1 //===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/ 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 //===----------------------------------------------------------------------===/ 8 // 9 // This file implements C++ template argument deduction. 10 // 11 //===----------------------------------------------------------------------===/ 12 13 #include "clang/Sema/TemplateDeduction.h" 14 #include "TreeTransform.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTLambda.h" 17 #include "clang/AST/DeclObjC.h" 18 #include "clang/AST/DeclTemplate.h" 19 #include "clang/AST/Expr.h" 20 #include "clang/AST/ExprCXX.h" 21 #include "clang/AST/StmtVisitor.h" 22 #include "clang/Sema/DeclSpec.h" 23 #include "clang/Sema/Sema.h" 24 #include "clang/Sema/Template.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include <algorithm> 27 28 namespace clang { 29 using namespace sema; 30 /// \brief Various flags that control template argument deduction. 31 /// 32 /// These flags can be bitwise-OR'd together. 33 enum TemplateDeductionFlags { 34 /// \brief No template argument deduction flags, which indicates the 35 /// strictest results for template argument deduction (as used for, e.g., 36 /// matching class template partial specializations). 37 TDF_None = 0, 38 /// \brief Within template argument deduction from a function call, we are 39 /// matching with a parameter type for which the original parameter was 40 /// a reference. 41 TDF_ParamWithReferenceType = 0x1, 42 /// \brief Within template argument deduction from a function call, we 43 /// are matching in a case where we ignore cv-qualifiers. 44 TDF_IgnoreQualifiers = 0x02, 45 /// \brief Within template argument deduction from a function call, 46 /// we are matching in a case where we can perform template argument 47 /// deduction from a template-id of a derived class of the argument type. 48 TDF_DerivedClass = 0x04, 49 /// \brief Allow non-dependent types to differ, e.g., when performing 50 /// template argument deduction from a function call where conversions 51 /// may apply. 52 TDF_SkipNonDependent = 0x08, 53 /// \brief Whether we are performing template argument deduction for 54 /// parameters and arguments in a top-level template argument 55 TDF_TopLevelParameterTypeList = 0x10, 56 /// \brief Within template argument deduction from overload resolution per 57 /// C++ [over.over] allow matching function types that are compatible in 58 /// terms of noreturn and default calling convention adjustments. 59 TDF_InOverloadResolution = 0x20 60 }; 61 } 62 63 using namespace clang; 64 65 /// \brief Compare two APSInts, extending and switching the sign as 66 /// necessary to compare their values regardless of underlying type. 67 static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) { 68 if (Y.getBitWidth() > X.getBitWidth()) 69 X = X.extend(Y.getBitWidth()); 70 else if (Y.getBitWidth() < X.getBitWidth()) 71 Y = Y.extend(X.getBitWidth()); 72 73 // If there is a signedness mismatch, correct it. 74 if (X.isSigned() != Y.isSigned()) { 75 // If the signed value is negative, then the values cannot be the same. 76 if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative())) 77 return false; 78 79 Y.setIsSigned(true); 80 X.setIsSigned(true); 81 } 82 83 return X == Y; 84 } 85 86 static Sema::TemplateDeductionResult 87 DeduceTemplateArguments(Sema &S, 88 TemplateParameterList *TemplateParams, 89 const TemplateArgument &Param, 90 TemplateArgument Arg, 91 TemplateDeductionInfo &Info, 92 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 93 94 static Sema::TemplateDeductionResult 95 DeduceTemplateArgumentsByTypeMatch(Sema &S, 96 TemplateParameterList *TemplateParams, 97 QualType Param, 98 QualType Arg, 99 TemplateDeductionInfo &Info, 100 SmallVectorImpl<DeducedTemplateArgument> & 101 Deduced, 102 unsigned TDF, 103 bool PartialOrdering = false); 104 105 static Sema::TemplateDeductionResult 106 DeduceTemplateArguments(Sema &S, 107 TemplateParameterList *TemplateParams, 108 const TemplateArgument *Params, unsigned NumParams, 109 const TemplateArgument *Args, unsigned NumArgs, 110 TemplateDeductionInfo &Info, 111 SmallVectorImpl<DeducedTemplateArgument> &Deduced); 112 113 /// \brief If the given expression is of a form that permits the deduction 114 /// of a non-type template parameter, return the declaration of that 115 /// non-type template parameter. 116 static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) { 117 // If we are within an alias template, the expression may have undergone 118 // any number of parameter substitutions already. 119 while (1) { 120 if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E)) 121 E = IC->getSubExpr(); 122 else if (SubstNonTypeTemplateParmExpr *Subst = 123 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 124 E = Subst->getReplacement(); 125 else 126 break; 127 } 128 129 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) 130 return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 131 132 return nullptr; 133 } 134 135 /// \brief Determine whether two declaration pointers refer to the same 136 /// declaration. 137 static bool isSameDeclaration(Decl *X, Decl *Y) { 138 if (NamedDecl *NX = dyn_cast<NamedDecl>(X)) 139 X = NX->getUnderlyingDecl(); 140 if (NamedDecl *NY = dyn_cast<NamedDecl>(Y)) 141 Y = NY->getUnderlyingDecl(); 142 143 return X->getCanonicalDecl() == Y->getCanonicalDecl(); 144 } 145 146 /// \brief Verify that the given, deduced template arguments are compatible. 147 /// 148 /// \returns The deduced template argument, or a NULL template argument if 149 /// the deduced template arguments were incompatible. 150 static DeducedTemplateArgument 151 checkDeducedTemplateArguments(ASTContext &Context, 152 const DeducedTemplateArgument &X, 153 const DeducedTemplateArgument &Y) { 154 // We have no deduction for one or both of the arguments; they're compatible. 155 if (X.isNull()) 156 return Y; 157 if (Y.isNull()) 158 return X; 159 160 switch (X.getKind()) { 161 case TemplateArgument::Null: 162 llvm_unreachable("Non-deduced template arguments handled above"); 163 164 case TemplateArgument::Type: 165 // If two template type arguments have the same type, they're compatible. 166 if (Y.getKind() == TemplateArgument::Type && 167 Context.hasSameType(X.getAsType(), Y.getAsType())) 168 return X; 169 170 return DeducedTemplateArgument(); 171 172 case TemplateArgument::Integral: 173 // If we deduced a constant in one case and either a dependent expression or 174 // declaration in another case, keep the integral constant. 175 // If both are integral constants with the same value, keep that value. 176 if (Y.getKind() == TemplateArgument::Expression || 177 Y.getKind() == TemplateArgument::Declaration || 178 (Y.getKind() == TemplateArgument::Integral && 179 hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral()))) 180 return DeducedTemplateArgument(X, 181 X.wasDeducedFromArrayBound() && 182 Y.wasDeducedFromArrayBound()); 183 184 // All other combinations are incompatible. 185 return DeducedTemplateArgument(); 186 187 case TemplateArgument::Template: 188 if (Y.getKind() == TemplateArgument::Template && 189 Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate())) 190 return X; 191 192 // All other combinations are incompatible. 193 return DeducedTemplateArgument(); 194 195 case TemplateArgument::TemplateExpansion: 196 if (Y.getKind() == TemplateArgument::TemplateExpansion && 197 Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(), 198 Y.getAsTemplateOrTemplatePattern())) 199 return X; 200 201 // All other combinations are incompatible. 202 return DeducedTemplateArgument(); 203 204 case TemplateArgument::Expression: 205 // If we deduced a dependent expression in one case and either an integral 206 // constant or a declaration in another case, keep the integral constant 207 // or declaration. 208 if (Y.getKind() == TemplateArgument::Integral || 209 Y.getKind() == TemplateArgument::Declaration) 210 return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() && 211 Y.wasDeducedFromArrayBound()); 212 213 if (Y.getKind() == TemplateArgument::Expression) { 214 // Compare the expressions for equality 215 llvm::FoldingSetNodeID ID1, ID2; 216 X.getAsExpr()->Profile(ID1, Context, true); 217 Y.getAsExpr()->Profile(ID2, Context, true); 218 if (ID1 == ID2) 219 return X; 220 } 221 222 // All other combinations are incompatible. 223 return DeducedTemplateArgument(); 224 225 case TemplateArgument::Declaration: 226 // If we deduced a declaration and a dependent expression, keep the 227 // declaration. 228 if (Y.getKind() == TemplateArgument::Expression) 229 return X; 230 231 // If we deduced a declaration and an integral constant, keep the 232 // integral constant. 233 if (Y.getKind() == TemplateArgument::Integral) 234 return Y; 235 236 // If we deduced two declarations, make sure they they refer to the 237 // same declaration. 238 if (Y.getKind() == TemplateArgument::Declaration && 239 isSameDeclaration(X.getAsDecl(), Y.getAsDecl())) 240 return X; 241 242 // All other combinations are incompatible. 243 return DeducedTemplateArgument(); 244 245 case TemplateArgument::NullPtr: 246 // If we deduced a null pointer and a dependent expression, keep the 247 // null pointer. 248 if (Y.getKind() == TemplateArgument::Expression) 249 return X; 250 251 // If we deduced a null pointer and an integral constant, keep the 252 // integral constant. 253 if (Y.getKind() == TemplateArgument::Integral) 254 return Y; 255 256 // If we deduced two null pointers, make sure they have the same type. 257 if (Y.getKind() == TemplateArgument::NullPtr && 258 Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType())) 259 return X; 260 261 // All other combinations are incompatible. 262 return DeducedTemplateArgument(); 263 264 case TemplateArgument::Pack: 265 if (Y.getKind() != TemplateArgument::Pack || 266 X.pack_size() != Y.pack_size()) 267 return DeducedTemplateArgument(); 268 269 for (TemplateArgument::pack_iterator XA = X.pack_begin(), 270 XAEnd = X.pack_end(), 271 YA = Y.pack_begin(); 272 XA != XAEnd; ++XA, ++YA) { 273 // FIXME: Do we need to merge the results together here? 274 if (checkDeducedTemplateArguments(Context, 275 DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()), 276 DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound())) 277 .isNull()) 278 return DeducedTemplateArgument(); 279 } 280 281 return X; 282 } 283 284 llvm_unreachable("Invalid TemplateArgument Kind!"); 285 } 286 287 /// \brief Deduce the value of the given non-type template parameter 288 /// from the given constant. 289 static Sema::TemplateDeductionResult 290 DeduceNonTypeTemplateArgument(Sema &S, 291 NonTypeTemplateParmDecl *NTTP, 292 llvm::APSInt Value, QualType ValueType, 293 bool DeducedFromArrayBound, 294 TemplateDeductionInfo &Info, 295 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 296 assert(NTTP->getDepth() == 0 && 297 "Cannot deduce non-type template argument with depth > 0"); 298 299 DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType, 300 DeducedFromArrayBound); 301 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 302 Deduced[NTTP->getIndex()], 303 NewDeduced); 304 if (Result.isNull()) { 305 Info.Param = NTTP; 306 Info.FirstArg = Deduced[NTTP->getIndex()]; 307 Info.SecondArg = NewDeduced; 308 return Sema::TDK_Inconsistent; 309 } 310 311 Deduced[NTTP->getIndex()] = Result; 312 return Sema::TDK_Success; 313 } 314 315 /// \brief Deduce the value of the given non-type template parameter 316 /// from the given type- or value-dependent expression. 317 /// 318 /// \returns true if deduction succeeded, false otherwise. 319 static Sema::TemplateDeductionResult 320 DeduceNonTypeTemplateArgument(Sema &S, 321 NonTypeTemplateParmDecl *NTTP, 322 Expr *Value, 323 TemplateDeductionInfo &Info, 324 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 325 assert(NTTP->getDepth() == 0 && 326 "Cannot deduce non-type template argument with depth > 0"); 327 assert((Value->isTypeDependent() || Value->isValueDependent()) && 328 "Expression template argument must be type- or value-dependent."); 329 330 DeducedTemplateArgument NewDeduced(Value); 331 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 332 Deduced[NTTP->getIndex()], 333 NewDeduced); 334 335 if (Result.isNull()) { 336 Info.Param = NTTP; 337 Info.FirstArg = Deduced[NTTP->getIndex()]; 338 Info.SecondArg = NewDeduced; 339 return Sema::TDK_Inconsistent; 340 } 341 342 Deduced[NTTP->getIndex()] = Result; 343 return Sema::TDK_Success; 344 } 345 346 /// \brief Deduce the value of the given non-type template parameter 347 /// from the given declaration. 348 /// 349 /// \returns true if deduction succeeded, false otherwise. 350 static Sema::TemplateDeductionResult 351 DeduceNonTypeTemplateArgument(Sema &S, 352 NonTypeTemplateParmDecl *NTTP, 353 ValueDecl *D, 354 TemplateDeductionInfo &Info, 355 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 356 assert(NTTP->getDepth() == 0 && 357 "Cannot deduce non-type template argument with depth > 0"); 358 359 D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr; 360 TemplateArgument New(D, NTTP->getType()); 361 DeducedTemplateArgument NewDeduced(New); 362 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 363 Deduced[NTTP->getIndex()], 364 NewDeduced); 365 if (Result.isNull()) { 366 Info.Param = NTTP; 367 Info.FirstArg = Deduced[NTTP->getIndex()]; 368 Info.SecondArg = NewDeduced; 369 return Sema::TDK_Inconsistent; 370 } 371 372 Deduced[NTTP->getIndex()] = Result; 373 return Sema::TDK_Success; 374 } 375 376 static Sema::TemplateDeductionResult 377 DeduceTemplateArguments(Sema &S, 378 TemplateParameterList *TemplateParams, 379 TemplateName Param, 380 TemplateName Arg, 381 TemplateDeductionInfo &Info, 382 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 383 TemplateDecl *ParamDecl = Param.getAsTemplateDecl(); 384 if (!ParamDecl) { 385 // The parameter type is dependent and is not a template template parameter, 386 // so there is nothing that we can deduce. 387 return Sema::TDK_Success; 388 } 389 390 if (TemplateTemplateParmDecl *TempParam 391 = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) { 392 DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg)); 393 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 394 Deduced[TempParam->getIndex()], 395 NewDeduced); 396 if (Result.isNull()) { 397 Info.Param = TempParam; 398 Info.FirstArg = Deduced[TempParam->getIndex()]; 399 Info.SecondArg = NewDeduced; 400 return Sema::TDK_Inconsistent; 401 } 402 403 Deduced[TempParam->getIndex()] = Result; 404 return Sema::TDK_Success; 405 } 406 407 // Verify that the two template names are equivalent. 408 if (S.Context.hasSameTemplateName(Param, Arg)) 409 return Sema::TDK_Success; 410 411 // Mismatch of non-dependent template parameter to argument. 412 Info.FirstArg = TemplateArgument(Param); 413 Info.SecondArg = TemplateArgument(Arg); 414 return Sema::TDK_NonDeducedMismatch; 415 } 416 417 /// \brief Deduce the template arguments by comparing the template parameter 418 /// type (which is a template-id) with the template argument type. 419 /// 420 /// \param S the Sema 421 /// 422 /// \param TemplateParams the template parameters that we are deducing 423 /// 424 /// \param Param the parameter type 425 /// 426 /// \param Arg the argument type 427 /// 428 /// \param Info information about the template argument deduction itself 429 /// 430 /// \param Deduced the deduced template arguments 431 /// 432 /// \returns the result of template argument deduction so far. Note that a 433 /// "success" result means that template argument deduction has not yet failed, 434 /// but it may still fail, later, for other reasons. 435 static Sema::TemplateDeductionResult 436 DeduceTemplateArguments(Sema &S, 437 TemplateParameterList *TemplateParams, 438 const TemplateSpecializationType *Param, 439 QualType Arg, 440 TemplateDeductionInfo &Info, 441 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 442 assert(Arg.isCanonical() && "Argument type must be canonical"); 443 444 // Check whether the template argument is a dependent template-id. 445 if (const TemplateSpecializationType *SpecArg 446 = dyn_cast<TemplateSpecializationType>(Arg)) { 447 // Perform template argument deduction for the template name. 448 if (Sema::TemplateDeductionResult Result 449 = DeduceTemplateArguments(S, TemplateParams, 450 Param->getTemplateName(), 451 SpecArg->getTemplateName(), 452 Info, Deduced)) 453 return Result; 454 455 456 // Perform template argument deduction on each template 457 // argument. Ignore any missing/extra arguments, since they could be 458 // filled in by default arguments. 459 return DeduceTemplateArguments(S, TemplateParams, 460 Param->getArgs(), Param->getNumArgs(), 461 SpecArg->getArgs(), SpecArg->getNumArgs(), 462 Info, Deduced); 463 } 464 465 // If the argument type is a class template specialization, we 466 // perform template argument deduction using its template 467 // arguments. 468 const RecordType *RecordArg = dyn_cast<RecordType>(Arg); 469 if (!RecordArg) { 470 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 471 Info.SecondArg = TemplateArgument(Arg); 472 return Sema::TDK_NonDeducedMismatch; 473 } 474 475 ClassTemplateSpecializationDecl *SpecArg 476 = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl()); 477 if (!SpecArg) { 478 Info.FirstArg = TemplateArgument(QualType(Param, 0)); 479 Info.SecondArg = TemplateArgument(Arg); 480 return Sema::TDK_NonDeducedMismatch; 481 } 482 483 // Perform template argument deduction for the template name. 484 if (Sema::TemplateDeductionResult Result 485 = DeduceTemplateArguments(S, 486 TemplateParams, 487 Param->getTemplateName(), 488 TemplateName(SpecArg->getSpecializedTemplate()), 489 Info, Deduced)) 490 return Result; 491 492 // Perform template argument deduction for the template arguments. 493 return DeduceTemplateArguments(S, TemplateParams, 494 Param->getArgs(), Param->getNumArgs(), 495 SpecArg->getTemplateArgs().data(), 496 SpecArg->getTemplateArgs().size(), 497 Info, Deduced); 498 } 499 500 /// \brief Determines whether the given type is an opaque type that 501 /// might be more qualified when instantiated. 502 static bool IsPossiblyOpaquelyQualifiedType(QualType T) { 503 switch (T->getTypeClass()) { 504 case Type::TypeOfExpr: 505 case Type::TypeOf: 506 case Type::DependentName: 507 case Type::Decltype: 508 case Type::UnresolvedUsing: 509 case Type::TemplateTypeParm: 510 return true; 511 512 case Type::ConstantArray: 513 case Type::IncompleteArray: 514 case Type::VariableArray: 515 case Type::DependentSizedArray: 516 return IsPossiblyOpaquelyQualifiedType( 517 cast<ArrayType>(T)->getElementType()); 518 519 default: 520 return false; 521 } 522 } 523 524 /// \brief Retrieve the depth and index of a template parameter. 525 static std::pair<unsigned, unsigned> 526 getDepthAndIndex(NamedDecl *ND) { 527 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND)) 528 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 529 530 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND)) 531 return std::make_pair(NTTP->getDepth(), NTTP->getIndex()); 532 533 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND); 534 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 535 } 536 537 /// \brief Retrieve the depth and index of an unexpanded parameter pack. 538 static std::pair<unsigned, unsigned> 539 getDepthAndIndex(UnexpandedParameterPack UPP) { 540 if (const TemplateTypeParmType *TTP 541 = UPP.first.dyn_cast<const TemplateTypeParmType *>()) 542 return std::make_pair(TTP->getDepth(), TTP->getIndex()); 543 544 return getDepthAndIndex(UPP.first.get<NamedDecl *>()); 545 } 546 547 /// \brief Helper function to build a TemplateParameter when we don't 548 /// know its type statically. 549 static TemplateParameter makeTemplateParameter(Decl *D) { 550 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D)) 551 return TemplateParameter(TTP); 552 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D)) 553 return TemplateParameter(NTTP); 554 555 return TemplateParameter(cast<TemplateTemplateParmDecl>(D)); 556 } 557 558 /// A pack that we're currently deducing. 559 struct clang::DeducedPack { 560 DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {} 561 562 // The index of the pack. 563 unsigned Index; 564 565 // The old value of the pack before we started deducing it. 566 DeducedTemplateArgument Saved; 567 568 // A deferred value of this pack from an inner deduction, that couldn't be 569 // deduced because this deduction hadn't happened yet. 570 DeducedTemplateArgument DeferredDeduction; 571 572 // The new value of the pack. 573 SmallVector<DeducedTemplateArgument, 4> New; 574 575 // The outer deduction for this pack, if any. 576 DeducedPack *Outer; 577 }; 578 579 namespace { 580 /// A scope in which we're performing pack deduction. 581 class PackDeductionScope { 582 public: 583 PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams, 584 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 585 TemplateDeductionInfo &Info, TemplateArgument Pattern) 586 : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) { 587 // Compute the set of template parameter indices that correspond to 588 // parameter packs expanded by the pack expansion. 589 { 590 llvm::SmallBitVector SawIndices(TemplateParams->size()); 591 SmallVector<UnexpandedParameterPack, 2> Unexpanded; 592 S.collectUnexpandedParameterPacks(Pattern, Unexpanded); 593 for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) { 594 unsigned Depth, Index; 595 std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]); 596 if (Depth == 0 && !SawIndices[Index]) { 597 SawIndices[Index] = true; 598 599 // Save the deduced template argument for the parameter pack expanded 600 // by this pack expansion, then clear out the deduction. 601 DeducedPack Pack(Index); 602 Pack.Saved = Deduced[Index]; 603 Deduced[Index] = TemplateArgument(); 604 605 Packs.push_back(Pack); 606 } 607 } 608 } 609 assert(!Packs.empty() && "Pack expansion without unexpanded packs?"); 610 611 for (auto &Pack : Packs) { 612 if (Info.PendingDeducedPacks.size() > Pack.Index) 613 Pack.Outer = Info.PendingDeducedPacks[Pack.Index]; 614 else 615 Info.PendingDeducedPacks.resize(Pack.Index + 1); 616 Info.PendingDeducedPacks[Pack.Index] = &Pack; 617 618 if (S.CurrentInstantiationScope) { 619 // If the template argument pack was explicitly specified, add that to 620 // the set of deduced arguments. 621 const TemplateArgument *ExplicitArgs; 622 unsigned NumExplicitArgs; 623 NamedDecl *PartiallySubstitutedPack = 624 S.CurrentInstantiationScope->getPartiallySubstitutedPack( 625 &ExplicitArgs, &NumExplicitArgs); 626 if (PartiallySubstitutedPack && 627 getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index) 628 Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs); 629 } 630 } 631 } 632 633 ~PackDeductionScope() { 634 for (auto &Pack : Packs) 635 Info.PendingDeducedPacks[Pack.Index] = Pack.Outer; 636 } 637 638 /// Move to deducing the next element in each pack that is being deduced. 639 void nextPackElement() { 640 // Capture the deduced template arguments for each parameter pack expanded 641 // by this pack expansion, add them to the list of arguments we've deduced 642 // for that pack, then clear out the deduced argument. 643 for (auto &Pack : Packs) { 644 DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index]; 645 if (!DeducedArg.isNull()) { 646 Pack.New.push_back(DeducedArg); 647 DeducedArg = DeducedTemplateArgument(); 648 } 649 } 650 } 651 652 /// \brief Finish template argument deduction for a set of argument packs, 653 /// producing the argument packs and checking for consistency with prior 654 /// deductions. 655 Sema::TemplateDeductionResult finish(bool HasAnyArguments) { 656 // Build argument packs for each of the parameter packs expanded by this 657 // pack expansion. 