Home | History | Annotate | Download | only in Sema
      1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //===----------------------------------------------------------------------===/
      8 //
      9 //  This file implements C++ template argument deduction.
     10 //
     11 //===----------------------------------------------------------------------===/
     12 
     13 #include "clang/Sema/TemplateDeduction.h"
     14 #include "TreeTransform.h"
     15 #include "clang/AST/ASTContext.h"
     16 #include "clang/AST/ASTLambda.h"
     17 #include "clang/AST/DeclObjC.h"
     18 #include "clang/AST/DeclTemplate.h"
     19 #include "clang/AST/Expr.h"
     20 #include "clang/AST/ExprCXX.h"
     21 #include "clang/AST/StmtVisitor.h"
     22 #include "clang/Sema/DeclSpec.h"
     23 #include "clang/Sema/Sema.h"
     24 #include "clang/Sema/Template.h"
     25 #include "llvm/ADT/SmallBitVector.h"
     26 #include <algorithm>
     27 
     28 namespace clang {
     29   using namespace sema;
     30   /// \brief Various flags that control template argument deduction.
     31   ///
     32   /// These flags can be bitwise-OR'd together.
     33   enum TemplateDeductionFlags {
     34     /// \brief No template argument deduction flags, which indicates the
     35     /// strictest results for template argument deduction (as used for, e.g.,
     36     /// matching class template partial specializations).
     37     TDF_None = 0,
     38     /// \brief Within template argument deduction from a function call, we are
     39     /// matching with a parameter type for which the original parameter was
     40     /// a reference.
     41     TDF_ParamWithReferenceType = 0x1,
     42     /// \brief Within template argument deduction from a function call, we
     43     /// are matching in a case where we ignore cv-qualifiers.
     44     TDF_IgnoreQualifiers = 0x02,
     45     /// \brief Within template argument deduction from a function call,
     46     /// we are matching in a case where we can perform template argument
     47     /// deduction from a template-id of a derived class of the argument type.
     48     TDF_DerivedClass = 0x04,
     49     /// \brief Allow non-dependent types to differ, e.g., when performing
     50     /// template argument deduction from a function call where conversions
     51     /// may apply.
     52     TDF_SkipNonDependent = 0x08,
     53     /// \brief Whether we are performing template argument deduction for
     54     /// parameters and arguments in a top-level template argument
     55     TDF_TopLevelParameterTypeList = 0x10,
     56     /// \brief Within template argument deduction from overload resolution per
     57     /// C++ [over.over] allow matching function types that are compatible in
     58     /// terms of noreturn and default calling convention adjustments.
     59     TDF_InOverloadResolution = 0x20
     60   };
     61 }
     62 
     63 using namespace clang;
     64 
     65 /// \brief Compare two APSInts, extending and switching the sign as
     66 /// necessary to compare their values regardless of underlying type.
     67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
     68   if (Y.getBitWidth() > X.getBitWidth())
     69     X = X.extend(Y.getBitWidth());
     70   else if (Y.getBitWidth() < X.getBitWidth())
     71     Y = Y.extend(X.getBitWidth());
     72 
     73   // If there is a signedness mismatch, correct it.
     74   if (X.isSigned() != Y.isSigned()) {
     75     // If the signed value is negative, then the values cannot be the same.
     76     if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
     77       return false;
     78 
     79     Y.setIsSigned(true);
     80     X.setIsSigned(true);
     81   }
     82 
     83   return X == Y;
     84 }
     85 
     86 static Sema::TemplateDeductionResult
     87 DeduceTemplateArguments(Sema &S,
     88                         TemplateParameterList *TemplateParams,
     89                         const TemplateArgument &Param,
     90                         TemplateArgument Arg,
     91                         TemplateDeductionInfo &Info,
     92                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
     93 
     94 static Sema::TemplateDeductionResult
     95 DeduceTemplateArgumentsByTypeMatch(Sema &S,
     96                                    TemplateParameterList *TemplateParams,
     97                                    QualType Param,
     98                                    QualType Arg,
     99                                    TemplateDeductionInfo &Info,
    100                                    SmallVectorImpl<DeducedTemplateArgument> &
    101                                                       Deduced,
    102                                    unsigned TDF,
    103                                    bool PartialOrdering = false);
    104 
    105 static Sema::TemplateDeductionResult
    106 DeduceTemplateArguments(Sema &S,
    107                         TemplateParameterList *TemplateParams,
    108                         const TemplateArgument *Params, unsigned NumParams,
    109                         const TemplateArgument *Args, unsigned NumArgs,
    110                         TemplateDeductionInfo &Info,
    111                         SmallVectorImpl<DeducedTemplateArgument> &Deduced);
    112 
    113 /// \brief If the given expression is of a form that permits the deduction
    114 /// of a non-type template parameter, return the declaration of that
    115 /// non-type template parameter.
    116 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
    117   // If we are within an alias template, the expression may have undergone
    118   // any number of parameter substitutions already.
    119   while (1) {
    120     if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
    121       E = IC->getSubExpr();
    122     else if (SubstNonTypeTemplateParmExpr *Subst =
    123                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
    124       E = Subst->getReplacement();
    125     else
    126       break;
    127   }
    128 
    129   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
    130     return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
    131 
    132   return nullptr;
    133 }
    134 
    135 /// \brief Determine whether two declaration pointers refer to the same
    136 /// declaration.
    137 static bool isSameDeclaration(Decl *X, Decl *Y) {
    138   if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
    139     X = NX->getUnderlyingDecl();
    140   if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
    141     Y = NY->getUnderlyingDecl();
    142 
    143   return X->getCanonicalDecl() == Y->getCanonicalDecl();
    144 }
    145 
    146 /// \brief Verify that the given, deduced template arguments are compatible.
    147 ///
    148 /// \returns The deduced template argument, or a NULL template argument if
    149 /// the deduced template arguments were incompatible.
    150 static DeducedTemplateArgument
    151 checkDeducedTemplateArguments(ASTContext &Context,
    152                               const DeducedTemplateArgument &X,
    153                               const DeducedTemplateArgument &Y) {
    154   // We have no deduction for one or both of the arguments; they're compatible.
    155   if (X.isNull())
    156     return Y;
    157   if (Y.isNull())
    158     return X;
    159 
    160   switch (X.getKind()) {
    161   case TemplateArgument::Null:
    162     llvm_unreachable("Non-deduced template arguments handled above");
    163 
    164   case TemplateArgument::Type:
    165     // If two template type arguments have the same type, they're compatible.
    166     if (Y.getKind() == TemplateArgument::Type &&
    167         Context.hasSameType(X.getAsType(), Y.getAsType()))
    168       return X;
    169 
    170     return DeducedTemplateArgument();
    171 
    172   case TemplateArgument::Integral:
    173     // If we deduced a constant in one case and either a dependent expression or
    174     // declaration in another case, keep the integral constant.
    175     // If both are integral constants with the same value, keep that value.
    176     if (Y.getKind() == TemplateArgument::Expression ||
    177         Y.getKind() == TemplateArgument::Declaration ||
    178         (Y.getKind() == TemplateArgument::Integral &&
    179          hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
    180       return DeducedTemplateArgument(X,
    181                                      X.wasDeducedFromArrayBound() &&
    182                                      Y.wasDeducedFromArrayBound());
    183 
    184     // All other combinations are incompatible.
    185     return DeducedTemplateArgument();
    186 
    187   case TemplateArgument::Template:
    188     if (Y.getKind() == TemplateArgument::Template &&
    189         Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
    190       return X;
    191 
    192     // All other combinations are incompatible.
    193     return DeducedTemplateArgument();
    194 
    195   case TemplateArgument::TemplateExpansion:
    196     if (Y.getKind() == TemplateArgument::TemplateExpansion &&
    197         Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
    198                                     Y.getAsTemplateOrTemplatePattern()))
    199       return X;
    200 
    201     // All other combinations are incompatible.
    202     return DeducedTemplateArgument();
    203 
    204   case TemplateArgument::Expression:
    205     // If we deduced a dependent expression in one case and either an integral
    206     // constant or a declaration in another case, keep the integral constant
    207     // or declaration.
    208     if (Y.getKind() == TemplateArgument::Integral ||
    209         Y.getKind() == TemplateArgument::Declaration)
    210       return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
    211                                      Y.wasDeducedFromArrayBound());
    212 
    213     if (Y.getKind() == TemplateArgument::Expression) {
    214       // Compare the expressions for equality
    215       llvm::FoldingSetNodeID ID1, ID2;
    216       X.getAsExpr()->Profile(ID1, Context, true);
    217       Y.getAsExpr()->Profile(ID2, Context, true);
    218       if (ID1 == ID2)
    219         return X;
    220     }
    221 
    222     // All other combinations are incompatible.
    223     return DeducedTemplateArgument();
    224 
    225   case TemplateArgument::Declaration:
    226     // If we deduced a declaration and a dependent expression, keep the
    227     // declaration.
    228     if (Y.getKind() == TemplateArgument::Expression)
    229       return X;
    230 
    231     // If we deduced a declaration and an integral constant, keep the
    232     // integral constant.
    233     if (Y.getKind() == TemplateArgument::Integral)
    234       return Y;
    235 
    236     // If we deduced two declarations, make sure they they refer to the
    237     // same declaration.
    238     if (Y.getKind() == TemplateArgument::Declaration &&
    239         isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
    240       return X;
    241 
    242     // All other combinations are incompatible.
    243     return DeducedTemplateArgument();
    244 
    245   case TemplateArgument::NullPtr:
    246     // If we deduced a null pointer and a dependent expression, keep the
    247     // null pointer.
    248     if (Y.getKind() == TemplateArgument::Expression)
    249       return X;
    250 
    251     // If we deduced a null pointer and an integral constant, keep the
    252     // integral constant.
    253     if (Y.getKind() == TemplateArgument::Integral)
    254       return Y;
    255 
    256     // If we deduced two null pointers, make sure they have the same type.
    257     if (Y.getKind() == TemplateArgument::NullPtr &&
    258         Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
    259       return X;
    260 
    261     // All other combinations are incompatible.
    262     return DeducedTemplateArgument();
    263 
    264   case TemplateArgument::Pack:
    265     if (Y.getKind() != TemplateArgument::Pack ||
    266         X.pack_size() != Y.pack_size())
    267       return DeducedTemplateArgument();
    268 
    269     for (TemplateArgument::pack_iterator XA = X.pack_begin(),
    270                                       XAEnd = X.pack_end(),
    271                                          YA = Y.pack_begin();
    272          XA != XAEnd; ++XA, ++YA) {
    273       // FIXME: Do we need to merge the results together here?
    274       if (checkDeducedTemplateArguments(Context,
    275                     DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
    276                     DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
    277             .isNull())
    278         return DeducedTemplateArgument();
    279     }
    280 
    281     return X;
    282   }
    283 
    284   llvm_unreachable("Invalid TemplateArgument Kind!");
    285 }
    286 
    287 /// \brief Deduce the value of the given non-type template parameter
    288 /// from the given constant.
    289 static Sema::TemplateDeductionResult
    290 DeduceNonTypeTemplateArgument(Sema &S,
    291                               NonTypeTemplateParmDecl *NTTP,
    292                               llvm::APSInt Value, QualType ValueType,
    293                               bool DeducedFromArrayBound,
    294                               TemplateDeductionInfo &Info,
    295                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    296   assert(NTTP->getDepth() == 0 &&
    297          "Cannot deduce non-type template argument with depth > 0");
    298 
    299   DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
    300                                      DeducedFromArrayBound);
    301   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    302                                                      Deduced[NTTP->getIndex()],
    303                                                                  NewDeduced);
    304   if (Result.isNull()) {
    305     Info.Param = NTTP;
    306     Info.FirstArg = Deduced[NTTP->getIndex()];
    307     Info.SecondArg = NewDeduced;
    308     return Sema::TDK_Inconsistent;
    309   }
    310 
    311   Deduced[NTTP->getIndex()] = Result;
    312   return Sema::TDK_Success;
    313 }
    314 
    315 /// \brief Deduce the value of the given non-type template parameter
    316 /// from the given type- or value-dependent expression.
    317 ///
    318 /// \returns true if deduction succeeded, false otherwise.
    319 static Sema::TemplateDeductionResult
    320 DeduceNonTypeTemplateArgument(Sema &S,
    321                               NonTypeTemplateParmDecl *NTTP,
    322                               Expr *Value,
    323                               TemplateDeductionInfo &Info,
    324                     SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    325   assert(NTTP->getDepth() == 0 &&
    326          "Cannot deduce non-type template argument with depth > 0");
    327   assert((Value->isTypeDependent() || Value->isValueDependent()) &&
    328          "Expression template argument must be type- or value-dependent.");
    329 
    330   DeducedTemplateArgument NewDeduced(Value);
    331   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    332                                                      Deduced[NTTP->getIndex()],
    333                                                                  NewDeduced);
    334 
    335   if (Result.isNull()) {
    336     Info.Param = NTTP;
    337     Info.FirstArg = Deduced[NTTP->getIndex()];
    338     Info.SecondArg = NewDeduced;
    339     return Sema::TDK_Inconsistent;
    340   }
    341 
    342   Deduced[NTTP->getIndex()] = Result;
    343   return Sema::TDK_Success;
    344 }
    345 
    346 /// \brief Deduce the value of the given non-type template parameter
    347 /// from the given declaration.
    348 ///
    349 /// \returns true if deduction succeeded, false otherwise.
    350 static Sema::TemplateDeductionResult
    351 DeduceNonTypeTemplateArgument(Sema &S,
    352                             NonTypeTemplateParmDecl *NTTP,
    353                             ValueDecl *D,
    354                             TemplateDeductionInfo &Info,
    355                             SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    356   assert(NTTP->getDepth() == 0 &&
    357          "Cannot deduce non-type template argument with depth > 0");
    358 
    359   D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
    360   TemplateArgument New(D, NTTP->getType());
    361   DeducedTemplateArgument NewDeduced(New);
    362   DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    363                                                      Deduced[NTTP->getIndex()],
    364                                                                  NewDeduced);
    365   if (Result.isNull()) {
    366     Info.Param = NTTP;
    367     Info.FirstArg = Deduced[NTTP->getIndex()];
    368     Info.SecondArg = NewDeduced;
    369     return Sema::TDK_Inconsistent;
    370   }
    371 
    372   Deduced[NTTP->getIndex()] = Result;
    373   return Sema::TDK_Success;
    374 }
    375 
    376 static Sema::TemplateDeductionResult
    377 DeduceTemplateArguments(Sema &S,
    378                         TemplateParameterList *TemplateParams,
    379                         TemplateName Param,
    380                         TemplateName Arg,
    381                         TemplateDeductionInfo &Info,
    382                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    383   TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
    384   if (!ParamDecl) {
    385     // The parameter type is dependent and is not a template template parameter,
    386     // so there is nothing that we can deduce.
    387     return Sema::TDK_Success;
    388   }
    389 
    390   if (TemplateTemplateParmDecl *TempParam
    391         = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
    392     DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
    393     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
    394                                                  Deduced[TempParam->getIndex()],
    395                                                                    NewDeduced);
    396     if (Result.isNull()) {
    397       Info.Param = TempParam;
    398       Info.FirstArg = Deduced[TempParam->getIndex()];
    399       Info.SecondArg = NewDeduced;
    400       return Sema::TDK_Inconsistent;
    401     }
    402 
    403     Deduced[TempParam->getIndex()] = Result;
    404     return Sema::TDK_Success;
    405   }
    406 
    407   // Verify that the two template names are equivalent.
    408   if (S.Context.hasSameTemplateName(Param, Arg))
    409     return Sema::TDK_Success;
    410 
    411   // Mismatch of non-dependent template parameter to argument.
    412   Info.FirstArg = TemplateArgument(Param);
    413   Info.SecondArg = TemplateArgument(Arg);
    414   return Sema::TDK_NonDeducedMismatch;
    415 }
    416 
    417 /// \brief Deduce the template arguments by comparing the template parameter
    418 /// type (which is a template-id) with the template argument type.
    419 ///
    420 /// \param S the Sema
    421 ///
    422 /// \param TemplateParams the template parameters that we are deducing
    423 ///
    424 /// \param Param the parameter type
    425 ///
    426 /// \param Arg the argument type
    427 ///
    428 /// \param Info information about the template argument deduction itself
    429 ///
    430 /// \param Deduced the deduced template arguments
    431 ///
    432 /// \returns the result of template argument deduction so far. Note that a
    433 /// "success" result means that template argument deduction has not yet failed,
    434 /// but it may still fail, later, for other reasons.
    435 static Sema::TemplateDeductionResult
    436 DeduceTemplateArguments(Sema &S,
    437                         TemplateParameterList *TemplateParams,
    438                         const TemplateSpecializationType *Param,
    439                         QualType Arg,
    440                         TemplateDeductionInfo &Info,
    441                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
    442   assert(Arg.isCanonical() && "Argument type must be canonical");
    443 
    444   // Check whether the template argument is a dependent template-id.
    445   if (const TemplateSpecializationType *SpecArg
    446         = dyn_cast<TemplateSpecializationType>(Arg)) {
    447     // Perform template argument deduction for the template name.
    448     if (Sema::TemplateDeductionResult Result
    449           = DeduceTemplateArguments(S, TemplateParams,
    450                                     Param->getTemplateName(),
    451                                     SpecArg->getTemplateName(),
    452                                     Info, Deduced))
    453       return Result;
    454 
    455 
    456     // Perform template argument deduction on each template
    457     // argument. Ignore any missing/extra arguments, since they could be
    458     // filled in by default arguments.
    459     return DeduceTemplateArguments(S, TemplateParams,
    460                                    Param->getArgs(), Param->getNumArgs(),
    461                                    SpecArg->getArgs(), SpecArg->getNumArgs(),
    462                                    Info, Deduced);
    463   }
    464 
    465   // If the argument type is a class template specialization, we
    466   // perform template argument deduction using its template
    467   // arguments.
    468   const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
    469   if (!RecordArg) {
    470     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    471     Info.SecondArg = TemplateArgument(Arg);
    472     return Sema::TDK_NonDeducedMismatch;
    473   }
    474 
    475   ClassTemplateSpecializationDecl *SpecArg
    476     = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
    477   if (!SpecArg) {
    478     Info.FirstArg = TemplateArgument(QualType(Param, 0));
    479     Info.SecondArg = TemplateArgument(Arg);
    480     return Sema::TDK_NonDeducedMismatch;
    481   }
    482 
    483   // Perform template argument deduction for the template name.
    484   if (Sema::TemplateDeductionResult Result
    485         = DeduceTemplateArguments(S,
    486                                   TemplateParams,
    487                                   Param->getTemplateName(),
    488                                TemplateName(SpecArg->getSpecializedTemplate()),
    489                                   Info, Deduced))
    490     return Result;
    491 
    492   // Perform template argument deduction for the template arguments.
    493   return DeduceTemplateArguments(S, TemplateParams,
    494                                  Param->getArgs(), Param->getNumArgs(),
    495                                  SpecArg->getTemplateArgs().data(),
    496                                  SpecArg->getTemplateArgs().size(),
    497                                  Info, Deduced);
    498 }
    499 
    500 /// \brief Determines whether the given type is an opaque type that
    501 /// might be more qualified when instantiated.
    502 static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
    503   switch (T->getTypeClass()) {
    504   case Type::TypeOfExpr:
    505   case Type::TypeOf:
    506   case Type::DependentName:
    507   case Type::Decltype:
    508   case Type::UnresolvedUsing:
    509   case Type::TemplateTypeParm:
    510     return true;
    511 
    512   case Type::ConstantArray:
    513   case Type::IncompleteArray:
    514   case Type::VariableArray:
    515   case Type::DependentSizedArray:
    516     return IsPossiblyOpaquelyQualifiedType(
    517                                       cast<ArrayType>(T)->getElementType());
    518 
    519   default:
    520     return false;
    521   }
    522 }
    523 
    524 /// \brief Retrieve the depth and index of a template parameter.
    525 static std::pair<unsigned, unsigned>
    526 getDepthAndIndex(NamedDecl *ND) {
    527   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
    528     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    529 
    530   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
    531     return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
    532 
    533   TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
    534   return std::make_pair(TTP->getDepth(), TTP->getIndex());
    535 }
    536 
    537 /// \brief Retrieve the depth and index of an unexpanded parameter pack.
    538 static std::pair<unsigned, unsigned>
    539 getDepthAndIndex(UnexpandedParameterPack UPP) {
    540   if (const TemplateTypeParmType *TTP
    541                           = UPP.first.dyn_cast<const TemplateTypeParmType *>())
    542     return std::make_pair(TTP->getDepth(), TTP->getIndex());
    543 
    544   return getDepthAndIndex(UPP.first.get<NamedDecl *>());
    545 }
    546 
    547 /// \brief Helper function to build a TemplateParameter when we don't
    548 /// know its type statically.
    549 static TemplateParameter makeTemplateParameter(Decl *D) {
    550   if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
    551     return TemplateParameter(TTP);
    552   if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
    553     return TemplateParameter(NTTP);
    554 
    555   return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
    556 }
    557 
    558 /// A pack that we're currently deducing.
    559 struct clang::DeducedPack {
    560   DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
    561 
    562   // The index of the pack.
    563   unsigned Index;
    564 
    565   // The old value of the pack before we started deducing it.
    566   DeducedTemplateArgument Saved;
    567 
    568   // A deferred value of this pack from an inner deduction, that couldn't be
    569   // deduced because this deduction hadn't happened yet.
    570   DeducedTemplateArgument DeferredDeduction;
    571 
    572   // The new value of the pack.
    573   SmallVector<DeducedTemplateArgument, 4> New;
    574 
    575   // The outer deduction for this pack, if any.
    576   DeducedPack *Outer;
    577 };
    578 
    579 namespace {
    580 /// A scope in which we're performing pack deduction.
    581 class PackDeductionScope {
    582 public:
    583   PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
    584                      SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    585                      TemplateDeductionInfo &Info, TemplateArgument Pattern)
    586       : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
    587     // Compute the set of template parameter indices that correspond to
    588     // parameter packs expanded by the pack expansion.
    589     {
    590       llvm::SmallBitVector SawIndices(TemplateParams->size());
    591       SmallVector<UnexpandedParameterPack, 2> Unexpanded;
    592       S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
    593       for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
    594         unsigned Depth, Index;
    595         std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
    596         if (Depth == 0 && !SawIndices[Index]) {
    597           SawIndices[Index] = true;
    598 
    599           // Save the deduced template argument for the parameter pack expanded
    600           // by this pack expansion, then clear out the deduction.
    601           DeducedPack Pack(Index);
    602           Pack.Saved = Deduced[Index];
    603           Deduced[Index] = TemplateArgument();
    604 
    605           Packs.push_back(Pack);
    606         }
    607       }
    608     }
    609     assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
    610 
    611     for (auto &Pack : Packs) {
    612       if (Info.PendingDeducedPacks.size() > Pack.Index)
    613         Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
    614       else
    615         Info.PendingDeducedPacks.resize(Pack.Index + 1);
    616       Info.PendingDeducedPacks[Pack.Index] = &Pack;
    617 
    618       if (S.CurrentInstantiationScope) {
    619         // If the template argument pack was explicitly specified, add that to
    620         // the set of deduced arguments.
    621         const TemplateArgument *ExplicitArgs;
    622         unsigned NumExplicitArgs;
    623         NamedDecl *PartiallySubstitutedPack =
    624             S.CurrentInstantiationScope->getPartiallySubstitutedPack(
    625                 &ExplicitArgs, &NumExplicitArgs);
    626         if (PartiallySubstitutedPack &&
    627             getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
    628           Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
    629       }
    630     }
    631   }
    632 
    633   ~PackDeductionScope() {
    634     for (auto &Pack : Packs)
    635       Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
    636   }
    637 
    638   /// Move to deducing the next element in each pack that is being deduced.
    639   void nextPackElement() {
    640     // Capture the deduced template arguments for each parameter pack expanded
    641     // by this pack expansion, add them to the list of arguments we've deduced
    642     // for that pack, then clear out the deduced argument.
    643     for (auto &Pack : Packs) {
    644       DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
    645       if (!DeducedArg.isNull()) {
    646         Pack.New.push_back(DeducedArg);
    647         DeducedArg = DeducedTemplateArgument();
    648       }
    649     }
    650   }
    651 
    652   /// \brief Finish template argument deduction for a set of argument packs,
    653   /// producing the argument packs and checking for consistency with prior
    654   /// deductions.
    655   Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
    656     // Build argument packs for each of the parameter packs expanded by this
    657     // pack expansion.
    658     for (auto &Pack : Packs) {
    659       // Put back the old value for this pack.
    660       Deduced[Pack.Index] = Pack.Saved;
    661 
    662       // Build or find a new value for this pack.
