class LOperand;
     26 class LUnallocated;
     27 class LGap;
     28 class LParallelMove;
     29 class LPointerMap;
     30 
     31 
     32 // This class represents a single point of a LOperand's lifetime.
     33 // For each lithium instruction there are exactly two lifetime positions:
     34 // the beginning and the end of the instruction. Lifetime positions for
     35 // different lithium instructions are disjoint.
     36 class LifetimePosition {
     37  public:
     38   // Return the lifetime position that corresponds to the beginning of
     39   // the instruction with the given index.
     40   static LifetimePosition FromInstructionIndex(int index) {
     41     return LifetimePosition(index * kStep);
     42   }
     43 
     44   // Returns a numeric representation of this lifetime position.
     45   int Value() const {
     46     return value_;
     47   }
     48 
     49   // Returns the index of the instruction to which this lifetime position
     50   // corresponds.
     51   int InstructionIndex() const {
     52     DCHECK(IsValid());
     53     return value_ / kStep;
     54   }
     55 
     56   // Returns true if this lifetime position corresponds to the instruction
     57   // start.
     58   bool IsInstructionStart() const {
     59     return (value_ & (kStep - 1)) == 0;
     60   }
     61 
     62   // Returns the lifetime position for the start of the instruction which
     63   // corresponds to this lifetime position.
     64   LifetimePosition InstructionStart() const {
     65     DCHECK(IsValid());
     66     return LifetimePosition(value_ & ~(kStep - 1));
     67   }
     68 
     69   // Returns the lifetime position for the end of the instruction which
     70   // corresponds to this lifetime position.
     71   LifetimePosition InstructionEnd() const {
     72     DCHECK(IsValid());
     73     return LifetimePosition(InstructionStart().Value() + kStep/2);
     74   }
     75 
     76   // Returns the lifetime position for the beginning of the next instruction.
     77   LifetimePosition NextInstruction() const {
     78     DCHECK(IsValid());
     79     return LifetimePosition(InstructionStart().Value() + kStep);
     80   }
     81 
     82   // Returns the lifetime position for the beginning of the previous
     83   // instruction.
     84   LifetimePosition PrevInstruction() const {
     85     DCHECK(IsValid());
     86     DCHECK(value_ > 1);
     87     return LifetimePosition(InstructionStart().Value() - kStep);
     88   }
     89 
     90   // Constructs the lifetime position which does not correspond to any
     91   // instruction.
     92   LifetimePosition() : value_(-1) {}
     93 
     94   // Returns true if this lifetime positions corrensponds to some
     95   // instruction.
     96   bool IsValid() const { return value_ != -1; }
     97 
     98   static inline LifetimePosition Invalid() { return LifetimePosition(); }
     99 
    100   static inline LifetimePosition MaxPosition() {
    101     // We have to use this kind of getter instead of static member due to
    102     // crash bug in GDB.
    103     return LifetimePosition(kMaxInt);
    104   }
    105 
    106  private:
    107   static const int kStep = 2;
    108 
    109   // Code relies on kStep being a power of two.
    110   STATIC_ASSERT(IS_POWER_OF_TWO(kStep));
    111 
    112   explicit LifetimePosition(int value) : value_(value) { }
    113 
    114   int value_;
    115 };
    116 
    117 
    118 // Representation of the non-empty interval [start,end[.
    119 class UseInterval: public ZoneObject {
    120  public:
    121   UseInterval(LifetimePosition start, LifetimePosition end)
    122       : start_(start), end_(end), next_(NULL) {
    123     DCHECK(start.Value() < end.Value());
    124   }
    125 
    126   LifetimePosition start() const { return start_; }
    127   LifetimePosition end() const { return end_; }
    128   UseInterval* next() const { return next_; }
    129 
    130   // Split this interval at the given position without effecting the
    131   // live range that owns it. The interval must contain the position.
    132   void SplitAt(LifetimePosition pos, Zone* zone);
    133 
    134   // If this interval intersects with other return smallest position
    135   // that belongs to both of them.
