Home | History | Annotate | Download | only in Support
      1 //===--- Allocator.h - Simple memory allocation abstraction -----*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file defines the MallocAllocator and BumpPtrAllocator interfaces. Both
     12 /// of these conform to an LLVM "Allocator" concept which consists of an
     13 /// Allocate method accepting a size and alignment, and a Deallocate accepting
     14 /// a pointer and size. Further, the LLVM "Allocator" concept has overloads of
     15 /// Allocate and Deallocate for setting size and alignment based on the final
     16 /// type. These overloads are typically provided by a base class template \c
     17 /// AllocatorBase.
     18 ///
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_SUPPORT_ALLOCATOR_H
     22 #define LLVM_SUPPORT_ALLOCATOR_H
     23 
     24 #include "llvm/ADT/SmallVector.h"
     25 #include "llvm/Support/AlignOf.h"
     26 #include "llvm/Support/DataTypes.h"
     27 #include "llvm/Support/MathExtras.h"
     28 #include "llvm/Support/Memory.h"
     29 #include <algorithm>
     30 #include <cassert>
     31 #include <cstddef>
     32 #include <cstdlib>
     33 
     34 namespace llvm {
     35 
     36 /// \brief CRTP base class providing obvious overloads for the core \c
     37 /// Allocate() methods of LLVM-style allocators.
     38 ///
     39 /// This base class both documents the full public interface exposed by all
     40 /// LLVM-style allocators, and redirects all of the overloads to a single core
     41 /// set of methods which the derived class must define.
     42 template <typename DerivedT> class AllocatorBase {
     43 public:
     44   /// \brief Allocate \a Size bytes of \a Alignment aligned memory. This method
     45   /// must be implemented by \c DerivedT.
     46   void *Allocate(size_t Size, size_t Alignment) {
     47 #ifdef __clang__
     48     static_assert(static_cast<void *(AllocatorBase::*)(size_t, size_t)>(
     49                       &AllocatorBase::Allocate) !=
     50                       static_cast<void *(DerivedT::*)(size_t, size_t)>(
     51                           &DerivedT::Allocate),
     52                   "Class derives from AllocatorBase without implementing the "
     53                   "core Allocate(size_t, size_t) overload!");
     54 #endif
     55     return static_cast<DerivedT *>(this)->Allocate(Size, Alignment);
     56   }
     57 
     58   /// \brief Deallocate \a Ptr to \a Size bytes of memory allocated by this
     59   /// allocator.
     60   void Deallocate(const void *Ptr, size_t Size) {
     61 #ifdef __clang__
     62     static_assert(static_cast<void (AllocatorBase::*)(const void *, size_t)>(
     63                       &AllocatorBase::Deallocate) !=
     64                       static_cast<void (DerivedT::*)(const void *, size_t)>(
     65                           &DerivedT::Deallocate),
     66                   "Class derives from AllocatorBase without implementing the "
     67                   "core Deallocate(void *) overload!");
     68 #endif
     69     return static_cast<DerivedT *>(this)->Deallocate(Ptr, Size);
     70   }
     71 
     72   // The rest of these methods are helpers that redirect to one of the above
     73   // core methods.
     74 
     75   /// \brief Allocate space for a sequence of objects without constructing them.
     76   template <typename T> T *Allocate(size_t Num = 1) {
     77     return static_cast<T *>(Allocate(Num * sizeof(T), AlignOf<T>::Alignment));
     78   }
     79 
     80   /// \brief Deallocate space for a sequence of objects without constructing them.
     81   template <typename T>
     82   typename std::enable_if<
     83       !std::is_same<typename std::remove_cv<T>::type, void>::value, void>::type
     84   Deallocate(T *Ptr, size_t Num = 1) {
     85     Deallocate(static_cast<const void *>(Ptr), Num * sizeof(T));
     86   }
     87 };
     88 
     89 class MallocAllocator : public AllocatorBase<MallocAllocator> {
     90 public:
     91   void Reset() {}
     92 
     93   LLVM_ATTRIBUTE_RETURNS_NONNULL void *Allocate(size_t Size,
     94                                                 size_t /*Alignment*/) {
     95     return malloc(Size);
     96   }
     97 
     98   // Pull in base class overloads.