658 for (auto &Pack : Packs) { 659 // Put back the old value for this pack. 660 Deduced[Pack.Index] = Pack.Saved; 661 662 // Build or find a new value for this pack. 663 DeducedTemplateArgument NewPack; 664 if (HasAnyArguments && Pack.New.empty()) { 665 if (Pack.DeferredDeduction.isNull()) { 666 // We were not able to deduce anything for this parameter pack 667 // (because it only appeared in non-deduced contexts), so just 668 // restore the saved argument pack. 669 continue; 670 } 671 672 NewPack = Pack.DeferredDeduction; 673 Pack.DeferredDeduction = TemplateArgument(); 674 } else if (Pack.New.empty()) { 675 // If we deduced an empty argument pack, create it now. 676 NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack()); 677 } else { 678 TemplateArgument *ArgumentPack = 679 new (S.Context) TemplateArgument[Pack.New.size()]; 680 std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack); 681 NewPack = DeducedTemplateArgument( 682 TemplateArgument(llvm::makeArrayRef(ArgumentPack, Pack.New.size())), 683 Pack.New[0].wasDeducedFromArrayBound()); 684 } 685 686 // Pick where we're going to put the merged pack. 687 DeducedTemplateArgument *Loc; 688 if (Pack.Outer) { 689 if (Pack.Outer->DeferredDeduction.isNull()) { 690 // Defer checking this pack until we have a complete pack to compare 691 // it against. 692 Pack.Outer->DeferredDeduction = NewPack; 693 continue; 694 } 695 Loc = &Pack.Outer->DeferredDeduction; 696 } else { 697 Loc = &Deduced[Pack.Index]; 698 } 699 700 // Check the new pack matches any previous value. 701 DeducedTemplateArgument OldPack = *Loc; 702 DeducedTemplateArgument Result = 703 checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 704 705 // If we deferred a deduction of this pack, check that one now too. 706 if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) { 707 OldPack = Result; 708 NewPack = Pack.DeferredDeduction; 709 Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack); 710 } 711 712 if (Result.isNull()) { 713 Info.Param = 714 makeTemplateParameter(TemplateParams->getParam(Pack.Index)); 715 Info.FirstArg = OldPack; 716 Info.SecondArg = NewPack; 717 return Sema::TDK_Inconsistent; 718 } 719 720 *Loc = Result; 721 } 722 723 return Sema::TDK_Success; 724 } 725 726 private: 727 Sema &S; 728 TemplateParameterList *TemplateParams; 729 SmallVectorImpl<DeducedTemplateArgument> &Deduced; 730 TemplateDeductionInfo &Info; 731 732 SmallVector<DeducedPack, 2> Packs; 733 }; 734 } // namespace 735 736 /// \brief Deduce the template arguments by comparing the list of parameter 737 /// types to the list of argument types, as in the parameter-type-lists of 738 /// function types (C++ [temp.deduct.type]p10). 739 /// 740 /// \param S The semantic analysis object within which we are deducing 741 /// 742 /// \param TemplateParams The template parameters that we are deducing 743 /// 744 /// \param Params The list of parameter types 745 /// 746 /// \param NumParams The number of types in \c Params 747 /// 748 /// \param Args The list of argument types 749 /// 750 /// \param NumArgs The number of types in \c Args 751 /// 752 /// \param Info information about the template argument deduction itself 753 /// 754 /// \param Deduced the deduced template arguments 755 /// 756 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 757 /// how template argument deduction is performed. 758 /// 759 /// \param PartialOrdering If true, we are performing template argument 760 /// deduction for during partial ordering for a call 761 /// (C++0x [temp.deduct.partial]). 762 /// 763 /// \returns the result of template argument deduction so far. Note that a 764 /// "success" result means that template argument deduction has not yet failed, 765 /// but it may still fail, later, for other reasons. 766 static Sema::TemplateDeductionResult 767 DeduceTemplateArguments(Sema &S, 768 TemplateParameterList *TemplateParams, 769 const QualType *Params, unsigned NumParams, 770 const QualType *Args, unsigned NumArgs, 771 TemplateDeductionInfo &Info, 772 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 773 unsigned TDF, 774 bool PartialOrdering = false) { 775 // Fast-path check to see if we have too many/too few arguments. 776 if (NumParams != NumArgs && 777 !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) && 778 !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1]))) 779 return Sema::TDK_MiscellaneousDeductionFailure; 780 781 // C++0x [temp.deduct.type]p10: 782 // Similarly, if P has a form that contains (T), then each parameter type 783 // Pi of the respective parameter-type- list of P is compared with the 784 // corresponding parameter type Ai of the corresponding parameter-type-list 785 // of A. [...] 786 unsigned ArgIdx = 0, ParamIdx = 0; 787 for (; ParamIdx != NumParams; ++ParamIdx) { 788 // Check argument types. 789 const PackExpansionType *Expansion 790 = dyn_cast<PackExpansionType>(Params[ParamIdx]); 791 if (!Expansion) { 792 // Simple case: compare the parameter and argument types at this point. 793 794 // Make sure we have an argument. 795 if (ArgIdx >= NumArgs) 796 return Sema::TDK_MiscellaneousDeductionFailure; 797 798 if (isa<PackExpansionType>(Args[ArgIdx])) { 799 // C++0x [temp.deduct.type]p22: 800 // If the original function parameter associated with A is a function 801 // parameter pack and the function parameter associated with P is not 802 // a function parameter pack, then template argument deduction fails. 803 return Sema::TDK_MiscellaneousDeductionFailure; 804 } 805 806 if (Sema::TemplateDeductionResult Result 807 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 808 Params[ParamIdx], Args[ArgIdx], 809 Info, Deduced, TDF, 810 PartialOrdering)) 811 return Result; 812 813 ++ArgIdx; 814 continue; 815 } 816 817 // C++0x [temp.deduct.type]p5: 818 // The non-deduced contexts are: 819 // - A function parameter pack that does not occur at the end of the 820 // parameter-declaration-clause. 821 if (ParamIdx + 1 < NumParams) 822 return Sema::TDK_Success; 823 824 // C++0x [temp.deduct.type]p10: 825 // If the parameter-declaration corresponding to Pi is a function 826 // parameter pack, then the type of its declarator- id is compared with 827 // each remaining parameter type in the parameter-type-list of A. Each 828 // comparison deduces template arguments for subsequent positions in the 829 // template parameter packs expanded by the function parameter pack. 830 831 QualType Pattern = Expansion->getPattern(); 832 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 833 834 bool HasAnyArguments = false; 835 for (; ArgIdx < NumArgs; ++ArgIdx) { 836 HasAnyArguments = true; 837 838 // Deduce template arguments from the pattern. 839 if (Sema::TemplateDeductionResult Result 840 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern, 841 Args[ArgIdx], Info, Deduced, 842 TDF, PartialOrdering)) 843 return Result; 844 845 PackScope.nextPackElement(); 846 } 847 848 // Build argument packs for each of the parameter packs expanded by this 849 // pack expansion. 850 if (auto Result = PackScope.finish(HasAnyArguments)) 851 return Result; 852 } 853 854 // Make sure we don't have any extra arguments. 855 if (ArgIdx < NumArgs) 856 return Sema::TDK_MiscellaneousDeductionFailure; 857 858 return Sema::TDK_Success; 859 } 860 861 /// \brief Determine whether the parameter has qualifiers that are either 862 /// inconsistent with or a superset of the argument's qualifiers. 863 static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType, 864 QualType ArgType) { 865 Qualifiers ParamQs = ParamType.getQualifiers(); 866 Qualifiers ArgQs = ArgType.getQualifiers(); 867 868 if (ParamQs == ArgQs) 869 return false; 870 871 // Mismatched (but not missing) Objective-C GC attributes. 872 if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() && 873 ParamQs.hasObjCGCAttr()) 874 return true; 875 876 // Mismatched (but not missing) address spaces. 877 if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() && 878 ParamQs.hasAddressSpace()) 879 return true; 880 881 // Mismatched (but not missing) Objective-C lifetime qualifiers. 882 if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() && 883 ParamQs.hasObjCLifetime()) 884 return true; 885 886 // CVR qualifier superset. 887 return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) && 888 ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers()) 889 == ParamQs.getCVRQualifiers()); 890 } 891 892 /// \brief Compare types for equality with respect to possibly compatible 893 /// function types (noreturn adjustment, implicit calling conventions). If any 894 /// of parameter and argument is not a function, just perform type comparison. 895 /// 896 /// \param Param the template parameter type. 897 /// 898 /// \param Arg the argument type. 899 bool Sema::isSameOrCompatibleFunctionType(CanQualType Param, 900 CanQualType Arg) { 901 const FunctionType *ParamFunction = Param->getAs<FunctionType>(), 902 *ArgFunction = Arg->getAs<FunctionType>(); 903 904 // Just compare if not functions. 905 if (!ParamFunction || !ArgFunction) 906 return Param == Arg; 907 908 // Noreturn adjustment. 909 QualType AdjustedParam; 910 if (IsNoReturnConversion(Param, Arg, AdjustedParam)) 911 return Arg == Context.getCanonicalType(AdjustedParam); 912 913 // FIXME: Compatible calling conventions. 914 915 return Param == Arg; 916 } 917 918 /// \brief Deduce the template arguments by comparing the parameter type and 919 /// the argument type (C++ [temp.deduct.type]). 920 /// 921 /// \param S the semantic analysis object within which we are deducing 922 /// 923 /// \param TemplateParams the template parameters that we are deducing 924 /// 925 /// \param ParamIn the parameter type 926 /// 927 /// \param ArgIn the argument type 928 /// 929 /// \param Info information about the template argument deduction itself 930 /// 931 /// \param Deduced the deduced template arguments 932 /// 933 /// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe 934 /// how template argument deduction is performed. 935 /// 936 /// \param PartialOrdering Whether we're performing template argument deduction 937 /// in the context of partial ordering (C++0x [temp.deduct.partial]). 938 /// 939 /// \returns the result of template argument deduction so far. Note that a 940 /// "success" result means that template argument deduction has not yet failed, 941 /// but it may still fail, later, for other reasons. 942 static Sema::TemplateDeductionResult 943 DeduceTemplateArgumentsByTypeMatch(Sema &S, 944 TemplateParameterList *TemplateParams, 945 QualType ParamIn, QualType ArgIn, 946 TemplateDeductionInfo &Info, 947 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 948 unsigned TDF, 949 bool PartialOrdering) { 950 // We only want to look at the canonical types, since typedefs and 951 // sugar are not part of template argument deduction. 952 QualType Param = S.Context.getCanonicalType(ParamIn); 953 QualType Arg = S.Context.getCanonicalType(ArgIn); 954 955 // If the argument type is a pack expansion, look at its pattern. 956 // This isn't explicitly called out 957 if (const PackExpansionType *ArgExpansion 958 = dyn_cast<PackExpansionType>(Arg)) 959 Arg = ArgExpansion->getPattern(); 960 961 if (PartialOrdering) { 962 // C++11 [temp.deduct.partial]p5: 963 // Before the partial ordering is done, certain transformations are 964 // performed on the types used for partial ordering: 965 // - If P is a reference type, P is replaced by the type referred to. 966 const ReferenceType *ParamRef = Param->getAs<ReferenceType>(); 967 if (ParamRef) 968 Param = ParamRef->getPointeeType(); 969 970 // - If A is a reference type, A is replaced by the type referred to. 971 const ReferenceType *ArgRef = Arg->getAs<ReferenceType>(); 972 if (ArgRef) 973 Arg = ArgRef->getPointeeType(); 974 975 if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) { 976 // C++11 [temp.deduct.partial]p9: 977 // If, for a given type, deduction succeeds in both directions (i.e., 978 // the types are identical after the transformations above) and both 979 // P and A were reference types [...]: 980 // - if [one type] was an lvalue reference and [the other type] was 981 // not, [the other type] is not considered to be at least as 982 // specialized as [the first type] 983 // - if [one type] is more cv-qualified than [the other type], 984 // [the other type] is not considered to be at least as specialized 985 // as [the first type] 986 // Objective-C ARC adds: 987 // - [one type] has non-trivial lifetime, [the other type] has 988 // __unsafe_unretained lifetime, and the types are otherwise 989 // identical 990 // 991 // A is "considered to be at least as specialized" as P iff deduction 992 // succeeds, so we model this as a deduction failure. Note that 993 // [the first type] is P and [the other type] is A here; the standard 994 // gets this backwards. 995 Qualifiers ParamQuals = Param.getQualifiers(); 996 Qualifiers ArgQuals = Arg.getQualifiers(); 997 if ((ParamRef->isLValueReferenceType() && 998 !ArgRef->isLValueReferenceType()) || 999 ParamQuals.isStrictSupersetOf(ArgQuals) || 1000 (ParamQuals.hasNonTrivialObjCLifetime() && 1001 ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone && 1002 ParamQuals.withoutObjCLifetime() == 1003 ArgQuals.withoutObjCLifetime())) { 1004 Info.FirstArg = TemplateArgument(ParamIn); 1005 Info.SecondArg = TemplateArgument(ArgIn); 1006 return Sema::TDK_NonDeducedMismatch; 1007 } 1008 } 1009 1010 // C++11 [temp.deduct.partial]p7: 1011 // Remove any top-level cv-qualifiers: 1012 // - If P is a cv-qualified type, P is replaced by the cv-unqualified 1013 // version of P. 1014 Param = Param.getUnqualifiedType(); 1015 // - If A is a cv-qualified type, A is replaced by the cv-unqualified 1016 // version of A. 1017 Arg = Arg.getUnqualifiedType(); 1018 } else { 1019 // C++0x [temp.deduct.call]p4 bullet 1: 1020 // - If the original P is a reference type, the deduced A (i.e., the type 1021 // referred to by the reference) can be more cv-qualified than the 1022 // transformed A. 1023 if (TDF & TDF_ParamWithReferenceType) { 1024 Qualifiers Quals; 1025 QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals); 1026 Quals.setCVRQualifiers(Quals.getCVRQualifiers() & 1027 Arg.getCVRQualifiers()); 1028 Param = S.Context.getQualifiedType(UnqualParam, Quals); 1029 } 1030 1031 if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) { 1032 // C++0x [temp.deduct.type]p10: 1033 // If P and A are function types that originated from deduction when 1034 // taking the address of a function template (14.8.2.2) or when deducing 1035 // template arguments from a function declaration (14.8.2.6) and Pi and 1036 // Ai are parameters of the top-level parameter-type-list of P and A, 1037 // respectively, Pi is adjusted if it is an rvalue reference to a 1038 // cv-unqualified template parameter and Ai is an lvalue reference, in 1039 // which case the type of Pi is changed to be the template parameter 1040 // type (i.e., T&& is changed to simply T). [ Note: As a result, when 1041 // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be 1042 // deduced as X&. - end note ] 1043 TDF &= ~TDF_TopLevelParameterTypeList; 1044 1045 if (const RValueReferenceType *ParamRef 1046 = Param->getAs<RValueReferenceType>()) { 1047 if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) && 1048 !ParamRef->getPointeeType().getQualifiers()) 1049 if (Arg->isLValueReferenceType()) 1050 Param = ParamRef->getPointeeType(); 1051 } 1052 } 1053 } 1054 1055 // C++ [temp.deduct.type]p9: 1056 // A template type argument T, a template template argument TT or a 1057 // template non-type argument i can be deduced if P and A have one of 1058 // the following forms: 1059 // 1060 // T 1061 // cv-list T 1062 if (const TemplateTypeParmType *TemplateTypeParm 1063 = Param->getAs<TemplateTypeParmType>()) { 1064 // Just skip any attempts to deduce from a placeholder type. 1065 if (Arg->isPlaceholderType()) 1066 return Sema::TDK_Success; 1067 1068 unsigned Index = TemplateTypeParm->getIndex(); 1069 bool RecanonicalizeArg = false; 1070 1071 // If the argument type is an array type, move the qualifiers up to the 1072 // top level, so they can be matched with the qualifiers on the parameter. 1073 if (isa<ArrayType>(Arg)) { 1074 Qualifiers Quals; 1075 Arg = S.Context.getUnqualifiedArrayType(Arg, Quals); 1076 if (Quals) { 1077 Arg = S.Context.getQualifiedType(Arg, Quals); 1078 RecanonicalizeArg = true; 1079 } 1080 } 1081 1082 // The argument type can not be less qualified than the parameter 1083 // type. 1084 if (!(TDF & TDF_IgnoreQualifiers) && 1085 hasInconsistentOrSupersetQualifiersOf(Param, Arg)) { 1086 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1087 Info.FirstArg = TemplateArgument(Param); 1088 Info.SecondArg = TemplateArgument(Arg); 1089 return Sema::TDK_Underqualified; 1090 } 1091 1092 assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0"); 1093 assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function"); 1094 QualType DeducedType = Arg; 1095 1096 // Remove any qualifiers on the parameter from the deduced type. 1097 // We checked the qualifiers for consistency above. 1098 Qualifiers DeducedQs = DeducedType.getQualifiers(); 1099 Qualifiers ParamQs = Param.getQualifiers(); 1100 DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers()); 1101 if (ParamQs.hasObjCGCAttr()) 1102 DeducedQs.removeObjCGCAttr(); 1103 if (ParamQs.hasAddressSpace()) 1104 DeducedQs.removeAddressSpace(); 1105 if (ParamQs.hasObjCLifetime()) 1106 DeducedQs.removeObjCLifetime(); 1107 1108 // Objective-C ARC: 1109 // If template deduction would produce a lifetime qualifier on a type 1110 // that is not a lifetime type, template argument deduction fails. 1111 if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() && 1112 !DeducedType->isDependentType()) { 1113 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1114 Info.FirstArg = TemplateArgument(Param); 1115 Info.SecondArg = TemplateArgument(Arg); 1116 return Sema::TDK_Underqualified; 1117 } 1118 1119 // Objective-C ARC: 1120 // If template deduction would produce an argument type with lifetime type 1121 // but no lifetime qualifier, the __strong lifetime qualifier is inferred. 1122 if (S.getLangOpts().ObjCAutoRefCount && 1123 DeducedType->isObjCLifetimeType() && 1124 !DeducedQs.hasObjCLifetime()) 1125 DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong); 1126 1127 DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(), 1128 DeducedQs); 1129 1130 if (RecanonicalizeArg) 1131 DeducedType = S.Context.getCanonicalType(DeducedType); 1132 1133 DeducedTemplateArgument NewDeduced(DeducedType); 1134 DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context, 1135 Deduced[Index], 1136 NewDeduced); 1137 if (Result.isNull()) { 1138 Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index)); 1139 Info.FirstArg = Deduced[Index]; 1140 Info.SecondArg = NewDeduced; 1141 return Sema::TDK_Inconsistent; 1142 } 1143 1144 Deduced[Index] = Result; 1145 return Sema::TDK_Success; 1146 } 1147 1148 // Set up the template argument deduction information for a failure. 1149 Info.FirstArg = TemplateArgument(ParamIn); 1150 Info.SecondArg = TemplateArgument(ArgIn); 1151 1152 // If the parameter is an already-substituted template parameter 1153 // pack, do nothing: we don't know which of its arguments to look 1154 // at, so we have to wait until all of the parameter packs in this 1155 // expansion have arguments. 1156 if (isa<SubstTemplateTypeParmPackType>(Param)) 1157 return Sema::TDK_Success; 1158 1159 // Check the cv-qualifiers on the parameter and argument types. 1160 CanQualType CanParam = S.Context.getCanonicalType(Param); 1161 CanQualType CanArg = S.Context.getCanonicalType(Arg); 1162 if (!(TDF & TDF_IgnoreQualifiers)) { 1163 if (TDF & TDF_ParamWithReferenceType) { 1164 if (hasInconsistentOrSupersetQualifiersOf(Param, Arg)) 1165 return Sema::TDK_NonDeducedMismatch; 1166 } else if (!IsPossiblyOpaquelyQualifiedType(Param)) { 1167 if (Param.getCVRQualifiers() != Arg.getCVRQualifiers()) 1168 return Sema::TDK_NonDeducedMismatch; 1169 } 1170 1171 // If the parameter type is not dependent, there is nothing to deduce. 1172 if (!Param->isDependentType()) { 1173 if (!(TDF & TDF_SkipNonDependent)) { 1174 bool NonDeduced = (TDF & TDF_InOverloadResolution)? 1175 !S.isSameOrCompatibleFunctionType(CanParam, CanArg) : 1176 Param != Arg; 1177 if (NonDeduced) { 1178 return Sema::TDK_NonDeducedMismatch; 1179 } 1180 } 1181 return Sema::TDK_Success; 1182 } 1183 } else if (!Param->isDependentType()) { 1184 CanQualType ParamUnqualType = CanParam.getUnqualifiedType(), 1185 ArgUnqualType = CanArg.getUnqualifiedType(); 1186 bool Success = (TDF & TDF_InOverloadResolution)? 1187 S.isSameOrCompatibleFunctionType(ParamUnqualType, 1188 ArgUnqualType) : 1189 ParamUnqualType == ArgUnqualType; 1190 if (Success) 1191 return Sema::TDK_Success; 1192 } 1193 1194 switch (Param->getTypeClass()) { 1195 // Non-canonical types cannot appear here. 1196 #define NON_CANONICAL_TYPE(Class, Base) \ 1197 case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class); 1198 #define TYPE(Class, Base) 1199 #include "clang/AST/TypeNodes.def" 1200 1201 case Type::TemplateTypeParm: 1202 case Type::SubstTemplateTypeParmPack: 1203 llvm_unreachable("Type nodes handled above"); 1204 1205 // These types cannot be dependent, so simply check whether the types are 1206 // the same. 1207 case Type::Builtin: 1208 case Type::VariableArray: 1209 case Type::Vector: 1210 case Type::FunctionNoProto: 1211 case Type::Record: 1212 case Type::Enum: 1213 case Type::ObjCObject: 1214 case Type::ObjCInterface: 1215 case Type::ObjCObjectPointer: { 1216 if (TDF & TDF_SkipNonDependent) 1217 return Sema::TDK_Success; 1218 1219 if (TDF & TDF_IgnoreQualifiers) { 1220 Param = Param.getUnqualifiedType(); 1221 Arg = Arg.getUnqualifiedType(); 1222 } 1223 1224 return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch; 1225 } 1226 1227 // _Complex T [placeholder extension] 1228 case Type::Complex: 1229 if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>()) 1230 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1231 cast<ComplexType>(Param)->getElementType(), 1232 ComplexArg->getElementType(), 1233 Info, Deduced, TDF); 1234 1235 return Sema::TDK_NonDeducedMismatch; 1236 1237 // _Atomic T [extension] 1238 case Type::Atomic: 1239 if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>()) 1240 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1241 cast<AtomicType>(Param)->getValueType(), 1242 AtomicArg->getValueType(), 1243 Info, Deduced, TDF); 1244 1245 return Sema::TDK_NonDeducedMismatch; 1246 1247 // T * 1248 case Type::Pointer: { 1249 QualType PointeeType; 1250 if (const PointerType *PointerArg = Arg->getAs<PointerType>()) { 1251 PointeeType = PointerArg->getPointeeType(); 1252 } else if (const ObjCObjectPointerType *PointerArg 1253 = Arg->getAs<ObjCObjectPointerType>()) { 1254 PointeeType = PointerArg->getPointeeType(); 1255 } else { 1256 return Sema::TDK_NonDeducedMismatch; 1257 } 1258 1259 unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass); 1260 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1261 cast<PointerType>(Param)->getPointeeType(), 1262 PointeeType, 1263 Info, Deduced, SubTDF); 1264 } 1265 1266 // T & 1267 case Type::LValueReference: { 1268 const LValueReferenceType *ReferenceArg = 1269 Arg->getAs<LValueReferenceType>(); 1270 if (!ReferenceArg) 1271 return Sema::TDK_NonDeducedMismatch; 1272 1273 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1274 cast<LValueReferenceType>(Param)->getPointeeType(), 1275 ReferenceArg->getPointeeType(), Info, Deduced, 0); 1276 } 1277 1278 // T && [C++0x] 1279 case Type::RValueReference: { 1280 const RValueReferenceType *ReferenceArg = 1281 Arg->getAs<RValueReferenceType>(); 1282 if (!ReferenceArg) 1283 return Sema::TDK_NonDeducedMismatch; 1284 1285 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1286 cast<RValueReferenceType>(Param)->getPointeeType(), 1287 ReferenceArg->getPointeeType(), 1288 Info, Deduced, 0); 1289 } 1290 1291 // T [] (implied, but not stated explicitly) 1292 case Type::IncompleteArray: { 1293 const IncompleteArrayType *IncompleteArrayArg = 1294 S.Context.getAsIncompleteArrayType(Arg); 1295 if (!IncompleteArrayArg) 1296 return Sema::TDK_NonDeducedMismatch; 1297 1298 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1299 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1300 S.Context.getAsIncompleteArrayType(Param)->getElementType(), 1301 IncompleteArrayArg->getElementType(), 1302 Info, Deduced, SubTDF); 1303 } 1304 1305 // T [integer-constant] 1306 case Type::ConstantArray: { 1307 const ConstantArrayType *ConstantArrayArg = 1308 S.Context.getAsConstantArrayType(Arg); 1309 if (!ConstantArrayArg) 1310 return Sema::TDK_NonDeducedMismatch; 1311 1312 const ConstantArrayType *ConstantArrayParm = 1313 S.Context.getAsConstantArrayType(Param); 1314 if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize()) 1315 return Sema::TDK_NonDeducedMismatch; 1316 1317 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1318 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1319 ConstantArrayParm->getElementType(), 1320 ConstantArrayArg->getElementType(), 1321 Info, Deduced, SubTDF); 1322 } 1323 1324 // type [i] 1325 case Type::DependentSizedArray: { 1326 const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg); 1327 if (!ArrayArg) 1328 return Sema::TDK_NonDeducedMismatch; 1329 1330 unsigned SubTDF = TDF & TDF_IgnoreQualifiers; 1331 1332 // Check the element type of the arrays 1333 const DependentSizedArrayType *DependentArrayParm 1334 = S.Context.getAsDependentSizedArrayType(Param); 1335 if (Sema::TemplateDeductionResult Result 1336 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1337 DependentArrayParm->getElementType(), 1338 ArrayArg->getElementType(), 1339 Info, Deduced, SubTDF)) 1340 return Result; 1341 1342 // Determine the array bound is something we can deduce. 