    136   LifetimePosition Intersect(const UseInterval* other) const {
    137     if (other->start().Value() < start_.Value()) return other->Intersect(this);
    138     if (other->start().Value() < end_.Value()) return other->start();
    139     return LifetimePosition::Invalid();
    140   }
    141 
    142   bool Contains(LifetimePosition point) const {
    143     return start_.Value() <= point.Value() && point.Value() < end_.Value();
    144   }
    145 
    146  private:
    147   void set_start(LifetimePosition start) { start_ = start; }
    148   void set_next(UseInterval* next) { next_ = next; }
    149 
    150   LifetimePosition start_;
    151   LifetimePosition end_;
    152   UseInterval* next_;
    153 
    154   friend class LiveRange;  // Assigns to start_.
    155 };
    156 
    157 // Representation of a use position.
    158 class UsePosition: public ZoneObject {
    159  public:
    160   UsePosition(LifetimePosition pos, LOperand* operand, LOperand* hint);
    161 
    162   LOperand* operand() const { return operand_; }
    163   bool HasOperand() const { return operand_ != NULL; }
    164 
    165   LOperand* hint() const { return hint_; }
    166   bool HasHint() const;
    167   bool RequiresRegister() const;
    168   bool RegisterIsBeneficial() const;
    169 
    170   LifetimePosition pos() const { return pos_; }
    171   UsePosition* next() const { return next_; }
    172 
    173  private:
    174   void set_next(UsePosition* next) { next_ = next; }
    175 
    176   LOperand* const operand_;
    177   LOperand* const hint_;
    178   LifetimePosition const pos_;
    179   UsePosition* next_;
    180   bool requires_reg_;
    181   bool register_beneficial_;
    182 
    183   friend class LiveRange;
    184 };
    185 
    186 // Representation of SSA values' live ranges as a collection of (continuous)
    187 // intervals over the instruction ordering.
    188 class LiveRange: public ZoneObject {
    189  public:
    190   static const int kInvalidAssignment = 0x7fffffff;
    191 
    192   LiveRange(int id, Zone* zone);
    193 
    194   UseInterval* first_interval() const { return first_interval_; }
    195   UsePosition* first_pos() const { return first_pos_; }
    196   LiveRange* parent() const { return parent_; }
    197   LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; }
    198   LiveRange* next() const { return next_; }
    199   bool IsChild() const { return parent() != NULL; }
    200   int id() const { return id_; }
    201   bool IsFixed() const { return id_ < 0; }
    202   bool IsEmpty() const { return first_interval() == NULL; }
    203   LOperand* CreateAssignedOperand(Zone* zone);
    204   int assigned_register() const { return assigned_register_; }
    205   int spill_start_index() const { return spill_start_index_; }
    206   void set_assigned_register(int reg, Zone* zone);
    207   void MakeSpilled(Zone* zone);
    208 
    209   // Returns use position in this live range that follows both start
    210   // and last processed use position.
    211   // Modifies internal state of live range!
    212   UsePosition* NextUsePosition(LifetimePosition start);
    213 
    214   // Returns use position for which register is required in this live
    215   // range and which follows both start and last processed use position
    216   // Modifies internal state of live range!
    217   UsePosition* NextRegisterPosition(LifetimePosition start);
    218 
    219   // Returns use position for which register is beneficial in this live
    220   // range and which follows both start and last processed use position
    221   // Modifies internal state of live range!
    222   UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start);
    223 
    224   // Returns use position for which register is beneficial in this live
    225   // range and which precedes start.
    226   UsePosition* PreviousUsePositionRegisterIsBeneficial(LifetimePosition start);
    227 
    228   // Can this live range be spilled at this position.
    229   bool CanBeSpilled(LifetimePosition pos);
    230 
    231   // Split this live range at the given position which must follow the start of
    232   // the range.
    233   // All uses following the given position will be moved from this
    234   // live range to the result live range.