    663       DeducedTemplateArgument NewPack;
    664       if (HasAnyArguments && Pack.New.empty()) {
    665         if (Pack.DeferredDeduction.isNull()) {
    666           // We were not able to deduce anything for this parameter pack
    667           // (because it only appeared in non-deduced contexts), so just
    668           // restore the saved argument pack.
    669           continue;
    670         }
    671 
    672         NewPack = Pack.DeferredDeduction;
    673         Pack.DeferredDeduction = TemplateArgument();
    674       } else if (Pack.New.empty()) {
    675         // If we deduced an empty argument pack, create it now.
    676         NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
    677       } else {
    678         TemplateArgument *ArgumentPack =
    679             new (S.Context) TemplateArgument[Pack.New.size()];
    680         std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
    681         NewPack = DeducedTemplateArgument(
    682             TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())),
    683             Pack.New[0].wasDeducedFromArrayBound());
    684       }
    685 
    686       // Pick where we're going to put the merged pack.
    687       DeducedTemplateArgument *Loc;
    688       if (Pack.Outer) {
    689         if (Pack.Outer->DeferredDeduction.isNull()) {
    690           // Defer checking this pack until we have a complete pack to compare
    691           // it against.
    692           Pack.Outer->DeferredDeduction = NewPack;
    693           continue;
    694         }
    695         Loc = &Pack.Outer->DeferredDeduction;
    696       } else {
    697         Loc = &Deduced[Pack.Index];
    698       }
    699 
    700       // Check the new pack matches any previous value.
    701       DeducedTemplateArgument OldPack = *Loc;
    702       DeducedTemplateArgument Result =
    703           checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    704 
    705       // If we deferred a deduction of this pack, check that one now too.
    706       if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
    707         OldPack = Result;
    708         NewPack = Pack.DeferredDeduction;
    709         Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
    710       }
    711 
    712       if (Result.isNull()) {
    713         Info.Param =
    714             makeTemplateParameter(TemplateParams->getParam(Pack.Index));
    715         Info.FirstArg = OldPack;
    716         Info.SecondArg = NewPack;
    717         return Sema::TDK_Inconsistent;
    718       }
    719 
    720       *Loc = Result;
    721     }
    722 
    723     return Sema::TDK_Success;
    724   }
    725 
    726 private:
    727   Sema &S;
    728   TemplateParameterList *TemplateParams;
    729   SmallVectorImpl<DeducedTemplateArgument> &Deduced;
    730   TemplateDeductionInfo &Info;
    731 
    732   SmallVector<DeducedPack, 2> Packs;
    733 };
    734 } // namespace
    735 
    736 /// \brief Deduce the template arguments by comparing the list of parameter
    737 /// types to the list of argument types, as in the parameter-type-lists of
    738 /// function types (C++ [temp.deduct.type]p10).
    739 ///
    740 /// \param S The semantic analysis object within which we are deducing
    741 ///
    742 /// \param TemplateParams The template parameters that we are deducing
    743 ///
    744 /// \param Params The list of parameter types
    745 ///
    746 /// \param NumParams The number of types in \c Params
    747 ///
    748 /// \param Args The list of argument types
    749 ///
    750 /// \param NumArgs The number of types in \c Args
    751 ///
    752 /// \param Info information about the template argument deduction itself
    753 ///
    754 /// \param Deduced the deduced template arguments
    755 ///
    756 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    757 /// how template argument deduction is performed.
    758 ///
    759 /// \param PartialOrdering If true, we are performing template argument
    760 /// deduction for during partial ordering for a call
    761 /// (C++0x [temp.deduct.partial]).
    762 ///
    763 /// \returns the result of template argument deduction so far. Note that a
    764 /// "success" result means that template argument deduction has not yet failed,
    765 /// but it may still fail, later, for other reasons.
    766 static Sema::TemplateDeductionResult
    767 DeduceTemplateArguments(Sema &S,
    768                         TemplateParameterList *TemplateParams,
    769                         const QualType *Params, unsigned NumParams,
    770                         const QualType *Args, unsigned NumArgs,
    771                         TemplateDeductionInfo &Info,
    772                         SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    773                         unsigned TDF,
    774                         bool PartialOrdering = false) {
    775   // Fast-path check to see if we have too many/too few arguments.
    776   if (NumParams != NumArgs &&
    777       !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
    778       !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
    779     return Sema::TDK_MiscellaneousDeductionFailure;
    780 
    781   // C++0x [temp.deduct.type]p10:
    782   //   Similarly, if P has a form that contains (T), then each parameter type
    783   //   Pi of the respective parameter-type- list of P is compared with the
    784   //   corresponding parameter type Ai of the corresponding parameter-type-list
    785   //   of A. [...]
    786   unsigned ArgIdx = 0, ParamIdx = 0;
    787   for (; ParamIdx != NumParams; ++ParamIdx) {
    788     // Check argument types.
    789     const PackExpansionType *Expansion
    790                                 = dyn_cast<PackExpansionType>(Params[ParamIdx]);
    791     if (!Expansion) {
    792       // Simple case: compare the parameter and argument types at this point.
    793 
    794       // Make sure we have an argument.
    795       if (ArgIdx >= NumArgs)
    796         return Sema::TDK_MiscellaneousDeductionFailure;
    797 
    798       if (isa<PackExpansionType>(Args[ArgIdx])) {
    799         // C++0x [temp.deduct.type]p22:
    800         //   If the original function parameter associated with A is a function
    801         //   parameter pack and the function parameter associated with P is not
    802         //   a function parameter pack, then template argument deduction fails.
    803         return Sema::TDK_MiscellaneousDeductionFailure;
    804       }
    805 
    806       if (Sema::TemplateDeductionResult Result
    807             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
    808                                                  Params[ParamIdx], Args[ArgIdx],
    809                                                  Info, Deduced, TDF,
    810                                                  PartialOrdering))
    811         return Result;
    812 
    813       ++ArgIdx;
    814       continue;
    815     }
    816 
    817     // C++0x [temp.deduct.type]p5:
    818     //   The non-deduced contexts are:
    819     //     - A function parameter pack that does not occur at the end of the
    820     //       parameter-declaration-clause.
    821     if (ParamIdx + 1 < NumParams)
    822       return Sema::TDK_Success;
    823 
    824     // C++0x [temp.deduct.type]p10:
    825     //   If the parameter-declaration corresponding to Pi is a function
    826     //   parameter pack, then the type of its declarator- id is compared with
    827     //   each remaining parameter type in the parameter-type-list of A. Each
    828     //   comparison deduces template arguments for subsequent positions in the
    829     //   template parameter packs expanded by the function parameter pack.
    830 
    831     QualType Pattern = Expansion->getPattern();
    832     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
    833 
    834     bool HasAnyArguments = false;
    835     for (; ArgIdx < NumArgs; ++ArgIdx) {
    836       HasAnyArguments = true;
    837 
    838       // Deduce template arguments from the pattern.
    839       if (Sema::TemplateDeductionResult Result
    840             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
    841                                                  Args[ArgIdx], Info, Deduced,
    842                                                  TDF, PartialOrdering))
    843         return Result;
    844 
    845       PackScope.nextPackElement();
    846     }
    847 
    848     // Build argument packs for each of the parameter packs expanded by this
    849     // pack expansion.
    850     if (auto Result = PackScope.finish(HasAnyArguments))
    851       return Result;
    852   }
    853 
    854   // Make sure we don't have any extra arguments.
    855   if (ArgIdx < NumArgs)
    856     return Sema::TDK_MiscellaneousDeductionFailure;
    857 
    858   return Sema::TDK_Success;
    859 }
    860 
    861 /// \brief Determine whether the parameter has qualifiers that are either
    862 /// inconsistent with or a superset of the argument's qualifiers.
    863 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
    864                                                   QualType ArgType) {
    865   Qualifiers ParamQs = ParamType.getQualifiers();
    866   Qualifiers ArgQs = ArgType.getQualifiers();
    867 
    868   if (ParamQs == ArgQs)
    869     return false;
    870 
    871   // Mismatched (but not missing) Objective-C GC attributes.
    872   if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
    873       ParamQs.hasObjCGCAttr())
    874     return true;
    875 
    876   // Mismatched (but not missing) address spaces.
    877   if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
    878       ParamQs.hasAddressSpace())
    879     return true;
    880 
    881   // Mismatched (but not missing) Objective-C lifetime qualifiers.
    882   if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
    883       ParamQs.hasObjCLifetime())
    884     return true;
    885 
    886   // CVR qualifier superset.
    887   return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
    888       ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
    889                                                 == ParamQs.getCVRQualifiers());
    890 }
    891 
    892 /// \brief Compare types for equality with respect to possibly compatible
    893 /// function types (noreturn adjustment, implicit calling conventions). If any
    894 /// of parameter and argument is not a function, just perform type comparison.
    895 ///
    896 /// \param Param the template parameter type.
    897 ///
    898 /// \param Arg the argument type.
    899 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
    900                                           CanQualType Arg) {
    901   const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
    902                      *ArgFunction   = Arg->getAs<FunctionType>();
    903 
    904   // Just compare if not functions.
    905   if (!ParamFunction || !ArgFunction)
    906     return Param == Arg;
    907 
    908   // Noreturn adjustment.
    909   QualType AdjustedParam;
    910   if (IsNoReturnConversion(Param, Arg, AdjustedParam))
    911     return Arg == Context.getCanonicalType(AdjustedParam);
    912 
    913   // FIXME: Compatible calling conventions.
    914 
    915   return Param == Arg;
    916 }
    917 
    918 /// \brief Deduce the template arguments by comparing the parameter type and
    919 /// the argument type (C++ [temp.deduct.type]).
    920 ///
    921 /// \param S the semantic analysis object within which we are deducing
    922 ///
    923 /// \param TemplateParams the template parameters that we are deducing
    924 ///
    925 /// \param ParamIn the parameter type
    926 ///
    927 /// \param ArgIn the argument type
    928 ///
    929 /// \param Info information about the template argument deduction itself
    930 ///
    931 /// \param Deduced the deduced template arguments
    932 ///
    933 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
    934 /// how template argument deduction is performed.
    935 ///
    936 /// \param PartialOrdering Whether we're performing template argument deduction
    937 /// in the context of partial ordering (C++0x [temp.deduct.partial]).
    938 ///
    939 /// \returns the result of template argument deduction so far. Note that a
    940 /// "success" result means that template argument deduction has not yet failed,
    941 /// but it may still fail, later, for other reasons.
    942 static Sema::TemplateDeductionResult
    943 DeduceTemplateArgumentsByTypeMatch(Sema &S,
    944                                    TemplateParameterList *TemplateParams,
    945                                    QualType ParamIn, QualType ArgIn,
    946                                    TemplateDeductionInfo &Info,
    947                             SmallVectorImpl<DeducedTemplateArgument> &Deduced,
    948                                    unsigned TDF,
    949                                    bool PartialOrdering) {
    950   // We only want to look at the canonical types, since typedefs and
    951   // sugar are not part of template argument deduction.
    952   QualType Param = S.Context.getCanonicalType(ParamIn);
    953   QualType Arg = S.Context.getCanonicalType(ArgIn);
    954 
    955   // If the argument type is a pack expansion, look at its pattern.
    956   // This isn't explicitly called out
    957   if (const PackExpansionType *ArgExpansion
    958                                             = dyn_cast<PackExpansionType>(Arg))
    959     Arg = ArgExpansion->getPattern();
    960 
    961   if (PartialOrdering) {
    962     // C++11 [temp.deduct.partial]p5:
    963     //   Before the partial ordering is done, certain transformations are
    964     //   performed on the types used for partial ordering:
    965     //     - If P is a reference type, P is replaced by the type referred to.
    966     const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
    967     if (ParamRef)
    968       Param = ParamRef->getPointeeType();
    969 
    970     //     - If A is a reference type, A is replaced by the type referred to.
    971     const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
    972     if (ArgRef)
    973       Arg = ArgRef->getPointeeType();
    974 
    975     if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
    976       // C++11 [temp.deduct.partial]p9:
    977       //   If, for a given type, deduction succeeds in both directions (i.e.,
    978       //   the types are identical after the transformations above) and both
    979       //   P and A were reference types [...]:
    980       //     - if [one type] was an lvalue reference and [the other type] was
    981       //       not, [the other type] is not considered to be at least as
    982       //       specialized as [the first type]
    983       //     - if [one type] is more cv-qualified than [the other type],
    984       //       [the other type] is not considered to be at least as specialized
    985       //       as [the first type]
    986       // Objective-C ARC adds:
    987       //     - [one type] has non-trivial lifetime, [the other type] has
    988       //       __unsafe_unretained lifetime, and the types are otherwise
    989       //       identical
    990       //
    991       // A is "considered to be at least as specialized" as P iff deduction
    992       // succeeds, so we model this as a deduction failure. Note that
    993       // [the first type] is P and [the other type] is A here; the standard
    994       // gets this backwards.
    995       Qualifiers ParamQuals = Param.getQualifiers();
    996       Qualifiers ArgQuals = Arg.getQualifiers();
    997       if ((ParamRef->isLValueReferenceType() &&
    998            !ArgRef->isLValueReferenceType()) ||
    999           ParamQuals.isStrictSupersetOf(ArgQuals) ||
   1000           (ParamQuals.hasNonTrivialObjCLifetime() &&
   1001            ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
   1002            ParamQuals.withoutObjCLifetime() ==
   1003                ArgQuals.withoutObjCLifetime())) {
   1004         Info.FirstArg = TemplateArgument(ParamIn);
   1005         Info.SecondArg = TemplateArgument(ArgIn);
   1006         return Sema::TDK_NonDeducedMismatch;
   1007       }
   1008     }
   1009 
   1010     // C++11 [temp.deduct.partial]p7:
   1011     //   Remove any top-level cv-qualifiers:
   1012     //     - If P is a cv-qualified type, P is replaced by the cv-unqualified
   1013     //       version of P.
   1014     Param = Param.getUnqualifiedType();
   1015     //     - If A is a cv-qualified type, A is replaced by the cv-unqualified
   1016     //       version of A.
   1017     Arg = Arg.getUnqualifiedType();
   1018   } else {
   1019     // C++0x [temp.deduct.call]p4 bullet 1:
   1020     //   - If the original P is a reference type, the deduced A (i.e., the type
   1021     //     referred to by the reference) can be more cv-qualified than the
   1022     //     transformed A.
   1023     if (TDF & TDF_ParamWithReferenceType) {
   1024       Qualifiers Quals;
   1025       QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
   1026       Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
   1027                              Arg.getCVRQualifiers());
   1028       Param = S.Context.getQualifiedType(UnqualParam, Quals);
   1029     }
   1030 
   1031     if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
   1032       // C++0x [temp.deduct.type]p10:
   1033       //   If P and A are function types that originated from deduction when
   1034       //   taking the address of a function template (14.8.2.2) or when deducing
   1035       //   template arguments from a function declaration (14.8.2.6) and Pi and
   1036       //   Ai are parameters of the top-level parameter-type-list of P and A,
   1037       //   respectively, Pi is adjusted if it is an rvalue reference to a
   1038       //   cv-unqualified template parameter and Ai is an lvalue reference, in
   1039       //   which case the type of Pi is changed to be the template parameter
   1040       //   type (i.e., T&& is changed to simply T). [ Note: As a result, when
   1041       //   Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
   1042       //   deduced as X&. - end note ]
   1043       TDF &= ~TDF_TopLevelParameterTypeList;
   1044 
   1045       if (const RValueReferenceType *ParamRef
   1046                                         = Param->getAs<RValueReferenceType>()) {
   1047         if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
   1048             !ParamRef->getPointeeType().getQualifiers())
   1049           if (Arg->isLValueReferenceType())
   1050             Param = ParamRef->getPointeeType();
   1051       }
   1052     }
   1053   }
   1054 
   1055   // C++ [temp.deduct.type]p9:
   1056   //   A template type argument T, a template template argument TT or a
   1057   //   template non-type argument i can be deduced if P and A have one of
   1058   //   the following forms:
   1059   //
   1060   //     T
   1061   //     cv-list T
   1062   if (const TemplateTypeParmType *TemplateTypeParm
   1063         = Param->getAs<TemplateTypeParmType>()) {
   1064     // Just skip any attempts to deduce from a placeholder type.
   1065     if (Arg->isPlaceholderType())
   1066       return Sema::TDK_Success;
   1067 
   1068     unsigned Index = TemplateTypeParm->getIndex();
   1069     bool RecanonicalizeArg = false;
   1070 
   1071     // If the argument type is an array type, move the qualifiers up to the
   1072     // top level, so they can be matched with the qualifiers on the parameter.
   1073     if (isa<ArrayType>(Arg)) {
   1074       Qualifiers Quals;
   1075       Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
   1076       if (Quals) {
   1077         Arg = S.Context.getQualifiedType(Arg, Quals);
   1078         RecanonicalizeArg = true;
   1079       }
   1080     }
   1081 
   1082     // The argument type can not be less qualified than the parameter
   1083     // type.
   1084     if (!(TDF & TDF_IgnoreQualifiers) &&
   1085         hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
   1086       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1087       Info.FirstArg = TemplateArgument(Param);
   1088       Info.SecondArg = TemplateArgument(Arg);
   1089       return Sema::TDK_Underqualified;
   1090     }
   1091 
   1092     assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
   1093     assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
   1094     QualType DeducedType = Arg;
   1095 
   1096     // Remove any qualifiers on the parameter from the deduced type.
   1097     // We checked the qualifiers for consistency above.
   1098     Qualifiers DeducedQs = DeducedType.getQualifiers();
   1099     Qualifiers ParamQs = Param.getQualifiers();
   1100     DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
   1101     if (ParamQs.hasObjCGCAttr())
   1102       DeducedQs.removeObjCGCAttr();
   1103     if (ParamQs.hasAddressSpace())
   1104       DeducedQs.removeAddressSpace();
   1105     if (ParamQs.hasObjCLifetime())
   1106       DeducedQs.removeObjCLifetime();
   1107 
   1108     // Objective-C ARC:
   1109     //   If template deduction would produce a lifetime qualifier on a type
   1110     //   that is not a lifetime type, template argument deduction fails.
   1111     if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
   1112         !DeducedType->isDependentType()) {
   1113       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1114       Info.FirstArg = TemplateArgument(Param);
   1115       Info.SecondArg = TemplateArgument(Arg);
   1116       return Sema::TDK_Underqualified;
   1117     }
   1118 
   1119     // Objective-C ARC:
   1120     //   If template deduction would produce an argument type with lifetime type
   1121     //   but no lifetime qualifier, the __strong lifetime qualifier is inferred.
   1122     if (S.getLangOpts().ObjCAutoRefCount &&
   1123         DeducedType->isObjCLifetimeType() &&
   1124         !DeducedQs.hasObjCLifetime())
   1125       DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
   1126 
   1127     DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
   1128                                              DeducedQs);
   1129 
   1130     if (RecanonicalizeArg)
   1131       DeducedType = S.Context.getCanonicalType(DeducedType);
   1132 
   1133     DeducedTemplateArgument NewDeduced(DeducedType);
   1134     DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
   1135                                                                  Deduced[Index],
   1136                                                                    NewDeduced);
   1137     if (Result.isNull()) {
   1138       Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
   1139       Info.FirstArg = Deduced[Index];
   1140       Info.SecondArg = NewDeduced;
   1141       return Sema::TDK_Inconsistent;
   1142     }
   1143 
   1144     Deduced[Index] = Result;
   1145     return Sema::TDK_Success;
   1146   }
   1147 
   1148   // Set up the template argument deduction information for a failure.
   1149   Info.FirstArg = TemplateArgument(ParamIn);
   1150   Info.SecondArg = TemplateArgument(ArgIn);
   1151 
   1152   // If the parameter is an already-substituted template parameter
   1153   // pack, do nothing: we don't know which of its arguments to look
   1154   // at, so we have to wait until all of the parameter packs in this
   1155   // expansion have arguments.
   1156   if (isa<SubstTemplateTypeParmPackType>(Param))
   1157     return Sema::TDK_Success;
   1158 
   1159   // Check the cv-qualifiers on the parameter and argument types.
   1160   CanQualType CanParam = S.Context.getCanonicalType(Param);
   1161   CanQualType CanArg = S.Context.getCanonicalType(Arg);
   1162   if (!(TDF & TDF_IgnoreQualifiers)) {
   1163     if (TDF & TDF_ParamWithReferenceType) {
   1164       if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
   1165         return Sema::TDK_NonDeducedMismatch;
   1166     } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
   1167       if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
   1168         return Sema::TDK_NonDeducedMismatch;
   1169     }
   1170 
   1171     // If the parameter type is not dependent, there is nothing to deduce.
   1172     if (!Param->isDependentType()) {
   1173       if (!(TDF & TDF_SkipNonDependent)) {
   1174         bool NonDeduced = (TDF & TDF_InOverloadResolution)?
   1175                           !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
   1176                           Param != Arg;
   1177         if (NonDeduced) {
   1178           return Sema::TDK_NonDeducedMismatch;
   1179         }
   1180       }
   1181       return Sema::TDK_Success;
   1182     }
   1183   } else if (!Param->isDependentType()) {
   1184     CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
   1185                 ArgUnqualType = CanArg.getUnqualifiedType();
   1186     bool Success = (TDF & TDF_InOverloadResolution)?
   1187                    S.isSameOrCompatibleFunctionType(ParamUnqualType,
   1188                                                     ArgUnqualType) :
   1189                    ParamUnqualType == ArgUnqualType;
   1190     if (Success)
   1191       return Sema::TDK_Success;
   1192   }
   1193 
   1194   switch (Param->getTypeClass()) {
   1195     // Non-canonical types cannot appear here.
   1196 #define NON_CANONICAL_TYPE(Class, Base) \
   1197   case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
   1198 #define TYPE(Class, Base)
   1199 #include "clang/AST/TypeNodes.def"
   1200 
   1201     case Type::TemplateTypeParm:
   1202     case Type::SubstTemplateTypeParmPack:
   1203       llvm_unreachable("Type nodes handled above");
   1204 
   1205     // These types cannot be dependent, so simply check whether the types are
   1206     // the same.
   1207     case Type::Builtin:
   1208     case Type::VariableArray:
   1209     case Type::Vector:
   1210     case Type::FunctionNoProto:
   1211     case Type::Record:
   1212     case Type::Enum:
   1213     case Type::ObjCObject:
   1214     case Type::ObjCInterface:
   1215     case Type::ObjCObjectPointer: {
   1216       if (TDF & TDF_SkipNonDependent)
   1217         return Sema::TDK_Success;
   1218 
   1219       if (TDF & TDF_IgnoreQualifiers) {
   1220         Param = Param.getUnqualifiedType();
   1221         Arg = Arg.getUnqualifiedType();
   1222       }
   1223 
   1224       return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
   1225     }
   1226 
   1227     //     _Complex T   [placeholder extension]
   1228     case Type::Complex:
   1229       if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
   1230         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1231                                     cast<ComplexType>(Param)->getElementType(),
   1232                                     ComplexArg->getElementType(),
   1233                                     Info, Deduced, TDF);
   1234 
   1235       return Sema::TDK_NonDeducedMismatch;
   1236 
   1237     //     _Atomic T   [extension]
   1238     case Type::Atomic:
   1239       if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
   1240         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1241                                        cast<AtomicType>(Param)->getValueType(),
   1242                                        AtomicArg->getValueType(),
   1243                                        Info, Deduced, TDF);
   1244 
   1245       return Sema::TDK_NonDeducedMismatch;
   1246 
   1247     //     T *
   1248     case Type::Pointer: {
   1249       QualType PointeeType;
   1250       if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
   1251         PointeeType = PointerArg->getPointeeType();
   1252       } else if (const ObjCObjectPointerType *PointerArg
   1253                    = Arg->getAs<ObjCObjectPointerType>()) {
   1254         PointeeType = PointerArg->getPointeeType();
   1255       } else {
   1256         return Sema::TDK_NonDeducedMismatch;
   1257       }
   1258 
   1259       unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
   1260       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1261                                      cast<PointerType>(Param)->getPointeeType(),
   1262                                      PointeeType,
   1263                                      Info, Deduced, SubTDF);
   1264     }
   1265 
   1266     //     T &
   1267     case Type::LValueReference: {
   1268       const LValueReferenceType *ReferenceArg =
   1269           Arg->getAs<LValueReferenceType>();
   1270       if (!ReferenceArg)
   1271         return Sema::TDK_NonDeducedMismatch;
   1272 
   1273       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1274                            cast<LValueReferenceType>(Param)->getPointeeType(),
   1275                            ReferenceArg->getPointeeType(), Info, Deduced, 0);
   1276     }
   1277 
   1278     //     T && [C++0x]
   1279     case Type::RValueReference: {
   1280       const RValueReferenceType *ReferenceArg =
   1281           Arg->getAs<RValueReferenceType>();
   1282       if (!ReferenceArg)
   1283         return Sema::TDK_NonDeducedMismatch;
   1284 
   1285       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1286                              cast<RValueReferenceType>(Param)->getPointeeType(),
   1287                              ReferenceArg->getPointeeType(),
   1288                              Info, Deduced, 0);
   1289     }
   1290 
   1291     //     T [] (implied, but not stated explicitly)
   1292     case Type::IncompleteArray: {
   1293       const IncompleteArrayType *IncompleteArrayArg =
   1294         S.Context.getAsIncompleteArrayType(Arg);
   1295       if (!IncompleteArrayArg)
   1296         return Sema::TDK_NonDeducedMismatch;
   1297 
   1298       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1299       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1300                     S.Context.getAsIncompleteArrayType(Param)->getElementType(),
   1301                     IncompleteArrayArg->getElementType(),
   1302                     Info, Deduced, SubTDF);
   1303     }
   1304 
   1305     //     T [integer-constant]
   1306     case Type::ConstantArray: {
   1307       const ConstantArrayType *ConstantArrayArg =
   1308         S.Context.getAsConstantArrayType(Arg);
   1309       if (!ConstantArrayArg)
   1310         return Sema::TDK_NonDeducedMismatch;
   1311 
   1312       const ConstantArrayType *ConstantArrayParm =
   1313         S.Context.getAsConstantArrayType(Param);
   1314       if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
   1315         return Sema::TDK_NonDeducedMismatch;
   1316 
   1317       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1318       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1319                                            ConstantArrayParm->getElementType(),
   1320                                            ConstantArrayArg->getElementType(),
   1321                                            Info, Deduced, SubTDF);
   1322     }
   1323 
   1324     //     type [i]
   1325     case Type::DependentSizedArray: {
   1326       const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
   1327       if (!ArrayArg)
   1328         return Sema::TDK_NonDeducedMismatch;
   1329 
   1330       unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
   1331 
   1332       // Check the element type of the arrays
   1333       const DependentSizedArrayType *DependentArrayParm
   1334         = S.Context.getAsDependentSizedArrayType(Param);
   1335       if (Sema::TemplateDeductionResult Result
   1336             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1337                                           DependentArrayParm->getElementType(),
   1338                                           ArrayArg->getElementType(),
   1339                                           Info, Deduced, SubTDF))
   1340         return Result;
   1341 
   1342       // Determine the array bound is something we can deduce.