1343 NonTypeTemplateParmDecl *NTTP 1344 = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr()); 1345 if (!NTTP) 1346 return Sema::TDK_Success; 1347 1348 // We can perform template argument deduction for the given non-type 1349 // template parameter. 1350 assert(NTTP->getDepth() == 0 && 1351 "Cannot deduce non-type template argument at depth > 0"); 1352 if (const ConstantArrayType *ConstantArrayArg 1353 = dyn_cast<ConstantArrayType>(ArrayArg)) { 1354 llvm::APSInt Size(ConstantArrayArg->getSize()); 1355 return DeduceNonTypeTemplateArgument(S, NTTP, Size, 1356 S.Context.getSizeType(), 1357 /*ArrayBound=*/true, 1358 Info, Deduced); 1359 } 1360 if (const DependentSizedArrayType *DependentArrayArg 1361 = dyn_cast<DependentSizedArrayType>(ArrayArg)) 1362 if (DependentArrayArg->getSizeExpr()) 1363 return DeduceNonTypeTemplateArgument(S, NTTP, 1364 DependentArrayArg->getSizeExpr(), 1365 Info, Deduced); 1366 1367 // Incomplete type does not match a dependently-sized array type 1368 return Sema::TDK_NonDeducedMismatch; 1369 } 1370 1371 // type(*)(T) 1372 // T(*)() 1373 // T(*)(T) 1374 case Type::FunctionProto: { 1375 unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList; 1376 const FunctionProtoType *FunctionProtoArg = 1377 dyn_cast<FunctionProtoType>(Arg); 1378 if (!FunctionProtoArg) 1379 return Sema::TDK_NonDeducedMismatch; 1380 1381 const FunctionProtoType *FunctionProtoParam = 1382 cast<FunctionProtoType>(Param); 1383 1384 if (FunctionProtoParam->getTypeQuals() 1385 != FunctionProtoArg->getTypeQuals() || 1386 FunctionProtoParam->getRefQualifier() 1387 != FunctionProtoArg->getRefQualifier() || 1388 FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic()) 1389 return Sema::TDK_NonDeducedMismatch; 1390 1391 // Check return types. 1392 if (Sema::TemplateDeductionResult Result = 1393 DeduceTemplateArgumentsByTypeMatch( 1394 S, TemplateParams, FunctionProtoParam->getReturnType(), 1395 FunctionProtoArg->getReturnType(), Info, Deduced, 0)) 1396 return Result; 1397 1398 return DeduceTemplateArguments( 1399 S, TemplateParams, FunctionProtoParam->param_type_begin(), 1400 FunctionProtoParam->getNumParams(), 1401 FunctionProtoArg->param_type_begin(), 1402 FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF); 1403 } 1404 1405 case Type::InjectedClassName: { 1406 // Treat a template's injected-class-name as if the template 1407 // specialization type had been used. 1408 Param = cast<InjectedClassNameType>(Param) 1409 ->getInjectedSpecializationType(); 1410 assert(isa<TemplateSpecializationType>(Param) && 1411 "injected class name is not a template specialization type"); 1412 // fall through 1413 } 1414 1415 // template-name<T> (where template-name refers to a class template) 1416 // template-name<i> 1417 // TT<T> 1418 // TT<i> 1419 // TT<> 1420 case Type::TemplateSpecialization: { 1421 const TemplateSpecializationType *SpecParam 1422 = cast<TemplateSpecializationType>(Param); 1423 1424 // Try to deduce template arguments from the template-id. 1425 Sema::TemplateDeductionResult Result 1426 = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg, 1427 Info, Deduced); 1428 1429 if (Result && (TDF & TDF_DerivedClass)) { 1430 // C++ [temp.deduct.call]p3b3: 1431 // If P is a class, and P has the form template-id, then A can be a 1432 // derived class of the deduced A. Likewise, if P is a pointer to a 1433 // class of the form template-id, A can be a pointer to a derived 1434 // class pointed to by the deduced A. 1435 // 1436 // More importantly: 1437 // These alternatives are considered only if type deduction would 1438 // otherwise fail. 1439 if (const RecordType *RecordT = Arg->getAs<RecordType>()) { 1440 // We cannot inspect base classes as part of deduction when the type 1441 // is incomplete, so either instantiate any templates necessary to 1442 // complete the type, or skip over it if it cannot be completed. 1443 if (!S.isCompleteType(Info.getLocation(), Arg)) 1444 return Result; 1445 1446 // Use data recursion to crawl through the list of base classes. 1447 // Visited contains the set of nodes we have already visited, while 1448 // ToVisit is our stack of records that we still need to visit. 1449 llvm::SmallPtrSet<const RecordType *, 8> Visited; 1450 SmallVector<const RecordType *, 8> ToVisit; 1451 ToVisit.push_back(RecordT); 1452 bool Successful = false; 1453 SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(), 1454 Deduced.end()); 1455 while (!ToVisit.empty()) { 1456 // Retrieve the next class in the inheritance hierarchy. 1457 const RecordType *NextT = ToVisit.pop_back_val(); 1458 1459 // If we have already seen this type, skip it. 1460 if (!Visited.insert(NextT).second) 1461 continue; 1462 1463 // If this is a base class, try to perform template argument 1464 // deduction from it. 1465 if (NextT != RecordT) { 1466 TemplateDeductionInfo BaseInfo(Info.getLocation()); 1467 Sema::TemplateDeductionResult BaseResult 1468 = DeduceTemplateArguments(S, TemplateParams, SpecParam, 1469 QualType(NextT, 0), BaseInfo, 1470 Deduced); 1471 1472 // If template argument deduction for this base was successful, 1473 // note that we had some success. Otherwise, ignore any deductions 1474 // from this base class. 1475 if (BaseResult == Sema::TDK_Success) { 1476 Successful = true; 1477 DeducedOrig.clear(); 1478 DeducedOrig.append(Deduced.begin(), Deduced.end()); 1479 Info.Param = BaseInfo.Param; 1480 Info.FirstArg = BaseInfo.FirstArg; 1481 Info.SecondArg = BaseInfo.SecondArg; 1482 } 1483 else 1484 Deduced = DeducedOrig; 1485 } 1486 1487 // Visit base classes 1488 CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl()); 1489 for (const auto &Base : Next->bases()) { 1490 assert(Base.getType()->isRecordType() && 1491 "Base class that isn't a record?"); 1492 ToVisit.push_back(Base.getType()->getAs<RecordType>()); 1493 } 1494 } 1495 1496 if (Successful) 1497 return Sema::TDK_Success; 1498 } 1499 1500 } 1501 1502 return Result; 1503 } 1504 1505 // T type::* 1506 // T T::* 1507 // T (type::*)() 1508 // type (T::*)() 1509 // type (type::*)(T) 1510 // type (T::*)(T) 1511 // T (type::*)(T) 1512 // T (T::*)() 1513 // T (T::*)(T) 1514 case Type::MemberPointer: { 1515 const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param); 1516 const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg); 1517 if (!MemPtrArg) 1518 return Sema::TDK_NonDeducedMismatch; 1519 1520 QualType ParamPointeeType = MemPtrParam->getPointeeType(); 1521 if (ParamPointeeType->isFunctionType()) 1522 S.adjustMemberFunctionCC(ParamPointeeType, /*IsStatic=*/true, 1523 /*IsCtorOrDtor=*/false, Info.getLocation()); 1524 QualType ArgPointeeType = MemPtrArg->getPointeeType(); 1525 if (ArgPointeeType->isFunctionType()) 1526 S.adjustMemberFunctionCC(ArgPointeeType, /*IsStatic=*/true, 1527 /*IsCtorOrDtor=*/false, Info.getLocation()); 1528 1529 if (Sema::TemplateDeductionResult Result 1530 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1531 ParamPointeeType, 1532 ArgPointeeType, 1533 Info, Deduced, 1534 TDF & TDF_IgnoreQualifiers)) 1535 return Result; 1536 1537 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1538 QualType(MemPtrParam->getClass(), 0), 1539 QualType(MemPtrArg->getClass(), 0), 1540 Info, Deduced, 1541 TDF & TDF_IgnoreQualifiers); 1542 } 1543 1544 // (clang extension) 1545 // 1546 // type(^)(T) 1547 // T(^)() 1548 // T(^)(T) 1549 case Type::BlockPointer: { 1550 const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param); 1551 const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg); 1552 1553 if (!BlockPtrArg) 1554 return Sema::TDK_NonDeducedMismatch; 1555 1556 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1557 BlockPtrParam->getPointeeType(), 1558 BlockPtrArg->getPointeeType(), 1559 Info, Deduced, 0); 1560 } 1561 1562 // (clang extension) 1563 // 1564 // T __attribute__(((ext_vector_type(<integral constant>)))) 1565 case Type::ExtVector: { 1566 const ExtVectorType *VectorParam = cast<ExtVectorType>(Param); 1567 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1568 // Make sure that the vectors have the same number of elements. 1569 if (VectorParam->getNumElements() != VectorArg->getNumElements()) 1570 return Sema::TDK_NonDeducedMismatch; 1571 1572 // Perform deduction on the element types. 1573 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1574 VectorParam->getElementType(), 1575 VectorArg->getElementType(), 1576 Info, Deduced, TDF); 1577 } 1578 1579 if (const DependentSizedExtVectorType *VectorArg 1580 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1581 // We can't check the number of elements, since the argument has a 1582 // dependent number of elements. This can only occur during partial 1583 // ordering. 1584 1585 // Perform deduction on the element types. 1586 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1587 VectorParam->getElementType(), 1588 VectorArg->getElementType(), 1589 Info, Deduced, TDF); 1590 } 1591 1592 return Sema::TDK_NonDeducedMismatch; 1593 } 1594 1595 // (clang extension) 1596 // 1597 // T __attribute__(((ext_vector_type(N)))) 1598 case Type::DependentSizedExtVector: { 1599 const DependentSizedExtVectorType *VectorParam 1600 = cast<DependentSizedExtVectorType>(Param); 1601 1602 if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) { 1603 // Perform deduction on the element types. 1604 if (Sema::TemplateDeductionResult Result 1605 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1606 VectorParam->getElementType(), 1607 VectorArg->getElementType(), 1608 Info, Deduced, TDF)) 1609 return Result; 1610 1611 // Perform deduction on the vector size, if we can. 1612 NonTypeTemplateParmDecl *NTTP 1613 = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); 1614 if (!NTTP) 1615 return Sema::TDK_Success; 1616 1617 llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false); 1618 ArgSize = VectorArg->getNumElements(); 1619 return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy, 1620 false, Info, Deduced); 1621 } 1622 1623 if (const DependentSizedExtVectorType *VectorArg 1624 = dyn_cast<DependentSizedExtVectorType>(Arg)) { 1625 // Perform deduction on the element types. 1626 if (Sema::TemplateDeductionResult Result 1627 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1628 VectorParam->getElementType(), 1629 VectorArg->getElementType(), 1630 Info, Deduced, TDF)) 1631 return Result; 1632 1633 // Perform deduction on the vector size, if we can. 1634 NonTypeTemplateParmDecl *NTTP 1635 = getDeducedParameterFromExpr(VectorParam->getSizeExpr()); 1636 if (!NTTP) 1637 return Sema::TDK_Success; 1638 1639 return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(), 1640 Info, Deduced); 1641 } 1642 1643 return Sema::TDK_NonDeducedMismatch; 1644 } 1645 1646 case Type::TypeOfExpr: 1647 case Type::TypeOf: 1648 case Type::DependentName: 1649 case Type::UnresolvedUsing: 1650 case Type::Decltype: 1651 case Type::UnaryTransform: 1652 case Type::Auto: 1653 case Type::DependentTemplateSpecialization: 1654 case Type::PackExpansion: 1655 // No template argument deduction for these types 1656 return Sema::TDK_Success; 1657 } 1658 1659 llvm_unreachable("Invalid Type Class!"); 1660 } 1661 1662 static Sema::TemplateDeductionResult 1663 DeduceTemplateArguments(Sema &S, 1664 TemplateParameterList *TemplateParams, 1665 const TemplateArgument &Param, 1666 TemplateArgument Arg, 1667 TemplateDeductionInfo &Info, 1668 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1669 // If the template argument is a pack expansion, perform template argument 1670 // deduction against the pattern of that expansion. This only occurs during 1671 // partial ordering. 1672 if (Arg.isPackExpansion()) 1673 Arg = Arg.getPackExpansionPattern(); 1674 1675 switch (Param.getKind()) { 1676 case TemplateArgument::Null: 1677 llvm_unreachable("Null template argument in parameter list"); 1678 1679 case TemplateArgument::Type: 1680 if (Arg.getKind() == TemplateArgument::Type) 1681 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 1682 Param.getAsType(), 1683 Arg.getAsType(), 1684 Info, Deduced, 0); 1685 Info.FirstArg = Param; 1686 Info.SecondArg = Arg; 1687 return Sema::TDK_NonDeducedMismatch; 1688 1689 case TemplateArgument::Template: 1690 if (Arg.getKind() == TemplateArgument::Template) 1691 return DeduceTemplateArguments(S, TemplateParams, 1692 Param.getAsTemplate(), 1693 Arg.getAsTemplate(), Info, Deduced); 1694 Info.FirstArg = Param; 1695 Info.SecondArg = Arg; 1696 return Sema::TDK_NonDeducedMismatch; 1697 1698 case TemplateArgument::TemplateExpansion: 1699 llvm_unreachable("caller should handle pack expansions"); 1700 1701 case TemplateArgument::Declaration: 1702 if (Arg.getKind() == TemplateArgument::Declaration && 1703 isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl())) 1704 return Sema::TDK_Success; 1705 1706 Info.FirstArg = Param; 1707 Info.SecondArg = Arg; 1708 return Sema::TDK_NonDeducedMismatch; 1709 1710 case TemplateArgument::NullPtr: 1711 if (Arg.getKind() == TemplateArgument::NullPtr && 1712 S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType())) 1713 return Sema::TDK_Success; 1714 1715 Info.FirstArg = Param; 1716 Info.SecondArg = Arg; 1717 return Sema::TDK_NonDeducedMismatch; 1718 1719 case TemplateArgument::Integral: 1720 if (Arg.getKind() == TemplateArgument::Integral) { 1721 if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral())) 1722 return Sema::TDK_Success; 1723 1724 Info.FirstArg = Param; 1725 Info.SecondArg = Arg; 1726 return Sema::TDK_NonDeducedMismatch; 1727 } 1728 1729 if (Arg.getKind() == TemplateArgument::Expression) { 1730 Info.FirstArg = Param; 1731 Info.SecondArg = Arg; 1732 return Sema::TDK_NonDeducedMismatch; 1733 } 1734 1735 Info.FirstArg = Param; 1736 Info.SecondArg = Arg; 1737 return Sema::TDK_NonDeducedMismatch; 1738 1739 case TemplateArgument::Expression: { 1740 if (NonTypeTemplateParmDecl *NTTP 1741 = getDeducedParameterFromExpr(Param.getAsExpr())) { 1742 if (Arg.getKind() == TemplateArgument::Integral) 1743 return DeduceNonTypeTemplateArgument(S, NTTP, 1744 Arg.getAsIntegral(), 1745 Arg.getIntegralType(), 1746 /*ArrayBound=*/false, 1747 Info, Deduced); 1748 if (Arg.getKind() == TemplateArgument::Expression) 1749 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(), 1750 Info, Deduced); 1751 if (Arg.getKind() == TemplateArgument::Declaration) 1752 return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(), 1753 Info, Deduced); 1754 1755 Info.FirstArg = Param; 1756 Info.SecondArg = Arg; 1757 return Sema::TDK_NonDeducedMismatch; 1758 } 1759 1760 // Can't deduce anything, but that's okay. 1761 return Sema::TDK_Success; 1762 } 1763 case TemplateArgument::Pack: 1764 llvm_unreachable("Argument packs should be expanded by the caller!"); 1765 } 1766 1767 llvm_unreachable("Invalid TemplateArgument Kind!"); 1768 } 1769 1770 /// \brief Determine whether there is a template argument to be used for 1771 /// deduction. 1772 /// 1773 /// This routine "expands" argument packs in-place, overriding its input 1774 /// parameters so that \c Args[ArgIdx] will be the available template argument. 1775 /// 1776 /// \returns true if there is another template argument (which will be at 1777 /// \c Args[ArgIdx]), false otherwise. 1778 static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args, 1779 unsigned &ArgIdx, 1780 unsigned &NumArgs) { 1781 if (ArgIdx == NumArgs) 1782 return false; 1783 1784 const TemplateArgument &Arg = Args[ArgIdx]; 1785 if (Arg.getKind() != TemplateArgument::Pack) 1786 return true; 1787 1788 assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?"); 1789 Args = Arg.pack_begin(); 1790 NumArgs = Arg.pack_size(); 1791 ArgIdx = 0; 1792 return ArgIdx < NumArgs; 1793 } 1794 1795 /// \brief Determine whether the given set of template arguments has a pack 1796 /// expansion that is not the last template argument. 1797 static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args, 1798 unsigned NumArgs) { 1799 unsigned ArgIdx = 0; 1800 while (ArgIdx < NumArgs) { 1801 const TemplateArgument &Arg = Args[ArgIdx]; 1802 1803 // Unwrap argument packs. 1804 if (Args[ArgIdx].getKind() == TemplateArgument::Pack) { 1805 Args = Arg.pack_begin(); 1806 NumArgs = Arg.pack_size(); 1807 ArgIdx = 0; 1808 continue; 1809 } 1810 1811 ++ArgIdx; 1812 if (ArgIdx == NumArgs) 1813 return false; 1814 1815 if (Arg.isPackExpansion()) 1816 return true; 1817 } 1818 1819 return false; 1820 } 1821 1822 static Sema::TemplateDeductionResult 1823 DeduceTemplateArguments(Sema &S, 1824 TemplateParameterList *TemplateParams, 1825 const TemplateArgument *Params, unsigned NumParams, 1826 const TemplateArgument *Args, unsigned NumArgs, 1827 TemplateDeductionInfo &Info, 1828 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1829 // C++0x [temp.deduct.type]p9: 1830 // If the template argument list of P contains a pack expansion that is not 1831 // the last template argument, the entire template argument list is a 1832 // non-deduced context. 1833 if (hasPackExpansionBeforeEnd(Params, NumParams)) 1834 return Sema::TDK_Success; 1835 1836 // C++0x [temp.deduct.type]p9: 1837 // If P has a form that contains <T> or <i>, then each argument Pi of the 1838 // respective template argument list P is compared with the corresponding 1839 // argument Ai of the corresponding template argument list of A. 1840 unsigned ArgIdx = 0, ParamIdx = 0; 1841 for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams); 1842 ++ParamIdx) { 1843 if (!Params[ParamIdx].isPackExpansion()) { 1844 // The simple case: deduce template arguments by matching Pi and Ai. 1845 1846 // Check whether we have enough arguments. 1847 if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs)) 1848 return Sema::TDK_Success; 1849 1850 if (Args[ArgIdx].isPackExpansion()) { 1851 // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here, 1852 // but applied to pack expansions that are template arguments. 1853 return Sema::TDK_MiscellaneousDeductionFailure; 1854 } 1855 1856 // Perform deduction for this Pi/Ai pair. 1857 if (Sema::TemplateDeductionResult Result 1858 = DeduceTemplateArguments(S, TemplateParams, 1859 Params[ParamIdx], Args[ArgIdx], 1860 Info, Deduced)) 1861 return Result; 1862 1863 // Move to the next argument. 1864 ++ArgIdx; 1865 continue; 1866 } 1867 1868 // The parameter is a pack expansion. 1869 1870 // C++0x [temp.deduct.type]p9: 1871 // If Pi is a pack expansion, then the pattern of Pi is compared with 1872 // each remaining argument in the template argument list of A. Each 1873 // comparison deduces template arguments for subsequent positions in the 1874 // template parameter packs expanded by Pi. 1875 TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern(); 1876 1877 // FIXME: If there are no remaining arguments, we can bail out early 1878 // and set any deduced parameter packs to an empty argument pack. 1879 // The latter part of this is a (minor) correctness issue. 1880 1881 // Prepare to deduce the packs within the pattern. 1882 PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern); 1883 1884 // Keep track of the deduced template arguments for each parameter pack 1885 // expanded by this pack expansion (the outer index) and for each 1886 // template argument (the inner SmallVectors). 1887 bool HasAnyArguments = false; 1888 for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) { 1889 HasAnyArguments = true; 1890 1891 // Deduce template arguments from the pattern. 1892 if (Sema::TemplateDeductionResult Result 1893 = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx], 1894 Info, Deduced)) 1895 return Result; 1896 1897 PackScope.nextPackElement(); 1898 } 1899 1900 // Build argument packs for each of the parameter packs expanded by this 1901 // pack expansion. 1902 if (auto Result = PackScope.finish(HasAnyArguments)) 1903 return Result; 1904 } 1905 1906 return Sema::TDK_Success; 1907 } 1908 1909 static Sema::TemplateDeductionResult 1910 DeduceTemplateArguments(Sema &S, 1911 TemplateParameterList *TemplateParams, 1912 const TemplateArgumentList &ParamList, 1913 const TemplateArgumentList &ArgList, 1914 TemplateDeductionInfo &Info, 1915 SmallVectorImpl<DeducedTemplateArgument> &Deduced) { 1916 return DeduceTemplateArguments(S, TemplateParams, 1917 ParamList.data(), ParamList.size(), 1918 ArgList.data(), ArgList.size(), 1919 Info, Deduced); 1920 } 1921 1922 /// \brief Determine whether two template arguments are the same. 1923 static bool isSameTemplateArg(ASTContext &Context, 1924 const TemplateArgument &X, 1925 const TemplateArgument &Y) { 1926 if (X.getKind() != Y.getKind()) 1927 return false; 1928 1929 switch (X.getKind()) { 1930 case TemplateArgument::Null: 1931 llvm_unreachable("Comparing NULL template argument"); 1932 1933 case TemplateArgument::Type: 1934 return Context.getCanonicalType(X.getAsType()) == 1935 Context.getCanonicalType(Y.getAsType()); 1936 1937 case TemplateArgument::Declaration: 1938 return isSameDeclaration(X.getAsDecl(), Y.getAsDecl()); 1939 1940 case TemplateArgument::NullPtr: 1941 return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()); 1942 1943 case TemplateArgument::Template: 1944 case TemplateArgument::TemplateExpansion: 1945 return Context.getCanonicalTemplateName( 1946 X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() == 1947 Context.getCanonicalTemplateName( 1948 Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer(); 1949 1950 case TemplateArgument::Integral: 1951 return X.getAsIntegral() == Y.getAsIntegral(); 1952 1953 case TemplateArgument::Expression: { 1954 llvm::FoldingSetNodeID XID, YID; 1955 X.getAsExpr()->Profile(XID, Context, true); 1956 Y.getAsExpr()->Profile(YID, Context, true); 1957 return XID == YID; 1958 } 1959 1960 case TemplateArgument::Pack: 1961 if (X.pack_size() != Y.pack_size()) 1962 return false; 1963 1964 for (TemplateArgument::pack_iterator XP = X.pack_begin(), 1965 XPEnd = X.pack_end(), 1966 YP = Y.pack_begin(); 1967 XP != XPEnd; ++XP, ++YP) 1968 if (!isSameTemplateArg(Context, *XP, *YP)) 1969 return false; 1970 1971 return true; 1972 } 1973 1974 llvm_unreachable("Invalid TemplateArgument Kind!"); 1975 } 1976 1977 /// \brief Allocate a TemplateArgumentLoc where all locations have 1978 /// been initialized to the given location. 1979 /// 1980 /// \param S The semantic analysis object. 