    235   void SplitAt(LifetimePosition position, LiveRange* result, Zone* zone);
    236 
    237   RegisterKind Kind() const { return kind_; }
    238   bool HasRegisterAssigned() const {
    239     return assigned_register_ != kInvalidAssignment;
    240   }
    241   bool IsSpilled() const { return spilled_; }
    242 
    243   LOperand* current_hint_operand() const {
    244     DCHECK(current_hint_operand_ == FirstHint());
    245     return current_hint_operand_;
    246   }
    247   LOperand* FirstHint() const {
    248     UsePosition* pos = first_pos_;
    249     while (pos != NULL && !pos->HasHint()) pos = pos->next();
    250     if (pos != NULL) return pos->hint();
    251     return NULL;
    252   }
    253 
    254   LifetimePosition Start() const {
    255     DCHECK(!IsEmpty());
    256     return first_interval()->start();
    257   }
    258 
    259   LifetimePosition End() const {
    260     DCHECK(!IsEmpty());
    261     return last_interval_->end();
    262   }
    263 
    264   bool HasAllocatedSpillOperand() const;
    265   LOperand* GetSpillOperand() const { return spill_operand_; }
    266   void SetSpillOperand(LOperand* operand);
    267 
    268   void SetSpillStartIndex(int start) {
    269     spill_start_index_ = Min(start, spill_start_index_);
    270   }
    271 
    272   bool ShouldBeAllocatedBefore(const LiveRange* other) const;
    273   bool CanCover(LifetimePosition position) const;
    274   bool Covers(LifetimePosition position);
    275   LifetimePosition FirstIntersection(LiveRange* other);
    276 
    277   // Add a new interval or a new use position to this live range.
    278   void EnsureInterval(LifetimePosition start,
    279                       LifetimePosition end,
    280                       Zone* zone);
    281   void AddUseInterval(LifetimePosition start,
    282                       LifetimePosition end,
    283                       Zone* zone);
    284   void AddUsePosition(LifetimePosition pos,
    285                       LOperand* operand,
    286                       LOperand* hint,
    287                       Zone* zone);
    288 
    289   // Shorten the most recently added interval by setting a new start.
    290   void ShortenTo(LifetimePosition start);
    291 
    292 #ifdef DEBUG
    293   // True if target overlaps an existing interval.
    294   bool HasOverlap(UseInterval* target) const;
    295   void Verify() const;
    296 #endif
    297 
    298  private:
    299   void ConvertOperands(Zone* zone);
    300   UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const;
    301   void AdvanceLastProcessedMarker(UseInterval* to_start_of,
    302                                   LifetimePosition but_not_past) const;
    303 
    304   int id_;
    305   bool spilled_;
    306   RegisterKind kind_;
    307   int assigned_register_;
    308   UseInterval* last_interval_;
    309   UseInterval* first_interval_;
    310   UsePosition* first_pos_;
    311   LiveRange* parent_;
    312   LiveRange* next_;
    313   // This is used as a cache, it doesn't affect correctness.
    314   mutable UseInterval* current_interval_;
    315   UsePosition* last_processed_use_;
    316   // This is used as a cache, it's invalid outside of BuildLiveRanges.
    317   LOperand* current_hint_operand_;
    318   LOperand* spill_operand_;
    319   int spill_start_index_;
    320 
    321   friend class LAllocator;  // Assigns to kind_.
    322 };
    323 
    324 
    325 class LAllocator BASE_EMBEDDED {
    326  public:
    327   LAllocator(int first_virtual_register, HGraph* graph);
    328 
    329   static void TraceAlloc(const char* msg, ...);
    330 
    331   // Checks whether the value of a given virtual register is tagged.
    332   bool HasTaggedValue(int virtual_register) const;
    333 
    334   // Returns the register kind required by the given virtual register.
    335   RegisterKind RequiredRegisterKind(int virtual_register) const;
    336 
    337   bool Allocate(LChunk* chunk);
    338 
    339   const ZoneList<LiveRange*>* live_ranges() const { return &live_ranges_; }
    340   const Vector<LiveRange*>* fixed_live_ranges() const {
    341     return &fixed_live_ranges_;
    342   }
    343   const Vector<LiveRange*>* fixed_double_live_ranges() const {
    344     return &fixed_double_live_ranges_;
    345   }
    346 
    347   LPlatformChunk* chunk() const { return chunk_; }
    348   HGraph* graph() const { return graph_; }
    349   Isolate* isolate() const { return graph_->isolate(); }
    350   Zone* zone() { return &zone_; }
    351 
    352   int GetVirtualRegister() {
    353     if (next_virtual_register_ >= LUnallocated::kMaxVirtualRegisters) {
    354       allocation_ok_ = false;
    355       // Maintain the invariant that we return something below the maximum.
    356       return 0;
    357     }
    358     return next_virtual_register_++;
    359   }
    360 
    361   bool AllocationOk() { return allocation_ok_; }
    362 
    363   void MarkAsOsrEntry() {
    364     // There can be only one.