     99   using AllocatorBase<MallocAllocator>::Allocate;
    100 
    101   void Deallocate(const void *Ptr, size_t /*Size*/) {
    102     free(const_cast<void *>(Ptr));
    103   }
    104 
    105   // Pull in base class overloads.
    106   using AllocatorBase<MallocAllocator>::Deallocate;
    107 
    108   void PrintStats() const {}
    109 };
    110 
    111 namespace detail {
    112 
    113 // We call out to an external function to actually print the message as the
    114 // printing code uses Allocator.h in its implementation.
    115 void printBumpPtrAllocatorStats(unsigned NumSlabs, size_t BytesAllocated,
    116                                 size_t TotalMemory);
    117 } // End namespace detail.
    118 
    119 /// \brief Allocate memory in an ever growing pool, as if by bump-pointer.
    120 ///
    121 /// This isn't strictly a bump-pointer allocator as it uses backing slabs of
    122 /// memory rather than relying on a boundless contiguous heap. However, it has
    123 /// bump-pointer semantics in that it is a monotonically growing pool of memory
    124 /// where every allocation is found by merely allocating the next N bytes in
    125 /// the slab, or the next N bytes in the next slab.
    126 ///
    127 /// Note that this also has a threshold for forcing allocations above a certain
    128 /// size into their own slab.
    129 ///
    130 /// The BumpPtrAllocatorImpl template defaults to using a MallocAllocator
    131 /// object, which wraps malloc, to allocate memory, but it can be changed to
    132 /// use a custom allocator.
    133 template <typename AllocatorT = MallocAllocator, size_t SlabSize = 4096,
    134           size_t SizeThreshold = SlabSize>
    135 class BumpPtrAllocatorImpl
    136     : public AllocatorBase<
    137           BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold>> {
    138 public:
    139   static_assert(SizeThreshold <= SlabSize,
    140                 "The SizeThreshold must be at most the SlabSize to ensure "
    141                 "that objects larger than a slab go into their own memory "
    142                 "allocation.");
    143 
    144   BumpPtrAllocatorImpl()
    145       : CurPtr(nullptr), End(nullptr), BytesAllocated(0), Allocator() {}
    146   template <typename T>
    147   BumpPtrAllocatorImpl(T &&Allocator)
    148       : CurPtr(nullptr), End(nullptr), BytesAllocated(0),
    149         Allocator(std::forward<T &&>(Allocator)) {}
    150 
    151   // Manually implement a move constructor as we must clear the old allocator's
    152   // slabs as a matter of correctness.
    153   BumpPtrAllocatorImpl(BumpPtrAllocatorImpl &&Old)
    154       : CurPtr(Old.CurPtr), End(Old.End), Slabs(std::move(Old.Slabs)),
    155         CustomSizedSlabs(std::move(Old.CustomSizedSlabs)),
    156         BytesAllocated(Old.BytesAllocated),
    157         Allocator(std::move(Old.Allocator)) {
    158     Old.CurPtr = Old.End = nullptr;
    159     Old.BytesAllocated = 0;
    160     Old.Slabs.clear();
    161     Old.CustomSizedSlabs.clear();
    162   }
    163 
    164   ~BumpPtrAllocatorImpl() {
    165     DeallocateSlabs(Slabs.begin(), Slabs.end());
    166     DeallocateCustomSizedSlabs();
    167   }
    168 
    169   BumpPtrAllocatorImpl &operator=(BumpPtrAllocatorImpl &&RHS) {
    170     DeallocateSlabs(Slabs.begin(), Slabs.end());
    171     DeallocateCustomSizedSlabs();
    172 
    173     CurPtr = RHS.CurPtr;
    174     End = RHS.End;
    175     BytesAllocated = RHS.BytesAllocated;
    176     Slabs = std::move(RHS.Slabs);
    177     CustomSizedSlabs = std::move(RHS.CustomSizedSlabs);
    178     Allocator = std::move(RHS.Allocator);
    179 
    180     RHS.CurPtr = RHS.End = nullptr;
    181     RHS.BytesAllocated = 0;
    182     RHS.Slabs.clear();
    183     RHS.CustomSizedSlabs.clear();
    184     return *this;
    185   }
    186 
    187   /// \brief Deallocate all but the current slab and reset the current pointer
    188   /// to the beginning of it, freeing all memory allocated so far.