1981 /// 1982 /// \param Arg The template argument we are producing template argument 1983 /// location information for. 1984 /// 1985 /// \param NTTPType For a declaration template argument, the type of 1986 /// the non-type template parameter that corresponds to this template 1987 /// argument. 1988 /// 1989 /// \param Loc The source location to use for the resulting template 1990 /// argument. 1991 static TemplateArgumentLoc 1992 getTrivialTemplateArgumentLoc(Sema &S, 1993 const TemplateArgument &Arg, 1994 QualType NTTPType, 1995 SourceLocation Loc) { 1996 switch (Arg.getKind()) { 1997 case TemplateArgument::Null: 1998 llvm_unreachable("Can't get a NULL template argument here"); 1999 2000 case TemplateArgument::Type: 2001 return TemplateArgumentLoc(Arg, 2002 S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc)); 2003 2004 case TemplateArgument::Declaration: { 2005 Expr *E 2006 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2007 .getAs<Expr>(); 2008 return TemplateArgumentLoc(TemplateArgument(E), E); 2009 } 2010 2011 case TemplateArgument::NullPtr: { 2012 Expr *E 2013 = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc) 2014 .getAs<Expr>(); 2015 return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true), 2016 E); 2017 } 2018 2019 case TemplateArgument::Integral: { 2020 Expr *E 2021 = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>(); 2022 return TemplateArgumentLoc(TemplateArgument(E), E); 2023 } 2024 2025 case TemplateArgument::Template: 2026 case TemplateArgument::TemplateExpansion: { 2027 NestedNameSpecifierLocBuilder Builder; 2028 TemplateName Template = Arg.getAsTemplate(); 2029 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) 2030 Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc); 2031 else if (QualifiedTemplateName *QTN = 2032 Template.getAsQualifiedTemplateName()) 2033 Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc); 2034 2035 if (Arg.getKind() == TemplateArgument::Template) 2036 return TemplateArgumentLoc(Arg, 2037 Builder.getWithLocInContext(S.Context), 2038 Loc); 2039 2040 2041 return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context), 2042 Loc, Loc); 2043 } 2044 2045 case TemplateArgument::Expression: 2046 return TemplateArgumentLoc(Arg, Arg.getAsExpr()); 2047 2048 case TemplateArgument::Pack: 2049 return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo()); 2050 } 2051 2052 llvm_unreachable("Invalid TemplateArgument Kind!"); 2053 } 2054 2055 2056 /// \brief Convert the given deduced template argument and add it to the set of 2057 /// fully-converted template arguments. 2058 static bool 2059 ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param, 2060 DeducedTemplateArgument Arg, 2061 NamedDecl *Template, 2062 QualType NTTPType, 2063 unsigned ArgumentPackIndex, 2064 TemplateDeductionInfo &Info, 2065 bool InFunctionTemplate, 2066 SmallVectorImpl<TemplateArgument> &Output) { 2067 if (Arg.getKind() == TemplateArgument::Pack) { 2068 // This is a template argument pack, so check each of its arguments against 2069 // the template parameter. 2070 SmallVector<TemplateArgument, 2> PackedArgsBuilder; 2071 for (const auto &P : Arg.pack_elements()) { 2072 // When converting the deduced template argument, append it to the 2073 // general output list. We need to do this so that the template argument 2074 // checking logic has all of the prior template arguments available. 2075 DeducedTemplateArgument InnerArg(P); 2076 InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound()); 2077 if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template, 2078 NTTPType, PackedArgsBuilder.size(), 2079 Info, InFunctionTemplate, Output)) 2080 return true; 2081 2082 // Move the converted template argument into our argument pack. 2083 PackedArgsBuilder.push_back(Output.pop_back_val()); 2084 } 2085 2086 // Create the resulting argument pack. 2087 Output.push_back( 2088 TemplateArgument::CreatePackCopy(S.Context, PackedArgsBuilder)); 2089 return false; 2090 } 2091 2092 // Convert the deduced template argument into a template 2093 // argument that we can check, almost as if the user had written 2094 // the template argument explicitly. 2095 TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType, 2096 Info.getLocation()); 2097 2098 // Check the template argument, converting it as necessary. 2099 return S.CheckTemplateArgument(Param, ArgLoc, 2100 Template, 2101 Template->getLocation(), 2102 Template->getSourceRange().getEnd(), 2103 ArgumentPackIndex, 2104 Output, 2105 InFunctionTemplate 2106 ? (Arg.wasDeducedFromArrayBound() 2107 ? Sema::CTAK_DeducedFromArrayBound 2108 : Sema::CTAK_Deduced) 2109 : Sema::CTAK_Specified); 2110 } 2111 2112 /// Complete template argument deduction for a class template partial 2113 /// specialization. 2114 static Sema::TemplateDeductionResult 2115 FinishTemplateArgumentDeduction(Sema &S, 2116 ClassTemplatePartialSpecializationDecl *Partial, 2117 const TemplateArgumentList &TemplateArgs, 2118 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2119 TemplateDeductionInfo &Info) { 2120 // Unevaluated SFINAE context. 2121 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 2122 Sema::SFINAETrap Trap(S); 2123 2124 Sema::ContextRAII SavedContext(S, Partial); 2125 2126 // C++ [temp.deduct.type]p2: 2127 // [...] or if any template argument remains neither deduced nor 2128 // explicitly specified, template argument deduction fails. 2129 SmallVector<TemplateArgument, 4> Builder; 2130 TemplateParameterList *PartialParams = Partial->getTemplateParameters(); 2131 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) { 2132 NamedDecl *Param = PartialParams->getParam(I); 2133 if (Deduced[I].isNull()) { 2134 Info.Param = makeTemplateParameter(Param); 2135 return Sema::TDK_Incomplete; 2136 } 2137 2138 // We have deduced this argument, so it still needs to be 2139 // checked and converted. 2140 2141 // First, for a non-type template parameter type that is 2142 // initialized by a declaration, we need the type of the 2143 // corresponding non-type template parameter. 2144 QualType NTTPType; 2145 if (NonTypeTemplateParmDecl *NTTP 2146 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2147 NTTPType = NTTP->getType(); 2148 if (NTTPType->isDependentType()) { 2149 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2150 Builder.data(), Builder.size()); 2151 NTTPType = S.SubstType(NTTPType, 2152 MultiLevelTemplateArgumentList(TemplateArgs), 2153 NTTP->getLocation(), 2154 NTTP->getDeclName()); 2155 if (NTTPType.isNull()) { 2156 Info.Param = makeTemplateParameter(Param); 2157 // FIXME: These template arguments are temporary. Free them! 2158 Info.reset(TemplateArgumentList::CreateCopy(S.Context, 2159 Builder.data(), 2160 Builder.size())); 2161 return Sema::TDK_SubstitutionFailure; 2162 } 2163 } 2164 } 2165 2166 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], 2167 Partial, NTTPType, 0, Info, false, 2168 Builder)) { 2169 Info.Param = makeTemplateParameter(Param); 2170 // FIXME: These template arguments are temporary. Free them! 2171 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2172 Builder.size())); 2173 return Sema::TDK_SubstitutionFailure; 2174 } 2175 } 2176 2177 // Form the template argument list from the deduced template arguments. 2178 TemplateArgumentList *DeducedArgumentList 2179 = TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2180 Builder.size()); 2181 2182 Info.reset(DeducedArgumentList); 2183 2184 // Substitute the deduced template arguments into the template 2185 // arguments of the class template partial specialization, and 2186 // verify that the instantiated template arguments are both valid 2187 // and are equivalent to the template arguments originally provided 2188 // to the class template. 2189 LocalInstantiationScope InstScope(S); 2190 ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate(); 2191 const ASTTemplateArgumentListInfo *PartialTemplArgInfo 2192 = Partial->getTemplateArgsAsWritten(); 2193 const TemplateArgumentLoc *PartialTemplateArgs 2194 = PartialTemplArgInfo->getTemplateArgs(); 2195 2196 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2197 PartialTemplArgInfo->RAngleLoc); 2198 2199 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2200 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2201 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2202 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2203 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2204 2205 Decl *Param 2206 = const_cast<NamedDecl *>( 2207 Partial->getTemplateParameters()->getParam(ParamIdx)); 2208 Info.Param = makeTemplateParameter(Param); 2209 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2210 return Sema::TDK_SubstitutionFailure; 2211 } 2212 2213 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2214 if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(), 2215 InstArgs, false, ConvertedInstArgs)) 2216 return Sema::TDK_SubstitutionFailure; 2217 2218 TemplateParameterList *TemplateParams 2219 = ClassTemplate->getTemplateParameters(); 2220 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2221 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2222 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2223 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2224 Info.FirstArg = TemplateArgs[I]; 2225 Info.SecondArg = InstArg; 2226 return Sema::TDK_NonDeducedMismatch; 2227 } 2228 } 2229 2230 if (Trap.hasErrorOccurred()) 2231 return Sema::TDK_SubstitutionFailure; 2232 2233 return Sema::TDK_Success; 2234 } 2235 2236 /// \brief Perform template argument deduction to determine whether 2237 /// the given template arguments match the given class template 2238 /// partial specialization per C++ [temp.class.spec.match]. 2239 Sema::TemplateDeductionResult 2240 Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial, 2241 const TemplateArgumentList &TemplateArgs, 2242 TemplateDeductionInfo &Info) { 2243 if (Partial->isInvalidDecl()) 2244 return TDK_Invalid; 2245 2246 // C++ [temp.class.spec.match]p2: 2247 // A partial specialization matches a given actual template 2248 // argument list if the template arguments of the partial 2249 // specialization can be deduced from the actual template argument 2250 // list (14.8.2). 2251 2252 // Unevaluated SFINAE context. 2253 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 2254 SFINAETrap Trap(*this); 2255 2256 SmallVector<DeducedTemplateArgument, 4> Deduced; 2257 Deduced.resize(Partial->getTemplateParameters()->size()); 2258 if (TemplateDeductionResult Result 2259 = ::DeduceTemplateArguments(*this, 2260 Partial->getTemplateParameters(), 2261 Partial->getTemplateArgs(), 2262 TemplateArgs, Info, Deduced)) 2263 return Result; 2264 2265 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2266 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2267 Info); 2268 if (Inst.isInvalid()) 2269 return TDK_InstantiationDepth; 2270 2271 if (Trap.hasErrorOccurred()) 2272 return Sema::TDK_SubstitutionFailure; 2273 2274 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs, 2275 Deduced, Info); 2276 } 2277 2278 /// Complete template argument deduction for a variable template partial 2279 /// specialization. 2280 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version? 2281 /// May require unifying ClassTemplate(Partial)SpecializationDecl and 2282 /// VarTemplate(Partial)SpecializationDecl with a new data 2283 /// structure Template(Partial)SpecializationDecl, and 2284 /// using Template(Partial)SpecializationDecl as input type. 2285 static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction( 2286 Sema &S, VarTemplatePartialSpecializationDecl *Partial, 2287 const TemplateArgumentList &TemplateArgs, 2288 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2289 TemplateDeductionInfo &Info) { 2290 // Unevaluated SFINAE context. 2291 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 2292 Sema::SFINAETrap Trap(S); 2293 2294 // C++ [temp.deduct.type]p2: 2295 // [...] or if any template argument remains neither deduced nor 2296 // explicitly specified, template argument deduction fails. 2297 SmallVector<TemplateArgument, 4> Builder; 2298 TemplateParameterList *PartialParams = Partial->getTemplateParameters(); 2299 for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) { 2300 NamedDecl *Param = PartialParams->getParam(I); 2301 if (Deduced[I].isNull()) { 2302 Info.Param = makeTemplateParameter(Param); 2303 return Sema::TDK_Incomplete; 2304 } 2305 2306 // We have deduced this argument, so it still needs to be 2307 // checked and converted. 2308 2309 // First, for a non-type template parameter type that is 2310 // initialized by a declaration, we need the type of the 2311 // corresponding non-type template parameter. 2312 QualType NTTPType; 2313 if (NonTypeTemplateParmDecl *NTTP = 2314 dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2315 NTTPType = NTTP->getType(); 2316 if (NTTPType->isDependentType()) { 2317 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2318 Builder.data(), Builder.size()); 2319 NTTPType = 2320 S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs), 2321 NTTP->getLocation(), NTTP->getDeclName()); 2322 if (NTTPType.isNull()) { 2323 Info.Param = makeTemplateParameter(Param); 2324 // FIXME: These template arguments are temporary. Free them! 2325 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2326 Builder.size())); 2327 return Sema::TDK_SubstitutionFailure; 2328 } 2329 } 2330 } 2331 2332 if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType, 2333 0, Info, false, Builder)) { 2334 Info.Param = makeTemplateParameter(Param); 2335 // FIXME: These template arguments are temporary. Free them! 2336 Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(), 2337 Builder.size())); 2338 return Sema::TDK_SubstitutionFailure; 2339 } 2340 } 2341 2342 // Form the template argument list from the deduced template arguments. 2343 TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy( 2344 S.Context, Builder.data(), Builder.size()); 2345 2346 Info.reset(DeducedArgumentList); 2347 2348 // Substitute the deduced template arguments into the template 2349 // arguments of the class template partial specialization, and 2350 // verify that the instantiated template arguments are both valid 2351 // and are equivalent to the template arguments originally provided 2352 // to the class template. 2353 LocalInstantiationScope InstScope(S); 2354 VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate(); 2355 const ASTTemplateArgumentListInfo *PartialTemplArgInfo 2356 = Partial->getTemplateArgsAsWritten(); 2357 const TemplateArgumentLoc *PartialTemplateArgs 2358 = PartialTemplArgInfo->getTemplateArgs(); 2359 2360 TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc, 2361 PartialTemplArgInfo->RAngleLoc); 2362 2363 if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs, 2364 InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) { 2365 unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx; 2366 if (ParamIdx >= Partial->getTemplateParameters()->size()) 2367 ParamIdx = Partial->getTemplateParameters()->size() - 1; 2368 2369 Decl *Param = const_cast<NamedDecl *>( 2370 Partial->getTemplateParameters()->getParam(ParamIdx)); 2371 Info.Param = makeTemplateParameter(Param); 2372 Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument(); 2373 return Sema::TDK_SubstitutionFailure; 2374 } 2375 SmallVector<TemplateArgument, 4> ConvertedInstArgs; 2376 if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs, 2377 false, ConvertedInstArgs)) 2378 return Sema::TDK_SubstitutionFailure; 2379 2380 TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters(); 2381 for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) { 2382 TemplateArgument InstArg = ConvertedInstArgs.data()[I]; 2383 if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) { 2384 Info.Param = makeTemplateParameter(TemplateParams->getParam(I)); 2385 Info.FirstArg = TemplateArgs[I]; 2386 Info.SecondArg = InstArg; 2387 return Sema::TDK_NonDeducedMismatch; 2388 } 2389 } 2390 2391 if (Trap.hasErrorOccurred()) 2392 return Sema::TDK_SubstitutionFailure; 2393 2394 return Sema::TDK_Success; 2395 } 2396 2397 /// \brief Perform template argument deduction to determine whether 2398 /// the given template arguments match the given variable template 2399 /// partial specialization per C++ [temp.class.spec.match]. 2400 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version? 2401 /// May require unifying ClassTemplate(Partial)SpecializationDecl and 2402 /// VarTemplate(Partial)SpecializationDecl with a new data 2403 /// structure Template(Partial)SpecializationDecl, and 2404 /// using Template(Partial)SpecializationDecl as input type. 2405 Sema::TemplateDeductionResult 2406 Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial, 2407 const TemplateArgumentList &TemplateArgs, 2408 TemplateDeductionInfo &Info) { 2409 if (Partial->isInvalidDecl()) 2410 return TDK_Invalid; 2411 2412 // C++ [temp.class.spec.match]p2: 2413 // A partial specialization matches a given actual template 2414 // argument list if the template arguments of the partial 2415 // specialization can be deduced from the actual template argument 2416 // list (14.8.2). 2417 2418 // Unevaluated SFINAE context. 2419 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 2420 SFINAETrap Trap(*this); 2421 2422 SmallVector<DeducedTemplateArgument, 4> Deduced; 2423 Deduced.resize(Partial->getTemplateParameters()->size()); 2424 if (TemplateDeductionResult Result = ::DeduceTemplateArguments( 2425 *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(), 2426 TemplateArgs, Info, Deduced)) 2427 return Result; 2428 2429 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2430 InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs, 2431 Info); 2432 if (Inst.isInvalid()) 2433 return TDK_InstantiationDepth; 2434 2435 if (Trap.hasErrorOccurred()) 2436 return Sema::TDK_SubstitutionFailure; 2437 2438 return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs, 2439 Deduced, Info); 2440 } 2441 2442 /// \brief Determine whether the given type T is a simple-template-id type. 2443 static bool isSimpleTemplateIdType(QualType T) { 2444 if (const TemplateSpecializationType *Spec 2445 = T->getAs<TemplateSpecializationType>()) 2446 return Spec->getTemplateName().getAsTemplateDecl() != nullptr; 2447 2448 return false; 2449 } 2450 2451 /// \brief Substitute the explicitly-provided template arguments into the 2452 /// given function template according to C++ [temp.arg.explicit]. 2453 /// 2454 /// \param FunctionTemplate the function template into which the explicit 2455 /// template arguments will be substituted. 2456 /// 2457 /// \param ExplicitTemplateArgs the explicitly-specified template 2458 /// arguments. 2459 /// 2460 /// \param Deduced the deduced template arguments, which will be populated 2461 /// with the converted and checked explicit template arguments. 2462 /// 2463 /// \param ParamTypes will be populated with the instantiated function 2464 /// parameters. 2465 /// 2466 /// \param FunctionType if non-NULL, the result type of the function template 2467 /// will also be instantiated and the pointed-to value will be updated with 2468 /// the instantiated function type. 2469 /// 2470 /// \param Info if substitution fails for any reason, this object will be 2471 /// populated with more information about the failure. 2472 /// 2473 /// \returns TDK_Success if substitution was successful, or some failure 2474 /// condition. 2475 Sema::TemplateDeductionResult 2476 Sema::SubstituteExplicitTemplateArguments( 2477 FunctionTemplateDecl *FunctionTemplate, 2478 TemplateArgumentListInfo &ExplicitTemplateArgs, 2479 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2480 SmallVectorImpl<QualType> &ParamTypes, 2481 QualType *FunctionType, 2482 TemplateDeductionInfo &Info) { 2483 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 2484 TemplateParameterList *TemplateParams 2485 = FunctionTemplate->getTemplateParameters(); 2486 2487 if (ExplicitTemplateArgs.size() == 0) { 2488 // No arguments to substitute; just copy over the parameter types and 2489 // fill in the function type. 2490 for (auto P : Function->params()) 2491 ParamTypes.push_back(P->getType()); 2492 2493 if (FunctionType) 2494 *FunctionType = Function->getType(); 2495 return TDK_Success; 2496 } 2497 2498 // Unevaluated SFINAE context. 2499 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 2500 SFINAETrap Trap(*this); 2501 2502 // C++ [temp.arg.explicit]p3: 2503 // Template arguments that are present shall be specified in the 2504 // declaration order of their corresponding template-parameters. The 2505 // template argument list shall not specify more template-arguments than 2506 // there are corresponding template-parameters. 2507 SmallVector<TemplateArgument, 4> Builder; 2508 2509 // Enter a new template instantiation context where we check the 2510 // explicitly-specified template arguments against this function template, 2511 // and then substitute them into the function parameter types. 2512 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2513 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate, 2514 DeducedArgs, 2515 ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution, 2516 Info); 2517 if (Inst.isInvalid()) 2518 return TDK_InstantiationDepth; 2519 2520 if (CheckTemplateArgumentList(FunctionTemplate, 2521 SourceLocation(), 2522 ExplicitTemplateArgs, 2523 true, 2524 Builder) || Trap.hasErrorOccurred()) { 2525 unsigned Index = Builder.size(); 2526 if (Index >= TemplateParams->size()) 2527 Index = TemplateParams->size() - 1; 2528 Info.Param = makeTemplateParameter(TemplateParams->getParam(Index)); 2529 return TDK_InvalidExplicitArguments; 2530 } 2531 2532 // Form the template argument list from the explicitly-specified 2533 // template arguments. 2534 TemplateArgumentList *ExplicitArgumentList 2535 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); 2536 Info.reset(ExplicitArgumentList); 2537 2538 // Template argument deduction and the final substitution should be 2539 // done in the context of the templated declaration. Explicit 2540 // argument substitution, on the other hand, needs to happen in the 2541 // calling context. 2542 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 2543 2544 // If we deduced template arguments for a template parameter pack, 2545 // note that the template argument pack is partially substituted and record 2546 // the explicit template arguments. They'll be used as part of deduction 2547 // for this template parameter pack. 2548 for (unsigned I = 0, N = Builder.size(); I != N; ++I) { 2549 const TemplateArgument &Arg = Builder[I]; 2550 if (Arg.getKind() == TemplateArgument::Pack) { 2551 CurrentInstantiationScope->SetPartiallySubstitutedPack( 2552 TemplateParams->getParam(I), 2553 Arg.pack_begin(), 2554 Arg.pack_size()); 2555 break; 2556 } 2557 } 2558 2559 const FunctionProtoType *Proto 2560 = Function->getType()->getAs<FunctionProtoType>(); 2561 assert(Proto && "Function template does not have a prototype?"); 2562 2563 // Isolate our substituted parameters from our caller. 2564 LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true); 2565 2566 // Instantiate the types of each of the function parameters given the 2567 // explicitly-specified template arguments. If the function has a trailing 2568 // return type, substitute it after the arguments to ensure we substitute 2569 // in lexical order. 2570 if (Proto->hasTrailingReturn()) { 2571 if (SubstParmTypes(Function->getLocation(), 2572 Function->param_begin(), Function->getNumParams(), 2573 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 2574 ParamTypes)) 2575 return TDK_SubstitutionFailure; 2576 } 2577 2578 // Instantiate the return type. 2579 QualType ResultType; 2580 { 2581 // C++11 [expr.prim.general]p3: 2582 // If a declaration declares a member function or member function 2583 // template of a class X, the expression this is a prvalue of type 2584 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 2585 // and the end of the function-definition, member-declarator, or 2586 // declarator. 