    365     DCHECK(!has_osr_entry_);
    366     // Simply set a flag to find and process instruction later.
    367     has_osr_entry_ = true;
    368   }
    369 
    370 #ifdef DEBUG
    371   void Verify() const;
    372 #endif
    373 
    374   BitVector* assigned_registers() {
    375     return assigned_registers_;
    376   }
    377   BitVector* assigned_double_registers() {
    378     return assigned_double_registers_;
    379   }
    380 
    381  private:
    382   void MeetRegisterConstraints();
    383   void ResolvePhis();
    384   void BuildLiveRanges();
    385   void AllocateGeneralRegisters();
    386   void AllocateDoubleRegisters();
    387   void ConnectRanges();
    388   void ResolveControlFlow();
    389   void PopulatePointerMaps();
    390   void AllocateRegisters();
    391   bool CanEagerlyResolveControlFlow(HBasicBlock* block) const;
    392   inline bool SafePointsAreInOrder() const;
    393 
    394   // Liveness analysis support.
    395   void InitializeLivenessAnalysis();
    396   BitVector* ComputeLiveOut(HBasicBlock* block);
    397   void AddInitialIntervals(HBasicBlock* block, BitVector* live_out);
    398   void ProcessInstructions(HBasicBlock* block, BitVector* live);
    399   void MeetRegisterConstraints(HBasicBlock* block);
    400   void MeetConstraintsBetween(LInstruction* first,
    401                               LInstruction* second,
    402                               int gap_index);
    403   void ResolvePhis(HBasicBlock* block);
    404 
    405   // Helper methods for building intervals.
    406   LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged);
    407   LiveRange* LiveRangeFor(LOperand* operand);
    408   void Define(LifetimePosition position, LOperand* operand, LOperand* hint);
    409   void Use(LifetimePosition block_start,
    410            LifetimePosition position,
    411            LOperand* operand,
    412            LOperand* hint);
    413   void AddConstraintsGapMove(int index, LOperand* from, LOperand* to);
    414 
    415   // Helper methods for updating the life range lists.
    416   void AddToActive(LiveRange* range);
    417   void AddToInactive(LiveRange* range);
    418   void AddToUnhandledSorted(LiveRange* range);
    419   void AddToUnhandledUnsorted(LiveRange* range);
    420   void SortUnhandled();
    421   bool UnhandledIsSorted();
    422   void ActiveToHandled(LiveRange* range);
    423   void ActiveToInactive(LiveRange* range);
    424   void InactiveToHandled(LiveRange* range);
    425   void InactiveToActive(LiveRange* range);
    426   void FreeSpillSlot(LiveRange* range);
    427   LOperand* TryReuseSpillSlot(LiveRange* range);
    428 
    429   // Helper methods for allocating registers.
    430   bool TryAllocateFreeReg(LiveRange* range);
    431   void AllocateBlockedReg(LiveRange* range);
    432 
    433   // Live range splitting helpers.
    434 
    435   // Split the given range at the given position.
    436   // If range starts at or after the given position then the
    437   // original range is returned.
    438   // Otherwise returns the live range that starts at pos and contains
    439   // all uses from the original range that follow pos. Uses at pos will
    440   // still be owned by the original range after splitting.
    441   LiveRange* SplitRangeAt(LiveRange* range, LifetimePosition pos);
    442 
    443   // Split the given range in a position from the interval [start, end].
    444   LiveRange* SplitBetween(LiveRange* range,
    445                           LifetimePosition start,
    446                           LifetimePosition end);
    447 
    448   // Find a lifetime position in the interval [start, end] which
    449   // is optimal for splitting: it is either header of the outermost
    450   // loop covered by this interval or the latest possible position.
    451   LifetimePosition FindOptimalSplitPos(LifetimePosition start,
    452                                        LifetimePosition end);
    453 
    454   // Spill the given life range after position pos.
    455   void SpillAfter(LiveRange* range, LifetimePosition pos);
    456 
    457   // Spill the given life range after position [start] and up to position [end].
    458   void SpillBetween(LiveRange* range,
    459                     LifetimePosition start,
    460                     LifetimePosition end);
    461 
    462   // Spill the given life range after position [start] and up to position [end].
    463   // Range is guaranteed to be spilled at least until position [until].