   1343       NonTypeTemplateParmDecl *NTTP
   1344         = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
   1345       if (!NTTP)
   1346         return Sema::TDK_Success;
   1347 
   1348       // We can perform template argument deduction for the given non-type
   1349       // template parameter.
   1350       assert(NTTP->getDepth() == 0 &&
   1351              "Cannot deduce non-type template argument at depth > 0");
   1352       if (const ConstantArrayType *ConstantArrayArg
   1353             = dyn_cast<ConstantArrayType>(ArrayArg)) {
   1354         llvm::APSInt Size(ConstantArrayArg->getSize());
   1355         return DeduceNonTypeTemplateArgument(S, NTTP, Size,
   1356                                              S.Context.getSizeType(),
   1357                                              /*ArrayBound=*/true,
   1358                                              Info, Deduced);
   1359       }
   1360       if (const DependentSizedArrayType *DependentArrayArg
   1361             = dyn_cast<DependentSizedArrayType>(ArrayArg))
   1362         if (DependentArrayArg->getSizeExpr())
   1363           return DeduceNonTypeTemplateArgument(S, NTTP,
   1364                                                DependentArrayArg->getSizeExpr(),
   1365                                                Info, Deduced);
   1366 
   1367       // Incomplete type does not match a dependently-sized array type
   1368       return Sema::TDK_NonDeducedMismatch;
   1369     }
   1370 
   1371     //     type(*)(T)
   1372     //     T(*)()
   1373     //     T(*)(T)
   1374     case Type::FunctionProto: {
   1375       unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
   1376       const FunctionProtoType *FunctionProtoArg =
   1377         dyn_cast<FunctionProtoType>(Arg);
   1378       if (!FunctionProtoArg)
   1379         return Sema::TDK_NonDeducedMismatch;
   1380 
   1381       const FunctionProtoType *FunctionProtoParam =
   1382         cast<FunctionProtoType>(Param);
   1383 
   1384       if (FunctionProtoParam->getTypeQuals()
   1385             != FunctionProtoArg->getTypeQuals() ||
   1386           FunctionProtoParam->getRefQualifier()
   1387             != FunctionProtoArg->getRefQualifier() ||
   1388           FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
   1389         return Sema::TDK_NonDeducedMismatch;
   1390 
   1391       // Check return types.
   1392       if (Sema::TemplateDeductionResult Result =
   1393               DeduceTemplateArgumentsByTypeMatch(
   1394                   S, TemplateParams, FunctionProtoParam->getReturnType(),
   1395                   FunctionProtoArg->getReturnType(), Info, Deduced, 0))
   1396         return Result;
   1397 
   1398       return DeduceTemplateArguments(
   1399           S, TemplateParams, FunctionProtoParam->param_type_begin(),
   1400           FunctionProtoParam->getNumParams(),
   1401           FunctionProtoArg->param_type_begin(),
   1402           FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
   1403     }
   1404 
   1405     case Type::InjectedClassName: {
   1406       // Treat a template's injected-class-name as if the template
   1407       // specialization type had been used.
   1408       Param = cast<InjectedClassNameType>(Param)
   1409         ->getInjectedSpecializationType();
   1410       assert(isa<TemplateSpecializationType>(Param) &&
   1411              "injected class name is not a template specialization type");
   1412       // fall through
   1413     }
   1414 
   1415     //     template-name<T> (where template-name refers to a class template)
   1416     //     template-name<i>
   1417     //     TT<T>
   1418     //     TT<i>
   1419     //     TT<>
   1420     case Type::TemplateSpecialization: {
   1421       const TemplateSpecializationType *SpecParam
   1422         = cast<TemplateSpecializationType>(Param);
   1423 
   1424       // Try to deduce template arguments from the template-id.
   1425       Sema::TemplateDeductionResult Result
   1426         = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
   1427                                   Info, Deduced);
   1428 
   1429       if (Result && (TDF & TDF_DerivedClass)) {
   1430         // C++ [temp.deduct.call]p3b3:
   1431         //   If P is a class, and P has the form template-id, then A can be a
   1432         //   derived class of the deduced A. Likewise, if P is a pointer to a
   1433         //   class of the form template-id, A can be a pointer to a derived
   1434         //   class pointed to by the deduced A.
   1435         //
   1436         // More importantly:
   1437         //   These alternatives are considered only if type deduction would
   1438         //   otherwise fail.
   1439         if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
   1440           // We cannot inspect base classes as part of deduction when the type
   1441           // is incomplete, so either instantiate any templates necessary to
   1442           // complete the type, or skip over it if it cannot be completed.
   1443           if (!S.isCompleteType(Info.getLocation(), Arg))
   1444             return Result;
   1445 
   1446           // Use data recursion to crawl through the list of base classes.
   1447           // Visited contains the set of nodes we have already visited, while
   1448           // ToVisit is our stack of records that we still need to visit.
   1449           llvm::SmallPtrSet<const RecordType *, 8> Visited;
   1450           SmallVector<const RecordType *, 8> ToVisit;
   1451           ToVisit.push_back(RecordT);
   1452           bool Successful = false;
   1453           SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
   1454                                                               Deduced.end());
   1455           while (!ToVisit.empty()) {
   1456             // Retrieve the next class in the inheritance hierarchy.
   1457             const RecordType *NextT = ToVisit.pop_back_val();
   1458 
   1459             // If we have already seen this type, skip it.
   1460             if (!Visited.insert(NextT).second)
   1461               continue;
   1462 
   1463             // If this is a base class, try to perform template argument
   1464             // deduction from it.
   1465             if (NextT != RecordT) {
   1466               TemplateDeductionInfo BaseInfo(Info.getLocation());
   1467               Sema::TemplateDeductionResult BaseResult
   1468                 = DeduceTemplateArguments(S, TemplateParams, SpecParam,
   1469                                           QualType(NextT, 0), BaseInfo,
   1470                                           Deduced);
   1471 
   1472               // If template argument deduction for this base was successful,
   1473               // note that we had some success. Otherwise, ignore any deductions
   1474               // from this base class.
   1475               if (BaseResult == Sema::TDK_Success) {
   1476                 Successful = true;
   1477                 DeducedOrig.clear();
   1478                 DeducedOrig.append(Deduced.begin(), Deduced.end());
   1479                 Info.Param = BaseInfo.Param;
   1480                 Info.FirstArg = BaseInfo.FirstArg;
   1481                 Info.SecondArg = BaseInfo.SecondArg;
   1482               }
   1483               else
   1484                 Deduced = DeducedOrig;
   1485             }
   1486 
   1487             // Visit base classes
   1488             CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
   1489             for (const auto &Base : Next->bases()) {
   1490               assert(Base.getType()->isRecordType() &&
   1491                      "Base class that isn't a record?");
   1492               ToVisit.push_back(Base.getType()->getAs<RecordType>());
   1493             }
   1494           }
   1495 
   1496           if (Successful)
   1497             return Sema::TDK_Success;
   1498         }
   1499 
   1500       }
   1501 
   1502       return Result;
   1503     }
   1504 
   1505     //     T type::*
   1506     //     T T::*
   1507     //     T (type::*)()
   1508     //     type (T::*)()
   1509     //     type (type::*)(T)
   1510     //     type (T::*)(T)
   1511     //     T (type::*)(T)
   1512     //     T (T::*)()
   1513     //     T (T::*)(T)
   1514     case Type::MemberPointer: {
   1515       const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
   1516       const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
   1517       if (!MemPtrArg)
   1518         return Sema::TDK_NonDeducedMismatch;
   1519 
   1520       QualType ParamPointeeType = MemPtrParam->getPointeeType();
   1521       if (ParamPointeeType->isFunctionType())
   1522         S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true,
   1523                                  /*IsCtorOrDtor=*/false, Info.getLocation());
   1524       QualType ArgPointeeType = MemPtrArg->getPointeeType();
   1525       if (ArgPointeeType->isFunctionType())
   1526         S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true,
   1527                                  /*IsCtorOrDtor=*/false, Info.getLocation());
   1528 
   1529       if (Sema::TemplateDeductionResult Result
   1530             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1531                                                  ParamPointeeType,
   1532                                                  ArgPointeeType,
   1533                                                  Info, Deduced,
   1534                                                  TDF & TDF_IgnoreQualifiers))
   1535         return Result;
   1536 
   1537       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1538                                            QualType(MemPtrParam->getClass(), 0),
   1539                                            QualType(MemPtrArg->getClass(), 0),
   1540                                            Info, Deduced,
   1541                                            TDF & TDF_IgnoreQualifiers);
   1542     }
   1543 
   1544     //     (clang extension)
   1545     //
   1546     //     type(^)(T)
   1547     //     T(^)()
   1548     //     T(^)(T)
   1549     case Type::BlockPointer: {
   1550       const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
   1551       const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
   1552 
   1553       if (!BlockPtrArg)
   1554         return Sema::TDK_NonDeducedMismatch;
   1555 
   1556       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1557                                                 BlockPtrParam->getPointeeType(),
   1558                                                 BlockPtrArg->getPointeeType(),
   1559                                                 Info, Deduced, 0);
   1560     }
   1561 
   1562     //     (clang extension)
   1563     //
   1564     //     T __attribute__(((ext_vector_type(<integral constant>))))
   1565     case Type::ExtVector: {
   1566       const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
   1567       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1568         // Make sure that the vectors have the same number of elements.
   1569         if (VectorParam->getNumElements() != VectorArg->getNumElements())
   1570           return Sema::TDK_NonDeducedMismatch;
   1571 
   1572         // Perform deduction on the element types.
   1573         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1574                                                   VectorParam->getElementType(),
   1575                                                   VectorArg->getElementType(),
   1576                                                   Info, Deduced, TDF);
   1577       }
   1578 
   1579       if (const DependentSizedExtVectorType *VectorArg
   1580                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1581         // We can't check the number of elements, since the argument has a
   1582         // dependent number of elements. This can only occur during partial
   1583         // ordering.
   1584 
   1585         // Perform deduction on the element types.
   1586         return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1587                                                   VectorParam->getElementType(),
   1588                                                   VectorArg->getElementType(),
   1589                                                   Info, Deduced, TDF);
   1590       }
   1591 
   1592       return Sema::TDK_NonDeducedMismatch;
   1593     }
   1594 
   1595     //     (clang extension)
   1596     //
   1597     //     T __attribute__(((ext_vector_type(N))))
   1598     case Type::DependentSizedExtVector: {
   1599       const DependentSizedExtVectorType *VectorParam
   1600         = cast<DependentSizedExtVectorType>(Param);
   1601 
   1602       if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
   1603         // Perform deduction on the element types.
   1604         if (Sema::TemplateDeductionResult Result
   1605               = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1606                                                   VectorParam->getElementType(),
   1607                                                    VectorArg->getElementType(),
   1608                                                    Info, Deduced, TDF))
   1609           return Result;
   1610 
   1611         // Perform deduction on the vector size, if we can.
   1612         NonTypeTemplateParmDecl *NTTP
   1613           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1614         if (!NTTP)
   1615           return Sema::TDK_Success;
   1616 
   1617         llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
   1618         ArgSize = VectorArg->getNumElements();
   1619         return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
   1620                                              false, Info, Deduced);
   1621       }
   1622 
   1623       if (const DependentSizedExtVectorType *VectorArg
   1624                                 = dyn_cast<DependentSizedExtVectorType>(Arg)) {
   1625         // Perform deduction on the element types.
   1626         if (Sema::TemplateDeductionResult Result
   1627             = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1628                                                  VectorParam->getElementType(),
   1629                                                  VectorArg->getElementType(),
   1630                                                  Info, Deduced, TDF))
   1631           return Result;
   1632 
   1633         // Perform deduction on the vector size, if we can.
   1634         NonTypeTemplateParmDecl *NTTP
   1635           = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
   1636         if (!NTTP)
   1637           return Sema::TDK_Success;
   1638 
   1639         return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
   1640                                              Info, Deduced);
   1641       }
   1642 
   1643       return Sema::TDK_NonDeducedMismatch;
   1644     }
   1645 
   1646     case Type::TypeOfExpr:
   1647     case Type::TypeOf:
   1648     case Type::DependentName:
   1649     case Type::UnresolvedUsing:
   1650     case Type::Decltype:
   1651     case Type::UnaryTransform:
   1652     case Type::Auto:
   1653     case Type::DependentTemplateSpecialization:
   1654     case Type::PackExpansion:
   1655       // No template argument deduction for these types
   1656       return Sema::TDK_Success;
   1657   }
   1658 
   1659   llvm_unreachable("Invalid Type Class!");
   1660 }
   1661 
   1662 static Sema::TemplateDeductionResult
   1663 DeduceTemplateArguments(Sema &S,
   1664                         TemplateParameterList *TemplateParams,
   1665                         const TemplateArgument &Param,
   1666                         TemplateArgument Arg,
   1667                         TemplateDeductionInfo &Info,
   1668                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1669   // If the template argument is a pack expansion, perform template argument
   1670   // deduction against the pattern of that expansion. This only occurs during
   1671   // partial ordering.
   1672   if (Arg.isPackExpansion())
   1673     Arg = Arg.getPackExpansionPattern();
   1674 
   1675   switch (Param.getKind()) {
   1676   case TemplateArgument::Null:
   1677     llvm_unreachable("Null template argument in parameter list");
   1678 
   1679   case TemplateArgument::Type:
   1680     if (Arg.getKind() == TemplateArgument::Type)
   1681       return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   1682                                                 Param.getAsType(),
   1683                                                 Arg.getAsType(),
   1684                                                 Info, Deduced, 0);
   1685     Info.FirstArg = Param;
   1686     Info.SecondArg = Arg;
   1687     return Sema::TDK_NonDeducedMismatch;
   1688 
   1689   case TemplateArgument::Template:
   1690     if (Arg.getKind() == TemplateArgument::Template)
   1691       return DeduceTemplateArguments(S, TemplateParams,
   1692                                      Param.getAsTemplate(),
   1693                                      Arg.getAsTemplate(), Info, Deduced);
   1694     Info.FirstArg = Param;
   1695     Info.SecondArg = Arg;
   1696     return Sema::TDK_NonDeducedMismatch;
   1697 
   1698   case TemplateArgument::TemplateExpansion:
   1699     llvm_unreachable("caller should handle pack expansions");
   1700 
   1701   case TemplateArgument::Declaration:
   1702     if (Arg.getKind() == TemplateArgument::Declaration &&
   1703         isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
   1704       return Sema::TDK_Success;
   1705 
   1706     Info.FirstArg = Param;
   1707     Info.SecondArg = Arg;
   1708     return Sema::TDK_NonDeducedMismatch;
   1709 
   1710   case TemplateArgument::NullPtr:
   1711     if (Arg.getKind() == TemplateArgument::NullPtr &&
   1712         S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
   1713       return Sema::TDK_Success;
   1714 
   1715     Info.FirstArg = Param;
   1716     Info.SecondArg = Arg;
   1717     return Sema::TDK_NonDeducedMismatch;
   1718 
   1719   case TemplateArgument::Integral:
   1720     if (Arg.getKind() == TemplateArgument::Integral) {
   1721       if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
   1722         return Sema::TDK_Success;
   1723 
   1724       Info.FirstArg = Param;
   1725       Info.SecondArg = Arg;
   1726       return Sema::TDK_NonDeducedMismatch;
   1727     }
   1728 
   1729     if (Arg.getKind() == TemplateArgument::Expression) {
   1730       Info.FirstArg = Param;
   1731       Info.SecondArg = Arg;
   1732       return Sema::TDK_NonDeducedMismatch;
   1733     }
   1734 
   1735     Info.FirstArg = Param;
   1736     Info.SecondArg = Arg;
   1737     return Sema::TDK_NonDeducedMismatch;
   1738 
   1739   case TemplateArgument::Expression: {
   1740     if (NonTypeTemplateParmDecl *NTTP
   1741           = getDeducedParameterFromExpr(Param.getAsExpr())) {
   1742       if (Arg.getKind() == TemplateArgument::Integral)
   1743         return DeduceNonTypeTemplateArgument(S, NTTP,
   1744                                              Arg.getAsIntegral(),
   1745                                              Arg.getIntegralType(),
   1746                                              /*ArrayBound=*/false,
   1747                                              Info, Deduced);
   1748       if (Arg.getKind() == TemplateArgument::Expression)
   1749         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
   1750                                              Info, Deduced);
   1751       if (Arg.getKind() == TemplateArgument::Declaration)
   1752         return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
   1753                                              Info, Deduced);
   1754 
   1755       Info.FirstArg = Param;
   1756       Info.SecondArg = Arg;
   1757       return Sema::TDK_NonDeducedMismatch;
   1758     }
   1759 
   1760     // Can't deduce anything, but that's okay.
   1761     return Sema::TDK_Success;
   1762   }
   1763   case TemplateArgument::Pack:
   1764     llvm_unreachable("Argument packs should be expanded by the caller!");
   1765   }
   1766 
   1767   llvm_unreachable("Invalid TemplateArgument Kind!");
   1768 }
   1769 
   1770 /// \brief Determine whether there is a template argument to be used for
   1771 /// deduction.
   1772 ///
   1773 /// This routine "expands" argument packs in-place, overriding its input
   1774 /// parameters so that \c Args[ArgIdx] will be the available template argument.
   1775 ///
   1776 /// \returns true if there is another template argument (which will be at
   1777 /// \c Args[ArgIdx]), false otherwise.
   1778 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
   1779                                             unsigned &ArgIdx,
   1780                                             unsigned &NumArgs) {
   1781   if (ArgIdx == NumArgs)
   1782     return false;
   1783 
   1784   const TemplateArgument &Arg = Args[ArgIdx];
   1785   if (Arg.getKind() != TemplateArgument::Pack)
   1786     return true;
   1787 
   1788   assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
   1789   Args = Arg.pack_begin();
   1790   NumArgs = Arg.pack_size();
   1791   ArgIdx = 0;
   1792   return ArgIdx < NumArgs;
   1793 }
   1794 
   1795 /// \brief Determine whether the given set of template arguments has a pack
   1796 /// expansion that is not the last template argument.
   1797 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
   1798                                       unsigned NumArgs) {
   1799   unsigned ArgIdx = 0;
   1800   while (ArgIdx < NumArgs) {
   1801     const TemplateArgument &Arg = Args[ArgIdx];
   1802 
   1803     // Unwrap argument packs.
   1804     if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
   1805       Args = Arg.pack_begin();
   1806       NumArgs = Arg.pack_size();
   1807       ArgIdx = 0;
   1808       continue;
   1809     }
   1810 
   1811     ++ArgIdx;
   1812     if (ArgIdx == NumArgs)
   1813       return false;
   1814 
   1815     if (Arg.isPackExpansion())
   1816       return true;
   1817   }
   1818 
   1819   return false;
   1820 }
   1821 
   1822 static Sema::TemplateDeductionResult
   1823 DeduceTemplateArguments(Sema &S,
   1824                         TemplateParameterList *TemplateParams,
   1825                         const TemplateArgument *Params, unsigned NumParams,
   1826                         const TemplateArgument *Args, unsigned NumArgs,
   1827                         TemplateDeductionInfo &Info,
   1828                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1829   // C++0x [temp.deduct.type]p9:
   1830   //   If the template argument list of P contains a pack expansion that is not
   1831   //   the last template argument, the entire template argument list is a
   1832   //   non-deduced context.
   1833   if (hasPackExpansionBeforeEnd(Params, NumParams))
   1834     return Sema::TDK_Success;
   1835 
   1836   // C++0x [temp.deduct.type]p9:
   1837   //   If P has a form that contains <T> or <i>, then each argument Pi of the
   1838   //   respective template argument list P is compared with the corresponding
   1839   //   argument Ai of the corresponding template argument list of A.
   1840   unsigned ArgIdx = 0, ParamIdx = 0;
   1841   for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
   1842        ++ParamIdx) {
   1843     if (!Params[ParamIdx].isPackExpansion()) {
   1844       // The simple case: deduce template arguments by matching Pi and Ai.
   1845 
   1846       // Check whether we have enough arguments.
   1847       if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
   1848         return Sema::TDK_Success;
   1849 
   1850       if (Args[ArgIdx].isPackExpansion()) {
   1851         // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
   1852         // but applied to pack expansions that are template arguments.
   1853         return Sema::TDK_MiscellaneousDeductionFailure;
   1854       }
   1855 
   1856       // Perform deduction for this Pi/Ai pair.
   1857       if (Sema::TemplateDeductionResult Result
   1858             = DeduceTemplateArguments(S, TemplateParams,
   1859                                       Params[ParamIdx], Args[ArgIdx],
   1860                                       Info, Deduced))
   1861         return Result;
   1862 
   1863       // Move to the next argument.
   1864       ++ArgIdx;
   1865       continue;
   1866     }
   1867 
   1868     // The parameter is a pack expansion.
   1869 
   1870     // C++0x [temp.deduct.type]p9:
   1871     //   If Pi is a pack expansion, then the pattern of Pi is compared with
   1872     //   each remaining argument in the template argument list of A. Each
   1873     //   comparison deduces template arguments for subsequent positions in the
   1874     //   template parameter packs expanded by Pi.
   1875     TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
   1876 
   1877     // FIXME: If there are no remaining arguments, we can bail out early
   1878     // and set any deduced parameter packs to an empty argument pack.
   1879     // The latter part of this is a (minor) correctness issue.
   1880 
   1881     // Prepare to deduce the packs within the pattern.
   1882     PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
   1883 
   1884     // Keep track of the deduced template arguments for each parameter pack
   1885     // expanded by this pack expansion (the outer index) and for each
   1886     // template argument (the inner SmallVectors).
   1887     bool HasAnyArguments = false;
   1888     for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
   1889       HasAnyArguments = true;
   1890 
   1891       // Deduce template arguments from the pattern.
   1892       if (Sema::TemplateDeductionResult Result
   1893             = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
   1894                                       Info, Deduced))
   1895         return Result;
   1896 
   1897       PackScope.nextPackElement();
   1898     }
   1899 
   1900     // Build argument packs for each of the parameter packs expanded by this
   1901     // pack expansion.
   1902     if (auto Result = PackScope.finish(HasAnyArguments))
   1903       return Result;
   1904   }
   1905 
   1906   return Sema::TDK_Success;
   1907 }
   1908 
   1909 static Sema::TemplateDeductionResult
   1910 DeduceTemplateArguments(Sema &S,
   1911                         TemplateParameterList *TemplateParams,
   1912                         const TemplateArgumentList &ParamList,
   1913                         const TemplateArgumentList &ArgList,
   1914                         TemplateDeductionInfo &Info,
   1915                         SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
   1916   return DeduceTemplateArguments(S, TemplateParams,
   1917                                  ParamList.data(), ParamList.size(),
   1918                                  ArgList.data(), ArgList.size(),
   1919                                  Info, Deduced);
   1920 }
   1921 
   1922 /// \brief Determine whether two template arguments are the same.