    189   void Reset() {
    190     DeallocateCustomSizedSlabs();
    191     CustomSizedSlabs.clear();
    192 
    193     if (Slabs.empty())
    194       return;
    195 
    196     // Reset the state.
    197     BytesAllocated = 0;
    198     CurPtr = (char *)Slabs.front();
    199     End = CurPtr + SlabSize;
    200 
    201     // Deallocate all but the first slab, and deallocate all custom-sized slabs.
    202     DeallocateSlabs(std::next(Slabs.begin()), Slabs.end());
    203     Slabs.erase(std::next(Slabs.begin()), Slabs.end());
    204   }
    205 
    206   /// \brief Allocate space at the specified alignment.
    207   LLVM_ATTRIBUTE_RETURNS_NONNULL LLVM_ATTRIBUTE_RETURNS_NOALIAS void *
    208   Allocate(size_t Size, size_t Alignment) {
    209     assert(Alignment > 0 && "0-byte alignnment is not allowed. Use 1 instead.");
    210 
    211     // Keep track of how many bytes we've allocated.
    212     BytesAllocated += Size;
    213 
    214     size_t Adjustment = alignmentAdjustment(CurPtr, Alignment);
    215     assert(Adjustment + Size >= Size && "Adjustment + Size must not overflow");
    216 
    217     // Check if we have enough space.
    218     if (Adjustment + Size <= size_t(End - CurPtr)) {
    219       char *AlignedPtr = CurPtr + Adjustment;
    220       CurPtr = AlignedPtr + Size;
    221       // Update the allocation point of this memory block in MemorySanitizer.
    222       // Without this, MemorySanitizer messages for values originated from here
    223       // will point to the allocation of the entire slab.
    224       __msan_allocated_memory(AlignedPtr, Size);
    225       // Similarly, tell ASan about this space.
    226       __asan_unpoison_memory_region(AlignedPtr, Size);
    227       return AlignedPtr;
    228     }
    229 
    230     // If Size is really big, allocate a separate slab for it.
    231     size_t PaddedSize = Size + Alignment - 1;
    232     if (PaddedSize > SizeThreshold) {
    233       void *NewSlab = Allocator.Allocate(PaddedSize, 0);
    234       // We own the new slab and don't want anyone reading anyting other than
    235       // pieces returned from this method.  So poison the whole slab.
    236       __asan_poison_memory_region(NewSlab, PaddedSize);
    237       CustomSizedSlabs.push_back(std::make_pair(NewSlab, PaddedSize));
    238 
    239       uintptr_t AlignedAddr = alignAddr(NewSlab, Alignment);
    240       assert(AlignedAddr + Size <= (uintptr_t)NewSlab + PaddedSize);
    241       char *AlignedPtr = (char*)AlignedAddr;
    242       __msan_allocated_memory(AlignedPtr, Size);
    243       __asan_unpoison_memory_region(AlignedPtr, Size);
    244       return AlignedPtr;
    245     }
    246 
    247     // Otherwise, start a new slab and try again.
    248     StartNewSlab();
    249     uintptr_t AlignedAddr = alignAddr(CurPtr, Alignment);
    250     assert(AlignedAddr + Size <= (uintptr_t)End &&
    251            "Unable to allocate memory!");
    252     char *AlignedPtr = (char*)AlignedAddr;
    253     CurPtr = AlignedPtr + Size;
    254     __msan_allocated_memory(AlignedPtr, Size);
    255     __asan_unpoison_memory_region(AlignedPtr, Size);
    256     return AlignedPtr;
    257   }
    258 
    259   // Pull in base class overloads.
    260   using AllocatorBase<BumpPtrAllocatorImpl>::Allocate;
    261 
    262   void Deallocate(const void *Ptr, size_t Size) {
    263     __asan_poison_memory_region(Ptr, Size);
    264   }
    265 
    266   // Pull in base class overloads.