2587 unsigned ThisTypeQuals = 0; 2588 CXXRecordDecl *ThisContext = nullptr; 2589 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) { 2590 ThisContext = Method->getParent(); 2591 ThisTypeQuals = Method->getTypeQualifiers(); 2592 } 2593 2594 CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals, 2595 getLangOpts().CPlusPlus11); 2596 2597 ResultType = 2598 SubstType(Proto->getReturnType(), 2599 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 2600 Function->getTypeSpecStartLoc(), Function->getDeclName()); 2601 if (ResultType.isNull() || Trap.hasErrorOccurred()) 2602 return TDK_SubstitutionFailure; 2603 } 2604 2605 // Instantiate the types of each of the function parameters given the 2606 // explicitly-specified template arguments if we didn't do so earlier. 2607 if (!Proto->hasTrailingReturn() && 2608 SubstParmTypes(Function->getLocation(), 2609 Function->param_begin(), Function->getNumParams(), 2610 MultiLevelTemplateArgumentList(*ExplicitArgumentList), 2611 ParamTypes)) 2612 return TDK_SubstitutionFailure; 2613 2614 if (FunctionType) { 2615 *FunctionType = BuildFunctionType(ResultType, ParamTypes, 2616 Function->getLocation(), 2617 Function->getDeclName(), 2618 Proto->getExtProtoInfo()); 2619 if (FunctionType->isNull() || Trap.hasErrorOccurred()) 2620 return TDK_SubstitutionFailure; 2621 } 2622 2623 // C++ [temp.arg.explicit]p2: 2624 // Trailing template arguments that can be deduced (14.8.2) may be 2625 // omitted from the list of explicit template-arguments. If all of the 2626 // template arguments can be deduced, they may all be omitted; in this 2627 // case, the empty template argument list <> itself may also be omitted. 2628 // 2629 // Take all of the explicitly-specified arguments and put them into 2630 // the set of deduced template arguments. Explicitly-specified 2631 // parameter packs, however, will be set to NULL since the deduction 2632 // mechanisms handle explicitly-specified argument packs directly. 2633 Deduced.reserve(TemplateParams->size()); 2634 for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) { 2635 const TemplateArgument &Arg = ExplicitArgumentList->get(I); 2636 if (Arg.getKind() == TemplateArgument::Pack) 2637 Deduced.push_back(DeducedTemplateArgument()); 2638 else 2639 Deduced.push_back(Arg); 2640 } 2641 2642 return TDK_Success; 2643 } 2644 2645 /// \brief Check whether the deduced argument type for a call to a function 2646 /// template matches the actual argument type per C++ [temp.deduct.call]p4. 2647 static bool 2648 CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg, 2649 QualType DeducedA) { 2650 ASTContext &Context = S.Context; 2651 2652 QualType A = OriginalArg.OriginalArgType; 2653 QualType OriginalParamType = OriginalArg.OriginalParamType; 2654 2655 // Check for type equality (top-level cv-qualifiers are ignored). 2656 if (Context.hasSameUnqualifiedType(A, DeducedA)) 2657 return false; 2658 2659 // Strip off references on the argument types; they aren't needed for 2660 // the following checks. 2661 if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>()) 2662 DeducedA = DeducedARef->getPointeeType(); 2663 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 2664 A = ARef->getPointeeType(); 2665 2666 // C++ [temp.deduct.call]p4: 2667 // [...] However, there are three cases that allow a difference: 2668 // - If the original P is a reference type, the deduced A (i.e., the 2669 // type referred to by the reference) can be more cv-qualified than 2670 // the transformed A. 2671 if (const ReferenceType *OriginalParamRef 2672 = OriginalParamType->getAs<ReferenceType>()) { 2673 // We don't want to keep the reference around any more. 2674 OriginalParamType = OriginalParamRef->getPointeeType(); 2675 2676 Qualifiers AQuals = A.getQualifiers(); 2677 Qualifiers DeducedAQuals = DeducedA.getQualifiers(); 2678 2679 // Under Objective-C++ ARC, the deduced type may have implicitly 2680 // been given strong or (when dealing with a const reference) 2681 // unsafe_unretained lifetime. If so, update the original 2682 // qualifiers to include this lifetime. 2683 if (S.getLangOpts().ObjCAutoRefCount && 2684 ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong && 2685 AQuals.getObjCLifetime() == Qualifiers::OCL_None) || 2686 (DeducedAQuals.hasConst() && 2687 DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) { 2688 AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime()); 2689 } 2690 2691 if (AQuals == DeducedAQuals) { 2692 // Qualifiers match; there's nothing to do. 2693 } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) { 2694 return true; 2695 } else { 2696 // Qualifiers are compatible, so have the argument type adopt the 2697 // deduced argument type's qualifiers as if we had performed the 2698 // qualification conversion. 2699 A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals); 2700 } 2701 } 2702 2703 // - The transformed A can be another pointer or pointer to member 2704 // type that can be converted to the deduced A via a qualification 2705 // conversion. 2706 // 2707 // Also allow conversions which merely strip [[noreturn]] from function types 2708 // (recursively) as an extension. 2709 // FIXME: Currently, this doesn't play nicely with qualification conversions. 2710 bool ObjCLifetimeConversion = false; 2711 QualType ResultTy; 2712 if ((A->isAnyPointerType() || A->isMemberPointerType()) && 2713 (S.IsQualificationConversion(A, DeducedA, false, 2714 ObjCLifetimeConversion) || 2715 S.IsNoReturnConversion(A, DeducedA, ResultTy))) 2716 return false; 2717 2718 2719 // - If P is a class and P has the form simple-template-id, then the 2720 // transformed A can be a derived class of the deduced A. [...] 2721 // [...] Likewise, if P is a pointer to a class of the form 2722 // simple-template-id, the transformed A can be a pointer to a 2723 // derived class pointed to by the deduced A. 2724 if (const PointerType *OriginalParamPtr 2725 = OriginalParamType->getAs<PointerType>()) { 2726 if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) { 2727 if (const PointerType *APtr = A->getAs<PointerType>()) { 2728 if (A->getPointeeType()->isRecordType()) { 2729 OriginalParamType = OriginalParamPtr->getPointeeType(); 2730 DeducedA = DeducedAPtr->getPointeeType(); 2731 A = APtr->getPointeeType(); 2732 } 2733 } 2734 } 2735 } 2736 2737 if (Context.hasSameUnqualifiedType(A, DeducedA)) 2738 return false; 2739 2740 if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) && 2741 S.IsDerivedFrom(SourceLocation(), A, DeducedA)) 2742 return false; 2743 2744 return true; 2745 } 2746 2747 /// \brief Finish template argument deduction for a function template, 2748 /// checking the deduced template arguments for completeness and forming 2749 /// the function template specialization. 2750 /// 2751 /// \param OriginalCallArgs If non-NULL, the original call arguments against 2752 /// which the deduced argument types should be compared. 2753 Sema::TemplateDeductionResult 2754 Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate, 2755 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 2756 unsigned NumExplicitlySpecified, 2757 FunctionDecl *&Specialization, 2758 TemplateDeductionInfo &Info, 2759 SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs, 2760 bool PartialOverloading) { 2761 TemplateParameterList *TemplateParams 2762 = FunctionTemplate->getTemplateParameters(); 2763 2764 // Unevaluated SFINAE context. 2765 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 2766 SFINAETrap Trap(*this); 2767 2768 // Enter a new template instantiation context while we instantiate the 2769 // actual function declaration. 2770 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end()); 2771 InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate, 2772 DeducedArgs, 2773 ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution, 2774 Info); 2775 if (Inst.isInvalid()) 2776 return TDK_InstantiationDepth; 2777 2778 ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl()); 2779 2780 // C++ [temp.deduct.type]p2: 2781 // [...] or if any template argument remains neither deduced nor 2782 // explicitly specified, template argument deduction fails. 2783 SmallVector<TemplateArgument, 4> Builder; 2784 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) { 2785 NamedDecl *Param = TemplateParams->getParam(I); 2786 2787 if (!Deduced[I].isNull()) { 2788 if (I < NumExplicitlySpecified) { 2789 // We have already fully type-checked and converted this 2790 // argument, because it was explicitly-specified. Just record the 2791 // presence of this argument. 2792 Builder.push_back(Deduced[I]); 2793 // We may have had explicitly-specified template arguments for a 2794 // template parameter pack (that may or may not have been extended 2795 // via additional deduced arguments). 2796 if (Param->isParameterPack() && CurrentInstantiationScope) { 2797 if (CurrentInstantiationScope->getPartiallySubstitutedPack() == 2798 Param) { 2799 // Forget the partially-substituted pack; its substitution is now 2800 // complete. 2801 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2802 } 2803 } 2804 continue; 2805 } 2806 // We have deduced this argument, so it still needs to be 2807 // checked and converted. 2808 2809 // First, for a non-type template parameter type that is 2810 // initialized by a declaration, we need the type of the 2811 // corresponding non-type template parameter. 2812 QualType NTTPType; 2813 if (NonTypeTemplateParmDecl *NTTP 2814 = dyn_cast<NonTypeTemplateParmDecl>(Param)) { 2815 NTTPType = NTTP->getType(); 2816 if (NTTPType->isDependentType()) { 2817 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, 2818 Builder.data(), Builder.size()); 2819 NTTPType = SubstType(NTTPType, 2820 MultiLevelTemplateArgumentList(TemplateArgs), 2821 NTTP->getLocation(), 2822 NTTP->getDeclName()); 2823 if (NTTPType.isNull()) { 2824 Info.Param = makeTemplateParameter(Param); 2825 // FIXME: These template arguments are temporary. Free them! 2826 Info.reset(TemplateArgumentList::CreateCopy(Context, 2827 Builder.data(), 2828 Builder.size())); 2829 return TDK_SubstitutionFailure; 2830 } 2831 } 2832 } 2833 2834 if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I], 2835 FunctionTemplate, NTTPType, 0, Info, 2836 true, Builder)) { 2837 Info.Param = makeTemplateParameter(Param); 2838 // FIXME: These template arguments are temporary. Free them! 2839 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), 2840 Builder.size())); 2841 return TDK_SubstitutionFailure; 2842 } 2843 2844 continue; 2845 } 2846 2847 // C++0x [temp.arg.explicit]p3: 2848 // A trailing template parameter pack (14.5.3) not otherwise deduced will 2849 // be deduced to an empty sequence of template arguments. 2850 // FIXME: Where did the word "trailing" come from? 2851 if (Param->isTemplateParameterPack()) { 2852 // We may have had explicitly-specified template arguments for this 2853 // template parameter pack. If so, our empty deduction extends the 2854 // explicitly-specified set (C++0x [temp.arg.explicit]p9). 2855 const TemplateArgument *ExplicitArgs; 2856 unsigned NumExplicitArgs; 2857 if (CurrentInstantiationScope && 2858 CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs, 2859 &NumExplicitArgs) 2860 == Param) { 2861 Builder.push_back(TemplateArgument( 2862 llvm::makeArrayRef(ExplicitArgs, NumExplicitArgs))); 2863 2864 // Forget the partially-substituted pack; it's substitution is now 2865 // complete. 2866 CurrentInstantiationScope->ResetPartiallySubstitutedPack(); 2867 } else { 2868 Builder.push_back(TemplateArgument::getEmptyPack()); 2869 } 2870 continue; 2871 } 2872 2873 // Substitute into the default template argument, if available. 2874 bool HasDefaultArg = false; 2875 TemplateArgumentLoc DefArg 2876 = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate, 2877 FunctionTemplate->getLocation(), 2878 FunctionTemplate->getSourceRange().getEnd(), 2879 Param, 2880 Builder, HasDefaultArg); 2881 2882 // If there was no default argument, deduction is incomplete. 2883 if (DefArg.getArgument().isNull()) { 2884 Info.Param = makeTemplateParameter( 2885 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2886 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), 2887 Builder.size())); 2888 if (PartialOverloading) break; 2889 2890 return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete; 2891 } 2892 2893 // Check whether we can actually use the default argument. 2894 if (CheckTemplateArgument(Param, DefArg, 2895 FunctionTemplate, 2896 FunctionTemplate->getLocation(), 2897 FunctionTemplate->getSourceRange().getEnd(), 2898 0, Builder, 2899 CTAK_Specified)) { 2900 Info.Param = makeTemplateParameter( 2901 const_cast<NamedDecl *>(TemplateParams->getParam(I))); 2902 // FIXME: These template arguments are temporary. Free them! 2903 Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(), 2904 Builder.size())); 2905 return TDK_SubstitutionFailure; 2906 } 2907 2908 // If we get here, we successfully used the default template argument. 2909 } 2910 2911 // Form the template argument list from the deduced template arguments. 2912 TemplateArgumentList *DeducedArgumentList 2913 = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size()); 2914 Info.reset(DeducedArgumentList); 2915 2916 // Substitute the deduced template arguments into the function template 2917 // declaration to produce the function template specialization. 2918 DeclContext *Owner = FunctionTemplate->getDeclContext(); 2919 if (FunctionTemplate->getFriendObjectKind()) 2920 Owner = FunctionTemplate->getLexicalDeclContext(); 2921 Specialization = cast_or_null<FunctionDecl>( 2922 SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner, 2923 MultiLevelTemplateArgumentList(*DeducedArgumentList))); 2924 if (!Specialization || Specialization->isInvalidDecl()) 2925 return TDK_SubstitutionFailure; 2926 2927 assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() == 2928 FunctionTemplate->getCanonicalDecl()); 2929 2930 // If the template argument list is owned by the function template 2931 // specialization, release it. 2932 if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList && 2933 !Trap.hasErrorOccurred()) 2934 Info.take(); 2935 2936 // There may have been an error that did not prevent us from constructing a 2937 // declaration. Mark the declaration invalid and return with a substitution 2938 // failure. 2939 if (Trap.hasErrorOccurred()) { 2940 Specialization->setInvalidDecl(true); 2941 return TDK_SubstitutionFailure; 2942 } 2943 2944 if (OriginalCallArgs) { 2945 // C++ [temp.deduct.call]p4: 2946 // In general, the deduction process attempts to find template argument 2947 // values that will make the deduced A identical to A (after the type A 2948 // is transformed as described above). [...] 2949 for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) { 2950 OriginalCallArg OriginalArg = (*OriginalCallArgs)[I]; 2951 unsigned ParamIdx = OriginalArg.ArgIdx; 2952 2953 if (ParamIdx >= Specialization->getNumParams()) 2954 continue; 2955 2956 QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType(); 2957 if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA)) 2958 return Sema::TDK_SubstitutionFailure; 2959 } 2960 } 2961 2962 // If we suppressed any diagnostics while performing template argument 2963 // deduction, and if we haven't already instantiated this declaration, 2964 // keep track of these diagnostics. They'll be emitted if this specialization 2965 // is actually used. 2966 if (Info.diag_begin() != Info.diag_end()) { 2967 SuppressedDiagnosticsMap::iterator 2968 Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl()); 2969 if (Pos == SuppressedDiagnostics.end()) 2970 SuppressedDiagnostics[Specialization->getCanonicalDecl()] 2971 .append(Info.diag_begin(), Info.diag_end()); 2972 } 2973 2974 return TDK_Success; 2975 } 2976 2977 /// Gets the type of a function for template-argument-deducton 2978 /// purposes when it's considered as part of an overload set. 2979 static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R, 2980 FunctionDecl *Fn) { 2981 // We may need to deduce the return type of the function now. 2982 if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() && 2983 S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false)) 2984 return QualType(); 2985 2986 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn)) 2987 if (Method->isInstance()) { 2988 // An instance method that's referenced in a form that doesn't 2989 // look like a member pointer is just invalid. 2990 if (!R.HasFormOfMemberPointer) return QualType(); 2991 2992 return S.Context.getMemberPointerType(Fn->getType(), 2993 S.Context.getTypeDeclType(Method->getParent()).getTypePtr()); 2994 } 2995 2996 if (!R.IsAddressOfOperand) return Fn->getType(); 2997 return S.Context.getPointerType(Fn->getType()); 2998 } 2999 3000 /// Apply the deduction rules for overload sets. 3001 /// 3002 /// \return the null type if this argument should be treated as an 3003 /// undeduced context 3004 static QualType 3005 ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams, 3006 Expr *Arg, QualType ParamType, 3007 bool ParamWasReference) { 3008 3009 OverloadExpr::FindResult R = OverloadExpr::find(Arg); 3010 3011 OverloadExpr *Ovl = R.Expression; 3012 3013 // C++0x [temp.deduct.call]p4 3014 unsigned TDF = 0; 3015 if (ParamWasReference) 3016 TDF |= TDF_ParamWithReferenceType; 3017 if (R.IsAddressOfOperand) 3018 TDF |= TDF_IgnoreQualifiers; 3019 3020 // C++0x [temp.deduct.call]p6: 3021 // When P is a function type, pointer to function type, or pointer 3022 // to member function type: 3023 3024 if (!ParamType->isFunctionType() && 3025 !ParamType->isFunctionPointerType() && 3026 !ParamType->isMemberFunctionPointerType()) { 3027 if (Ovl->hasExplicitTemplateArgs()) { 3028 // But we can still look for an explicit specialization. 3029 if (FunctionDecl *ExplicitSpec 3030 = S.ResolveSingleFunctionTemplateSpecialization(Ovl)) 3031 return GetTypeOfFunction(S, R, ExplicitSpec); 3032 } 3033 3034 return QualType(); 3035 } 3036 3037 // Gather the explicit template arguments, if any. 3038 TemplateArgumentListInfo ExplicitTemplateArgs; 3039 if (Ovl->hasExplicitTemplateArgs()) 3040 Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs); 3041 QualType Match; 3042 for (UnresolvedSetIterator I = Ovl->decls_begin(), 3043 E = Ovl->decls_end(); I != E; ++I) { 3044 NamedDecl *D = (*I)->getUnderlyingDecl(); 3045 3046 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) { 3047 // - If the argument is an overload set containing one or more 3048 // function templates, the parameter is treated as a 3049 // non-deduced context. 3050 if (!Ovl->hasExplicitTemplateArgs()) 3051 return QualType(); 3052 3053 // Otherwise, see if we can resolve a function type 3054 FunctionDecl *Specialization = nullptr; 3055 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3056 if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs, 3057 Specialization, Info)) 3058 continue; 3059 3060 D = Specialization; 3061 } 3062 3063 FunctionDecl *Fn = cast<FunctionDecl>(D); 3064 QualType ArgType = GetTypeOfFunction(S, R, Fn); 3065 if (ArgType.isNull()) continue; 3066 3067 // Function-to-pointer conversion. 3068 if (!ParamWasReference && ParamType->isPointerType() && 3069 ArgType->isFunctionType()) 3070 ArgType = S.Context.getPointerType(ArgType); 3071 3072 // - If the argument is an overload set (not containing function 3073 // templates), trial argument deduction is attempted using each 3074 // of the members of the set. If deduction succeeds for only one 3075 // of the overload set members, that member is used as the 3076 // argument value for the deduction. If deduction succeeds for 3077 // more than one member of the overload set the parameter is 3078 // treated as a non-deduced context. 3079 3080 // We do all of this in a fresh context per C++0x [temp.deduct.type]p2: 3081 // Type deduction is done independently for each P/A pair, and 3082 // the deduced template argument values are then combined. 3083 // So we do not reject deductions which were made elsewhere. 3084 SmallVector<DeducedTemplateArgument, 8> 3085 Deduced(TemplateParams->size()); 3086 TemplateDeductionInfo Info(Ovl->getNameLoc()); 3087 Sema::TemplateDeductionResult Result 3088 = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3089 ArgType, Info, Deduced, TDF); 3090 if (Result) continue; 3091 if (!Match.isNull()) return QualType(); 3092 Match = ArgType; 3093 } 3094 3095 return Match; 3096 } 3097 3098 /// \brief Perform the adjustments to the parameter and argument types 3099 /// described in C++ [temp.deduct.call]. 3100 /// 3101 /// \returns true if the caller should not attempt to perform any template 3102 /// argument deduction based on this P/A pair because the argument is an 3103 /// overloaded function set that could not be resolved. 3104 static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S, 3105 TemplateParameterList *TemplateParams, 3106 QualType &ParamType, 3107 QualType &ArgType, 3108 Expr *Arg, 3109 unsigned &TDF) { 3110 // C++0x [temp.deduct.call]p3: 3111 // If P is a cv-qualified type, the top level cv-qualifiers of P's type 3112 // are ignored for type deduction. 3113 if (ParamType.hasQualifiers()) 3114 ParamType = ParamType.getUnqualifiedType(); 3115 3116 // [...] If P is a reference type, the type referred to by P is 3117 // used for type deduction. 3118 const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>(); 3119 if (ParamRefType) 3120 ParamType = ParamRefType->getPointeeType(); 3121 3122 // Overload sets usually make this parameter an undeduced context, 3123 // but there are sometimes special circumstances. Typically 3124 // involving a template-id-expr. 3125 if (ArgType == S.Context.OverloadTy) { 3126 ArgType = ResolveOverloadForDeduction(S, TemplateParams, 3127 Arg, ParamType, 3128 ParamRefType != nullptr); 3129 if (ArgType.isNull()) 3130 return true; 3131 } 3132 3133 if (ParamRefType) { 3134 // If the argument has incomplete array type, try to complete its type. 3135 if (ArgType->isIncompleteArrayType()) { 3136 S.completeExprArrayBound(Arg); 3137 ArgType = Arg->getType(); 3138 } 3139 3140 // C++0x [temp.deduct.call]p3: 3141 // If P is an rvalue reference to a cv-unqualified template 3142 // parameter and the argument is an lvalue, the type "lvalue 3143 // reference to A" is used in place of A for type deduction. 3144 if (ParamRefType->isRValueReferenceType() && 3145 !ParamType.getQualifiers() && 3146 isa<TemplateTypeParmType>(ParamType) && 3147 Arg->isLValue()) 3148 ArgType = S.Context.getLValueReferenceType(ArgType); 3149 } else { 3150 // C++ [temp.deduct.call]p2: 3151 // If P is not a reference type: 3152 // - If A is an array type, the pointer type produced by the 3153 // array-to-pointer standard conversion (4.2) is used in place of 3154 // A for type deduction; otherwise, 3155 if (ArgType->isArrayType()) 3156 ArgType = S.Context.getArrayDecayedType(ArgType); 3157 // - If A is a function type, the pointer type produced by the 3158 // function-to-pointer standard conversion (4.3) is used in place 3159 // of A for type deduction; otherwise, 3160 else if (ArgType->isFunctionType()) 3161 ArgType = S.Context.getPointerType(ArgType); 3162 else { 3163 // - If A is a cv-qualified type, the top level cv-qualifiers of A's 3164 // type are ignored for type deduction. 3165 ArgType = ArgType.getUnqualifiedType(); 3166 } 3167 } 3168 3169 // C++0x [temp.deduct.call]p4: 3170 // In general, the deduction process attempts to find template argument 3171 // values that will make the deduced A identical to A (after the type A 3172 // is transformed as described above). [...] 3173 TDF = TDF_SkipNonDependent; 3174 3175 // - If the original P is a reference type, the deduced A (i.e., the 3176 // type referred to by the reference) can be more cv-qualified than 3177 // the transformed A. 3178 if (ParamRefType) 3179 TDF |= TDF_ParamWithReferenceType; 3180 // - The transformed A can be another pointer or pointer to member 3181 // type that can be converted to the deduced A via a qualification 3182 // conversion (4.4). 