   1923 static bool isSameTemplateArg(ASTContext &Context,
   1924                               const TemplateArgument &X,
   1925                               const TemplateArgument &Y) {
   1926   if (X.getKind() != Y.getKind())
   1927     return false;
   1928 
   1929   switch (X.getKind()) {
   1930     case TemplateArgument::Null:
   1931       llvm_unreachable("Comparing NULL template argument");
   1932 
   1933     case TemplateArgument::Type:
   1934       return Context.getCanonicalType(X.getAsType()) ==
   1935              Context.getCanonicalType(Y.getAsType());
   1936 
   1937     case TemplateArgument::Declaration:
   1938       return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
   1939 
   1940     case TemplateArgument::NullPtr:
   1941       return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
   1942 
   1943     case TemplateArgument::Template:
   1944     case TemplateArgument::TemplateExpansion:
   1945       return Context.getCanonicalTemplateName(
   1946                     X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
   1947              Context.getCanonicalTemplateName(
   1948                     Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
   1949 
   1950     case TemplateArgument::Integral:
   1951       return X.getAsIntegral() == Y.getAsIntegral();
   1952 
   1953     case TemplateArgument::Expression: {
   1954       llvm::FoldingSetNodeID XID, YID;
   1955       X.getAsExpr()->Profile(XID, Context, true);
   1956       Y.getAsExpr()->Profile(YID, Context, true);
   1957       return XID == YID;
   1958     }
   1959 
   1960     case TemplateArgument::Pack:
   1961       if (X.pack_size() != Y.pack_size())
   1962         return false;
   1963 
   1964       for (TemplateArgument::pack_iterator XP = X.pack_begin(),
   1965                                         XPEnd = X.pack_end(),
   1966                                            YP = Y.pack_begin();
   1967            XP != XPEnd; ++XP, ++YP)
   1968         if (!isSameTemplateArg(Context, *XP, *YP))
   1969           return false;
   1970 
   1971       return true;
   1972   }
   1973 
   1974   llvm_unreachable("Invalid TemplateArgument Kind!");
   1975 }
   1976 
   1977 /// \brief Allocate a TemplateArgumentLoc where all locations have
   1978 /// been initialized to the given location.
   1979 ///
   1980 /// \param S The semantic analysis object.
   1981 ///
   1982 /// \param Arg The template argument we are producing template argument
   1983 /// location information for.
   1984 ///
   1985 /// \param NTTPType For a declaration template argument, the type of
   1986 /// the non-type template parameter that corresponds to this template
   1987 /// argument.
   1988 ///
   1989 /// \param Loc The source location to use for the resulting template
   1990 /// argument.
   1991 static TemplateArgumentLoc
   1992 getTrivialTemplateArgumentLoc(Sema &S,
   1993                               const TemplateArgument &Arg,
   1994                               QualType NTTPType,
   1995                               SourceLocation Loc) {
   1996   switch (Arg.getKind()) {
   1997   case TemplateArgument::Null:
   1998     llvm_unreachable("Can't get a NULL template argument here");
   1999 
   2000   case TemplateArgument::Type:
   2001     return TemplateArgumentLoc(Arg,
   2002                      S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
   2003 
   2004   case TemplateArgument::Declaration: {
   2005     Expr *E
   2006       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2007           .getAs<Expr>();
   2008     return TemplateArgumentLoc(TemplateArgument(E), E);
   2009   }
   2010 
   2011   case TemplateArgument::NullPtr: {
   2012     Expr *E
   2013       = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
   2014           .getAs<Expr>();
   2015     return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
   2016                                E);
   2017   }
   2018 
   2019   case TemplateArgument::Integral: {
   2020     Expr *E
   2021       = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
   2022     return TemplateArgumentLoc(TemplateArgument(E), E);
   2023   }
   2024 
   2025     case TemplateArgument::Template:
   2026     case TemplateArgument::TemplateExpansion: {
   2027       NestedNameSpecifierLocBuilder Builder;
   2028       TemplateName Template = Arg.getAsTemplate();
   2029       if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
   2030         Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
   2031       else if (QualifiedTemplateName *QTN =
   2032                    Template.getAsQualifiedTemplateName())
   2033         Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
   2034 
   2035       if (Arg.getKind() == TemplateArgument::Template)
   2036         return TemplateArgumentLoc(Arg,
   2037                                    Builder.getWithLocInContext(S.Context),
   2038                                    Loc);
   2039 
   2040 
   2041       return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
   2042                                  Loc, Loc);
   2043     }
   2044 
   2045   case TemplateArgument::Expression:
   2046     return TemplateArgumentLoc(Arg, Arg.getAsExpr());
   2047 
   2048   case TemplateArgument::Pack:
   2049     return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
   2050   }
   2051 
   2052   llvm_unreachable("Invalid TemplateArgument Kind!");
   2053 }
   2054 
   2055 
   2056 /// \brief Convert the given deduced template argument and add it to the set of
   2057 /// fully-converted template arguments.
   2058 static bool
   2059 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
   2060                                DeducedTemplateArgument Arg,
   2061                                NamedDecl *Template,
   2062                                QualType NTTPType,
   2063                                unsigned ArgumentPackIndex,
   2064                                TemplateDeductionInfo &Info,
   2065                                bool InFunctionTemplate,
   2066                                SmallVectorImpl<TemplateArgument> &Output) {
   2067   if (Arg.getKind() == TemplateArgument::Pack) {
   2068     // This is a template argument pack, so check each of its arguments against
   2069     // the template parameter.
   2070     SmallVector<TemplateArgument, 2> PackedArgsBuilder;
   2071     for (const auto &P : Arg.pack_elements()) {
   2072       // When converting the deduced template argument, append it to the
   2073       // general output list. We need to do this so that the template argument
   2074       // checking logic has all of the prior template arguments available.
   2075       DeducedTemplateArgument InnerArg(P);
   2076       InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
   2077       if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
   2078                                          NTTPType, PackedArgsBuilder.size(),
   2079                                          Info, InFunctionTemplate, Output))
   2080         return true;
   2081 
   2082       // Move the converted template argument into our argument pack.
   2083       PackedArgsBuilder.push_back(Output.pop_back_val());
   2084     }
   2085 
   2086     // Create the resulting argument pack.
   2087     Output.push_back(
   2088         TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder));
   2089     return false;
   2090   }
   2091 
   2092   // Convert the deduced template argument into a template
   2093   // argument that we can check, almost as if the user had written
   2094   // the template argument explicitly.
   2095   TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
   2096                                                              Info.getLocation());
   2097 
   2098   // Check the template argument, converting it as necessary.
   2099   return S.CheckTemplateArgument(Param, ArgLoc,
   2100                                  Template,
   2101                                  Template->getLocation(),
   2102                                  Template->getSourceRange().getEnd(),
   2103                                  ArgumentPackIndex,
   2104                                  Output,
   2105                                  InFunctionTemplate
   2106                                   ? (Arg.wasDeducedFromArrayBound()
   2107                                        ? Sema::CTAK_DeducedFromArrayBound
   2108                                        : Sema::CTAK_Deduced)
   2109                                  : Sema::CTAK_Specified);
   2110 }
   2111 
   2112 /// Complete template argument deduction for a class template partial
   2113 /// specialization.
   2114 static Sema::TemplateDeductionResult
   2115 FinishTemplateArgumentDeduction(Sema &S,
   2116                                 ClassTemplatePartialSpecializationDecl *Partial,
   2117                                 const TemplateArgumentList &TemplateArgs,
   2118                       SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2119                                 TemplateDeductionInfo &Info) {
   2120   // Unevaluated SFINAE context.
   2121   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2122   Sema::SFINAETrap Trap(S);
   2123 
   2124   Sema::ContextRAII SavedContext(S, Partial);
   2125 
   2126   // C++ [temp.deduct.type]p2:
   2127   //   [...] or if any template argument remains neither deduced nor
   2128   //   explicitly specified, template argument deduction fails.
   2129   SmallVector<TemplateArgument, 4> Builder;
   2130   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2131   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2132     NamedDecl *Param = PartialParams->getParam(I);
   2133     if (Deduced[I].isNull()) {
   2134       Info.Param = makeTemplateParameter(Param);
   2135       return Sema::TDK_Incomplete;
   2136     }
   2137 
   2138     // We have deduced this argument, so it still needs to be
   2139     // checked and converted.
   2140 
   2141     // First, for a non-type template parameter type that is
   2142     // initialized by a declaration, we need the type of the
   2143     // corresponding non-type template parameter.
   2144     QualType NTTPType;
   2145     if (NonTypeTemplateParmDecl *NTTP
   2146                                   = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2147       NTTPType = NTTP->getType();
   2148       if (NTTPType->isDependentType()) {
   2149         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2150                                           Builder.data(), Builder.size());
   2151         NTTPType = S.SubstType(NTTPType,
   2152                                MultiLevelTemplateArgumentList(TemplateArgs),
   2153                                NTTP->getLocation(),
   2154                                NTTP->getDeclName());
   2155         if (NTTPType.isNull()) {
   2156           Info.Param = makeTemplateParameter(Param);
   2157           // FIXME: These template arguments are temporary. Free them!
   2158           Info.reset(TemplateArgumentList::CreateCopy(S.Context,
   2159                                                       Builder.data(),
   2160                                                       Builder.size()));
   2161           return Sema::TDK_SubstitutionFailure;
   2162         }
   2163       }
   2164     }
   2165 
   2166     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
   2167                                        Partial, NTTPType, 0, Info, false,
   2168                                        Builder)) {
   2169       Info.Param = makeTemplateParameter(Param);
   2170       // FIXME: These template arguments are temporary. Free them!
   2171       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2172                                                   Builder.size()));
   2173       return Sema::TDK_SubstitutionFailure;
   2174     }
   2175   }
   2176 
   2177   // Form the template argument list from the deduced template arguments.
   2178   TemplateArgumentList *DeducedArgumentList
   2179     = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2180                                        Builder.size());
   2181 
   2182   Info.reset(DeducedArgumentList);
   2183 
   2184   // Substitute the deduced template arguments into the template
   2185   // arguments of the class template partial specialization, and
   2186   // verify that the instantiated template arguments are both valid
   2187   // and are equivalent to the template arguments originally provided
   2188   // to the class template.
   2189   LocalInstantiationScope InstScope(S);
   2190   ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
   2191   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2192     = Partial->getTemplateArgsAsWritten();
   2193   const TemplateArgumentLoc *PartialTemplateArgs
   2194     = PartialTemplArgInfo->getTemplateArgs();
   2195 
   2196   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2197                                     PartialTemplArgInfo->RAngleLoc);
   2198 
   2199   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2200               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2201     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2202     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2203       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2204 
   2205     Decl *Param
   2206       = const_cast<NamedDecl *>(
   2207                           Partial->getTemplateParameters()->getParam(ParamIdx));
   2208     Info.Param = makeTemplateParameter(Param);
   2209     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2210     return Sema::TDK_SubstitutionFailure;
   2211   }
   2212 
   2213   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2214   if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
   2215                                   InstArgs, false, ConvertedInstArgs))
   2216     return Sema::TDK_SubstitutionFailure;
   2217 
   2218   TemplateParameterList *TemplateParams
   2219     = ClassTemplate->getTemplateParameters();
   2220   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2221     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2222     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2223       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2224       Info.FirstArg = TemplateArgs[I];
   2225       Info.SecondArg = InstArg;
   2226       return Sema::TDK_NonDeducedMismatch;
   2227     }
   2228   }
   2229 
   2230   if (Trap.hasErrorOccurred())
   2231     return Sema::TDK_SubstitutionFailure;
   2232 
   2233   return Sema::TDK_Success;
   2234 }
   2235 
   2236 /// \brief Perform template argument deduction to determine whether
   2237 /// the given template arguments match the given class template
   2238 /// partial specialization per C++ [temp.class.spec.match].
   2239 Sema::TemplateDeductionResult
   2240 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
   2241                               const TemplateArgumentList &TemplateArgs,
   2242                               TemplateDeductionInfo &Info) {
   2243   if (Partial->isInvalidDecl())
   2244     return TDK_Invalid;
   2245 
   2246   // C++ [temp.class.spec.match]p2:
   2247   //   A partial specialization matches a given actual template
   2248   //   argument list if the template arguments of the partial
   2249   //   specialization can be deduced from the actual template argument
   2250   //   list (14.8.2).
   2251 
   2252   // Unevaluated SFINAE context.
   2253   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2254   SFINAETrap Trap(*this);
   2255 
   2256   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2257   Deduced.resize(Partial->getTemplateParameters()->size());
   2258   if (TemplateDeductionResult Result
   2259         = ::DeduceTemplateArguments(*this,
   2260                                     Partial->getTemplateParameters(),
   2261                                     Partial->getTemplateArgs(),
   2262                                     TemplateArgs, Info, Deduced))
   2263     return Result;
   2264 
   2265   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2266   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2267                              Info);
   2268   if (Inst.isInvalid())
   2269     return TDK_InstantiationDepth;
   2270 
   2271   if (Trap.hasErrorOccurred())
   2272     return Sema::TDK_SubstitutionFailure;
   2273 
   2274   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2275                                            Deduced, Info);
   2276 }
   2277 
   2278 /// Complete template argument deduction for a variable template partial
   2279 /// specialization.
   2280 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2281 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2282 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2283 ///        structure Template(Partial)SpecializationDecl, and
   2284 ///        using Template(Partial)SpecializationDecl as input type.
   2285 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
   2286     Sema &S, VarTemplatePartialSpecializationDecl *Partial,
   2287     const TemplateArgumentList &TemplateArgs,
   2288     SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2289     TemplateDeductionInfo &Info) {
   2290   // Unevaluated SFINAE context.
   2291   EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
   2292   Sema::SFINAETrap Trap(S);
   2293 
   2294   // C++ [temp.deduct.type]p2:
   2295   //   [...] or if any template argument remains neither deduced nor
   2296   //   explicitly specified, template argument deduction fails.
   2297   SmallVector<TemplateArgument, 4> Builder;
   2298   TemplateParameterList *PartialParams = Partial->getTemplateParameters();
   2299   for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
   2300     NamedDecl *Param = PartialParams->getParam(I);
   2301     if (Deduced[I].isNull()) {
   2302       Info.Param = makeTemplateParameter(Param);
   2303       return Sema::TDK_Incomplete;
   2304     }
   2305 
   2306     // We have deduced this argument, so it still needs to be
   2307     // checked and converted.
   2308 
   2309     // First, for a non-type template parameter type that is
   2310     // initialized by a declaration, we need the type of the
   2311     // corresponding non-type template parameter.
   2312     QualType NTTPType;
   2313     if (NonTypeTemplateParmDecl *NTTP =
   2314             dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2315       NTTPType = NTTP->getType();
   2316       if (NTTPType->isDependentType()) {
   2317         TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2318                                           Builder.data(), Builder.size());
   2319         NTTPType =
   2320             S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
   2321                         NTTP->getLocation(), NTTP->getDeclName());
   2322         if (NTTPType.isNull()) {
   2323           Info.Param = makeTemplateParameter(Param);
   2324           // FIXME: These template arguments are temporary. Free them!
   2325           Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2326                                                       Builder.size()));
   2327           return Sema::TDK_SubstitutionFailure;
   2328         }
   2329       }
   2330     }
   2331 
   2332     if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
   2333                                        0, Info, false, Builder)) {
   2334       Info.Param = makeTemplateParameter(Param);
   2335       // FIXME: These template arguments are temporary. Free them!
   2336       Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
   2337                                                   Builder.size()));
   2338       return Sema::TDK_SubstitutionFailure;
   2339     }
   2340   }
   2341 
   2342   // Form the template argument list from the deduced template arguments.
   2343   TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
   2344       S.Context, Builder.data(), Builder.size());
   2345 
   2346   Info.reset(DeducedArgumentList);
   2347 
   2348   // Substitute the deduced template arguments into the template
   2349   // arguments of the class template partial specialization, and
   2350   // verify that the instantiated template arguments are both valid
   2351   // and are equivalent to the template arguments originally provided
   2352   // to the class template.
   2353   LocalInstantiationScope InstScope(S);
   2354   VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
   2355   const ASTTemplateArgumentListInfo *PartialTemplArgInfo
   2356     = Partial->getTemplateArgsAsWritten();
   2357   const TemplateArgumentLoc *PartialTemplateArgs
   2358     = PartialTemplArgInfo->getTemplateArgs();
   2359 
   2360   TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
   2361                                     PartialTemplArgInfo->RAngleLoc);
   2362 
   2363   if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
   2364               InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
   2365     unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
   2366     if (ParamIdx >= Partial->getTemplateParameters()->size())
   2367       ParamIdx = Partial->getTemplateParameters()->size() - 1;
   2368 
   2369     Decl *Param = const_cast<NamedDecl *>(
   2370         Partial->getTemplateParameters()->getParam(ParamIdx));
   2371     Info.Param = makeTemplateParameter(Param);
   2372     Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
   2373     return Sema::TDK_SubstitutionFailure;
   2374   }
   2375   SmallVector<TemplateArgument, 4> ConvertedInstArgs;
   2376   if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
   2377                                   false, ConvertedInstArgs))
   2378     return Sema::TDK_SubstitutionFailure;
   2379 
   2380   TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
   2381   for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
   2382     TemplateArgument InstArg = ConvertedInstArgs.data()[I];
   2383     if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
   2384       Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
   2385       Info.FirstArg = TemplateArgs[I];
   2386       Info.SecondArg = InstArg;
   2387       return Sema::TDK_NonDeducedMismatch;
   2388     }
   2389   }
   2390 
   2391   if (Trap.hasErrorOccurred())
   2392     return Sema::TDK_SubstitutionFailure;
   2393 
   2394   return Sema::TDK_Success;
   2395 }
   2396 
   2397 /// \brief Perform template argument deduction to determine whether
   2398 /// the given template arguments match the given variable template
   2399 /// partial specialization per C++ [temp.class.spec.match].
   2400 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   2401 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   2402 ///        VarTemplate(Partial)SpecializationDecl with a new data
   2403 ///        structure Template(Partial)SpecializationDecl, and
   2404 ///        using Template(Partial)SpecializationDecl as input type.
   2405 Sema::TemplateDeductionResult
   2406 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
   2407                               const TemplateArgumentList &TemplateArgs,
   2408                               TemplateDeductionInfo &Info) {
   2409   if (Partial->isInvalidDecl())
   2410     return TDK_Invalid;
   2411 
   2412   // C++ [temp.class.spec.match]p2:
   2413   //   A partial specialization matches a given actual template
   2414   //   argument list if the template arguments of the partial
   2415   //   specialization can be deduced from the actual template argument
   2416   //   list (14.8.2).
   2417 
   2418   // Unevaluated SFINAE context.
   2419   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2420   SFINAETrap Trap(*this);
   2421 
   2422   SmallVector<DeducedTemplateArgument, 4> Deduced;
   2423   Deduced.resize(Partial->getTemplateParameters()->size());
   2424   if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
   2425           *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
   2426           TemplateArgs, Info, Deduced))
   2427     return Result;
   2428 
   2429   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2430   InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
   2431                              Info);
   2432   if (Inst.isInvalid())
   2433     return TDK_InstantiationDepth;
   2434 
   2435   if (Trap.hasErrorOccurred())
   2436     return Sema::TDK_SubstitutionFailure;
   2437 
   2438   return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
   2439                                            Deduced, Info);
   2440 }
   2441 
   2442 /// \brief Determine whether the given type T is a simple-template-id type.
   2443 static bool isSimpleTemplateIdType(QualType T) {
   2444   if (const TemplateSpecializationType *Spec
   2445         = T->getAs<TemplateSpecializationType>())
   2446     return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
   2447 
   2448   return false;
   2449 }
   2450 
   2451 /// \brief Substitute the explicitly-provided template arguments into the
   2452 /// given function template according to C++ [temp.arg.explicit].
   2453 ///
   2454 /// \param FunctionTemplate the function template into which the explicit
   2455 /// template arguments will be substituted.
   2456 ///
   2457 /// \param ExplicitTemplateArgs the explicitly-specified template
   2458 /// arguments.
   2459 ///
   2460 /// \param Deduced the deduced template arguments, which will be populated
   2461 /// with the converted and checked explicit template arguments.
   2462 ///
   2463 /// \param ParamTypes will be populated with the instantiated function
   2464 /// parameters.
   2465 ///
   2466 /// \param FunctionType if non-NULL, the result type of the function template
   2467 /// will also be instantiated and the pointed-to value will be updated with
   2468 /// the instantiated function type.
   2469 ///
   2470 /// \param Info if substitution fails for any reason, this object will be
   2471 /// populated with more information about the failure.
   2472 ///
   2473 /// \returns TDK_Success if substitution was successful, or some failure
   2474 /// condition.
   2475 Sema::TemplateDeductionResult
   2476 Sema::SubstituteExplicitTemplateArguments(
   2477                                       FunctionTemplateDecl *FunctionTemplate,
   2478                                TemplateArgumentListInfo &ExplicitTemplateArgs,
   2479                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2480                                  SmallVectorImpl<QualType> &ParamTypes,
   2481                                           QualType *FunctionType,
   2482                                           TemplateDeductionInfo &Info) {
   2483   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   2484   TemplateParameterList *TemplateParams
   2485     = FunctionTemplate->getTemplateParameters();
   2486 
   2487   if (ExplicitTemplateArgs.size() == 0) {
   2488     // No arguments to substitute; just copy over the parameter types and
   2489     // fill in the function type.
   2490     for (auto P : Function->params())
   2491       ParamTypes.push_back(P->getType());
   2492 
   2493     if (FunctionType)
   2494       *FunctionType = Function->getType();
   2495     return TDK_Success;
   2496   }
   2497 
   2498   // Unevaluated SFINAE context.
   2499   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2500   SFINAETrap Trap(*this);
   2501 
   2502   // C++ [temp.arg.explicit]p3:
   2503   //   Template arguments that are present shall be specified in the
   2504   //   declaration order of their corresponding template-parameters. The
   2505   //   template argument list shall not specify more template-arguments than
   2506   //   there are corresponding template-parameters.
   2507   SmallVector<TemplateArgument, 4> Builder;
   2508 
   2509   // Enter a new template instantiation context where we check the
   2510   // explicitly-specified template arguments against this function template,
   2511   // and then substitute them into the function parameter types.
   2512   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2513   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2514                              DeducedArgs,
   2515            ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
   2516                              Info);
   2517   if (Inst.isInvalid())
   2518     return TDK_InstantiationDepth;
   2519 
   2520   if (CheckTemplateArgumentList(FunctionTemplate,
   2521                                 SourceLocation(),
   2522                                 ExplicitTemplateArgs,
   2523                                 true,
   2524                                 Builder) || Trap.hasErrorOccurred()) {
   2525     unsigned Index = Builder.size();
   2526     if (Index >= TemplateParams->size())
   2527       Index = TemplateParams->size() - 1;
   2528     Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
   2529     return TDK_InvalidExplicitArguments;
   2530   }
   2531 
   2532   // Form the template argument list from the explicitly-specified
   2533   // template arguments.
   2534   TemplateArgumentList *ExplicitArgumentList
   2535     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2536   Info.reset(ExplicitArgumentList);
   2537 
   2538   // Template argument deduction and the final substitution should be
   2539   // done in the context of the templated declaration.  Explicit
   2540   // argument substitution, on the other hand, needs to happen in the
   2541   // calling context.
   2542   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2543 
   2544   // If we deduced template arguments for a template parameter pack,
   2545   // note that the template argument pack is partially substituted and record
   2546   // the explicit template arguments. They'll be used as part of deduction
   2547   // for this template parameter pack.
   2548   for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
   2549     const TemplateArgument &Arg = Builder[I];
   2550     if (Arg.getKind() == TemplateArgument::Pack) {
   2551       CurrentInstantiationScope->SetPartiallySubstitutedPack(
   2552                                                  TemplateParams->getParam(I),
   2553                                                              Arg.pack_begin(),
   2554                                                              Arg.pack_size());
   2555       break;
   2556     }
   2557   }
   2558 
   2559   const FunctionProtoType *Proto
   2560     = Function->getType()->getAs<FunctionProtoType>();
   2561   assert(Proto && "Function template does not have a prototype?");
   2562 
   2563   // Isolate our substituted parameters from our caller.
   2564   LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
   2565 
   2566   // Instantiate the types of each of the function parameters given the
   2567   // explicitly-specified template arguments. If the function has a trailing
   2568   // return type, substitute it after the arguments to ensure we substitute
   2569   // in lexical order.