    464   void SpillBetweenUntil(LiveRange* range,
    465                          LifetimePosition start,
    466                          LifetimePosition until,
    467                          LifetimePosition end);
    468 
    469   void SplitAndSpillIntersecting(LiveRange* range);
    470 
    471   // If we are trying to spill a range inside the loop try to
    472   // hoist spill position out to the point just before the loop.
    473   LifetimePosition FindOptimalSpillingPos(LiveRange* range,
    474                                           LifetimePosition pos);
    475 
    476   void Spill(LiveRange* range);
    477   bool IsBlockBoundary(LifetimePosition pos);
    478 
    479   // Helper methods for resolving control flow.
    480   void ResolveControlFlow(LiveRange* range,
    481                           HBasicBlock* block,
    482                           HBasicBlock* pred);
    483 
    484   inline void SetLiveRangeAssignedRegister(LiveRange* range, int reg);
    485 
    486   // Return parallel move that should be used to connect ranges split at the
    487   // given position.
    488   LParallelMove* GetConnectingParallelMove(LifetimePosition pos);
    489 
    490   // Return the block which contains give lifetime position.
    491   HBasicBlock* GetBlock(LifetimePosition pos);
    492 
    493   // Helper methods for the fixed registers.
    494   int RegisterCount() const;
    495   static int FixedLiveRangeID(int index) { return -index - 1; }
    496   static int FixedDoubleLiveRangeID(int index);
    497   LiveRange* FixedLiveRangeFor(int index);
    498   LiveRange* FixedDoubleLiveRangeFor(int index);
    499   LiveRange* LiveRangeFor(int index);
    500   HPhi* LookupPhi(LOperand* operand) const;
    501   LGap* GetLastGap(HBasicBlock* block);
    502 
    503   const char* RegisterName(int allocation_index);
    504 
    505   inline bool IsGapAt(int index);
    506 
    507   inline LInstruction* InstructionAt(int index);
    508 
    509   inline LGap* GapAt(int index);
    510 
    511   Zone zone_;
    512 
    513   LPlatformChunk* chunk_;
    514 
    515   // During liveness analysis keep a mapping from block id to live_in sets
    516   // for blocks already analyzed.
    517   ZoneList<BitVector*> live_in_sets_;
    518 
    519   // Liveness analysis results.
    520   ZoneList<LiveRange*> live_ranges_;
    521 
    522   // Lists of live ranges
    523   EmbeddedVector<LiveRange*, Register::kNumRegisters> fixed_live_ranges_;
    524   EmbeddedVector<LiveRange*, DoubleRegister::kMaxNumRegisters>
    525       fixed_double_live_ranges_;
    526   ZoneList<LiveRange*> unhandled_live_ranges_;
    527   ZoneList<LiveRange*> active_live_ranges_;
    528   ZoneList<LiveRange*> inactive_live_ranges_;
    529   ZoneList<LiveRange*> reusable_slots_;
    530 
    531   // Next virtual register number to be assigned to temporaries.
    532   int next_virtual_register_;
    533   int first_artificial_register_;
    534   GrowableBitVector double_artificial_registers_;
    535 
    536   RegisterKind mode_;
    537   int num_registers_;
    538   const int* allocatable_register_codes_;
    539 
    540   BitVector* assigned_registers_;
    541   BitVector* assigned_double_registers_;
    542 
    543   HGraph* graph_;
    544 
    545   bool has_osr_entry_;
    546 
    547   // Indicates success or failure during register allocation.
    548   bool allocation_ok_;
    549 
    550 #ifdef DEBUG
    551   LifetimePosition allocation_finger_;
    552 #endif
    553 
    554   DISALLOW_COPY_AND_ASSIGN(LAllocator);
    555 };
    556 
    557 
    558 class LAllocatorPhase : public CompilationPhase {
    559  public:
    560   LAllocatorPhase(const char* name, LAllocator* allocator);
    561   ~LAllocatorPhase();
    562 
    563  private:
    564   LAllocator* allocator_;
    565   size_t allocator_zone_start_allocation_size_;
    566 
    567   DISALLOW_COPY_AND_ASSIGN(LAllocatorPhase);
    568 };
    569 
    570 
    571 }  // namespace internal
    572 }  // namespace v8
    573 
    574 #endif  // V8_CRANKSHAFT_LITHIUM_ALLOCATOR_H_
    575