3183 if (ArgType->isPointerType() || ArgType->isMemberPointerType() || 3184 ArgType->isObjCObjectPointerType()) 3185 TDF |= TDF_IgnoreQualifiers; 3186 // - If P is a class and P has the form simple-template-id, then the 3187 // transformed A can be a derived class of the deduced A. Likewise, 3188 // if P is a pointer to a class of the form simple-template-id, the 3189 // transformed A can be a pointer to a derived class pointed to by 3190 // the deduced A. 3191 if (isSimpleTemplateIdType(ParamType) || 3192 (isa<PointerType>(ParamType) && 3193 isSimpleTemplateIdType( 3194 ParamType->getAs<PointerType>()->getPointeeType()))) 3195 TDF |= TDF_DerivedClass; 3196 3197 return false; 3198 } 3199 3200 static bool 3201 hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate, 3202 QualType T); 3203 3204 static Sema::TemplateDeductionResult DeduceTemplateArgumentByListElement( 3205 Sema &S, TemplateParameterList *TemplateParams, QualType ParamType, 3206 Expr *Arg, TemplateDeductionInfo &Info, 3207 SmallVectorImpl<DeducedTemplateArgument> &Deduced, unsigned TDF); 3208 3209 /// \brief Attempt template argument deduction from an initializer list 3210 /// deemed to be an argument in a function call. 3211 static bool 3212 DeduceFromInitializerList(Sema &S, TemplateParameterList *TemplateParams, 3213 QualType AdjustedParamType, InitListExpr *ILE, 3214 TemplateDeductionInfo &Info, 3215 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3216 unsigned TDF, Sema::TemplateDeductionResult &Result) { 3217 3218 // [temp.deduct.call] p1 (post CWG-1591) 3219 // If removing references and cv-qualifiers from P gives 3220 // std::initializer_list<P0> or P0[N] for some P0 and N and the argument is a 3221 // non-empty initializer list (8.5.4), then deduction is performed instead for 3222 // each element of the initializer list, taking P0 as a function template 3223 // parameter type and the initializer element as its argument, and in the 3224 // P0[N] case, if N is a non-type template parameter, N is deduced from the 3225 // length of the initializer list. Otherwise, an initializer list argument 3226 // causes the parameter to be considered a non-deduced context 3227 3228 const bool IsConstSizedArray = AdjustedParamType->isConstantArrayType(); 3229 3230 const bool IsDependentSizedArray = 3231 !IsConstSizedArray && AdjustedParamType->isDependentSizedArrayType(); 3232 3233 QualType ElTy; // The element type of the std::initializer_list or the array. 3234 3235 const bool IsSTDList = !IsConstSizedArray && !IsDependentSizedArray && 3236 S.isStdInitializerList(AdjustedParamType, &ElTy); 3237 3238 if (!IsConstSizedArray && !IsDependentSizedArray && !IsSTDList) 3239 return false; 3240 3241 Result = Sema::TDK_Success; 3242 // If we are not deducing against the 'T' in a std::initializer_list<T> then 3243 // deduce against the 'T' in T[N]. 3244 if (ElTy.isNull()) { 3245 assert(!IsSTDList); 3246 ElTy = S.Context.getAsArrayType(AdjustedParamType)->getElementType(); 3247 } 3248 // Deduction only needs to be done for dependent types. 3249 if (ElTy->isDependentType()) { 3250 for (Expr *E : ILE->inits()) { 3251 if ((Result = DeduceTemplateArgumentByListElement(S, TemplateParams, ElTy, 3252 E, Info, Deduced, TDF))) 3253 return true; 3254 } 3255 } 3256 if (IsDependentSizedArray) { 3257 const DependentSizedArrayType *ArrTy = 3258 S.Context.getAsDependentSizedArrayType(AdjustedParamType); 3259 // Determine the array bound is something we can deduce. 3260 if (NonTypeTemplateParmDecl *NTTP = 3261 getDeducedParameterFromExpr(ArrTy->getSizeExpr())) { 3262 // We can perform template argument deduction for the given non-type 3263 // template parameter. 3264 assert(NTTP->getDepth() == 0 && 3265 "Cannot deduce non-type template argument at depth > 0"); 3266 llvm::APInt Size(S.Context.getIntWidth(NTTP->getType()), 3267 ILE->getNumInits()); 3268 3269 Result = DeduceNonTypeTemplateArgument( 3270 S, NTTP, llvm::APSInt(Size), NTTP->getType(), 3271 /*ArrayBound=*/true, Info, Deduced); 3272 } 3273 } 3274 return true; 3275 } 3276 3277 /// \brief Perform template argument deduction by matching a parameter type 3278 /// against a single expression, where the expression is an element of 3279 /// an initializer list that was originally matched against a parameter 3280 /// of type \c initializer_list\<ParamType\>. 3281 static Sema::TemplateDeductionResult 3282 DeduceTemplateArgumentByListElement(Sema &S, 3283 TemplateParameterList *TemplateParams, 3284 QualType ParamType, Expr *Arg, 3285 TemplateDeductionInfo &Info, 3286 SmallVectorImpl<DeducedTemplateArgument> &Deduced, 3287 unsigned TDF) { 3288 // Handle the case where an init list contains another init list as the 3289 // element. 3290 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { 3291 Sema::TemplateDeductionResult Result; 3292 if (!DeduceFromInitializerList(S, TemplateParams, 3293 ParamType.getNonReferenceType(), ILE, Info, 3294 Deduced, TDF, Result)) 3295 return Sema::TDK_Success; // Just ignore this expression. 3296 3297 return Result; 3298 } 3299 3300 // For all other cases, just match by type. 3301 QualType ArgType = Arg->getType(); 3302 if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType, 3303 ArgType, Arg, TDF)) { 3304 Info.Expression = Arg; 3305 return Sema::TDK_FailedOverloadResolution; 3306 } 3307 return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType, 3308 ArgType, Info, Deduced, TDF); 3309 } 3310 3311 /// \brief Perform template argument deduction from a function call 3312 /// (C++ [temp.deduct.call]). 3313 /// 3314 /// \param FunctionTemplate the function template for which we are performing 3315 /// template argument deduction. 3316 /// 3317 /// \param ExplicitTemplateArgs the explicit template arguments provided 3318 /// for this call. 3319 /// 3320 /// \param Args the function call arguments 3321 /// 3322 /// \param Specialization if template argument deduction was successful, 3323 /// this will be set to the function template specialization produced by 3324 /// template argument deduction. 3325 /// 3326 /// \param Info the argument will be updated to provide additional information 3327 /// about template argument deduction. 3328 /// 3329 /// \returns the result of template argument deduction. 3330 Sema::TemplateDeductionResult Sema::DeduceTemplateArguments( 3331 FunctionTemplateDecl *FunctionTemplate, 3332 TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args, 3333 FunctionDecl *&Specialization, TemplateDeductionInfo &Info, 3334 bool PartialOverloading) { 3335 if (FunctionTemplate->isInvalidDecl()) 3336 return TDK_Invalid; 3337 3338 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3339 unsigned NumParams = Function->getNumParams(); 3340 3341 // C++ [temp.deduct.call]p1: 3342 // Template argument deduction is done by comparing each function template 3343 // parameter type (call it P) with the type of the corresponding argument 3344 // of the call (call it A) as described below. 3345 unsigned CheckArgs = Args.size(); 3346 if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading) 3347 return TDK_TooFewArguments; 3348 else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) { 3349 const FunctionProtoType *Proto 3350 = Function->getType()->getAs<FunctionProtoType>(); 3351 if (Proto->isTemplateVariadic()) 3352 /* Do nothing */; 3353 else if (Proto->isVariadic()) 3354 CheckArgs = NumParams; 3355 else 3356 return TDK_TooManyArguments; 3357 } 3358 3359 // The types of the parameters from which we will perform template argument 3360 // deduction. 3361 LocalInstantiationScope InstScope(*this); 3362 TemplateParameterList *TemplateParams 3363 = FunctionTemplate->getTemplateParameters(); 3364 SmallVector<DeducedTemplateArgument, 4> Deduced; 3365 SmallVector<QualType, 4> ParamTypes; 3366 unsigned NumExplicitlySpecified = 0; 3367 if (ExplicitTemplateArgs) { 3368 TemplateDeductionResult Result = 3369 SubstituteExplicitTemplateArguments(FunctionTemplate, 3370 *ExplicitTemplateArgs, 3371 Deduced, 3372 ParamTypes, 3373 nullptr, 3374 Info); 3375 if (Result) 3376 return Result; 3377 3378 NumExplicitlySpecified = Deduced.size(); 3379 } else { 3380 // Just fill in the parameter types from the function declaration. 3381 for (unsigned I = 0; I != NumParams; ++I) 3382 ParamTypes.push_back(Function->getParamDecl(I)->getType()); 3383 } 3384 3385 // Deduce template arguments from the function parameters. 3386 Deduced.resize(TemplateParams->size()); 3387 unsigned ArgIdx = 0; 3388 SmallVector<OriginalCallArg, 4> OriginalCallArgs; 3389 for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size(); 3390 ParamIdx != NumParamTypes; ++ParamIdx) { 3391 QualType OrigParamType = ParamTypes[ParamIdx]; 3392 QualType ParamType = OrigParamType; 3393 3394 const PackExpansionType *ParamExpansion 3395 = dyn_cast<PackExpansionType>(ParamType); 3396 if (!ParamExpansion) { 3397 // Simple case: matching a function parameter to a function argument. 3398 if (ArgIdx >= CheckArgs) 3399 break; 3400 3401 Expr *Arg = Args[ArgIdx++]; 3402 QualType ArgType = Arg->getType(); 3403 3404 unsigned TDF = 0; 3405 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, 3406 ParamType, ArgType, Arg, 3407 TDF)) 3408 continue; 3409 3410 // If we have nothing to deduce, we're done. 3411 if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3412 continue; 3413 3414 // If the argument is an initializer list ... 3415 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { 3416 TemplateDeductionResult Result; 3417 // Removing references was already done. 3418 if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE, 3419 Info, Deduced, TDF, Result)) 3420 continue; 3421 3422 if (Result) 3423 return Result; 3424 // Don't track the argument type, since an initializer list has none. 3425 continue; 3426 } 3427 3428 // Keep track of the argument type and corresponding parameter index, 3429 // so we can check for compatibility between the deduced A and A. 3430 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1, 3431 ArgType)); 3432 3433 if (TemplateDeductionResult Result 3434 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 3435 ParamType, ArgType, 3436 Info, Deduced, TDF)) 3437 return Result; 3438 3439 continue; 3440 } 3441 3442 // C++0x [temp.deduct.call]p1: 3443 // For a function parameter pack that occurs at the end of the 3444 // parameter-declaration-list, the type A of each remaining argument of 3445 // the call is compared with the type P of the declarator-id of the 3446 // function parameter pack. Each comparison deduces template arguments 3447 // for subsequent positions in the template parameter packs expanded by 3448 // the function parameter pack. For a function parameter pack that does 3449 // not occur at the end of the parameter-declaration-list, the type of 3450 // the parameter pack is a non-deduced context. 3451 if (ParamIdx + 1 < NumParamTypes) 3452 break; 3453 3454 QualType ParamPattern = ParamExpansion->getPattern(); 3455 PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info, 3456 ParamPattern); 3457 3458 bool HasAnyArguments = false; 3459 for (; ArgIdx < Args.size(); ++ArgIdx) { 3460 HasAnyArguments = true; 3461 3462 QualType OrigParamType = ParamPattern; 3463 ParamType = OrigParamType; 3464 Expr *Arg = Args[ArgIdx]; 3465 QualType ArgType = Arg->getType(); 3466 3467 unsigned TDF = 0; 3468 if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams, 3469 ParamType, ArgType, Arg, 3470 TDF)) { 3471 // We can't actually perform any deduction for this argument, so stop 3472 // deduction at this point. 3473 ++ArgIdx; 3474 break; 3475 } 3476 3477 // As above, initializer lists need special handling. 3478 if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) { 3479 TemplateDeductionResult Result; 3480 if (!DeduceFromInitializerList(*this, TemplateParams, ParamType, ILE, 3481 Info, Deduced, TDF, Result)) { 3482 ++ArgIdx; 3483 break; 3484 } 3485 3486 if (Result) 3487 return Result; 3488 } else { 3489 3490 // Keep track of the argument type and corresponding argument index, 3491 // so we can check for compatibility between the deduced A and A. 3492 if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType)) 3493 OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx, 3494 ArgType)); 3495 3496 if (TemplateDeductionResult Result 3497 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 3498 ParamType, ArgType, Info, 3499 Deduced, TDF)) 3500 return Result; 3501 } 3502 3503 PackScope.nextPackElement(); 3504 } 3505 3506 // Build argument packs for each of the parameter packs expanded by this 3507 // pack expansion. 3508 if (auto Result = PackScope.finish(HasAnyArguments)) 3509 return Result; 3510 3511 // After we've matching against a parameter pack, we're done. 3512 break; 3513 } 3514 3515 return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 3516 NumExplicitlySpecified, Specialization, 3517 Info, &OriginalCallArgs, 3518 PartialOverloading); 3519 } 3520 3521 QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType, 3522 QualType FunctionType) { 3523 if (ArgFunctionType.isNull()) 3524 return ArgFunctionType; 3525 3526 const FunctionProtoType *FunctionTypeP = 3527 FunctionType->castAs<FunctionProtoType>(); 3528 CallingConv CC = FunctionTypeP->getCallConv(); 3529 bool NoReturn = FunctionTypeP->getNoReturnAttr(); 3530 const FunctionProtoType *ArgFunctionTypeP = 3531 ArgFunctionType->getAs<FunctionProtoType>(); 3532 if (ArgFunctionTypeP->getCallConv() == CC && 3533 ArgFunctionTypeP->getNoReturnAttr() == NoReturn) 3534 return ArgFunctionType; 3535 3536 FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC); 3537 EI = EI.withNoReturn(NoReturn); 3538 ArgFunctionTypeP = 3539 cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI)); 3540 return QualType(ArgFunctionTypeP, 0); 3541 } 3542 3543 /// \brief Deduce template arguments when taking the address of a function 3544 /// template (C++ [temp.deduct.funcaddr]) or matching a specialization to 3545 /// a template. 3546 /// 3547 /// \param FunctionTemplate the function template for which we are performing 3548 /// template argument deduction. 3549 /// 3550 /// \param ExplicitTemplateArgs the explicitly-specified template 3551 /// arguments. 3552 /// 3553 /// \param ArgFunctionType the function type that will be used as the 3554 /// "argument" type (A) when performing template argument deduction from the 3555 /// function template's function type. This type may be NULL, if there is no 3556 /// argument type to compare against, in C++0x [temp.arg.explicit]p3. 3557 /// 3558 /// \param Specialization if template argument deduction was successful, 3559 /// this will be set to the function template specialization produced by 3560 /// template argument deduction. 3561 /// 3562 /// \param Info the argument will be updated to provide additional information 3563 /// about template argument deduction. 3564 /// 3565 /// \returns the result of template argument deduction. 3566 Sema::TemplateDeductionResult 3567 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 3568 TemplateArgumentListInfo *ExplicitTemplateArgs, 3569 QualType ArgFunctionType, 3570 FunctionDecl *&Specialization, 3571 TemplateDeductionInfo &Info, 3572 bool InOverloadResolution) { 3573 if (FunctionTemplate->isInvalidDecl()) 3574 return TDK_Invalid; 3575 3576 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 3577 TemplateParameterList *TemplateParams 3578 = FunctionTemplate->getTemplateParameters(); 3579 QualType FunctionType = Function->getType(); 3580 if (!InOverloadResolution) 3581 ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType); 3582 3583 // Substitute any explicit template arguments. 3584 LocalInstantiationScope InstScope(*this); 3585 SmallVector<DeducedTemplateArgument, 4> Deduced; 3586 unsigned NumExplicitlySpecified = 0; 3587 SmallVector<QualType, 4> ParamTypes; 3588 if (ExplicitTemplateArgs) { 3589 if (TemplateDeductionResult Result 3590 = SubstituteExplicitTemplateArguments(FunctionTemplate, 3591 *ExplicitTemplateArgs, 3592 Deduced, ParamTypes, 3593 &FunctionType, Info)) 3594 return Result; 3595 3596 NumExplicitlySpecified = Deduced.size(); 3597 } 3598 3599 // Unevaluated SFINAE context. 3600 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3601 SFINAETrap Trap(*this); 3602 3603 Deduced.resize(TemplateParams->size()); 3604 3605 // If the function has a deduced return type, substitute it for a dependent 3606 // type so that we treat it as a non-deduced context in what follows. 3607 bool HasDeducedReturnType = false; 3608 if (getLangOpts().CPlusPlus14 && InOverloadResolution && 3609 Function->getReturnType()->getContainedAutoType()) { 3610 FunctionType = SubstAutoType(FunctionType, Context.DependentTy); 3611 HasDeducedReturnType = true; 3612 } 3613 3614 if (!ArgFunctionType.isNull()) { 3615 unsigned TDF = TDF_TopLevelParameterTypeList; 3616 if (InOverloadResolution) TDF |= TDF_InOverloadResolution; 3617 // Deduce template arguments from the function type. 3618 if (TemplateDeductionResult Result 3619 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 3620 FunctionType, ArgFunctionType, 3621 Info, Deduced, TDF)) 3622 return Result; 3623 } 3624 3625 if (TemplateDeductionResult Result 3626 = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced, 3627 NumExplicitlySpecified, 3628 Specialization, Info)) 3629 return Result; 3630 3631 // If the function has a deduced return type, deduce it now, so we can check 3632 // that the deduced function type matches the requested type. 3633 if (HasDeducedReturnType && 3634 Specialization->getReturnType()->isUndeducedType() && 3635 DeduceReturnType(Specialization, Info.getLocation(), false)) 3636 return TDK_MiscellaneousDeductionFailure; 3637 3638 // If the requested function type does not match the actual type of the 3639 // specialization with respect to arguments of compatible pointer to function 3640 // types, template argument deduction fails. 3641 if (!ArgFunctionType.isNull()) { 3642 if (InOverloadResolution && !isSameOrCompatibleFunctionType( 3643 Context.getCanonicalType(Specialization->getType()), 3644 Context.getCanonicalType(ArgFunctionType))) 3645 return TDK_MiscellaneousDeductionFailure; 3646 else if(!InOverloadResolution && 3647 !Context.hasSameType(Specialization->getType(), ArgFunctionType)) 3648 return TDK_MiscellaneousDeductionFailure; 3649 } 3650 3651 return TDK_Success; 3652 } 3653 3654 /// \brief Given a function declaration (e.g. a generic lambda conversion 3655 /// function) that contains an 'auto' in its result type, substitute it 3656 /// with TypeToReplaceAutoWith. Be careful to pass in the type you want 3657 /// to replace 'auto' with and not the actual result type you want 3658 /// to set the function to. 3659 static inline void 3660 SubstAutoWithinFunctionReturnType(FunctionDecl *F, 3661 QualType TypeToReplaceAutoWith, Sema &S) { 3662 assert(!TypeToReplaceAutoWith->getContainedAutoType()); 3663 QualType AutoResultType = F->getReturnType(); 3664 assert(AutoResultType->getContainedAutoType()); 3665 QualType DeducedResultType = S.SubstAutoType(AutoResultType, 3666 TypeToReplaceAutoWith); 3667 S.Context.adjustDeducedFunctionResultType(F, DeducedResultType); 3668 } 3669 3670 /// \brief Given a specialized conversion operator of a generic lambda 3671 /// create the corresponding specializations of the call operator and 3672 /// the static-invoker. If the return type of the call operator is auto, 3673 /// deduce its return type and check if that matches the 3674 /// return type of the destination function ptr. 3675 3676 static inline Sema::TemplateDeductionResult 3677 SpecializeCorrespondingLambdaCallOperatorAndInvoker( 3678 CXXConversionDecl *ConversionSpecialized, 3679 SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments, 3680 QualType ReturnTypeOfDestFunctionPtr, 3681 TemplateDeductionInfo &TDInfo, 3682 Sema &S) { 3683 3684 CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent(); 3685 assert(LambdaClass && LambdaClass->isGenericLambda()); 3686 3687 CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator(); 3688 QualType CallOpResultType = CallOpGeneric->getReturnType(); 3689 const bool GenericLambdaCallOperatorHasDeducedReturnType = 3690 CallOpResultType->getContainedAutoType(); 3691 3692 FunctionTemplateDecl *CallOpTemplate = 3693 CallOpGeneric->getDescribedFunctionTemplate(); 3694 3695 FunctionDecl *CallOpSpecialized = nullptr; 3696 // Use the deduced arguments of the conversion function, to specialize our 3697 // generic lambda's call operator. 3698 if (Sema::TemplateDeductionResult Result 3699 = S.FinishTemplateArgumentDeduction(CallOpTemplate, 3700 DeducedArguments, 3701 0, CallOpSpecialized, TDInfo)) 3702 return Result; 3703 3704 // If we need to deduce the return type, do so (instantiates the callop). 3705 if (GenericLambdaCallOperatorHasDeducedReturnType && 3706 CallOpSpecialized->getReturnType()->isUndeducedType()) 3707 S.DeduceReturnType(CallOpSpecialized, 3708 CallOpSpecialized->getPointOfInstantiation(), 3709 /*Diagnose*/ true); 3710 3711 // Check to see if the return type of the destination ptr-to-function 3712 // matches the return type of the call operator. 3713 if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(), 3714 ReturnTypeOfDestFunctionPtr)) 3715 return Sema::TDK_NonDeducedMismatch; 3716 // Since we have succeeded in matching the source and destination 3717 // ptr-to-functions (now including return type), and have successfully 3718 // specialized our corresponding call operator, we are ready to 3719 // specialize the static invoker with the deduced arguments of our 3720 // ptr-to-function. 3721 FunctionDecl *InvokerSpecialized = nullptr; 3722 FunctionTemplateDecl *InvokerTemplate = LambdaClass-> 3723 getLambdaStaticInvoker()->getDescribedFunctionTemplate(); 3724 3725 #ifndef NDEBUG 3726 Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result = 3727 #endif 3728 S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0, 3729 InvokerSpecialized, TDInfo); 3730 assert(Result == Sema::TDK_Success && 3731 "If the call operator succeeded so should the invoker!"); 3732 // Set the result type to match the corresponding call operator 3733 // specialization's result type. 3734 if (GenericLambdaCallOperatorHasDeducedReturnType && 3735 InvokerSpecialized->getReturnType()->isUndeducedType()) { 3736 // Be sure to get the type to replace 'auto' with and not 3737 // the full result type of the call op specialization 3738 // to substitute into the 'auto' of the invoker and conversion 3739 // function. 3740 // For e.g. 3741 // int* (*fp)(int*) = [](auto* a) -> auto* { return a; }; 3742 // We don't want to subst 'int*' into 'auto' to get int**. 3743 3744 QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType() 3745 ->getContainedAutoType() 3746 ->getDeducedType(); 3747 SubstAutoWithinFunctionReturnType(InvokerSpecialized, 3748 TypeToReplaceAutoWith, S); 3749 SubstAutoWithinFunctionReturnType(ConversionSpecialized, 3750 TypeToReplaceAutoWith, S); 3751 } 3752 3753 // Ensure that static invoker doesn't have a const qualifier. 3754 // FIXME: When creating the InvokerTemplate in SemaLambda.cpp 3755 // do not use the CallOperator's TypeSourceInfo which allows 3756 // the const qualifier to leak through. 3757 const FunctionProtoType *InvokerFPT = InvokerSpecialized-> 3758 getType().getTypePtr()->castAs<FunctionProtoType>(); 3759 FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo(); 3760 EPI.TypeQuals = 0; 3761 InvokerSpecialized->setType(S.Context.getFunctionType( 3762 InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI)); 3763 return Sema::TDK_Success; 3764 } 3765 /// \brief Deduce template arguments for a templated conversion 3766 /// function (C++ [temp.deduct.conv]) and, if successful, produce a 3767 /// conversion function template specialization. 