   2570   if (Proto->hasTrailingReturn()) {
   2571     if (SubstParmTypes(Function->getLocation(),
   2572                        Function->param_begin(), Function->getNumParams(),
   2573                        MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2574                        ParamTypes))
   2575       return TDK_SubstitutionFailure;
   2576   }
   2577 
   2578   // Instantiate the return type.
   2579   QualType ResultType;
   2580   {
   2581     // C++11 [expr.prim.general]p3:
   2582     //   If a declaration declares a member function or member function
   2583     //   template of a class X, the expression this is a prvalue of type
   2584     //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
   2585     //   and the end of the function-definition, member-declarator, or
   2586     //   declarator.
   2587     unsigned ThisTypeQuals = 0;
   2588     CXXRecordDecl *ThisContext = nullptr;
   2589     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
   2590       ThisContext = Method->getParent();
   2591       ThisTypeQuals = Method->getTypeQualifiers();
   2592     }
   2593 
   2594     CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
   2595                                getLangOpts().CPlusPlus11);
   2596 
   2597     ResultType =
   2598         SubstType(Proto->getReturnType(),
   2599                   MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2600                   Function->getTypeSpecStartLoc(), Function->getDeclName());
   2601     if (ResultType.isNull() || Trap.hasErrorOccurred())
   2602       return TDK_SubstitutionFailure;
   2603   }
   2604 
   2605   // Instantiate the types of each of the function parameters given the
   2606   // explicitly-specified template arguments if we didn't do so earlier.
   2607   if (!Proto->hasTrailingReturn() &&
   2608       SubstParmTypes(Function->getLocation(),
   2609                      Function->param_begin(), Function->getNumParams(),
   2610                      MultiLevelTemplateArgumentList(*ExplicitArgumentList),
   2611                      ParamTypes))
   2612     return TDK_SubstitutionFailure;
   2613 
   2614   if (FunctionType) {
   2615     *FunctionType = BuildFunctionType(ResultType, ParamTypes,
   2616                                       Function->getLocation(),
   2617                                       Function->getDeclName(),
   2618                                       Proto->getExtProtoInfo());
   2619     if (FunctionType->isNull() || Trap.hasErrorOccurred())
   2620       return TDK_SubstitutionFailure;
   2621   }
   2622 
   2623   // C++ [temp.arg.explicit]p2:
   2624   //   Trailing template arguments that can be deduced (14.8.2) may be
   2625   //   omitted from the list of explicit template-arguments. If all of the
   2626   //   template arguments can be deduced, they may all be omitted; in this
   2627   //   case, the empty template argument list <> itself may also be omitted.
   2628   //
   2629   // Take all of the explicitly-specified arguments and put them into
   2630   // the set of deduced template arguments. Explicitly-specified
   2631   // parameter packs, however, will be set to NULL since the deduction
   2632   // mechanisms handle explicitly-specified argument packs directly.
   2633   Deduced.reserve(TemplateParams->size());
   2634   for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
   2635     const TemplateArgument &Arg = ExplicitArgumentList->get(I);
   2636     if (Arg.getKind() == TemplateArgument::Pack)
   2637       Deduced.push_back(DeducedTemplateArgument());
   2638     else
   2639       Deduced.push_back(Arg);
   2640   }
   2641 
   2642   return TDK_Success;
   2643 }
   2644 
   2645 /// \brief Check whether the deduced argument type for a call to a function
   2646 /// template matches the actual argument type per C++ [temp.deduct.call]p4.
   2647 static bool
   2648 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
   2649                               QualType DeducedA) {
   2650   ASTContext &Context = S.Context;
   2651 
   2652   QualType A = OriginalArg.OriginalArgType;
   2653   QualType OriginalParamType = OriginalArg.OriginalParamType;
   2654 
   2655   // Check for type equality (top-level cv-qualifiers are ignored).
   2656   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2657     return false;
   2658 
   2659   // Strip off references on the argument types; they aren't needed for
   2660   // the following checks.
   2661   if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
   2662     DeducedA = DeducedARef->getPointeeType();
   2663   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   2664     A = ARef->getPointeeType();
   2665 
   2666   // C++ [temp.deduct.call]p4:
   2667   //   [...] However, there are three cases that allow a difference:
   2668   //     - If the original P is a reference type, the deduced A (i.e., the
   2669   //       type referred to by the reference) can be more cv-qualified than
   2670   //       the transformed A.
   2671   if (const ReferenceType *OriginalParamRef
   2672       = OriginalParamType->getAs<ReferenceType>()) {
   2673     // We don't want to keep the reference around any more.
   2674     OriginalParamType = OriginalParamRef->getPointeeType();
   2675 
   2676     Qualifiers AQuals = A.getQualifiers();
   2677     Qualifiers DeducedAQuals = DeducedA.getQualifiers();
   2678 
   2679     // Under Objective-C++ ARC, the deduced type may have implicitly
   2680     // been given strong or (when dealing with a const reference)
   2681     // unsafe_unretained lifetime. If so, update the original
   2682     // qualifiers to include this lifetime.
   2683     if (S.getLangOpts().ObjCAutoRefCount &&
   2684         ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
   2685           AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
   2686          (DeducedAQuals.hasConst() &&
   2687           DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
   2688       AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
   2689     }
   2690 
   2691     if (AQuals == DeducedAQuals) {
   2692       // Qualifiers match; there's nothing to do.
   2693     } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
   2694       return true;
   2695     } else {
   2696       // Qualifiers are compatible, so have the argument type adopt the
   2697       // deduced argument type's qualifiers as if we had performed the
   2698       // qualification conversion.
   2699       A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
   2700     }
   2701   }
   2702 
   2703   //    - The transformed A can be another pointer or pointer to member
   2704   //      type that can be converted to the deduced A via a qualification
   2705   //      conversion.
   2706   //
   2707   // Also allow conversions which merely strip [[noreturn]] from function types
   2708   // (recursively) as an extension.
   2709   // FIXME: Currently, this doesn't play nicely with qualification conversions.
   2710   bool ObjCLifetimeConversion = false;
   2711   QualType ResultTy;
   2712   if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
   2713       (S.IsQualificationConversion(A, DeducedA, false,
   2714                                    ObjCLifetimeConversion) ||
   2715        S.IsNoReturnConversion(A, DeducedA, ResultTy)))
   2716     return false;
   2717 
   2718 
   2719   //    - If P is a class and P has the form simple-template-id, then the
   2720   //      transformed A can be a derived class of the deduced A. [...]
   2721   //     [...] Likewise, if P is a pointer to a class of the form
   2722   //      simple-template-id, the transformed A can be a pointer to a
   2723   //      derived class pointed to by the deduced A.
   2724   if (const PointerType *OriginalParamPtr
   2725       = OriginalParamType->getAs<PointerType>()) {
   2726     if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
   2727       if (const PointerType *APtr = A->getAs<PointerType>()) {
   2728         if (A->getPointeeType()->isRecordType()) {
   2729           OriginalParamType = OriginalParamPtr->getPointeeType();
   2730           DeducedA = DeducedAPtr->getPointeeType();
   2731           A = APtr->getPointeeType();
   2732         }
   2733       }
   2734     }
   2735   }
   2736 
   2737   if (Context.hasSameUnqualifiedType(A, DeducedA))
   2738     return false;
   2739 
   2740   if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
   2741       S.IsDerivedFrom(SourceLocation(), A, DeducedA))
   2742     return false;
   2743 
   2744   return true;
   2745 }
   2746 
   2747 /// \brief Finish template argument deduction for a function template,
   2748 /// checking the deduced template arguments for completeness and forming
   2749 /// the function template specialization.
   2750 ///
   2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against
   2752 /// which the deduced argument types should be compared.
   2753 Sema::TemplateDeductionResult
   2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
   2755                        SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   2756                                       unsigned NumExplicitlySpecified,
   2757                                       FunctionDecl *&Specialization,
   2758                                       TemplateDeductionInfo &Info,
   2759         SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
   2760                                       bool PartialOverloading) {
   2761   TemplateParameterList *TemplateParams
   2762     = FunctionTemplate->getTemplateParameters();
   2763 
   2764   // Unevaluated SFINAE context.
   2765   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   2766   SFINAETrap Trap(*this);
   2767 
   2768   // Enter a new template instantiation context while we instantiate the
   2769   // actual function declaration.
   2770   SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
   2771   InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
   2772                              DeducedArgs,
   2773               ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
   2774                              Info);
   2775   if (Inst.isInvalid())
   2776     return TDK_InstantiationDepth;
   2777 
   2778   ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
   2779 
   2780   // C++ [temp.deduct.type]p2:
   2781   //   [...] or if any template argument remains neither deduced nor
   2782   //   explicitly specified, template argument deduction fails.
   2783   SmallVector<TemplateArgument, 4> Builder;
   2784   for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
   2785     NamedDecl *Param = TemplateParams->getParam(I);
   2786 
   2787     if (!Deduced[I].isNull()) {
   2788       if (I < NumExplicitlySpecified) {
   2789         // We have already fully type-checked and converted this
   2790         // argument, because it was explicitly-specified. Just record the
   2791         // presence of this argument.
   2792         Builder.push_back(Deduced[I]);
   2793         // We may have had explicitly-specified template arguments for a
   2794         // template parameter pack (that may or may not have been extended
   2795         // via additional deduced arguments).
   2796         if (Param->isParameterPack() && CurrentInstantiationScope) {
   2797           if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
   2798               Param) {
   2799             // Forget the partially-substituted pack; its substitution is now
   2800             // complete.
   2801             CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2802           }
   2803         }
   2804         continue;
   2805       }
   2806       // We have deduced this argument, so it still needs to be
   2807       // checked and converted.
   2808 
   2809       // First, for a non-type template parameter type that is
   2810       // initialized by a declaration, we need the type of the
   2811       // corresponding non-type template parameter.
   2812       QualType NTTPType;
   2813       if (NonTypeTemplateParmDecl *NTTP
   2814                                 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
   2815         NTTPType = NTTP->getType();
   2816         if (NTTPType->isDependentType()) {
   2817           TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
   2818                                             Builder.data(), Builder.size());
   2819           NTTPType = SubstType(NTTPType,
   2820                                MultiLevelTemplateArgumentList(TemplateArgs),
   2821                                NTTP->getLocation(),
   2822                                NTTP->getDeclName());
   2823           if (NTTPType.isNull()) {
   2824             Info.Param = makeTemplateParameter(Param);
   2825             // FIXME: These template arguments are temporary. Free them!
   2826             Info.reset(TemplateArgumentList::CreateCopy(Context,
   2827                                                         Builder.data(),
   2828                                                         Builder.size()));
   2829             return TDK_SubstitutionFailure;
   2830           }
   2831         }
   2832       }
   2833 
   2834       if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
   2835                                          FunctionTemplate, NTTPType, 0, Info,
   2836                                          true, Builder)) {
   2837         Info.Param = makeTemplateParameter(Param);
   2838         // FIXME: These template arguments are temporary. Free them!
   2839         Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2840                                                     Builder.size()));
   2841         return TDK_SubstitutionFailure;
   2842       }
   2843 
   2844       continue;
   2845     }
   2846 
   2847     // C++0x [temp.arg.explicit]p3:
   2848     //    A trailing template parameter pack (14.5.3) not otherwise deduced will
   2849     //    be deduced to an empty sequence of template arguments.
   2850     // FIXME: Where did the word "trailing" come from?
   2851     if (Param->isTemplateParameterPack()) {
   2852       // We may have had explicitly-specified template arguments for this
   2853       // template parameter pack. If so, our empty deduction extends the
   2854       // explicitly-specified set (C++0x [temp.arg.explicit]p9).
   2855       const TemplateArgument *ExplicitArgs;
   2856       unsigned NumExplicitArgs;
   2857       if (CurrentInstantiationScope &&
   2858           CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
   2859                                                              &NumExplicitArgs)
   2860             == Param) {
   2861         Builder.push_back(TemplateArgument(
   2862             llvm::makeArrayRef(ExplicitArgs, NumExplicitArgs)));
   2863 
   2864         // Forget the partially-substituted pack; it's substitution is now
   2865         // complete.
   2866         CurrentInstantiationScope->ResetPartiallySubstitutedPack();
   2867       } else {
   2868         Builder.push_back(TemplateArgument::getEmptyPack());
   2869       }
   2870       continue;
   2871     }
   2872 
   2873     // Substitute into the default template argument, if available.
   2874     bool HasDefaultArg = false;
   2875     TemplateArgumentLoc DefArg
   2876       = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
   2877                                               FunctionTemplate->getLocation(),
   2878                                   FunctionTemplate->getSourceRange().getEnd(),
   2879                                                 Param,
   2880                                                 Builder, HasDefaultArg);
   2881 
   2882     // If there was no default argument, deduction is incomplete.
   2883     if (DefArg.getArgument().isNull()) {
   2884       Info.Param = makeTemplateParameter(
   2885                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2886       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2887                                                   Builder.size()));
   2888       if (PartialOverloading) break;
   2889 
   2890       return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
   2891     }
   2892 
   2893     // Check whether we can actually use the default argument.
   2894     if (CheckTemplateArgument(Param, DefArg,
   2895                               FunctionTemplate,
   2896                               FunctionTemplate->getLocation(),
   2897                               FunctionTemplate->getSourceRange().getEnd(),
   2898                               0, Builder,
   2899                               CTAK_Specified)) {
   2900       Info.Param = makeTemplateParameter(
   2901                          const_cast<NamedDecl *>(TemplateParams->getParam(I)));
   2902       // FIXME: These template arguments are temporary. Free them!
   2903       Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
   2904                                                   Builder.size()));
   2905       return TDK_SubstitutionFailure;
   2906     }
   2907 
   2908     // If we get here, we successfully used the default template argument.
   2909   }
   2910 
   2911   // Form the template argument list from the deduced template arguments.
   2912   TemplateArgumentList *DeducedArgumentList
   2913     = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
   2914   Info.reset(DeducedArgumentList);
   2915 
   2916   // Substitute the deduced template arguments into the function template
   2917   // declaration to produce the function template specialization.
   2918   DeclContext *Owner = FunctionTemplate->getDeclContext();
   2919   if (FunctionTemplate->getFriendObjectKind())
   2920     Owner = FunctionTemplate->getLexicalDeclContext();
   2921   Specialization = cast_or_null<FunctionDecl>(
   2922                       SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
   2923                          MultiLevelTemplateArgumentList(*DeducedArgumentList)));
   2924   if (!Specialization || Specialization->isInvalidDecl())
   2925     return TDK_SubstitutionFailure;
   2926 
   2927   assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
   2928          FunctionTemplate->getCanonicalDecl());
   2929 
   2930   // If the template argument list is owned by the function template
   2931   // specialization, release it.
   2932   if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
   2933       !Trap.hasErrorOccurred())
   2934     Info.take();
   2935 
   2936   // There may have been an error that did not prevent us from constructing a
   2937   // declaration. Mark the declaration invalid and return with a substitution
   2938   // failure.
   2939   if (Trap.hasErrorOccurred()) {
   2940     Specialization->setInvalidDecl(true);
   2941     return TDK_SubstitutionFailure;
   2942   }
   2943 
   2944   if (OriginalCallArgs) {
   2945     // C++ [temp.deduct.call]p4:
   2946     //   In general, the deduction process attempts to find template argument
   2947     //   values that will make the deduced A identical to A (after the type A
   2948     //   is transformed as described above). [...]
   2949     for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
   2950       OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
   2951       unsigned ParamIdx = OriginalArg.ArgIdx;
   2952 
   2953       if (ParamIdx >= Specialization->getNumParams())
   2954         continue;
   2955 
   2956       QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
   2957       if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
   2958         return Sema::TDK_SubstitutionFailure;
   2959     }
   2960   }
   2961 
   2962   // If we suppressed any diagnostics while performing template argument
   2963   // deduction, and if we haven't already instantiated this declaration,
   2964   // keep track of these diagnostics. They'll be emitted if this specialization
   2965   // is actually used.
   2966   if (Info.diag_begin() != Info.diag_end()) {
   2967     SuppressedDiagnosticsMap::iterator
   2968       Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
   2969     if (Pos == SuppressedDiagnostics.end())
   2970         SuppressedDiagnostics[Specialization->getCanonicalDecl()]
   2971           .append(Info.diag_begin(), Info.diag_end());
   2972   }
   2973 
   2974   return TDK_Success;
   2975 }
   2976 
   2977 /// Gets the type of a function for template-argument-deducton
   2978 /// purposes when it's considered as part of an overload set.
   2979 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
   2980                                   FunctionDecl *Fn) {
   2981   // We may need to deduce the return type of the function now.
   2982   if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
   2983       S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
   2984     return QualType();
   2985 
   2986   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
   2987     if (Method->isInstance()) {
   2988       // An instance method that's referenced in a form that doesn't
   2989       // look like a member pointer is just invalid.
   2990       if (!R.HasFormOfMemberPointer) return QualType();
   2991 
   2992       return S.Context.getMemberPointerType(Fn->getType(),
   2993                S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
   2994     }
   2995 
   2996   if (!R.IsAddressOfOperand) return Fn->getType();
   2997   return S.Context.getPointerType(Fn->getType());
   2998 }
   2999 
   3000 /// Apply the deduction rules for overload sets.
   3001 ///
   3002 /// \return the null type if this argument should be treated as an
   3003 /// undeduced context
   3004 static QualType
   3005 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
   3006                             Expr *Arg, QualType ParamType,
   3007                             bool ParamWasReference) {
   3008 
   3009   OverloadExpr::FindResult R = OverloadExpr::find(Arg);
   3010 
   3011   OverloadExpr *Ovl = R.Expression;
   3012 
   3013   // C++0x [temp.deduct.call]p4
   3014   unsigned TDF = 0;
   3015   if (ParamWasReference)
   3016     TDF |= TDF_ParamWithReferenceType;
   3017   if (R.IsAddressOfOperand)
   3018     TDF |= TDF_IgnoreQualifiers;
   3019 
   3020   // C++0x [temp.deduct.call]p6:
   3021   //   When P is a function type, pointer to function type, or pointer
   3022   //   to member function type:
   3023 
   3024   if (!ParamType->isFunctionType() &&
   3025       !ParamType->isFunctionPointerType() &&
   3026       !ParamType->isMemberFunctionPointerType()) {
   3027     if (Ovl->hasExplicitTemplateArgs()) {
   3028       // But we can still look for an explicit specialization.
   3029       if (FunctionDecl *ExplicitSpec
   3030             = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
   3031         return GetTypeOfFunction(S, R, ExplicitSpec);
   3032     }
   3033 
   3034     return QualType();
   3035   }
   3036 
   3037   // Gather the explicit template arguments, if any.
   3038   TemplateArgumentListInfo ExplicitTemplateArgs;
   3039   if (Ovl->hasExplicitTemplateArgs())
   3040     Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
   3041   QualType Match;
   3042   for (UnresolvedSetIterator I = Ovl->decls_begin(),
   3043          E = Ovl->decls_end(); I != E; ++I) {
   3044     NamedDecl *D = (*I)->getUnderlyingDecl();
   3045 
   3046     if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
   3047       //   - If the argument is an overload set containing one or more
   3048       //     function templates, the parameter is treated as a
   3049       //     non-deduced context.
   3050       if (!Ovl->hasExplicitTemplateArgs())
   3051         return QualType();
   3052 
   3053       // Otherwise, see if we can resolve a function type
   3054       FunctionDecl *Specialization = nullptr;
   3055       TemplateDeductionInfo Info(Ovl->getNameLoc());
   3056       if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
   3057                                     Specialization, Info))
   3058         continue;
   3059 
   3060       D = Specialization;
   3061     }
   3062 
   3063     FunctionDecl *Fn = cast<FunctionDecl>(D);
   3064     QualType ArgType = GetTypeOfFunction(S, R, Fn);
   3065     if (ArgType.isNull()) continue;
   3066 
   3067     // Function-to-pointer conversion.
   3068     if (!ParamWasReference && ParamType->isPointerType() &&
   3069         ArgType->isFunctionType())
   3070       ArgType = S.Context.getPointerType(ArgType);
   3071 
   3072     //   - If the argument is an overload set (not containing function
   3073     //     templates), trial argument deduction is attempted using each
   3074     //     of the members of the set. If deduction succeeds for only one
   3075     //     of the overload set members, that member is used as the
   3076     //     argument value for the deduction. If deduction succeeds for
   3077     //     more than one member of the overload set the parameter is
   3078     //     treated as a non-deduced context.
   3079 
   3080     // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
   3081     //   Type deduction is done independently for each P/A pair, and
   3082     //   the deduced template argument values are then combined.
   3083     // So we do not reject deductions which were made elsewhere.
   3084     SmallVector<DeducedTemplateArgument, 8>
   3085       Deduced(TemplateParams->size());
   3086     TemplateDeductionInfo Info(Ovl->getNameLoc());
   3087     Sema::TemplateDeductionResult Result
   3088       = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3089                                            ArgType, Info, Deduced, TDF);
   3090     if (Result) continue;
   3091     if (!Match.isNull()) return QualType();
   3092     Match = ArgType;
   3093   }
   3094 
   3095   return Match;
   3096 }
   3097 
   3098 /// \brief Perform the adjustments to the parameter and argument types
   3099 /// described in C++ [temp.deduct.call].
   3100 ///
   3101 /// \returns true if the caller should not attempt to perform any template
   3102 /// argument deduction based on this P/A pair because the argument is an
   3103 /// overloaded function set that could not be resolved.
   3104 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
   3105                                           TemplateParameterList *TemplateParams,
   3106                                                       QualType &ParamType,
   3107                                                       QualType &ArgType,
   3108                                                       Expr *Arg,
   3109                                                       unsigned &TDF) {
   3110   // C++0x [temp.deduct.call]p3:
   3111   //   If P is a cv-qualified type, the top level cv-qualifiers of P's type
   3112   //   are ignored for type deduction.
   3113   if (ParamType.hasQualifiers())
   3114     ParamType = ParamType.getUnqualifiedType();
   3115 
   3116   //   [...] If P is a reference type, the type referred to by P is
   3117   //   used for type deduction.
   3118   const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
   3119   if (ParamRefType)
   3120     ParamType = ParamRefType->getPointeeType();
   3121 
   3122   // Overload sets usually make this parameter an undeduced context,
   3123   // but there are sometimes special circumstances.  Typically
   3124   // involving a template-id-expr.
   3125   if (ArgType == S.Context.OverloadTy) {
   3126     ArgType = ResolveOverloadForDeduction(S, TemplateParams,
   3127                                           Arg, ParamType,
   3128                                           ParamRefType != nullptr);
   3129     if (ArgType.isNull())
   3130       return true;
   3131   }
   3132 
   3133   if (ParamRefType) {
   3134     // If the argument has incomplete array type, try to complete its type.
   3135     if (ArgType->isIncompleteArrayType()) {
   3136       S.completeExprArrayBound(Arg);
   3137       ArgType = Arg->getType();
   3138     }
   3139 
   3140     // C++0x [temp.deduct.call]p3:
   3141     //   If P is an rvalue reference to a cv-unqualified template
   3142     //   parameter and the argument is an lvalue, the type "lvalue
   3143     //   reference to A" is used in place of A for type deduction.
   3144     if (ParamRefType->isRValueReferenceType() &&
   3145         !ParamType.getQualifiers() &&
   3146         isa<TemplateTypeParmType>(ParamType) &&
   3147         Arg->isLValue())
   3148       ArgType = S.Context.getLValueReferenceType(ArgType);
   3149   } else {
   3150     // C++ [temp.deduct.call]p2:
   3151     //   If P is not a reference type:
   3152     //   - If A is an array type, the pointer type produced by the
   3153     //     array-to-pointer standard conversion (4.2) is used in place of
   3154     //     A for type deduction; otherwise,
   3155     if (ArgType->isArrayType())
   3156       ArgType = S.Context.getArrayDecayedType(ArgType);
   3157     //   - If A is a function type, the pointer type produced by the
   3158     //     function-to-pointer standard conversion (4.3) is used in place
   3159     //     of A for type deduction; otherwise,
   3160     else if (ArgType->isFunctionType())
   3161       ArgType = S.Context.getPointerType(ArgType);
   3162     else {
   3163       // - If A is a cv-qualified type, the top level cv-qualifiers of A's
   3164       //   type are ignored for type deduction.
   3165       ArgType = ArgType.getUnqualifiedType();
   3166     }
   3167   }
   3168 
   3169   // C++0x [temp.deduct.call]p4:
   3170   //   In general, the deduction process attempts to find template argument
   3171   //   values that will make the deduced A identical to A (after the type A
   3172   //   is transformed as described above). [...]
   3173   TDF = TDF_SkipNonDependent;
   3174 
   3175   //     - If the original P is a reference type, the deduced A (i.e., the
   3176   //       type referred to by the reference) can be more cv-qualified than
   3177   //       the transformed A.