3768 Sema::TemplateDeductionResult 3769 Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate, 3770 QualType ToType, 3771 CXXConversionDecl *&Specialization, 3772 TemplateDeductionInfo &Info) { 3773 if (ConversionTemplate->isInvalidDecl()) 3774 return TDK_Invalid; 3775 3776 CXXConversionDecl *ConversionGeneric 3777 = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl()); 3778 3779 QualType FromType = ConversionGeneric->getConversionType(); 3780 3781 // Canonicalize the types for deduction. 3782 QualType P = Context.getCanonicalType(FromType); 3783 QualType A = Context.getCanonicalType(ToType); 3784 3785 // C++0x [temp.deduct.conv]p2: 3786 // If P is a reference type, the type referred to by P is used for 3787 // type deduction. 3788 if (const ReferenceType *PRef = P->getAs<ReferenceType>()) 3789 P = PRef->getPointeeType(); 3790 3791 // C++0x [temp.deduct.conv]p4: 3792 // [...] If A is a reference type, the type referred to by A is used 3793 // for type deduction. 3794 if (const ReferenceType *ARef = A->getAs<ReferenceType>()) 3795 A = ARef->getPointeeType().getUnqualifiedType(); 3796 // C++ [temp.deduct.conv]p3: 3797 // 3798 // If A is not a reference type: 3799 else { 3800 assert(!A->isReferenceType() && "Reference types were handled above"); 3801 3802 // - If P is an array type, the pointer type produced by the 3803 // array-to-pointer standard conversion (4.2) is used in place 3804 // of P for type deduction; otherwise, 3805 if (P->isArrayType()) 3806 P = Context.getArrayDecayedType(P); 3807 // - If P is a function type, the pointer type produced by the 3808 // function-to-pointer standard conversion (4.3) is used in 3809 // place of P for type deduction; otherwise, 3810 else if (P->isFunctionType()) 3811 P = Context.getPointerType(P); 3812 // - If P is a cv-qualified type, the top level cv-qualifiers of 3813 // P's type are ignored for type deduction. 3814 else 3815 P = P.getUnqualifiedType(); 3816 3817 // C++0x [temp.deduct.conv]p4: 3818 // If A is a cv-qualified type, the top level cv-qualifiers of A's 3819 // type are ignored for type deduction. If A is a reference type, the type 3820 // referred to by A is used for type deduction. 3821 A = A.getUnqualifiedType(); 3822 } 3823 3824 // Unevaluated SFINAE context. 3825 EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated); 3826 SFINAETrap Trap(*this); 3827 3828 // C++ [temp.deduct.conv]p1: 3829 // Template argument deduction is done by comparing the return 3830 // type of the template conversion function (call it P) with the 3831 // type that is required as the result of the conversion (call it 3832 // A) as described in 14.8.2.4. 3833 TemplateParameterList *TemplateParams 3834 = ConversionTemplate->getTemplateParameters(); 3835 SmallVector<DeducedTemplateArgument, 4> Deduced; 3836 Deduced.resize(TemplateParams->size()); 3837 3838 // C++0x [temp.deduct.conv]p4: 3839 // In general, the deduction process attempts to find template 3840 // argument values that will make the deduced A identical to 3841 // A. However, there are two cases that allow a difference: 3842 unsigned TDF = 0; 3843 // - If the original A is a reference type, A can be more 3844 // cv-qualified than the deduced A (i.e., the type referred to 3845 // by the reference) 3846 if (ToType->isReferenceType()) 3847 TDF |= TDF_ParamWithReferenceType; 3848 // - The deduced A can be another pointer or pointer to member 3849 // type that can be converted to A via a qualification 3850 // conversion. 3851 // 3852 // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when 3853 // both P and A are pointers or member pointers. In this case, we 3854 // just ignore cv-qualifiers completely). 3855 if ((P->isPointerType() && A->isPointerType()) || 3856 (P->isMemberPointerType() && A->isMemberPointerType())) 3857 TDF |= TDF_IgnoreQualifiers; 3858 if (TemplateDeductionResult Result 3859 = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, 3860 P, A, Info, Deduced, TDF)) 3861 return Result; 3862 3863 // Create an Instantiation Scope for finalizing the operator. 3864 LocalInstantiationScope InstScope(*this); 3865 // Finish template argument deduction. 3866 FunctionDecl *ConversionSpecialized = nullptr; 3867 TemplateDeductionResult Result 3868 = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0, 3869 ConversionSpecialized, Info); 3870 Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized); 3871 3872 // If the conversion operator is being invoked on a lambda closure to convert 3873 // to a ptr-to-function, use the deduced arguments from the conversion 3874 // function to specialize the corresponding call operator. 3875 // e.g., int (*fp)(int) = [](auto a) { return a; }; 3876 if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) { 3877 3878 // Get the return type of the destination ptr-to-function we are converting 3879 // to. This is necessary for matching the lambda call operator's return 3880 // type to that of the destination ptr-to-function's return type. 3881 assert(A->isPointerType() && 3882 "Can only convert from lambda to ptr-to-function"); 3883 const FunctionType *ToFunType = 3884 A->getPointeeType().getTypePtr()->getAs<FunctionType>(); 3885 const QualType DestFunctionPtrReturnType = ToFunType->getReturnType(); 3886 3887 // Create the corresponding specializations of the call operator and 3888 // the static-invoker; and if the return type is auto, 3889 // deduce the return type and check if it matches the 3890 // DestFunctionPtrReturnType. 3891 // For instance: 3892 // auto L = [](auto a) { return f(a); }; 3893 // int (*fp)(int) = L; 3894 // char (*fp2)(int) = L; <-- Not OK. 3895 3896 Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker( 3897 Specialization, Deduced, DestFunctionPtrReturnType, 3898 Info, *this); 3899 } 3900 return Result; 3901 } 3902 3903 /// \brief Deduce template arguments for a function template when there is 3904 /// nothing to deduce against (C++0x [temp.arg.explicit]p3). 3905 /// 3906 /// \param FunctionTemplate the function template for which we are performing 3907 /// template argument deduction. 3908 /// 3909 /// \param ExplicitTemplateArgs the explicitly-specified template 3910 /// arguments. 3911 /// 3912 /// \param Specialization if template argument deduction was successful, 3913 /// this will be set to the function template specialization produced by 3914 /// template argument deduction. 3915 /// 3916 /// \param Info the argument will be updated to provide additional information 3917 /// about template argument deduction. 3918 /// 3919 /// \returns the result of template argument deduction. 3920 Sema::TemplateDeductionResult 3921 Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate, 3922 TemplateArgumentListInfo *ExplicitTemplateArgs, 3923 FunctionDecl *&Specialization, 3924 TemplateDeductionInfo &Info, 3925 bool InOverloadResolution) { 3926 return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, 3927 QualType(), Specialization, Info, 3928 InOverloadResolution); 3929 } 3930 3931 namespace { 3932 /// Substitute the 'auto' type specifier within a type for a given replacement 3933 /// type. 3934 class SubstituteAutoTransform : 3935 public TreeTransform<SubstituteAutoTransform> { 3936 QualType Replacement; 3937 public: 3938 SubstituteAutoTransform(Sema &SemaRef, QualType Replacement) 3939 : TreeTransform<SubstituteAutoTransform>(SemaRef), 3940 Replacement(Replacement) {} 3941 3942 QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) { 3943 // If we're building the type pattern to deduce against, don't wrap the 3944 // substituted type in an AutoType. Certain template deduction rules 3945 // apply only when a template type parameter appears directly (and not if 3946 // the parameter is found through desugaring). For instance: 3947 // auto &&lref = lvalue; 3948 // must transform into "rvalue reference to T" not "rvalue reference to 3949 // auto type deduced as T" in order for [temp.deduct.call]p3 to apply. 3950 if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) { 3951 QualType Result = Replacement; 3952 TemplateTypeParmTypeLoc NewTL = 3953 TLB.push<TemplateTypeParmTypeLoc>(Result); 3954 NewTL.setNameLoc(TL.getNameLoc()); 3955 return Result; 3956 } else { 3957 bool Dependent = 3958 !Replacement.isNull() && Replacement->isDependentType(); 3959 QualType Result = 3960 SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement, 3961 TL.getTypePtr()->getKeyword(), 3962 Dependent); 3963 AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result); 3964 NewTL.setNameLoc(TL.getNameLoc()); 3965 return Result; 3966 } 3967 } 3968 3969 ExprResult TransformLambdaExpr(LambdaExpr *E) { 3970 // Lambdas never need to be transformed. 3971 return E; 3972 } 3973 3974 QualType Apply(TypeLoc TL) { 3975 // Create some scratch storage for the transformed type locations. 3976 // FIXME: We're just going to throw this information away. Don't build it. 3977 TypeLocBuilder TLB; 3978 TLB.reserve(TL.getFullDataSize()); 3979 return TransformType(TLB, TL); 3980 } 3981 }; 3982 } 3983 3984 Sema::DeduceAutoResult 3985 Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) { 3986 return DeduceAutoType(Type->getTypeLoc(), Init, Result); 3987 } 3988 3989 /// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6) 3990 /// 3991 /// \param Type the type pattern using the auto type-specifier. 3992 /// \param Init the initializer for the variable whose type is to be deduced. 3993 /// \param Result if type deduction was successful, this will be set to the 3994 /// deduced type. 3995 Sema::DeduceAutoResult 3996 Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) { 3997 if (Init->getType()->isNonOverloadPlaceholderType()) { 3998 ExprResult NonPlaceholder = CheckPlaceholderExpr(Init); 3999 if (NonPlaceholder.isInvalid()) 4000 return DAR_FailedAlreadyDiagnosed; 4001 Init = NonPlaceholder.get(); 4002 } 4003 4004 if (Init->isTypeDependent() || Type.getType()->isDependentType()) { 4005 Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type); 4006 assert(!Result.isNull() && "substituting DependentTy can't fail"); 4007 return DAR_Succeeded; 4008 } 4009 4010 // If this is a 'decltype(auto)' specifier, do the decltype dance. 4011 // Since 'decltype(auto)' can only occur at the top of the type, we 4012 // don't need to go digging for it. 4013 if (const AutoType *AT = Type.getType()->getAs<AutoType>()) { 4014 if (AT->isDecltypeAuto()) { 4015 if (isa<InitListExpr>(Init)) { 4016 Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list); 4017 return DAR_FailedAlreadyDiagnosed; 4018 } 4019 4020 QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false); 4021 if (Deduced.isNull()) 4022 return DAR_FailedAlreadyDiagnosed; 4023 // FIXME: Support a non-canonical deduced type for 'auto'. 4024 Deduced = Context.getCanonicalType(Deduced); 4025 Result = SubstituteAutoTransform(*this, Deduced).Apply(Type); 4026 if (Result.isNull()) 4027 return DAR_FailedAlreadyDiagnosed; 4028 return DAR_Succeeded; 4029 } else if (!getLangOpts().CPlusPlus) { 4030 if (isa<InitListExpr>(Init)) { 4031 Diag(Init->getLocStart(), diag::err_auto_init_list_from_c); 4032 return DAR_FailedAlreadyDiagnosed; 4033 } 4034 } 4035 } 4036 4037 SourceLocation Loc = Init->getExprLoc(); 4038 4039 LocalInstantiationScope InstScope(*this); 4040 4041 // Build template<class TemplParam> void Func(FuncParam); 4042 TemplateTypeParmDecl *TemplParam = 4043 TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0, 4044 nullptr, false, false); 4045 QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0); 4046 NamedDecl *TemplParamPtr = TemplParam; 4047 FixedSizeTemplateParameterListStorage<1> TemplateParamsSt( 4048 Loc, Loc, &TemplParamPtr, Loc); 4049 4050 QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type); 4051 assert(!FuncParam.isNull() && 4052 "substituting template parameter for 'auto' failed"); 4053 4054 // Deduce type of TemplParam in Func(Init) 4055 SmallVector<DeducedTemplateArgument, 1> Deduced; 4056 Deduced.resize(1); 4057 QualType InitType = Init->getType(); 4058 unsigned TDF = 0; 4059 4060 TemplateDeductionInfo Info(Loc); 4061 4062 InitListExpr *InitList = dyn_cast<InitListExpr>(Init); 4063 if (InitList) { 4064 for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) { 4065 if (DeduceTemplateArgumentByListElement(*this, TemplateParamsSt.get(), 4066 TemplArg, InitList->getInit(i), 4067 Info, Deduced, TDF)) 4068 return DAR_Failed; 4069 } 4070 } else { 4071 if (!getLangOpts().CPlusPlus && Init->refersToBitField()) { 4072 Diag(Loc, diag::err_auto_bitfield); 4073 return DAR_FailedAlreadyDiagnosed; 4074 } 4075 4076 if (AdjustFunctionParmAndArgTypesForDeduction( 4077 *this, TemplateParamsSt.get(), FuncParam, InitType, Init, TDF)) 4078 return DAR_Failed; 4079 4080 if (DeduceTemplateArgumentsByTypeMatch(*this, TemplateParamsSt.get(), 4081 FuncParam, InitType, Info, Deduced, 4082 TDF)) 4083 return DAR_Failed; 4084 } 4085 4086 if (Deduced[0].getKind() != TemplateArgument::Type) 4087 return DAR_Failed; 4088 4089 QualType DeducedType = Deduced[0].getAsType(); 4090 4091 if (InitList) { 4092 DeducedType = BuildStdInitializerList(DeducedType, Loc); 4093 if (DeducedType.isNull()) 4094 return DAR_FailedAlreadyDiagnosed; 4095 } 4096 4097 Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type); 4098 if (Result.isNull()) 4099 return DAR_FailedAlreadyDiagnosed; 4100 4101 // Check that the deduced argument type is compatible with the original 4102 // argument type per C++ [temp.deduct.call]p4. 4103 if (!InitList && !Result.isNull() && 4104 CheckOriginalCallArgDeduction(*this, 4105 Sema::OriginalCallArg(FuncParam,0,InitType), 4106 Result)) { 4107 Result = QualType(); 4108 return DAR_Failed; 4109 } 4110 4111 return DAR_Succeeded; 4112 } 4113 4114 QualType Sema::SubstAutoType(QualType TypeWithAuto, 4115 QualType TypeToReplaceAuto) { 4116 return SubstituteAutoTransform(*this, TypeToReplaceAuto). 4117 TransformType(TypeWithAuto); 4118 } 4119 4120 TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto, 4121 QualType TypeToReplaceAuto) { 4122 return SubstituteAutoTransform(*this, TypeToReplaceAuto). 4123 TransformType(TypeWithAuto); 4124 } 4125 4126 void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) { 4127 if (isa<InitListExpr>(Init)) 4128 Diag(VDecl->getLocation(), 4129 VDecl->isInitCapture() 4130 ? diag::err_init_capture_deduction_failure_from_init_list 4131 : diag::err_auto_var_deduction_failure_from_init_list) 4132 << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange(); 4133 else 4134 Diag(VDecl->getLocation(), 4135 VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure 4136 : diag::err_auto_var_deduction_failure) 4137 << VDecl->getDeclName() << VDecl->getType() << Init->getType() 4138 << Init->getSourceRange(); 4139 } 4140 4141 bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc, 4142 bool Diagnose) { 4143 assert(FD->getReturnType()->isUndeducedType()); 4144 4145 if (FD->getTemplateInstantiationPattern()) 4146 InstantiateFunctionDefinition(Loc, FD); 4147 4148 bool StillUndeduced = FD->getReturnType()->isUndeducedType(); 4149 if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) { 4150 Diag(Loc, diag::err_auto_fn_used_before_defined) << FD; 4151 Diag(FD->getLocation(), diag::note_callee_decl) << FD; 4152 } 4153 4154 return StillUndeduced; 4155 } 4156 4157 static void 4158 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 4159 bool OnlyDeduced, 4160 unsigned Level, 4161 llvm::SmallBitVector &Deduced); 4162 4163 /// \brief If this is a non-static member function, 4164 static void 4165 AddImplicitObjectParameterType(ASTContext &Context, 4166 CXXMethodDecl *Method, 4167 SmallVectorImpl<QualType> &ArgTypes) { 4168 // C++11 [temp.func.order]p3: 4169 // [...] The new parameter is of type "reference to cv A," where cv are 4170 // the cv-qualifiers of the function template (if any) and A is 4171 // the class of which the function template is a member. 4172 // 4173 // The standard doesn't say explicitly, but we pick the appropriate kind of 4174 // reference type based on [over.match.funcs]p4. 4175 QualType ArgTy = Context.getTypeDeclType(Method->getParent()); 4176 ArgTy = Context.getQualifiedType(ArgTy, 4177 Qualifiers::fromCVRMask(Method->getTypeQualifiers())); 4178 if (Method->getRefQualifier() == RQ_RValue) 4179 ArgTy = Context.getRValueReferenceType(ArgTy); 4180 else 4181 ArgTy = Context.getLValueReferenceType(ArgTy); 4182 ArgTypes.push_back(ArgTy); 4183 } 4184 4185 /// \brief Determine whether the function template \p FT1 is at least as 4186 /// specialized as \p FT2. 4187 static bool isAtLeastAsSpecializedAs(Sema &S, 4188 SourceLocation Loc, 4189 FunctionTemplateDecl *FT1, 4190 FunctionTemplateDecl *FT2, 4191 TemplatePartialOrderingContext TPOC, 4192 unsigned NumCallArguments1) { 4193 FunctionDecl *FD1 = FT1->getTemplatedDecl(); 4194 FunctionDecl *FD2 = FT2->getTemplatedDecl(); 4195 const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>(); 4196 const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>(); 4197 4198 assert(Proto1 && Proto2 && "Function templates must have prototypes"); 4199 TemplateParameterList *TemplateParams = FT2->getTemplateParameters(); 4200 SmallVector<DeducedTemplateArgument, 4> Deduced; 4201 Deduced.resize(TemplateParams->size()); 4202 4203 // C++0x [temp.deduct.partial]p3: 4204 // The types used to determine the ordering depend on the context in which 4205 // the partial ordering is done: 4206 TemplateDeductionInfo Info(Loc); 4207 SmallVector<QualType, 4> Args2; 4208 switch (TPOC) { 4209 case TPOC_Call: { 4210 // - In the context of a function call, the function parameter types are 4211 // used. 4212 CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1); 4213 CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2); 4214 4215 // C++11 [temp.func.order]p3: 4216 // [...] If only one of the function templates is a non-static 4217 // member, that function template is considered to have a new 4218 // first parameter inserted in its function parameter list. The 4219 // new parameter is of type "reference to cv A," where cv are 4220 // the cv-qualifiers of the function template (if any) and A is 4221 // the class of which the function template is a member. 4222 // 4223 // Note that we interpret this to mean "if one of the function 4224 // templates is a non-static member and the other is a non-member"; 4225 // otherwise, the ordering rules for static functions against non-static 4226 // functions don't make any sense. 4227 // 4228 // C++98/03 doesn't have this provision but we've extended DR532 to cover 4229 // it as wording was broken prior to it. 4230 SmallVector<QualType, 4> Args1; 4231 4232 unsigned NumComparedArguments = NumCallArguments1; 4233 4234 if (!Method2 && Method1 && !Method1->isStatic()) { 4235 // Compare 'this' from Method1 against first parameter from Method2. 4236 AddImplicitObjectParameterType(S.Context, Method1, Args1); 4237 ++NumComparedArguments; 4238 } else if (!Method1 && Method2 && !Method2->isStatic()) { 4239 // Compare 'this' from Method2 against first parameter from Method1. 4240 AddImplicitObjectParameterType(S.Context, Method2, Args2); 4241 } 4242 4243 Args1.insert(Args1.end(), Proto1->param_type_begin(), 4244 Proto1->param_type_end()); 4245 Args2.insert(Args2.end(), Proto2->param_type_begin(), 4246 Proto2->param_type_end()); 4247 4248 // C++ [temp.func.order]p5: 4249 // The presence of unused ellipsis and default arguments has no effect on 4250 // the partial ordering of function templates. 4251 if (Args1.size() > NumComparedArguments) 4252 Args1.resize(NumComparedArguments); 4253 if (Args2.size() > NumComparedArguments) 4254 Args2.resize(NumComparedArguments); 4255 if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(), 4256 Args1.data(), Args1.size(), Info, Deduced, 4257 TDF_None, /*PartialOrdering=*/true)) 4258 return false; 4259 4260 break; 4261 } 4262 4263 case TPOC_Conversion: 4264 // - In the context of a call to a conversion operator, the return types 4265 // of the conversion function templates are used. 4266 if (DeduceTemplateArgumentsByTypeMatch( 4267 S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(), 4268 Info, Deduced, TDF_None, 4269 /*PartialOrdering=*/true)) 4270 return false; 4271 break; 4272 4273 case TPOC_Other: 4274 // - In other contexts (14.6.6.2) the function template's function type 4275 // is used. 4276 if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, 4277 FD2->getType(), FD1->getType(), 4278 Info, Deduced, TDF_None, 4279 /*PartialOrdering=*/true)) 4280 return false; 4281 break; 4282 } 4283 4284 // C++0x [temp.deduct.partial]p11: 4285 // In most cases, all template parameters must have values in order for 4286 // deduction to succeed, but for partial ordering purposes a template 4287 // parameter may remain without a value provided it is not used in the 4288 // types being used for partial ordering. [ Note: a template parameter used 4289 // in a non-deduced context is considered used. -end note] 4290 unsigned ArgIdx = 0, NumArgs = Deduced.size(); 4291 for (; ArgIdx != NumArgs; ++ArgIdx) 4292 if (Deduced[ArgIdx].isNull()) 4293 break; 4294 4295 if (ArgIdx == NumArgs) { 4296 // All template arguments were deduced. FT1 is at least as specialized 4297 // as FT2. 4298 return true; 4299 } 4300 4301 // Figure out which template parameters were used. 4302 llvm::SmallBitVector UsedParameters(TemplateParams->size()); 4303 switch (TPOC) { 4304 case TPOC_Call: 4305 for (unsigned I = 0, N = Args2.size(); I != N; ++I) 4306 ::MarkUsedTemplateParameters(S.Context, Args2[I], false, 4307 TemplateParams->getDepth(), 4308 UsedParameters); 4309 break; 4310 4311 case TPOC_Conversion: 4312 ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false, 4313 TemplateParams->getDepth(), UsedParameters); 4314 break; 4315 4316 case TPOC_Other: 4317 ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false, 4318 TemplateParams->getDepth(), 4319 UsedParameters); 4320 break; 4321 } 4322 4323 for (; ArgIdx != NumArgs; ++ArgIdx) 4324 // If this argument had no value deduced but was used in one of the types 4325 // used for partial ordering, then deduction fails. 4326 if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx]) 4327 return false; 4328 4329 return true; 4330 } 4331 4332 /// \brief Determine whether this a function template whose parameter-type-list 4333 /// ends with a function parameter pack. 4334 static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) { 4335 FunctionDecl *Function = FunTmpl->getTemplatedDecl(); 4336 unsigned NumParams = Function->getNumParams(); 4337 if (NumParams == 0) 4338 return false; 4339 4340 ParmVarDecl *Last = Function->getParamDecl(NumParams - 1); 4341 if (!Last->isParameterPack()) 4342 return false; 4343 4344 // Make sure that no previous parameter is a parameter pack. 4345 while (--NumParams > 0) { 4346 if (Function->getParamDecl(NumParams - 1)->isParameterPack()) 4347 return false; 4348 } 4349 4350 return true; 4351 } 4352 4353 /// \brief Returns the more specialized function template according 4354 /// to the rules of function template partial ordering (C++ [temp.func.order]). 4355 /// 4356 /// \param FT1 the first function template 4357 /// 4358 /// \param FT2 the second function template 4359 /// 4360 /// \param TPOC the context in which we are performing partial ordering of 4361 /// function templates. 4362 /// 4363 /// \param NumCallArguments1 The number of arguments in the call to FT1, used 4364 /// only when \c TPOC is \c TPOC_Call. 4365 /// 4366 /// \param NumCallArguments2 The number of arguments in the call to FT2, used 4367 /// only when \c TPOC is \c TPOC_Call. 4368 /// 4369 /// \returns the more specialized function template. If neither 4370 /// template is more specialized, returns NULL. 4371 FunctionTemplateDecl * 4372 Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1, 4373 FunctionTemplateDecl *FT2, 4374 SourceLocation Loc, 4375 TemplatePartialOrderingContext TPOC, 4376 unsigned NumCallArguments1, 4377 unsigned NumCallArguments2) { 4378 bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC, 4379 NumCallArguments1); 4380 bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC, 4381 NumCallArguments2); 4382 4383 if (Better1 != Better2) // We have a clear winner 4384 return Better1 ? FT1 : FT2; 4385 4386 if (!Better1 && !Better2) // Neither is better than the other 4387 return nullptr; 4388 4389 // FIXME: This mimics what GCC implements, but doesn't match up with the 4390 // proposed resolution for core issue 692. This area needs to be sorted out, 4391 // but for now we attempt to maintain compatibility. 4392 bool Variadic1 = isVariadicFunctionTemplate(FT1); 4393 bool Variadic2 = isVariadicFunctionTemplate(FT2); 4394 if (Variadic1 != Variadic2) 4395 return Variadic1? FT2 : FT1; 4396 4397 return nullptr; 4398 } 4399 4400 /// \brief Determine if the two templates are equivalent. 4401 static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) { 4402 if (T1 == T2) 4403 return true; 4404 4405 if (!T1 || !T2) 4406 return false; 4407 4408 return T1->getCanonicalDecl() == T2->getCanonicalDecl(); 4409 } 4410 4411 /// \brief Retrieve the most specialized of the given function template 4412 /// specializations. 4413 /// 4414 /// \param SpecBegin the start iterator of the function template 4415 /// specializations that we will be comparing. 4416 /// 4417 /// \param SpecEnd the end iterator of the function template 4418 /// specializations, paired with \p SpecBegin. 4419 /// 4420 /// \param Loc the location where the ambiguity or no-specializations 4421 /// diagnostic should occur. 4422 /// 4423 /// \param NoneDiag partial diagnostic used to diagnose cases where there are 4424 /// no matching candidates. 4425 /// 4426 /// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one 4427 /// occurs. 4428 /// 4429 /// \param CandidateDiag partial diagnostic used for each function template 4430 /// specialization that is a candidate in the ambiguous ordering. One parameter 4431 /// in this diagnostic should be unbound, which will correspond to the string 4432 /// describing the template arguments for the function template specialization. 4433 /// 4434 /// \returns the most specialized function template specialization, if 4435 /// found. Otherwise, returns SpecEnd. 4436 UnresolvedSetIterator Sema::getMostSpecialized( 4437 UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd, 4438 TemplateSpecCandidateSet &FailedCandidates, 4439 SourceLocation Loc, const PartialDiagnostic &NoneDiag, 4440 const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag, 4441 bool Complain, QualType TargetType) { 4442 if (SpecBegin == SpecEnd) { 4443 if (Complain) { 4444 Diag(Loc, NoneDiag); 4445 FailedCandidates.NoteCandidates(*this, Loc); 4446 } 4447 return SpecEnd; 4448 } 4449 4450 if (SpecBegin + 1 == SpecEnd) 4451 return SpecBegin; 4452 4453 // Find the function template that is better than all of the templates it 4454 // has been compared to. 4455 UnresolvedSetIterator Best = SpecBegin; 4456 FunctionTemplateDecl *BestTemplate 4457 = cast<FunctionDecl>(*Best)->getPrimaryTemplate(); 4458 assert(BestTemplate && "Not a function template specialization?"); 4459 for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) { 4460 FunctionTemplateDecl *Challenger 4461 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 4462 assert(Challenger && "Not a function template specialization?"); 4463 if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 4464 Loc, TPOC_Other, 0, 0), 4465 Challenger)) { 4466 Best = I; 4467 BestTemplate = Challenger; 4468 } 4469 } 4470 4471 // Make sure that the "best" function template is more specialized than all 4472 // of the others. 4473 bool Ambiguous = false; 4474 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 4475 FunctionTemplateDecl *Challenger 4476 = cast<FunctionDecl>(*I)->getPrimaryTemplate(); 4477 if (I != Best && 4478 !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger, 4479 Loc, TPOC_Other, 0, 0), 4480 BestTemplate)) { 4481 Ambiguous = true; 4482 break; 4483 } 4484 } 4485 4486 if (!Ambiguous) { 4487 // We found an answer. Return it. 4488 return Best; 4489 } 4490 4491 // Diagnose the ambiguity. 4492 if (Complain) { 4493 Diag(Loc, AmbigDiag); 4494 4495 // FIXME: Can we order the candidates in some sane way? 4496 for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) { 4497 PartialDiagnostic PD = CandidateDiag; 4498 PD << getTemplateArgumentBindingsText( 4499 cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(), 4500 *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs()); 4501 if (!TargetType.isNull()) 4502 HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(), 4503 TargetType); 4504 Diag((*I)->getLocation(), PD); 4505 } 4506 } 4507 4508 return SpecEnd; 4509 } 4510 4511 /// \brief Returns the more specialized class template partial specialization 4512 /// according to the rules of partial ordering of class template partial 4513 /// specializations (C++ [temp.class.order]). 4514 /// 4515 /// \param PS1 the first class template partial specialization 4516 /// 4517 /// \param PS2 the second class template partial specialization 4518 /// 4519 /// \returns the more specialized class template partial specialization. If 4520 /// neither partial specialization is more specialized, returns NULL. 4521 ClassTemplatePartialSpecializationDecl * 4522 Sema::getMoreSpecializedPartialSpecialization( 4523 ClassTemplatePartialSpecializationDecl *PS1, 4524 ClassTemplatePartialSpecializationDecl *PS2, 4525 SourceLocation Loc) { 4526 // C++ [temp.class.order]p1: 4527 // For two class template partial specializations, the first is at least as 4528 // specialized as the second if, given the following rewrite to two 4529 // function templates, the first function template is at least as 4530 // specialized as the second according to the ordering rules for function 4531 // templates (14.6.6.2): 4532 // - the first function template has the same template parameters as the 4533 // first partial specialization and has a single function parameter 4534 // whose type is a class template specialization with the template 4535 // arguments of the first partial specialization, and 4536 // - the second function template has the same template parameters as the 4537 // second partial specialization and has a single function parameter 4538 // whose type is a class template specialization with the template 4539 // arguments of the second partial specialization. 4540 // 4541 // Rather than synthesize function templates, we merely perform the 4542 // equivalent partial ordering by performing deduction directly on 4543 // the template arguments of the class template partial 4544 // specializations. This computation is slightly simpler than the 4545 // general problem of function template partial ordering, because 4546 // class template partial specializations are more constrained. We 4547 // know that every template parameter is deducible from the class 4548 // template partial specialization's template arguments, for 4549 // example. 4550 SmallVector<DeducedTemplateArgument, 4> Deduced; 4551 TemplateDeductionInfo Info(Loc); 4552 4553 QualType PT1 = PS1->getInjectedSpecializationType(); 4554 QualType PT2 = PS2->getInjectedSpecializationType(); 4555 4556 // Determine whether PS1 is at least as specialized as PS2 4557 Deduced.resize(PS2->getTemplateParameters()->size()); 4558 bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this, 4559 PS2->getTemplateParameters(), 4560 PT2, PT1, Info, Deduced, TDF_None, 4561 /*PartialOrdering=*/true); 4562 if (Better1) { 4563 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end()); 4564 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info); 4565 Better1 = !::FinishTemplateArgumentDeduction( 4566 *this, PS2, PS1->getTemplateArgs(), Deduced, Info); 4567 } 4568 4569 // Determine whether PS2 is at least as specialized as PS1 4570 Deduced.clear(); 4571 Deduced.resize(PS1->getTemplateParameters()->size()); 4572 bool Better2 = !DeduceTemplateArgumentsByTypeMatch( 4573 *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None, 4574 /*PartialOrdering=*/true); 4575 if (Better2) { 4576 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 4577 Deduced.end()); 4578 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info); 4579 Better2 = !::FinishTemplateArgumentDeduction( 4580 *this, PS1, PS2->getTemplateArgs(), Deduced, Info); 4581 } 4582 4583 if (Better1 == Better2) 4584 return nullptr; 4585 4586 return Better1 ? PS1 : PS2; 4587 } 4588 4589 /// TODO: Unify with ClassTemplatePartialSpecializationDecl version? 4590 /// May require unifying ClassTemplate(Partial)SpecializationDecl and 4591 /// VarTemplate(Partial)SpecializationDecl with a new data 4592 /// structure Template(Partial)SpecializationDecl, and 4593 /// using Template(Partial)SpecializationDecl as input type. 4594 VarTemplatePartialSpecializationDecl * 4595 Sema::getMoreSpecializedPartialSpecialization( 4596 VarTemplatePartialSpecializationDecl *PS1, 4597 VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) { 4598 SmallVector<DeducedTemplateArgument, 4> Deduced; 4599 TemplateDeductionInfo Info(Loc); 4600 4601 assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() && 4602 "the partial specializations being compared should specialize" 4603 " the same template."); 4604 TemplateName Name(PS1->getSpecializedTemplate()); 4605 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name); 4606 QualType PT1 = Context.getTemplateSpecializationType( 4607 CanonTemplate, PS1->getTemplateArgs().data(), 4608 PS1->getTemplateArgs().size()); 4609 QualType PT2 = Context.getTemplateSpecializationType( 4610 CanonTemplate, PS2->getTemplateArgs().data(), 4611 PS2->getTemplateArgs().size()); 4612 4613 // Determine whether PS1 is at least as specialized as PS2 4614 Deduced.resize(PS2->getTemplateParameters()->size()); 4615 bool Better1 = !DeduceTemplateArgumentsByTypeMatch( 4616 *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None, 4617 /*PartialOrdering=*/true); 4618 if (Better1) { 4619 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), 4620 Deduced.end()); 4621 InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info); 4622 Better1 = !::FinishTemplateArgumentDeduction(*this, PS2, 4623 PS1->getTemplateArgs(), 4624 Deduced, Info); 4625 } 4626 4627 // Determine whether PS2 is at least as specialized as PS1 4628 Deduced.clear(); 4629 Deduced.resize(PS1->getTemplateParameters()->size()); 4630 bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this, 4631 PS1->getTemplateParameters(), 4632 PT1, PT2, Info, Deduced, TDF_None, 4633 /*PartialOrdering=*/true); 4634 if (Better2) { 4635 SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end()); 4636 InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info); 4637 Better2 = !::FinishTemplateArgumentDeduction(*this, PS1, 4638 PS2->getTemplateArgs(), 4639 Deduced, Info); 4640 } 4641 4642 if (Better1 == Better2) 4643 return nullptr; 4644 4645 return Better1? PS1 : PS2; 4646 } 4647 4648 static void 4649 MarkUsedTemplateParameters(ASTContext &Ctx, 4650 const TemplateArgument &TemplateArg, 4651 bool OnlyDeduced, 4652 unsigned Depth, 4653 llvm::SmallBitVector &Used); 4654 4655 /// \brief Mark the template parameters that are used by the given 4656 /// expression. 4657 static void 4658 MarkUsedTemplateParameters(ASTContext &Ctx, 4659 const Expr *E, 4660 bool OnlyDeduced, 4661 unsigned Depth, 4662 llvm::SmallBitVector &Used) { 4663 // We can deduce from a pack expansion. 4664 if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E)) 4665 E = Expansion->getPattern(); 4666 4667 // Skip through any implicit casts we added while type-checking, and any 4668 // substitutions performed by template alias expansion. 4669 while (1) { 4670 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) 4671 E = ICE->getSubExpr(); 4672 else if (const SubstNonTypeTemplateParmExpr *Subst = 4673 dyn_cast<SubstNonTypeTemplateParmExpr>(E)) 4674 E = Subst->getReplacement(); 4675 else 4676 break; 4677 } 4678 4679 // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to 4680 // find other occurrences of template parameters. 4681 const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E); 4682 if (!DRE) 4683 return; 4684 4685 const NonTypeTemplateParmDecl *NTTP 4686 = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl()); 4687 if (!NTTP) 4688 return; 4689 4690 if (NTTP->getDepth() == Depth) 4691 Used[NTTP->getIndex()] = true; 4692 } 4693 4694 /// \brief Mark the template parameters that are used by the given 4695 /// nested name specifier. 4696 static void 4697 MarkUsedTemplateParameters(ASTContext &Ctx, 4698 NestedNameSpecifier *NNS, 4699 bool OnlyDeduced, 4700 unsigned Depth, 4701 llvm::SmallBitVector &Used) { 4702 if (!NNS) 4703 return; 4704 4705 MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth, 4706 Used); 4707 MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0), 4708 OnlyDeduced, Depth, Used); 4709 } 4710 4711 /// \brief Mark the template parameters that are used by the given 4712 /// template name. 4713 static void 4714 MarkUsedTemplateParameters(ASTContext &Ctx, 4715 TemplateName Name, 4716 bool OnlyDeduced, 4717 unsigned Depth, 4718 llvm::SmallBitVector &Used) { 4719 if (TemplateDecl *Template = Name.getAsTemplateDecl()) { 4720 if (TemplateTemplateParmDecl *TTP 4721 = dyn_cast<TemplateTemplateParmDecl>(Template)) { 4722 if (TTP->getDepth() == Depth) 4723 Used[TTP->getIndex()] = true; 4724 } 4725 return; 4726 } 4727 4728 if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName()) 4729 MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced, 4730 Depth, Used); 4731 if (DependentTemplateName *DTN = Name.getAsDependentTemplateName()) 4732 MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced, 4733 Depth, Used); 4734 } 4735 4736 /// \brief Mark the template parameters that are used by the given 4737 /// type. 4738 static void 4739 MarkUsedTemplateParameters(ASTContext &Ctx, QualType T, 4740 bool OnlyDeduced, 4741 unsigned Depth, 4742 llvm::SmallBitVector &Used) { 4743 if (T.isNull()) 4744 return; 4745 4746 // Non-dependent types have nothing deducible 4747 if (!T->isDependentType()) 4748 return; 4749 4750 T = Ctx.getCanonicalType(T); 4751 switch (T->getTypeClass()) { 4752 case Type::Pointer: 4753 MarkUsedTemplateParameters(Ctx, 4754 cast<PointerType>(T)->getPointeeType(), 4755 OnlyDeduced, 4756 Depth, 4757 Used); 4758 break; 4759 4760 case Type::BlockPointer: 4761 MarkUsedTemplateParameters(Ctx, 4762 cast<BlockPointerType>(T)->getPointeeType(), 4763 OnlyDeduced, 4764 Depth, 4765 Used); 4766 break; 4767 4768 case Type::LValueReference: 4769 case Type::RValueReference: 4770 MarkUsedTemplateParameters(Ctx, 4771 cast<ReferenceType>(T)->getPointeeType(), 4772 OnlyDeduced, 4773 Depth, 4774 Used); 4775 break; 4776 4777 case Type::MemberPointer: { 4778 const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr()); 4779 MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced, 4780 Depth, Used); 4781 MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0), 4782 OnlyDeduced, Depth, Used); 4783 break; 4784 } 4785 4786 case Type::DependentSizedArray: 4787 MarkUsedTemplateParameters(Ctx, 4788 cast<DependentSizedArrayType>(T)->getSizeExpr(), 4789 OnlyDeduced, Depth, Used); 4790 // Fall through to check the element type 4791 4792 case Type::ConstantArray: 4793 case Type::IncompleteArray: 4794 MarkUsedTemplateParameters(Ctx, 4795 cast<ArrayType>(T)->getElementType(), 4796 OnlyDeduced, Depth, Used); 4797 break; 4798 4799 case Type::Vector: 4800 case Type::ExtVector: 4801 MarkUsedTemplateParameters(Ctx, 4802 cast<VectorType>(T)->getElementType(), 4803 OnlyDeduced, Depth, Used); 4804 break; 4805 4806 case Type::DependentSizedExtVector: { 4807 const DependentSizedExtVectorType *VecType 4808 = cast<DependentSizedExtVectorType>(T); 4809 MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced, 4810 Depth, Used); 4811 MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced, 4812 Depth, Used); 4813 break; 4814 } 4815 4816 case Type::FunctionProto: { 4817 const FunctionProtoType *Proto = cast<FunctionProtoType>(T); 4818 MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth, 4819 Used); 4820 for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I) 4821 MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced, 4822 Depth, Used); 4823 break; 4824 } 4825 4826 case Type::TemplateTypeParm: { 4827 const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T); 4828 if (TTP->getDepth() == Depth) 4829 Used[TTP->getIndex()] = true; 4830 break; 4831 } 4832 4833 case Type::SubstTemplateTypeParmPack: { 4834 const SubstTemplateTypeParmPackType *Subst 4835 = cast<SubstTemplateTypeParmPackType>(T); 4836 MarkUsedTemplateParameters(Ctx, 4837 QualType(Subst->getReplacedParameter(), 0), 4838 OnlyDeduced, Depth, Used); 4839 MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(), 4840 OnlyDeduced, Depth, Used); 4841 break; 4842 } 4843 4844 case Type::InjectedClassName: 4845 T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType(); 4846 // fall through 4847 4848 case Type::TemplateSpecialization: { 4849 const TemplateSpecializationType *Spec 4850 = cast<TemplateSpecializationType>(T); 4851 MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced, 4852 Depth, Used); 4853 4854 // C++0x [temp.deduct.type]p9: 4855 // If the template argument list of P contains a pack expansion that is 4856 // not the last template argument, the entire template argument list is a 4857 // non-deduced context. 4858 if (OnlyDeduced && 4859 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) 4860 break; 4861 4862 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 4863 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 4864 Used); 4865 break; 4866 } 4867 4868 case Type::Complex: 4869 if (!OnlyDeduced) 4870 MarkUsedTemplateParameters(Ctx, 4871 cast<ComplexType>(T)->getElementType(), 4872 OnlyDeduced, Depth, Used); 4873 break; 4874 4875 case Type::Atomic: 4876 if (!OnlyDeduced) 4877 MarkUsedTemplateParameters(Ctx, 4878 cast<AtomicType>(T)->getValueType(), 4879 OnlyDeduced, Depth, Used); 4880 break; 4881 4882 case Type::DependentName: 4883 if (!OnlyDeduced) 4884 MarkUsedTemplateParameters(Ctx, 4885 cast<DependentNameType>(T)->getQualifier(), 4886 OnlyDeduced, Depth, Used); 4887 break; 4888 4889 case Type::DependentTemplateSpecialization: { 4890 const DependentTemplateSpecializationType *Spec 4891 = cast<DependentTemplateSpecializationType>(T); 4892 if (!OnlyDeduced) 4893 MarkUsedTemplateParameters(Ctx, Spec->getQualifier(), 4894 OnlyDeduced, Depth, Used); 4895 4896 // C++0x [temp.deduct.type]p9: 4897 // If the template argument list of P contains a pack expansion that is not 4898 // the last template argument, the entire template argument list is a 4899 // non-deduced context. 4900 if (OnlyDeduced && 4901 hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs())) 4902 break; 4903 4904 for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I) 4905 MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth, 4906 Used); 4907 break; 4908 } 4909 4910 case Type::TypeOf: 4911 if (!OnlyDeduced) 4912 MarkUsedTemplateParameters(Ctx, 4913 cast<TypeOfType>(T)->getUnderlyingType(), 4914 OnlyDeduced, Depth, Used); 4915 break; 4916 4917 case Type::TypeOfExpr: 4918 if (!OnlyDeduced) 4919 MarkUsedTemplateParameters(Ctx, 4920 cast<TypeOfExprType>(T)->getUnderlyingExpr(), 4921 OnlyDeduced, Depth, Used); 4922 break; 4923 4924 case Type::Decltype: 4925 if (!OnlyDeduced) 4926 MarkUsedTemplateParameters(Ctx, 4927 cast<DecltypeType>(T)->getUnderlyingExpr(), 4928 OnlyDeduced, Depth, Used); 4929 break; 4930 4931 case Type::UnaryTransform: 4932 if (!OnlyDeduced) 4933 MarkUsedTemplateParameters(Ctx, 4934 cast<UnaryTransformType>(T)->getUnderlyingType(), 4935 OnlyDeduced, Depth, Used); 4936 break; 4937 4938 case Type::PackExpansion: 4939 MarkUsedTemplateParameters(Ctx, 4940 cast<PackExpansionType>(T)->getPattern(), 4941 OnlyDeduced, Depth, Used); 4942 break; 4943 4944 case Type::Auto: 4945 MarkUsedTemplateParameters(Ctx, 4946 cast<AutoType>(T)->getDeducedType(), 4947 OnlyDeduced, Depth, Used); 4948 4949 // None of these types have any template parameters in them. 4950 case Type::Builtin: 4951 case Type::VariableArray: 4952 case Type::FunctionNoProto: 4953 case Type::Record: 4954 case Type::Enum: 4955 case Type::ObjCInterface: 4956 case Type::ObjCObject: 4957 case Type::ObjCObjectPointer: 4958 case Type::UnresolvedUsing: 4959 #define TYPE(Class, Base) 4960 #define ABSTRACT_TYPE(Class, Base) 4961 #define DEPENDENT_TYPE(Class, Base) 4962 #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: 4963 #include "clang/AST/TypeNodes.def" 4964 break; 4965 } 4966 } 4967 4968 /// \brief Mark the template parameters that are used by this 4969 /// template argument. 4970 static void 4971 MarkUsedTemplateParameters(ASTContext &Ctx, 4972 const TemplateArgument &TemplateArg, 4973 bool OnlyDeduced, 4974 unsigned Depth, 4975 llvm::SmallBitVector &Used) { 4976 switch (TemplateArg.getKind()) { 4977 case TemplateArgument::Null: 4978 case TemplateArgument::Integral: 4979 case TemplateArgument::Declaration: 4980 break; 4981 4982 case TemplateArgument::NullPtr: 4983 MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced, 4984 Depth, Used); 4985 break; 4986 4987 case TemplateArgument::Type: 4988 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced, 4989 Depth, Used); 4990 break; 4991 4992 case TemplateArgument::Template: 4993 case TemplateArgument::TemplateExpansion: 4994 MarkUsedTemplateParameters(Ctx, 4995 TemplateArg.getAsTemplateOrTemplatePattern(), 4996 OnlyDeduced, Depth, Used); 4997 break; 4998 4999 case TemplateArgument::Expression: 5000 MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced, 5001 Depth, Used); 5002 break; 5003 5004 case TemplateArgument::Pack: 5005 for (const auto &P : TemplateArg.pack_elements()) 5006 MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used); 5007 break; 5008 } 5009 } 5010 5011 /// \brief Mark which template parameters can be deduced from a given 5012 /// template argument list. 5013 /// 5014 /// \param TemplateArgs the template argument list from which template 5015 /// parameters will be deduced. 5016 /// 5017 /// \param Used a bit vector whose elements will be set to \c true 5018 /// to indicate when the corresponding template parameter will be 5019 /// deduced. 5020 void 5021 Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs, 5022 bool OnlyDeduced, unsigned Depth, 5023 llvm::SmallBitVector &Used) { 5024 // C++0x [temp.deduct.type]p9: 5025 // If the template argument list of P contains a pack expansion that is not 5026 // the last template argument, the entire template argument list is a 5027 // non-deduced context. 5028 if (OnlyDeduced && 5029 hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size())) 5030 return; 5031 5032 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) 5033 ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced, 5034 Depth, Used); 5035 } 5036 5037 /// \brief Marks all of the template parameters that will be deduced by a 5038 /// call to the given function template. 5039 void Sema::MarkDeducedTemplateParameters( 5040 ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate, 5041 llvm::SmallBitVector &Deduced) { 5042 TemplateParameterList *TemplateParams 5043 = FunctionTemplate->getTemplateParameters(); 5044 Deduced.clear(); 5045 Deduced.resize(TemplateParams->size()); 5046 5047 FunctionDecl *Function = FunctionTemplate->getTemplatedDecl(); 5048 for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I) 5049 ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(), 5050 true, TemplateParams->getDepth(), Deduced); 5051 } 5052 5053 bool hasDeducibleTemplateParameters(Sema &S, 5054 FunctionTemplateDecl *FunctionTemplate, 5055 QualType T) { 5056 if (!T->isDependentType()) 5057 return false; 5058 5059 TemplateParameterList *TemplateParams 5060 = FunctionTemplate->getTemplateParameters(); 5061 llvm::SmallBitVector Deduced(TemplateParams->size()); 5062 ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(), 5063 Deduced); 5064 5065 return Deduced.any(); 5066 } 5067