   3178   if (ParamRefType)
   3179     TDF |= TDF_ParamWithReferenceType;
   3180   //     - The transformed A can be another pointer or pointer to member
   3181   //       type that can be converted to the deduced A via a qualification
   3182   //       conversion (4.4).
   3183   if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
   3184       ArgType->isObjCObjectPointerType())
   3185     TDF |= TDF_IgnoreQualifiers;
   3186   //     - If P is a class and P has the form simple-template-id, then the
   3187   //       transformed A can be a derived class of the deduced A. Likewise,
   3188   //       if P is a pointer to a class of the form simple-template-id, the
   3189   //       transformed A can be a pointer to a derived class pointed to by
   3190   //       the deduced A.
   3191   if (isSimpleTemplateIdType(ParamType) ||
   3192       (isa<PointerType>(ParamType) &&
   3193        isSimpleTemplateIdType(
   3194                               ParamType->getAs<PointerType>()->getPointeeType())))
   3195     TDF |= TDF_DerivedClass;
   3196 
   3197   return false;
   3198 }
   3199 
   3200 static bool
   3201 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
   3202                                QualType T);
   3203 
   3204 static Sema::TemplateDeductionResult DeduceTemplateArgumentByListElement(
   3205     Sema &S, TemplateParameterList *TemplateParams, QualType ParamType,
   3206     Expr *Arg, TemplateDeductionInfo &Info,
   3207     SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF);
   3208 
   3209 /// \brief Attempt template argument deduction from an initializer list
   3210 ///        deemed to be an argument in a function call.
   3211 static bool
   3212 DeduceFromInitializerList(Sema &S, TemplateParameterList *TemplateParams,
   3213                           QualType AdjustedParamType, InitListExpr *ILE,
   3214                           TemplateDeductionInfo &Info,
   3215                           SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   3216                           unsigned TDF, Sema::TemplateDeductionResult &Result) {
   3217 
   3218   // [temp.deduct.call] p1 (post CWG-1591)
   3219   // If removing references and cv-qualifiers from P gives
   3220   // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is a
   3221   // non-empty initializer list (8.5.4), then deduction is performed instead for
   3222   // each element of the initializer list, taking P0 as a function template
   3223   // parameter type and the initializer element as its argument, and in the
   3224   // P0[N] case, if N is a non-type template parameter, N is deduced from the
   3225   // length of the initializer list. Otherwise, an initializer list argument
   3226   // causes the parameter to be considered a non-deduced context
   3227 
   3228   const bool IsConstSizedArray = AdjustedParamType->isConstantArrayType();
   3229 
   3230   const bool IsDependentSizedArray =
   3231       !IsConstSizedArray && AdjustedParamType->isDependentSizedArrayType();
   3232 
   3233   QualType ElTy;  // The element type of the std::initializer_list or the array.
   3234 
   3235   const bool IsSTDList = !IsConstSizedArray && !IsDependentSizedArray &&
   3236                          S.isStdInitializerList(AdjustedParamType, &ElTy);
   3237 
   3238   if (!IsConstSizedArray && !IsDependentSizedArray && !IsSTDList)
   3239     return false;
   3240 
   3241   Result = Sema::TDK_Success;
   3242   // If we are not deducing against the 'T' in a std::initializer_list<T> then
   3243   // deduce against the 'T' in T[N].
   3244   if (ElTy.isNull()) {
   3245     assert(!IsSTDList);
   3246     ElTy = S.Context.getAsArrayType(AdjustedParamType)->getElementType();
   3247   }
   3248   // Deduction only needs to be done for dependent types.
   3249   if (ElTy->isDependentType()) {
   3250     for (Expr *E : ILE->inits()) {
   3251       if ((Result = DeduceTemplateArgumentByListElement(S, TemplateParams, ElTy,
   3252                                                         E, Info, Deduced, TDF)))
   3253         return true;
   3254     }
   3255   }
   3256   if (IsDependentSizedArray) {
   3257     const DependentSizedArrayType *ArrTy =
   3258         S.Context.getAsDependentSizedArrayType(AdjustedParamType);
   3259     // Determine the array bound is something we can deduce.
   3260     if (NonTypeTemplateParmDecl *NTTP =
   3261             getDeducedParameterFromExpr(ArrTy->getSizeExpr())) {
   3262       // We can perform template argument deduction for the given non-type
   3263       // template parameter.
   3264       assert(NTTP->getDepth() == 0 &&
   3265              "Cannot deduce non-type template argument at depth > 0");
   3266       llvm::APInt Size(S.Context.getIntWidth(NTTP->getType()),
   3267                        ILE->getNumInits());
   3268 
   3269       Result = DeduceNonTypeTemplateArgument(
   3270           S, NTTP, llvm::APSInt(Size), NTTP->getType(),
   3271           /*ArrayBound=*/true, Info, Deduced);
   3272     }
   3273   }
   3274   return true;
   3275 }
   3276 
   3277 /// \brief Perform template argument deduction by matching a parameter type
   3278 ///        against a single expression, where the expression is an element of
   3279 ///        an initializer list that was originally matched against a parameter
   3280 ///        of type \c initializer_list\<ParamType\>.
   3281 static Sema::TemplateDeductionResult
   3282 DeduceTemplateArgumentByListElement(Sema &S,
   3283                                     TemplateParameterList *TemplateParams,
   3284                                     QualType ParamType, Expr *Arg,
   3285                                     TemplateDeductionInfo &Info,
   3286                               SmallVectorImpl<DeducedTemplateArgument> &Deduced,
   3287                                     unsigned TDF) {
   3288   // Handle the case where an init list contains another init list as the
   3289   // element.
   3290   if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3291     Sema::TemplateDeductionResult Result;
   3292     if (!DeduceFromInitializerList(S, TemplateParams,
   3293                                    ParamType.getNonReferenceType(), ILE, Info,
   3294                                    Deduced, TDF, Result))
   3295       return Sema::TDK_Success; // Just ignore this expression.
   3296 
   3297     return Result;
   3298   }
   3299 
   3300   // For all other cases, just match by type.
   3301   QualType ArgType = Arg->getType();
   3302   if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
   3303                                                 ArgType, Arg, TDF)) {
   3304     Info.Expression = Arg;
   3305     return Sema::TDK_FailedOverloadResolution;
   3306   }
   3307   return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
   3308                                             ArgType, Info, Deduced, TDF);
   3309 }
   3310 
   3311 /// \brief Perform template argument deduction from a function call
   3312 /// (C++ [temp.deduct.call]).
   3313 ///
   3314 /// \param FunctionTemplate the function template for which we are performing
   3315 /// template argument deduction.
   3316 ///
   3317 /// \param ExplicitTemplateArgs the explicit template arguments provided
   3318 /// for this call.
   3319 ///
   3320 /// \param Args the function call arguments
   3321 ///
   3322 /// \param Specialization if template argument deduction was successful,
   3323 /// this will be set to the function template specialization produced by
   3324 /// template argument deduction.
   3325 ///
   3326 /// \param Info the argument will be updated to provide additional information
   3327 /// about template argument deduction.
   3328 ///
   3329 /// \returns the result of template argument deduction.
   3330 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
   3331     FunctionTemplateDecl *FunctionTemplate,
   3332     TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
   3333     FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
   3334     bool PartialOverloading) {
   3335   if (FunctionTemplate->isInvalidDecl())
   3336     return TDK_Invalid;
   3337 
   3338   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3339   unsigned NumParams = Function->getNumParams();
   3340 
   3341   // C++ [temp.deduct.call]p1:
   3342   //   Template argument deduction is done by comparing each function template
   3343   //   parameter type (call it P) with the type of the corresponding argument
   3344   //   of the call (call it A) as described below.
   3345   unsigned CheckArgs = Args.size();
   3346   if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
   3347     return TDK_TooFewArguments;
   3348   else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
   3349     const FunctionProtoType *Proto
   3350       = Function->getType()->getAs<FunctionProtoType>();
   3351     if (Proto->isTemplateVariadic())
   3352       /* Do nothing */;
   3353     else if (Proto->isVariadic())
   3354       CheckArgs = NumParams;
   3355     else
   3356       return TDK_TooManyArguments;
   3357   }
   3358 
   3359   // The types of the parameters from which we will perform template argument
   3360   // deduction.
   3361   LocalInstantiationScope InstScope(*this);
   3362   TemplateParameterList *TemplateParams
   3363     = FunctionTemplate->getTemplateParameters();
   3364   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3365   SmallVector<QualType, 4> ParamTypes;
   3366   unsigned NumExplicitlySpecified = 0;
   3367   if (ExplicitTemplateArgs) {
   3368     TemplateDeductionResult Result =
   3369       SubstituteExplicitTemplateArguments(FunctionTemplate,
   3370                                           *ExplicitTemplateArgs,
   3371                                           Deduced,
   3372                                           ParamTypes,
   3373                                           nullptr,
   3374                                           Info);
   3375     if (Result)
   3376       return Result;
   3377 
   3378     NumExplicitlySpecified = Deduced.size();
   3379   } else {
   3380     // Just fill in the parameter types from the function declaration.
   3381     for (unsigned I = 0; I != NumParams; ++I)
   3382       ParamTypes.push_back(Function->getParamDecl(I)->getType());
   3383   }
   3384 
   3385   // Deduce template arguments from the function parameters.
   3386   Deduced.resize(TemplateParams->size());
   3387   unsigned ArgIdx = 0;
   3388   SmallVector<OriginalCallArg, 4> OriginalCallArgs;
   3389   for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
   3390        ParamIdx != NumParamTypes; ++ParamIdx) {
   3391     QualType OrigParamType = ParamTypes[ParamIdx];
   3392     QualType ParamType = OrigParamType;
   3393 
   3394     const PackExpansionType *ParamExpansion
   3395       = dyn_cast<PackExpansionType>(ParamType);
   3396     if (!ParamExpansion) {
   3397       // Simple case: matching a function parameter to a function argument.
   3398       if (ArgIdx >= CheckArgs)
   3399         break;
   3400 
   3401       Expr *Arg = Args[ArgIdx++];
   3402       QualType ArgType = Arg->getType();
   3403 
   3404       unsigned TDF = 0;
   3405       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3406                                                     ParamType, ArgType, Arg,
   3407                                                     TDF))
   3408         continue;
   3409 
   3410       // If we have nothing to deduce, we're done.
   3411       if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3412         continue;
   3413 
   3414       // If the argument is an initializer list ...
   3415       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3416         TemplateDeductionResult Result;
   3417         // Removing references was already done.
   3418         if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE,
   3419                                        Info, Deduced, TDF, Result))
   3420           continue;
   3421 
   3422         if (Result)
   3423           return Result;
   3424         // Don't track the argument type, since an initializer list has none.
   3425         continue;
   3426       }
   3427 
   3428       // Keep track of the argument type and corresponding parameter index,
   3429       // so we can check for compatibility between the deduced A and A.
   3430       OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
   3431                                                  ArgType));
   3432 
   3433       if (TemplateDeductionResult Result
   3434             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3435                                                  ParamType, ArgType,
   3436                                                  Info, Deduced, TDF))
   3437         return Result;
   3438 
   3439       continue;
   3440     }
   3441 
   3442     // C++0x [temp.deduct.call]p1:
   3443     //   For a function parameter pack that occurs at the end of the
   3444     //   parameter-declaration-list, the type A of each remaining argument of
   3445     //   the call is compared with the type P of the declarator-id of the
   3446     //   function parameter pack. Each comparison deduces template arguments
   3447     //   for subsequent positions in the template parameter packs expanded by
   3448     //   the function parameter pack. For a function parameter pack that does
   3449     //   not occur at the end of the parameter-declaration-list, the type of
   3450     //   the parameter pack is a non-deduced context.
   3451     if (ParamIdx + 1 < NumParamTypes)
   3452       break;
   3453 
   3454     QualType ParamPattern = ParamExpansion->getPattern();
   3455     PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
   3456                                  ParamPattern);
   3457 
   3458     bool HasAnyArguments = false;
   3459     for (; ArgIdx < Args.size(); ++ArgIdx) {
   3460       HasAnyArguments = true;
   3461 
   3462       QualType OrigParamType = ParamPattern;
   3463       ParamType = OrigParamType;
   3464       Expr *Arg = Args[ArgIdx];
   3465       QualType ArgType = Arg->getType();
   3466 
   3467       unsigned TDF = 0;
   3468       if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
   3469                                                     ParamType, ArgType, Arg,
   3470                                                     TDF)) {
   3471         // We can't actually perform any deduction for this argument, so stop
   3472         // deduction at this point.
   3473         ++ArgIdx;
   3474         break;
   3475       }
   3476 
   3477       // As above, initializer lists need special handling.
   3478       if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
   3479         TemplateDeductionResult Result;
   3480         if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE,
   3481                                        Info, Deduced, TDF, Result)) {
   3482           ++ArgIdx;
   3483           break;
   3484         }
   3485 
   3486         if (Result)
   3487           return Result;
   3488       } else {
   3489 
   3490         // Keep track of the argument type and corresponding argument index,
   3491         // so we can check for compatibility between the deduced A and A.
   3492         if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
   3493           OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
   3494                                                      ArgType));
   3495 
   3496         if (TemplateDeductionResult Result
   3497             = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3498                                                  ParamType, ArgType, Info,
   3499                                                  Deduced, TDF))
   3500           return Result;
   3501       }
   3502 
   3503       PackScope.nextPackElement();
   3504     }
   3505 
   3506     // Build argument packs for each of the parameter packs expanded by this
   3507     // pack expansion.
   3508     if (auto Result = PackScope.finish(HasAnyArguments))
   3509       return Result;
   3510 
   3511     // After we've matching against a parameter pack, we're done.
   3512     break;
   3513   }
   3514 
   3515   return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3516                                          NumExplicitlySpecified, Specialization,
   3517                                          Info, &OriginalCallArgs,
   3518                                          PartialOverloading);
   3519 }
   3520 
   3521 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
   3522                                    QualType FunctionType) {
   3523   if (ArgFunctionType.isNull())
   3524     return ArgFunctionType;
   3525 
   3526   const FunctionProtoType *FunctionTypeP =
   3527       FunctionType->castAs<FunctionProtoType>();
   3528   CallingConv CC = FunctionTypeP->getCallConv();
   3529   bool NoReturn = FunctionTypeP->getNoReturnAttr();
   3530   const FunctionProtoType *ArgFunctionTypeP =
   3531       ArgFunctionType->getAs<FunctionProtoType>();
   3532   if (ArgFunctionTypeP->getCallConv() == CC &&
   3533       ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
   3534     return ArgFunctionType;
   3535 
   3536   FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
   3537   EI = EI.withNoReturn(NoReturn);
   3538   ArgFunctionTypeP =
   3539       cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
   3540   return QualType(ArgFunctionTypeP, 0);
   3541 }
   3542 
   3543 /// \brief Deduce template arguments when taking the address of a function
   3544 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
   3545 /// a template.
   3546 ///
   3547 /// \param FunctionTemplate the function template for which we are performing
   3548 /// template argument deduction.
   3549 ///
   3550 /// \param ExplicitTemplateArgs the explicitly-specified template
   3551 /// arguments.
   3552 ///
   3553 /// \param ArgFunctionType the function type that will be used as the
   3554 /// "argument" type (A) when performing template argument deduction from the
   3555 /// function template's function type. This type may be NULL, if there is no
   3556 /// argument type to compare against, in C++0x [temp.arg.explicit]p3.
   3557 ///
   3558 /// \param Specialization if template argument deduction was successful,
   3559 /// this will be set to the function template specialization produced by
   3560 /// template argument deduction.
   3561 ///
   3562 /// \param Info the argument will be updated to provide additional information
   3563 /// about template argument deduction.
   3564 ///
   3565 /// \returns the result of template argument deduction.
   3566 Sema::TemplateDeductionResult
   3567 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3568                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3569                               QualType ArgFunctionType,
   3570                               FunctionDecl *&Specialization,
   3571                               TemplateDeductionInfo &Info,
   3572                               bool InOverloadResolution) {
   3573   if (FunctionTemplate->isInvalidDecl())
   3574     return TDK_Invalid;
   3575 
   3576   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   3577   TemplateParameterList *TemplateParams
   3578     = FunctionTemplate->getTemplateParameters();
   3579   QualType FunctionType = Function->getType();
   3580   if (!InOverloadResolution)
   3581     ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
   3582 
   3583   // Substitute any explicit template arguments.
   3584   LocalInstantiationScope InstScope(*this);
   3585   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3586   unsigned NumExplicitlySpecified = 0;
   3587   SmallVector<QualType, 4> ParamTypes;
   3588   if (ExplicitTemplateArgs) {
   3589     if (TemplateDeductionResult Result
   3590           = SubstituteExplicitTemplateArguments(FunctionTemplate,
   3591                                                 *ExplicitTemplateArgs,
   3592                                                 Deduced, ParamTypes,
   3593                                                 &FunctionType, Info))
   3594       return Result;
   3595 
   3596     NumExplicitlySpecified = Deduced.size();
   3597   }
   3598 
   3599   // Unevaluated SFINAE context.
   3600   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3601   SFINAETrap Trap(*this);
   3602 
   3603   Deduced.resize(TemplateParams->size());
   3604 
   3605   // If the function has a deduced return type, substitute it for a dependent
   3606   // type so that we treat it as a non-deduced context in what follows.
   3607   bool HasDeducedReturnType = false;
   3608   if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
   3609       Function->getReturnType()->getContainedAutoType()) {
   3610     FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
   3611     HasDeducedReturnType = true;
   3612   }
   3613 
   3614   if (!ArgFunctionType.isNull()) {
   3615     unsigned TDF = TDF_TopLevelParameterTypeList;
   3616     if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
   3617     // Deduce template arguments from the function type.
   3618     if (TemplateDeductionResult Result
   3619           = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3620                                                FunctionType, ArgFunctionType,
   3621                                                Info, Deduced, TDF))
   3622       return Result;
   3623   }
   3624 
   3625   if (TemplateDeductionResult Result
   3626         = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
   3627                                           NumExplicitlySpecified,
   3628                                           Specialization, Info))
   3629     return Result;
   3630 
   3631   // If the function has a deduced return type, deduce it now, so we can check
   3632   // that the deduced function type matches the requested type.
   3633   if (HasDeducedReturnType &&
   3634       Specialization->getReturnType()->isUndeducedType() &&
   3635       DeduceReturnType(Specialization, Info.getLocation(), false))
   3636     return TDK_MiscellaneousDeductionFailure;
   3637 
   3638   // If the requested function type does not match the actual type of the
   3639   // specialization with respect to arguments of compatible pointer to function
   3640   // types, template argument deduction fails.
   3641   if (!ArgFunctionType.isNull()) {
   3642     if (InOverloadResolution && !isSameOrCompatibleFunctionType(
   3643                            Context.getCanonicalType(Specialization->getType()),
   3644                            Context.getCanonicalType(ArgFunctionType)))
   3645       return TDK_MiscellaneousDeductionFailure;
   3646     else if(!InOverloadResolution &&
   3647             !Context.hasSameType(Specialization->getType(), ArgFunctionType))
   3648       return TDK_MiscellaneousDeductionFailure;
   3649   }
   3650 
   3651   return TDK_Success;
   3652 }
   3653 
   3654 /// \brief Given a function declaration (e.g. a generic lambda conversion
   3655 ///  function) that contains an 'auto' in its result type, substitute it
   3656 ///  with TypeToReplaceAutoWith.  Be careful to pass in the type you want
   3657 ///  to replace 'auto' with and not the actual result type you want
   3658 ///  to set the function to.
   3659 static inline void
   3660 SubstAutoWithinFunctionReturnType(FunctionDecl *F,
   3661                                     QualType TypeToReplaceAutoWith, Sema &S) {
   3662   assert(!TypeToReplaceAutoWith->getContainedAutoType());
   3663   QualType AutoResultType = F->getReturnType();
   3664   assert(AutoResultType->getContainedAutoType());
   3665   QualType DeducedResultType = S.SubstAutoType(AutoResultType,
   3666                                                TypeToReplaceAutoWith);
   3667   S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
   3668 }
   3669 
   3670 /// \brief Given a specialized conversion operator of a generic lambda
   3671 /// create the corresponding specializations of the call operator and
   3672 /// the static-invoker. If the return type of the call operator is auto,
   3673 /// deduce its return type and check if that matches the
   3674 /// return type of the destination function ptr.
   3675 
   3676 static inline Sema::TemplateDeductionResult
   3677 SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3678     CXXConversionDecl *ConversionSpecialized,
   3679     SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
   3680     QualType ReturnTypeOfDestFunctionPtr,
   3681     TemplateDeductionInfo &TDInfo,
   3682     Sema &S) {
   3683 
   3684   CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
   3685   assert(LambdaClass && LambdaClass->isGenericLambda());
   3686 
   3687   CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
   3688   QualType CallOpResultType = CallOpGeneric->getReturnType();
   3689   const bool GenericLambdaCallOperatorHasDeducedReturnType =
   3690       CallOpResultType->getContainedAutoType();
   3691 
   3692   FunctionTemplateDecl *CallOpTemplate =
   3693       CallOpGeneric->getDescribedFunctionTemplate();
   3694 
   3695   FunctionDecl *CallOpSpecialized = nullptr;
   3696   // Use the deduced arguments of the conversion function, to specialize our
   3697   // generic lambda's call operator.
   3698   if (Sema::TemplateDeductionResult Result
   3699       = S.FinishTemplateArgumentDeduction(CallOpTemplate,
   3700                                           DeducedArguments,
   3701                                           0, CallOpSpecialized, TDInfo))
   3702     return Result;
   3703 
   3704   // If we need to deduce the return type, do so (instantiates the callop).
   3705   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3706       CallOpSpecialized->getReturnType()->isUndeducedType())
   3707     S.DeduceReturnType(CallOpSpecialized,
   3708                        CallOpSpecialized->getPointOfInstantiation(),
   3709                        /*Diagnose*/ true);
   3710 
   3711   // Check to see if the return type of the destination ptr-to-function
   3712   // matches the return type of the call operator.
   3713   if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
   3714                              ReturnTypeOfDestFunctionPtr))
   3715     return Sema::TDK_NonDeducedMismatch;
   3716   // Since we have succeeded in matching the source and destination
   3717   // ptr-to-functions (now including return type), and have successfully
   3718   // specialized our corresponding call operator, we are ready to
   3719   // specialize the static invoker with the deduced arguments of our
   3720   // ptr-to-function.
   3721   FunctionDecl *InvokerSpecialized = nullptr;
   3722   FunctionTemplateDecl *InvokerTemplate = LambdaClass->
   3723                   getLambdaStaticInvoker()->getDescribedFunctionTemplate();
   3724 
   3725 #ifndef NDEBUG
   3726   Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result =
   3727 #endif
   3728     S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
   3729           InvokerSpecialized, TDInfo);
   3730   assert(Result == Sema::TDK_Success &&
   3731     "If the call operator succeeded so should the invoker!");
   3732   // Set the result type to match the corresponding call operator
   3733   // specialization's result type.
   3734   if (GenericLambdaCallOperatorHasDeducedReturnType &&
   3735       InvokerSpecialized->getReturnType()->isUndeducedType()) {
   3736     // Be sure to get the type to replace 'auto' with and not
   3737     // the full result type of the call op specialization
   3738     // to substitute into the 'auto' of the invoker and conversion
   3739     // function.
   3740     // For e.g.
   3741     //  int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
   3742     // We don't want to subst 'int*' into 'auto' to get int**.
   3743 
   3744     QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
   3745                                          ->getContainedAutoType()
   3746                                          ->getDeducedType();
   3747     SubstAutoWithinFunctionReturnType(InvokerSpecialized,
   3748         TypeToReplaceAutoWith, S);
   3749     SubstAutoWithinFunctionReturnType(ConversionSpecialized,
   3750         TypeToReplaceAutoWith, S);
   3751   }
   3752 
   3753   // Ensure that static invoker doesn't have a const qualifier.
   3754   // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
   3755   // do not use the CallOperator's TypeSourceInfo which allows
   3756   // the const qualifier to leak through.
   3757   const FunctionProtoType *InvokerFPT = InvokerSpecialized->
   3758                   getType().getTypePtr()->castAs<FunctionProtoType>();
   3759   FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
   3760   EPI.TypeQuals = 0;
   3761   InvokerSpecialized->setType(S.Context.getFunctionType(
   3762       InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
   3763   return Sema::TDK_Success;
   3764 }
   3765 /// \brief Deduce template arguments for a templated conversion
   3766 /// function (C++ [temp.deduct.conv]) and, if successful, produce a
   3767 /// conversion function template specialization.
   3768 Sema::TemplateDeductionResult
   3769 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
   3770                               QualType ToType,
   3771                               CXXConversionDecl *&Specialization,
   3772                               TemplateDeductionInfo &Info) {
   3773   if (ConversionTemplate->isInvalidDecl())
   3774     return TDK_Invalid;
   3775 
   3776   CXXConversionDecl *ConversionGeneric
   3777     = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
   3778 
   3779   QualType FromType = ConversionGeneric->getConversionType();
   3780 
   3781   // Canonicalize the types for deduction.
   3782   QualType P = Context.getCanonicalType(FromType);
   3783   QualType A = Context.getCanonicalType(ToType);
   3784 
   3785   // C++0x [temp.deduct.conv]p2:
   3786   //   If P is a reference type, the type referred to by P is used for
   3787   //   type deduction.
   3788   if (const ReferenceType *PRef = P->getAs<ReferenceType>())
   3789     P = PRef->getPointeeType();
   3790 
   3791   // C++0x [temp.deduct.conv]p4:
   3792   //   [...] If A is a reference type, the type referred to by A is used
   3793   //   for type deduction.
   3794   if (const ReferenceType *ARef = A->getAs<ReferenceType>())
   3795     A = ARef->getPointeeType().getUnqualifiedType();
   3796   // C++ [temp.deduct.conv]p3:
   3797   //
   3798   //   If A is not a reference type:
   3799   else {
   3800     assert(!A->isReferenceType() && "Reference types were handled above");
   3801 
   3802     //   - If P is an array type, the pointer type produced by the
   3803     //     array-to-pointer standard conversion (4.2) is used in place
   3804     //     of P for type deduction; otherwise,
   3805     if (P->isArrayType())
   3806       P = Context.getArrayDecayedType(P);
   3807     //   - If P is a function type, the pointer type produced by the
   3808     //     function-to-pointer standard conversion (4.3) is used in
   3809     //     place of P for type deduction; otherwise,
   3810     else if (P->isFunctionType())
   3811       P = Context.getPointerType(P);
   3812     //   - If P is a cv-qualified type, the top level cv-qualifiers of
   3813     //     P's type are ignored for type deduction.
   3814     else
   3815       P = P.getUnqualifiedType();
   3816 
   3817     // C++0x [temp.deduct.conv]p4:
   3818     //   If A is a cv-qualified type, the top level cv-qualifiers of A's
   3819     //   type are ignored for type deduction. If A is a reference type, the type
   3820     //   referred to by A is used for type deduction.
   3821     A = A.getUnqualifiedType();
   3822   }
   3823 
   3824   // Unevaluated SFINAE context.
   3825   EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
   3826   SFINAETrap Trap(*this);
   3827 
   3828   // C++ [temp.deduct.conv]p1:
   3829   //   Template argument deduction is done by comparing the return
   3830   //   type of the template conversion function (call it P) with the
   3831   //   type that is required as the result of the conversion (call it
   3832   //   A) as described in 14.8.2.4.
   3833   TemplateParameterList *TemplateParams
   3834     = ConversionTemplate->getTemplateParameters();
   3835   SmallVector<DeducedTemplateArgument, 4> Deduced;
   3836   Deduced.resize(TemplateParams->size());
   3837 
   3838   // C++0x [temp.deduct.conv]p4:
   3839   //   In general, the deduction process attempts to find template
   3840   //   argument values that will make the deduced A identical to
   3841   //   A. However, there are two cases that allow a difference:
   3842   unsigned TDF = 0;
   3843   //     - If the original A is a reference type, A can be more
   3844   //       cv-qualified than the deduced A (i.e., the type referred to
   3845   //       by the reference)
   3846   if (ToType->isReferenceType())
   3847     TDF |= TDF_ParamWithReferenceType;
   3848   //     - The deduced A can be another pointer or pointer to member
   3849   //       type that can be converted to A via a qualification
   3850   //       conversion.
   3851   //
   3852   // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
   3853   // both P and A are pointers or member pointers. In this case, we
   3854   // just ignore cv-qualifiers completely).
   3855   if ((P->isPointerType() && A->isPointerType()) ||
   3856       (P->isMemberPointerType() && A->isMemberPointerType()))
   3857     TDF |= TDF_IgnoreQualifiers;
   3858   if (TemplateDeductionResult Result
   3859         = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
   3860                                              P, A, Info, Deduced, TDF))
   3861     return Result;
   3862 
   3863   // Create an Instantiation Scope for finalizing the operator.
   3864   LocalInstantiationScope InstScope(*this);
   3865   // Finish template argument deduction.
   3866   FunctionDecl *ConversionSpecialized = nullptr;
   3867   TemplateDeductionResult Result
   3868       = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
   3869                                         ConversionSpecialized, Info);
   3870   Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
   3871 
   3872   // If the conversion operator is being invoked on a lambda closure to convert
   3873   // to a ptr-to-function, use the deduced arguments from the conversion
   3874   // function to specialize the corresponding call operator.
   3875   //   e.g., int (*fp)(int) = [](auto a) { return a; };
   3876   if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
   3877 
   3878     // Get the return type of the destination ptr-to-function we are converting
   3879     // to.  This is necessary for matching the lambda call operator's return
   3880     // type to that of the destination ptr-to-function's return type.
   3881     assert(A->isPointerType() &&
   3882         "Can only convert from lambda to ptr-to-function");
   3883     const FunctionType *ToFunType =
   3884         A->getPointeeType().getTypePtr()->getAs<FunctionType>();
   3885     const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
   3886 
   3887     // Create the corresponding specializations of the call operator and
   3888     // the static-invoker; and if the return type is auto,
   3889     // deduce the return type and check if it matches the
   3890     // DestFunctionPtrReturnType.
   3891     // For instance:
   3892     //   auto L = [](auto a) { return f(a); };
   3893     //   int (*fp)(int) = L;
   3894     //   char (*fp2)(int) = L; <-- Not OK.
   3895 
   3896     Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
   3897         Specialization, Deduced, DestFunctionPtrReturnType,
   3898         Info, *this);
   3899   }
   3900   return Result;
   3901 }
   3902 
   3903 /// \brief Deduce template arguments for a function template when there is
   3904 /// nothing to deduce against (C++0x [temp.arg.explicit]p3).
   3905 ///
   3906 /// \param FunctionTemplate the function template for which we are performing
   3907 /// template argument deduction.
   3908 ///
   3909 /// \param ExplicitTemplateArgs the explicitly-specified template
   3910 /// arguments.
   3911 ///
   3912 /// \param Specialization if template argument deduction was successful,
   3913 /// this will be set to the function template specialization produced by
   3914 /// template argument deduction.
   3915 ///
   3916 /// \param Info the argument will be updated to provide additional information
   3917 /// about template argument deduction.
   3918 ///
   3919 /// \returns the result of template argument deduction.
   3920 Sema::TemplateDeductionResult
   3921 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
   3922                               TemplateArgumentListInfo *ExplicitTemplateArgs,
   3923                               FunctionDecl *&Specialization,
   3924                               TemplateDeductionInfo &Info,
   3925                               bool InOverloadResolution) {
   3926   return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
   3927                                  QualType(), Specialization, Info,
   3928                                  InOverloadResolution);
   3929 }
   3930 
   3931 namespace {
   3932   /// Substitute the 'auto' type specifier within a type for a given replacement
   3933   /// type.
   3934   class SubstituteAutoTransform :
   3935     public TreeTransform<SubstituteAutoTransform> {
   3936     QualType Replacement;
   3937   public:
   3938     SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
   3939         : TreeTransform<SubstituteAutoTransform>(SemaRef),
   3940           Replacement(Replacement) {}
   3941 
   3942     QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
   3943       // If we're building the type pattern to deduce against, don't wrap the
   3944       // substituted type in an AutoType. Certain template deduction rules
   3945       // apply only when a template type parameter appears directly (and not if
   3946       // the parameter is found through desugaring). For instance:
   3947       //   auto &&lref = lvalue;
   3948       // must transform into "rvalue reference to T" not "rvalue reference to
   3949       // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
   3950       if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
   3951         QualType Result = Replacement;
   3952         TemplateTypeParmTypeLoc NewTL =
   3953           TLB.push<TemplateTypeParmTypeLoc>(Result);
   3954         NewTL.setNameLoc(TL.getNameLoc());
   3955         return Result;
   3956       } else {
   3957         bool Dependent =
   3958           !Replacement.isNull() && Replacement->isDependentType();
   3959         QualType Result =
   3960           SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
   3961                                       TL.getTypePtr()->getKeyword(),
   3962                                       Dependent);
   3963         AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
   3964         NewTL.setNameLoc(TL.getNameLoc());
   3965         return Result;
   3966       }
   3967     }
   3968 
   3969     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   3970       // Lambdas never need to be transformed.
   3971       return E;
   3972     }
   3973 
   3974     QualType Apply(TypeLoc TL) {
   3975       // Create some scratch storage for the transformed type locations.
   3976       // FIXME: We're just going to throw this information away. Don't build it.
   3977       TypeLocBuilder TLB;
   3978       TLB.reserve(TL.getFullDataSize());
   3979       return TransformType(TLB, TL);
   3980     }
   3981   };
   3982 }
   3983 
   3984 Sema::DeduceAutoResult
   3985 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
   3986   return DeduceAutoType(Type->getTypeLoc(), Init, Result);
   3987 }
   3988 
   3989 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
   3990 ///
   3991 /// \param Type the type pattern using the auto type-specifier.
   3992 /// \param Init the initializer for the variable whose type is to be deduced.
   3993 /// \param Result if type deduction was successful, this will be set to the
   3994 ///        deduced type.
   3995 Sema::DeduceAutoResult
   3996 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
   3997   if (Init->getType()->isNonOverloadPlaceholderType()) {
   3998     ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
   3999     if (NonPlaceholder.isInvalid())
   4000       return DAR_FailedAlreadyDiagnosed;
   4001     Init = NonPlaceholder.get();
   4002   }
   4003 
   4004   if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
   4005     Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
   4006     assert(!Result.isNull() && "substituting DependentTy can't fail");
   4007     return DAR_Succeeded;
   4008   }
   4009 
   4010   // If this is a 'decltype(auto)' specifier, do the decltype dance.
   4011   // Since 'decltype(auto)' can only occur at the top of the type, we
   4012   // don't need to go digging for it.
   4013   if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
   4014     if (AT->isDecltypeAuto()) {
   4015       if (isa<InitListExpr>(Init)) {
   4016         Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
   4017         return DAR_FailedAlreadyDiagnosed;
   4018       }
   4019 
   4020       QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
   4021       if (Deduced.isNull())
   4022         return DAR_FailedAlreadyDiagnosed;
   4023       // FIXME: Support a non-canonical deduced type for 'auto'.
   4024       Deduced = Context.getCanonicalType(Deduced);
   4025       Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
   4026       if (Result.isNull())
   4027         return DAR_FailedAlreadyDiagnosed;
   4028       return DAR_Succeeded;
   4029     } else if (!getLangOpts().CPlusPlus) {
   4030       if (isa<InitListExpr>(Init)) {
   4031         Diag(Init->getLocStart(), diag::err_auto_init_list_from_c);
   4032         return DAR_FailedAlreadyDiagnosed;
   4033       }
   4034     }
   4035   }
   4036 
   4037   SourceLocation Loc = Init->getExprLoc();
   4038 
   4039   LocalInstantiationScope InstScope(*this);
   4040 
   4041   // Build template<class TemplParam> void Func(FuncParam);
   4042   TemplateTypeParmDecl *TemplParam =
   4043     TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
   4044                                  nullptr, false, false);
   4045   QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
   4046   NamedDecl *TemplParamPtr = TemplParam;
   4047   FixedSizeTemplateParameterListStorage<1> TemplateParamsSt(
   4048       Loc, Loc, &TemplParamPtr, Loc);
   4049 
   4050   QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
   4051   assert(!FuncParam.isNull() &&
   4052          "substituting template parameter for 'auto' failed");
   4053 
   4054   // Deduce type of TemplParam in Func(Init)
   4055   SmallVector<DeducedTemplateArgument, 1> Deduced;
   4056   Deduced.resize(1);
   4057   QualType InitType = Init->getType();
   4058   unsigned TDF = 0;
   4059 
   4060   TemplateDeductionInfo Info(Loc);
   4061 
   4062   InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
   4063   if (InitList) {
   4064     for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
   4065       if (DeduceTemplateArgumentByListElement(*this, TemplateParamsSt.get(),
   4066                                               TemplArg, InitList->getInit(i),
   4067                                               Info, Deduced, TDF))
   4068         return DAR_Failed;
   4069     }
   4070   } else {
   4071     if (!getLangOpts().CPlusPlus && Init->refersToBitField()) {
   4072       Diag(Loc, diag::err_auto_bitfield);
   4073       return DAR_FailedAlreadyDiagnosed;
   4074     }
   4075 
   4076     if (AdjustFunctionParmAndArgTypesForDeduction(
   4077             *this, TemplateParamsSt.get(), FuncParam, InitType, Init, TDF))
   4078       return DAR_Failed;
   4079 
   4080     if (DeduceTemplateArgumentsByTypeMatch(*this, TemplateParamsSt.get(),
   4081                                            FuncParam, InitType, Info, Deduced,
   4082                                            TDF))
   4083       return DAR_Failed;
   4084   }
   4085 
   4086   if (Deduced[0].getKind() != TemplateArgument::Type)
   4087     return DAR_Failed;
   4088 
   4089   QualType DeducedType = Deduced[0].getAsType();
   4090 
   4091   if (InitList) {
   4092     DeducedType = BuildStdInitializerList(DeducedType, Loc);
   4093     if (DeducedType.isNull())
   4094       return DAR_FailedAlreadyDiagnosed;
   4095   }
   4096 
   4097   Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
   4098   if (Result.isNull())
   4099    return DAR_FailedAlreadyDiagnosed;
   4100 
   4101   // Check that the deduced argument type is compatible with the original
   4102   // argument type per C++ [temp.deduct.call]p4.
   4103   if (!InitList && !Result.isNull() &&
   4104       CheckOriginalCallArgDeduction(*this,
   4105                                     Sema::OriginalCallArg(FuncParam,0,InitType),
   4106                                     Result)) {
   4107     Result = QualType();
   4108     return DAR_Failed;
   4109   }
   4110 
   4111   return DAR_Succeeded;
   4112 }
   4113 
   4114 QualType Sema::SubstAutoType(QualType TypeWithAuto,
   4115                              QualType TypeToReplaceAuto) {
   4116   return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4117                TransformType(TypeWithAuto);
   4118 }
   4119 
   4120 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
   4121                              QualType TypeToReplaceAuto) {
   4122     return SubstituteAutoTransform(*this, TypeToReplaceAuto).
   4123                TransformType(TypeWithAuto);
   4124 }
   4125 
   4126 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
   4127   if (isa<InitListExpr>(Init))
   4128     Diag(VDecl->getLocation(),
   4129          VDecl->isInitCapture()
   4130              ? diag::err_init_capture_deduction_failure_from_init_list
   4131              : diag::err_auto_var_deduction_failure_from_init_list)
   4132       << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
   4133   else
   4134     Diag(VDecl->getLocation(),
   4135          VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
   4136                                 : diag::err_auto_var_deduction_failure)
   4137       << VDecl->getDeclName() << VDecl->getType() << Init->getType()
   4138       << Init->getSourceRange();
   4139 }
   4140 
   4141 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
   4142                             bool Diagnose) {
   4143   assert(FD->getReturnType()->isUndeducedType());
   4144 
   4145   if (FD->getTemplateInstantiationPattern())
   4146     InstantiateFunctionDefinition(Loc, FD);
   4147 
   4148   bool StillUndeduced = FD->getReturnType()->isUndeducedType();
   4149   if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
   4150     Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
   4151     Diag(FD->getLocation(), diag::note_callee_decl) << FD;
   4152   }
   4153 
   4154   return StillUndeduced;
   4155 }
   4156 
   4157 static void
   4158 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4159                            bool OnlyDeduced,
   4160                            unsigned Level,
   4161                            llvm::SmallBitVector &Deduced);
   4162 
   4163 /// \brief If this is a non-static member function,
   4164 static void
   4165 AddImplicitObjectParameterType(ASTContext &Context,
   4166                                CXXMethodDecl *Method,
   4167                                SmallVectorImpl<QualType> &ArgTypes) {
   4168   // C++11 [temp.func.order]p3:
   4169   //   [...] The new parameter is of type "reference to cv A," where cv are
   4170   //   the cv-qualifiers of the function template (if any) and A is
   4171   //   the class of which the function template is a member.
   4172   //
   4173   // The standard doesn't say explicitly, but we pick the appropriate kind of
   4174   // reference type based on [over.match.funcs]p4.
   4175   QualType ArgTy = Context.getTypeDeclType(Method->getParent());
   4176   ArgTy = Context.getQualifiedType(ArgTy,
   4177                         Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
   4178   if (Method->getRefQualifier() == RQ_RValue)
   4179     ArgTy = Context.getRValueReferenceType(ArgTy);
   4180   else
   4181     ArgTy = Context.getLValueReferenceType(ArgTy);
   4182   ArgTypes.push_back(ArgTy);
   4183 }
   4184 
   4185 /// \brief Determine whether the function template \p FT1 is at least as
   4186 /// specialized as \p FT2.
   4187 static bool isAtLeastAsSpecializedAs(Sema &S,
   4188                                      SourceLocation Loc,
   4189                                      FunctionTemplateDecl *FT1,
   4190                                      FunctionTemplateDecl *FT2,
   4191                                      TemplatePartialOrderingContext TPOC,
   4192                                      unsigned NumCallArguments1) {
   4193   FunctionDecl *FD1 = FT1->getTemplatedDecl();
   4194   FunctionDecl *FD2 = FT2->getTemplatedDecl();
   4195   const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
   4196   const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
   4197 
   4198   assert(Proto1 && Proto2 && "Function templates must have prototypes");
   4199   TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
   4200   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4201   Deduced.resize(TemplateParams->size());
   4202 
   4203   // C++0x [temp.deduct.partial]p3:
   4204   //   The types used to determine the ordering depend on the context in which
   4205   //   the partial ordering is done:
   4206   TemplateDeductionInfo Info(Loc);
   4207   SmallVector<QualType, 4> Args2;
   4208   switch (TPOC) {
   4209   case TPOC_Call: {
   4210     //   - In the context of a function call, the function parameter types are
   4211     //     used.
   4212     CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
   4213     CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
   4214 
   4215     // C++11 [temp.func.order]p3:
   4216     //   [...] If only one of the function templates is a non-static
   4217     //   member, that function template is considered to have a new
   4218     //   first parameter inserted in its function parameter list. The
   4219     //   new parameter is of type "reference to cv A," where cv are
   4220     //   the cv-qualifiers of the function template (if any) and A is
   4221     //   the class of which the function template is a member.
   4222     //
   4223     // Note that we interpret this to mean "if one of the function
   4224     // templates is a non-static member and the other is a non-member";
   4225     // otherwise, the ordering rules for static functions against non-static
   4226     // functions don't make any sense.
   4227     //
   4228     // C++98/03 doesn't have this provision but we've extended DR532 to cover
   4229     // it as wording was broken prior to it.
   4230     SmallVector<QualType, 4> Args1;
   4231 
   4232     unsigned NumComparedArguments = NumCallArguments1;
   4233 
   4234     if (!Method2 && Method1 && !Method1->isStatic()) {
   4235       // Compare 'this' from Method1 against first parameter from Method2.
   4236       AddImplicitObjectParameterType(S.Context, Method1, Args1);
   4237       ++NumComparedArguments;
   4238     } else if (!Method1 && Method2 && !Method2->isStatic()) {
   4239       // Compare 'this' from Method2 against first parameter from Method1.
   4240       AddImplicitObjectParameterType(S.Context, Method2, Args2);
   4241     }
   4242 
   4243     Args1.insert(Args1.end(), Proto1->param_type_begin(),
   4244                  Proto1->param_type_end());
   4245     Args2.insert(Args2.end(), Proto2->param_type_begin(),
   4246                  Proto2->param_type_end());
   4247 
   4248     // C++ [temp.func.order]p5:
   4249     //   The presence of unused ellipsis and default arguments has no effect on
   4250     //   the partial ordering of function templates.
   4251     if (Args1.size() > NumComparedArguments)
   4252       Args1.resize(NumComparedArguments);
   4253     if (Args2.size() > NumComparedArguments)
   4254       Args2.resize(NumComparedArguments);
   4255     if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
   4256                                 Args1.data(), Args1.size(), Info, Deduced,
   4257                                 TDF_None, /*PartialOrdering=*/true))
   4258       return false;
   4259 
   4260     break;
   4261   }
   4262 
   4263   case TPOC_Conversion:
   4264     //   - In the context of a call to a conversion operator, the return types
   4265     //     of the conversion function templates are used.
   4266     if (DeduceTemplateArgumentsByTypeMatch(
   4267             S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
   4268             Info, Deduced, TDF_None,
   4269             /*PartialOrdering=*/true))
   4270       return false;
   4271     break;
   4272 
   4273   case TPOC_Other:
   4274     //   - In other contexts (14.6.6.2) the function template's function type
   4275     //     is used.
   4276     if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
   4277                                            FD2->getType(), FD1->getType(),
   4278                                            Info, Deduced, TDF_None,
   4279                                            /*PartialOrdering=*/true))
   4280       return false;
   4281     break;
   4282   }
   4283 
   4284   // C++0x [temp.deduct.partial]p11:
   4285   //   In most cases, all template parameters must have values in order for
   4286   //   deduction to succeed, but for partial ordering purposes a template
   4287   //   parameter may remain without a value provided it is not used in the
   4288   //   types being used for partial ordering. [ Note: a template parameter used
   4289   //   in a non-deduced context is considered used. -end note]
   4290   unsigned ArgIdx = 0, NumArgs = Deduced.size();
   4291   for (; ArgIdx != NumArgs; ++ArgIdx)
   4292     if (Deduced[ArgIdx].isNull())
   4293       break;
   4294 
   4295   if (ArgIdx == NumArgs) {
   4296     // All template arguments were deduced. FT1 is at least as specialized
   4297     // as FT2.
   4298     return true;
   4299   }
   4300 
   4301   // Figure out which template parameters were used.
   4302   llvm::SmallBitVector UsedParameters(TemplateParams->size());
   4303   switch (TPOC) {
   4304   case TPOC_Call:
   4305     for (unsigned I = 0, N = Args2.size(); I != N; ++I)
   4306       ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
   4307                                    TemplateParams->getDepth(),
   4308                                    UsedParameters);
   4309     break;
   4310 
   4311   case TPOC_Conversion:
   4312     ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
   4313                                  TemplateParams->getDepth(), UsedParameters);
   4314     break;
   4315 
   4316   case TPOC_Other:
   4317     ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
   4318                                  TemplateParams->getDepth(),
   4319                                  UsedParameters);
   4320     break;
   4321   }
   4322 
   4323   for (; ArgIdx != NumArgs; ++ArgIdx)
   4324     // If this argument had no value deduced but was used in one of the types
   4325     // used for partial ordering, then deduction fails.
   4326     if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
   4327       return false;
   4328 
   4329   return true;
   4330 }
   4331 
   4332 /// \brief Determine whether this a function template whose parameter-type-list
   4333 /// ends with a function parameter pack.
   4334 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
   4335   FunctionDecl *Function = FunTmpl->getTemplatedDecl();
   4336   unsigned NumParams = Function->getNumParams();
   4337   if (NumParams == 0)
   4338     return false;
   4339 
   4340   ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
   4341   if (!Last->isParameterPack())
   4342     return false;
   4343 
   4344   // Make sure that no previous parameter is a parameter pack.
   4345   while (--NumParams > 0) {
   4346     if (Function->getParamDecl(NumParams - 1)->isParameterPack())
   4347       return false;
   4348   }
   4349 
   4350   return true;
   4351 }
   4352 
   4353 /// \brief Returns the more specialized function template according
   4354 /// to the rules of function template partial ordering (C++ [temp.func.order]).
   4355 ///
   4356 /// \param FT1 the first function template
   4357 ///
   4358 /// \param FT2 the second function template
   4359 ///
   4360 /// \param TPOC the context in which we are performing partial ordering of
   4361 /// function templates.
   4362 ///
   4363 /// \param NumCallArguments1 The number of arguments in the call to FT1, used
   4364 /// only when \c TPOC is \c TPOC_Call.
   4365 ///
   4366 /// \param NumCallArguments2 The number of arguments in the call to FT2, used
   4367 /// only when \c TPOC is \c TPOC_Call.
   4368 ///
   4369 /// \returns the more specialized function template. If neither
   4370 /// template is more specialized, returns NULL.
   4371 FunctionTemplateDecl *
   4372 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
   4373                                  FunctionTemplateDecl *FT2,
   4374                                  SourceLocation Loc,
   4375                                  TemplatePartialOrderingContext TPOC,
   4376                                  unsigned NumCallArguments1,
   4377                                  unsigned NumCallArguments2) {
   4378   bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
   4379                                           NumCallArguments1);
   4380   bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
   4381                                           NumCallArguments2);
   4382 
   4383   if (Better1 != Better2) // We have a clear winner
   4384     return Better1 ? FT1 : FT2;
   4385 
   4386   if (!Better1 && !Better2) // Neither is better than the other
   4387     return nullptr;
   4388 
   4389   // FIXME: This mimics what GCC implements, but doesn't match up with the
   4390   // proposed resolution for core issue 692. This area needs to be sorted out,
   4391   // but for now we attempt to maintain compatibility.
   4392   bool Variadic1 = isVariadicFunctionTemplate(FT1);
   4393   bool Variadic2 = isVariadicFunctionTemplate(FT2);
   4394   if (Variadic1 != Variadic2)
   4395     return Variadic1? FT2 : FT1;
   4396 
   4397   return nullptr;
   4398 }
   4399 
   4400 /// \brief Determine if the two templates are equivalent.
   4401 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
   4402   if (T1 == T2)
   4403     return true;
   4404 
   4405   if (!T1 || !T2)
   4406     return false;
   4407 
   4408   return T1->getCanonicalDecl() == T2->getCanonicalDecl();
   4409 }
   4410 
   4411 /// \brief Retrieve the most specialized of the given function template
   4412 /// specializations.
   4413 ///
   4414 /// \param SpecBegin the start iterator of the function template
   4415 /// specializations that we will be comparing.
   4416 ///
   4417 /// \param SpecEnd the end iterator of the function template
   4418 /// specializations, paired with \p SpecBegin.
   4419 ///
   4420 /// \param Loc the location where the ambiguity or no-specializations
   4421 /// diagnostic should occur.
   4422 ///
   4423 /// \param NoneDiag partial diagnostic used to diagnose cases where there are
   4424 /// no matching candidates.
   4425 ///
   4426 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
   4427 /// occurs.
   4428 ///
   4429 /// \param CandidateDiag partial diagnostic used for each function template
   4430 /// specialization that is a candidate in the ambiguous ordering. One parameter
   4431 /// in this diagnostic should be unbound, which will correspond to the string
   4432 /// describing the template arguments for the function template specialization.
   4433 ///
   4434 /// \returns the most specialized function template specialization, if
   4435 /// found. Otherwise, returns SpecEnd.
   4436 UnresolvedSetIterator Sema::getMostSpecialized(
   4437     UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
   4438     TemplateSpecCandidateSet &FailedCandidates,
   4439     SourceLocation Loc, const PartialDiagnostic &NoneDiag,
   4440     const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
   4441     bool Complain, QualType TargetType) {
   4442   if (SpecBegin == SpecEnd) {
   4443     if (Complain) {
   4444       Diag(Loc, NoneDiag);
   4445       FailedCandidates.NoteCandidates(*this, Loc);
   4446     }
   4447     return SpecEnd;
   4448   }
   4449 
   4450   if (SpecBegin + 1 == SpecEnd)
   4451     return SpecBegin;
   4452 
   4453   // Find the function template that is better than all of the templates it
   4454   // has been compared to.
   4455   UnresolvedSetIterator Best = SpecBegin;
   4456   FunctionTemplateDecl *BestTemplate
   4457     = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
   4458   assert(BestTemplate && "Not a function template specialization?");
   4459   for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
   4460     FunctionTemplateDecl *Challenger
   4461       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4462     assert(Challenger && "Not a function template specialization?");
   4463     if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4464                                                   Loc, TPOC_Other, 0, 0),
   4465                        Challenger)) {
   4466       Best = I;
   4467       BestTemplate = Challenger;
   4468     }
   4469   }
   4470 
   4471   // Make sure that the "best" function template is more specialized than all
   4472   // of the others.
   4473   bool Ambiguous = false;
   4474   for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4475     FunctionTemplateDecl *Challenger
   4476       = cast<FunctionDecl>(*I)->getPrimaryTemplate();
   4477     if (I != Best &&
   4478         !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
   4479                                                    Loc, TPOC_Other, 0, 0),
   4480                         BestTemplate)) {
   4481       Ambiguous = true;
   4482       break;
   4483     }
   4484   }
   4485 
   4486   if (!Ambiguous) {
   4487     // We found an answer. Return it.
   4488     return Best;
   4489   }
   4490 
   4491   // Diagnose the ambiguity.
   4492   if (Complain) {
   4493     Diag(Loc, AmbigDiag);
   4494 
   4495     // FIXME: Can we order the candidates in some sane way?
   4496     for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
   4497       PartialDiagnostic PD = CandidateDiag;
   4498       PD << getTemplateArgumentBindingsText(
   4499           cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
   4500                     *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
   4501       if (!TargetType.isNull())
   4502         HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
   4503                                    TargetType);
   4504       Diag((*I)->getLocation(), PD);
   4505     }
   4506   }
   4507 
   4508   return SpecEnd;
   4509 }
   4510 
   4511 /// \brief Returns the more specialized class template partial specialization
   4512 /// according to the rules of partial ordering of class template partial
   4513 /// specializations (C++ [temp.class.order]).
   4514 ///
   4515 /// \param PS1 the first class template partial specialization
   4516 ///
   4517 /// \param PS2 the second class template partial specialization
   4518 ///
   4519 /// \returns the more specialized class template partial specialization. If
   4520 /// neither partial specialization is more specialized, returns NULL.
   4521 ClassTemplatePartialSpecializationDecl *
   4522 Sema::getMoreSpecializedPartialSpecialization(
   4523                                   ClassTemplatePartialSpecializationDecl *PS1,
   4524                                   ClassTemplatePartialSpecializationDecl *PS2,
   4525                                               SourceLocation Loc) {
   4526   // C++ [temp.class.order]p1:
   4527   //   For two class template partial specializations, the first is at least as
   4528   //   specialized as the second if, given the following rewrite to two
   4529   //   function templates, the first function template is at least as
   4530   //   specialized as the second according to the ordering rules for function
   4531   //   templates (14.6.6.2):
   4532   //     - the first function template has the same template parameters as the
   4533   //       first partial specialization and has a single function parameter
   4534   //       whose type is a class template specialization with the template
   4535   //       arguments of the first partial specialization, and
   4536   //     - the second function template has the same template parameters as the
   4537   //       second partial specialization and has a single function parameter
   4538   //       whose type is a class template specialization with the template
   4539   //       arguments of the second partial specialization.
   4540   //
   4541   // Rather than synthesize function templates, we merely perform the
   4542   // equivalent partial ordering by performing deduction directly on
   4543   // the template arguments of the class template partial
   4544   // specializations. This computation is slightly simpler than the
   4545   // general problem of function template partial ordering, because
   4546   // class template partial specializations are more constrained. We
   4547   // know that every template parameter is deducible from the class
   4548   // template partial specialization's template arguments, for
   4549   // example.
   4550   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4551   TemplateDeductionInfo Info(Loc);
   4552 
   4553   QualType PT1 = PS1->getInjectedSpecializationType();
   4554   QualType PT2 = PS2->getInjectedSpecializationType();
   4555 
   4556   // Determine whether PS1 is at least as specialized as PS2
   4557   Deduced.resize(PS2->getTemplateParameters()->size());
   4558   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4559                                             PS2->getTemplateParameters(),
   4560                                             PT2, PT1, Info, Deduced, TDF_None,
   4561                                             /*PartialOrdering=*/true);
   4562   if (Better1) {
   4563     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4564     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4565     Better1 = !::FinishTemplateArgumentDeduction(
   4566         *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
   4567   }
   4568 
   4569   // Determine whether PS2 is at least as specialized as PS1
   4570   Deduced.clear();
   4571   Deduced.resize(PS1->getTemplateParameters()->size());
   4572   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
   4573       *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
   4574       /*PartialOrdering=*/true);
   4575   if (Better2) {
   4576     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4577                                                  Deduced.end());
   4578     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4579     Better2 = !::FinishTemplateArgumentDeduction(
   4580         *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
   4581   }
   4582 
   4583   if (Better1 == Better2)
   4584     return nullptr;
   4585 
   4586   return Better1 ? PS1 : PS2;
   4587 }
   4588 
   4589 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
   4590 ///       May require unifying ClassTemplate(Partial)SpecializationDecl and
   4591 ///        VarTemplate(Partial)SpecializationDecl with a new data
   4592 ///        structure Template(Partial)SpecializationDecl, and
   4593 ///        using Template(Partial)SpecializationDecl as input type.
   4594 VarTemplatePartialSpecializationDecl *
   4595 Sema::getMoreSpecializedPartialSpecialization(
   4596     VarTemplatePartialSpecializationDecl *PS1,
   4597     VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
   4598   SmallVector<DeducedTemplateArgument, 4> Deduced;
   4599   TemplateDeductionInfo Info(Loc);
   4600 
   4601   assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
   4602          "the partial specializations being compared should specialize"
   4603          " the same template.");
   4604   TemplateName Name(PS1->getSpecializedTemplate());
   4605   TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
   4606   QualType PT1 = Context.getTemplateSpecializationType(
   4607       CanonTemplate, PS1->getTemplateArgs().data(),
   4608       PS1->getTemplateArgs().size());
   4609   QualType PT2 = Context.getTemplateSpecializationType(
   4610       CanonTemplate, PS2->getTemplateArgs().data(),
   4611       PS2->getTemplateArgs().size());
   4612 
   4613   // Determine whether PS1 is at least as specialized as PS2
   4614   Deduced.resize(PS2->getTemplateParameters()->size());
   4615   bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
   4616       *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
   4617       /*PartialOrdering=*/true);
   4618   if (Better1) {
   4619     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
   4620                                                  Deduced.end());
   4621     InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
   4622     Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
   4623                                                  PS1->getTemplateArgs(),
   4624                                                  Deduced, Info);
   4625   }
   4626 
   4627   // Determine whether PS2 is at least as specialized as PS1
   4628   Deduced.clear();
   4629   Deduced.resize(PS1->getTemplateParameters()->size());
   4630   bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
   4631                                             PS1->getTemplateParameters(),
   4632                                             PT1, PT2, Info, Deduced, TDF_None,
   4633                                             /*PartialOrdering=*/true);
   4634   if (Better2) {
   4635     SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
   4636     InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
   4637     Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
   4638                                                  PS2->getTemplateArgs(),
   4639                                                  Deduced, Info);
   4640   }
   4641 
   4642   if (Better1 == Better2)
   4643     return nullptr;
   4644 
   4645   return Better1? PS1 : PS2;
   4646 }
   4647 
   4648 static void
   4649 MarkUsedTemplateParameters(ASTContext &Ctx,
   4650                            const TemplateArgument &TemplateArg,
   4651                            bool OnlyDeduced,
   4652                            unsigned Depth,
   4653                            llvm::SmallBitVector &Used);
   4654 
   4655 /// \brief Mark the template parameters that are used by the given
   4656 /// expression.
   4657 static void
   4658 MarkUsedTemplateParameters(ASTContext &Ctx,
   4659                            const Expr *E,
   4660                            bool OnlyDeduced,
   4661                            unsigned Depth,
   4662                            llvm::SmallBitVector &Used) {
   4663   // We can deduce from a pack expansion.
   4664   if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
   4665     E = Expansion->getPattern();
   4666 
   4667   // Skip through any implicit casts we added while type-checking, and any
   4668   // substitutions performed by template alias expansion.
   4669   while (1) {
   4670     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
   4671       E = ICE->getSubExpr();
   4672     else if (const SubstNonTypeTemplateParmExpr *Subst =
   4673                dyn_cast<SubstNonTypeTemplateParmExpr>(E))
   4674       E = Subst->getReplacement();
   4675     else
   4676       break;
   4677   }
   4678 
   4679   // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
   4680   // find other occurrences of template parameters.
   4681   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   4682   if (!DRE)
   4683     return;
   4684 
   4685   const NonTypeTemplateParmDecl *NTTP
   4686     = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
   4687   if (!NTTP)
   4688     return;
   4689 
   4690   if (NTTP->getDepth() == Depth)
   4691     Used[NTTP->getIndex()] = true;
   4692 }
   4693 
   4694 /// \brief Mark the template parameters that are used by the given
   4695 /// nested name specifier.
   4696 static void
   4697 MarkUsedTemplateParameters(ASTContext &Ctx,
   4698                            NestedNameSpecifier *NNS,
   4699                            bool OnlyDeduced,
   4700                            unsigned Depth,
   4701                            llvm::SmallBitVector &Used) {
   4702   if (!NNS)
   4703     return;
   4704 
   4705   MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
   4706                              Used);
   4707   MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
   4708                              OnlyDeduced, Depth, Used);
   4709 }
   4710 
   4711 /// \brief Mark the template parameters that are used by the given
   4712 /// template name.
   4713 static void
   4714 MarkUsedTemplateParameters(ASTContext &Ctx,
   4715                            TemplateName Name,
   4716                            bool OnlyDeduced,
   4717                            unsigned Depth,
   4718                            llvm::SmallBitVector &Used) {
   4719   if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
   4720     if (TemplateTemplateParmDecl *TTP
   4721           = dyn_cast<TemplateTemplateParmDecl>(Template)) {
   4722       if (TTP->getDepth() == Depth)
   4723         Used[TTP->getIndex()] = true;
   4724     }
   4725     return;
   4726   }
   4727 
   4728   if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
   4729     MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
   4730                                Depth, Used);
   4731   if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
   4732     MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
   4733                                Depth, Used);
   4734 }
   4735 
   4736 /// \brief Mark the template parameters that are used by the given
   4737 /// type.
   4738 static void
   4739 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
   4740                            bool OnlyDeduced,
   4741                            unsigned Depth,
   4742                            llvm::SmallBitVector &Used) {
   4743   if (T.isNull())
   4744     return;
   4745 
   4746   // Non-dependent types have nothing deducible
   4747   if (!T->isDependentType())
   4748     return;
   4749 
   4750   T = Ctx.getCanonicalType(T);
   4751   switch (T->getTypeClass()) {
   4752   case Type::Pointer:
   4753     MarkUsedTemplateParameters(Ctx,
   4754                                cast<PointerType>(T)->getPointeeType(),
   4755                                OnlyDeduced,
   4756                                Depth,
   4757                                Used);
   4758     break;
   4759 
   4760   case Type::BlockPointer:
   4761     MarkUsedTemplateParameters(Ctx,
   4762                                cast<BlockPointerType>(T)->getPointeeType(),
   4763                                OnlyDeduced,
   4764                                Depth,
   4765                                Used);
   4766     break;
   4767 
   4768   case Type::LValueReference:
   4769   case Type::RValueReference:
   4770     MarkUsedTemplateParameters(Ctx,
   4771                                cast<ReferenceType>(T)->getPointeeType(),
   4772                                OnlyDeduced,
   4773                                Depth,
   4774                                Used);
   4775     break;
   4776 
   4777   case Type::MemberPointer: {
   4778     const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
   4779     MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
   4780                                Depth, Used);
   4781     MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
   4782                                OnlyDeduced, Depth, Used);
   4783     break;
   4784   }
   4785 
   4786   case Type::DependentSizedArray:
   4787     MarkUsedTemplateParameters(Ctx,
   4788                                cast<DependentSizedArrayType>(T)->getSizeExpr(),
   4789                                OnlyDeduced, Depth, Used);
   4790     // Fall through to check the element type
   4791 
   4792   case Type::ConstantArray:
   4793   case Type::IncompleteArray:
   4794     MarkUsedTemplateParameters(Ctx,
   4795                                cast<ArrayType>(T)->getElementType(),
   4796                                OnlyDeduced, Depth, Used);
   4797     break;
   4798 
   4799   case Type::Vector:
   4800   case Type::ExtVector:
   4801     MarkUsedTemplateParameters(Ctx,
   4802                                cast<VectorType>(T)->getElementType(),
   4803                                OnlyDeduced, Depth, Used);
   4804     break;
   4805 
   4806   case Type::DependentSizedExtVector: {
   4807     const DependentSizedExtVectorType *VecType
   4808       = cast<DependentSizedExtVectorType>(T);
   4809     MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
   4810                                Depth, Used);
   4811     MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
   4812                                Depth, Used);
   4813     break;
   4814   }
   4815 
   4816   case Type::FunctionProto: {
   4817     const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
   4818     MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
   4819                                Used);
   4820     for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
   4821       MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
   4822                                  Depth, Used);
   4823     break;
   4824   }
   4825 
   4826   case Type::TemplateTypeParm: {
   4827     const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
   4828     if (TTP->getDepth() == Depth)
   4829       Used[TTP->getIndex()] = true;
   4830     break;
   4831   }
   4832 
   4833   case Type::SubstTemplateTypeParmPack: {
   4834     const SubstTemplateTypeParmPackType *Subst
   4835       = cast<SubstTemplateTypeParmPackType>(T);
   4836     MarkUsedTemplateParameters(Ctx,
   4837                                QualType(Subst->getReplacedParameter(), 0),
   4838                                OnlyDeduced, Depth, Used);
   4839     MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
   4840                                OnlyDeduced, Depth, Used);
   4841     break;
   4842   }
   4843 
   4844   case Type::InjectedClassName:
   4845     T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
   4846     // fall through
   4847 
   4848   case Type::TemplateSpecialization: {
   4849     const TemplateSpecializationType *Spec
   4850       = cast<TemplateSpecializationType>(T);
   4851     MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
   4852                                Depth, Used);
   4853 
   4854     // C++0x [temp.deduct.type]p9:
   4855     //   If the template argument list of P contains a pack expansion that is
   4856     //   not the last template argument, the entire template argument list is a
   4857     //   non-deduced context.
   4858     if (OnlyDeduced &&
   4859         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4860       break;
   4861 
   4862     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4863       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4864                                  Used);
   4865     break;
   4866   }
   4867 
   4868   case Type::Complex:
   4869     if (!OnlyDeduced)
   4870       MarkUsedTemplateParameters(Ctx,
   4871                                  cast<ComplexType>(T)->getElementType(),
   4872                                  OnlyDeduced, Depth, Used);
   4873     break;
   4874 
   4875   case Type::Atomic:
   4876     if (!OnlyDeduced)
   4877       MarkUsedTemplateParameters(Ctx,
   4878                                  cast<AtomicType>(T)->getValueType(),
   4879                                  OnlyDeduced, Depth, Used);
   4880     break;
   4881 
   4882   case Type::DependentName:
   4883     if (!OnlyDeduced)
   4884       MarkUsedTemplateParameters(Ctx,
   4885                                  cast<DependentNameType>(T)->getQualifier(),
   4886                                  OnlyDeduced, Depth, Used);
   4887     break;
   4888 
   4889   case Type::DependentTemplateSpecialization: {
   4890     const DependentTemplateSpecializationType *Spec
   4891       = cast<DependentTemplateSpecializationType>(T);
   4892     if (!OnlyDeduced)
   4893       MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
   4894                                  OnlyDeduced, Depth, Used);
   4895 
   4896     // C++0x [temp.deduct.type]p9:
   4897     //   If the template argument list of P contains a pack expansion that is not
   4898     //   the last template argument, the entire template argument list is a
   4899     //   non-deduced context.
   4900     if (OnlyDeduced &&
   4901         hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
   4902       break;
   4903 
   4904     for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
   4905       MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
   4906                                  Used);
   4907     break;
   4908   }
   4909 
   4910   case Type::TypeOf:
   4911     if (!OnlyDeduced)
   4912       MarkUsedTemplateParameters(Ctx,
   4913                                  cast<TypeOfType>(T)->getUnderlyingType(),
   4914                                  OnlyDeduced, Depth, Used);
   4915     break;
   4916 
   4917   case Type::TypeOfExpr:
   4918     if (!OnlyDeduced)
   4919       MarkUsedTemplateParameters(Ctx,
   4920                                  cast<TypeOfExprType>(T)->getUnderlyingExpr(),
   4921                                  OnlyDeduced, Depth, Used);
   4922     break;
   4923 
   4924   case Type::Decltype:
   4925     if (!OnlyDeduced)
   4926       MarkUsedTemplateParameters(Ctx,
   4927                                  cast<DecltypeType>(T)->getUnderlyingExpr(),
   4928                                  OnlyDeduced, Depth, Used);
   4929     break;
   4930 
   4931   case Type::UnaryTransform:
   4932     if (!OnlyDeduced)
   4933       MarkUsedTemplateParameters(Ctx,
   4934                                cast<UnaryTransformType>(T)->getUnderlyingType(),
   4935                                  OnlyDeduced, Depth, Used);
   4936     break;
   4937 
   4938   case Type::PackExpansion:
   4939     MarkUsedTemplateParameters(Ctx,
   4940                                cast<PackExpansionType>(T)->getPattern(),
   4941                                OnlyDeduced, Depth, Used);
   4942     break;
   4943 
   4944   case Type::Auto:
   4945     MarkUsedTemplateParameters(Ctx,
   4946                                cast<AutoType>(T)->getDeducedType(),
   4947                                OnlyDeduced, Depth, Used);
   4948 
   4949   // None of these types have any template parameters in them.
   4950   case Type::Builtin:
   4951   case Type::VariableArray:
   4952   case Type::FunctionNoProto:
   4953   case Type::Record:
   4954   case Type::Enum:
   4955   case Type::ObjCInterface:
   4956   case Type::ObjCObject:
   4957   case Type::ObjCObjectPointer:
   4958   case Type::UnresolvedUsing:
   4959 #define TYPE(Class, Base)
   4960 #define ABSTRACT_TYPE(Class, Base)
   4961 #define DEPENDENT_TYPE(Class, Base)
   4962 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
   4963 #include "clang/AST/TypeNodes.def"
   4964     break;
   4965   }
   4966 }
   4967 
   4968 /// \brief Mark the template parameters that are used by this
   4969 /// template argument.
   4970 static void
   4971 MarkUsedTemplateParameters(ASTContext &Ctx,
   4972                            const TemplateArgument &TemplateArg,
   4973                            bool OnlyDeduced,
   4974                            unsigned Depth,
   4975                            llvm::SmallBitVector &Used) {
   4976   switch (TemplateArg.getKind()) {
   4977   case TemplateArgument::Null:
   4978   case TemplateArgument::Integral:
   4979   case TemplateArgument::Declaration:
   4980     break;
   4981 
   4982   case TemplateArgument::NullPtr:
   4983     MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
   4984                                Depth, Used);
   4985     break;
   4986 
   4987   case TemplateArgument::Type:
   4988     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
   4989                                Depth, Used);
   4990     break;
   4991 
   4992   case TemplateArgument::Template:
   4993   case TemplateArgument::TemplateExpansion:
   4994     MarkUsedTemplateParameters(Ctx,
   4995                                TemplateArg.getAsTemplateOrTemplatePattern(),
   4996                                OnlyDeduced, Depth, Used);
   4997     break;
   4998 
   4999   case TemplateArgument::Expression:
   5000     MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
   5001                                Depth, Used);
   5002     break;
   5003 
   5004   case TemplateArgument::Pack:
   5005     for (const auto &P : TemplateArg.pack_elements())
   5006       MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
   5007     break;
   5008   }
   5009 }
   5010 
   5011 /// \brief Mark which template parameters can be deduced from a given
   5012 /// template argument list.
   5013 ///
   5014 /// \param TemplateArgs the template argument list from which template
   5015 /// parameters will be deduced.
   5016 ///
   5017 /// \param Used a bit vector whose elements will be set to \c true
   5018 /// to indicate when the corresponding template parameter will be
   5019 /// deduced.
   5020 void
   5021 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
   5022                                  bool OnlyDeduced, unsigned Depth,
   5023                                  llvm::SmallBitVector &Used) {
   5024   // C++0x [temp.deduct.type]p9:
   5025   //   If the template argument list of P contains a pack expansion that is not
   5026   //   the last template argument, the entire template argument list is a
   5027   //   non-deduced context.
   5028   if (OnlyDeduced &&
   5029       hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
   5030     return;
   5031 
   5032   for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
   5033     ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
   5034                                  Depth, Used);
   5035 }
   5036 
   5037 /// \brief Marks all of the template parameters that will be deduced by a
   5038 /// call to the given function template.
   5039 void Sema::MarkDeducedTemplateParameters(
   5040     ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
   5041     llvm::SmallBitVector &Deduced) {
   5042   TemplateParameterList *TemplateParams
   5043     = FunctionTemplate->getTemplateParameters();
   5044   Deduced.clear();
   5045   Deduced.resize(TemplateParams->size());
   5046 
   5047   FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
   5048   for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
   5049     ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
   5050                                  true, TemplateParams->getDepth(), Deduced);
   5051 }
   5052 
   5053 bool hasDeducibleTemplateParameters(Sema &S,
   5054                                     FunctionTemplateDecl *FunctionTemplate,
   5055                                     QualType T) {
   5056   if (!T->isDependentType())
   5057     return false;
   5058 
   5059   TemplateParameterList *TemplateParams
   5060     = FunctionTemplate->getTemplateParameters();
   5061   llvm::SmallBitVector Deduced(TemplateParams->size());
   5062   ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
   5063                                Deduced);
   5064 
   5065   return Deduced.any();
   5066 }
   5067