    267   using AllocatorBase<BumpPtrAllocatorImpl>::Deallocate;
    268 
    269   size_t GetNumSlabs() const { return Slabs.size() + CustomSizedSlabs.size(); }
    270 
    271   size_t getTotalMemory() const {
    272     size_t TotalMemory = 0;
    273     for (auto I = Slabs.begin(), E = Slabs.end(); I != E; ++I)
    274       TotalMemory += computeSlabSize(std::distance(Slabs.begin(), I));
    275     for (auto &PtrAndSize : CustomSizedSlabs)
    276       TotalMemory += PtrAndSize.second;
    277     return TotalMemory;
    278   }
    279 
    280   void PrintStats() const {
    281     detail::printBumpPtrAllocatorStats(Slabs.size(), BytesAllocated,
    282                                        getTotalMemory());
    283   }
    284 
    285 private:
    286   /// \brief The current pointer into the current slab.
    287   ///
    288   /// This points to the next free byte in the slab.
    289   char *CurPtr;
    290 
    291   /// \brief The end of the current slab.
    292   char *End;
    293 
    294   /// \brief The slabs allocated so far.
    295   SmallVector<void *, 4> Slabs;
    296 
    297   /// \brief Custom-sized slabs allocated for too-large allocation requests.
    298   SmallVector<std::pair<void *, size_t>, 0> CustomSizedSlabs;
    299 
    300   /// \brief How many bytes we've allocated.
    301   ///
    302   /// Used so that we can compute how much space was wasted.
    303   size_t BytesAllocated;
    304 
    305   /// \brief The allocator instance we use to get slabs of memory.
    306   AllocatorT Allocator;
    307 
    308   static size_t computeSlabSize(unsigned SlabIdx) {
    309     // Scale the actual allocated slab size based on the number of slabs
    310     // allocated. Every 128 slabs allocated, we double the allocated size to
    311     // reduce allocation frequency, but saturate at multiplying the slab size by
    312     // 2^30.
    313     return SlabSize * ((size_t)1 << std::min<size_t>(30, SlabIdx / 128));
    314   }
    315 
    316   /// \brief Allocate a new slab and move the bump pointers over into the new
    317   /// slab, modifying CurPtr and End.
    318   void StartNewSlab() {
    319     size_t AllocatedSlabSize = computeSlabSize(Slabs.size());
    320 
    321     void *NewSlab = Allocator.Allocate(AllocatedSlabSize, 0);
    322     // We own the new slab and don't want anyone reading anything other than
    323     // pieces returned from this method.  So poison the whole slab.
    324     __asan_poison_memory_region(NewSlab, AllocatedSlabSize);
    325 
    326     Slabs.push_back(NewSlab);
    327     CurPtr = (char *)(NewSlab);
    328     End = ((char *)NewSlab) + AllocatedSlabSize;
    329   }
    330 
    331   /// \brief Deallocate a sequence of slabs.
    332   void DeallocateSlabs(SmallVectorImpl<void *>::iterator I,
    333                        SmallVectorImpl<void *>::iterator E) {
    334     for (; I != E; ++I) {
    335       size_t AllocatedSlabSize =
    336           computeSlabSize(std::distance(Slabs.begin(), I));
    337       Allocator.Deallocate(*I, AllocatedSlabSize);
    338     }
    339   }
    340 
    341   /// \brief Deallocate all memory for custom sized slabs.
    342   void DeallocateCustomSizedSlabs() {
    343     for (auto &PtrAndSize : CustomSizedSlabs) {
    344       void *Ptr = PtrAndSize.first;
    345       size_t Size = PtrAndSize.second;
    346       Allocator.Deallocate(Ptr, Size);
    347     }
    348   }
    349 
    350   template <typename T> friend class SpecificBumpPtrAllocator;
    351 };
    352 
    353 /// \brief The standard BumpPtrAllocator which just uses the default template
    354 /// paramaters.
    355 typedef BumpPtrAllocatorImpl<> BumpPtrAllocator;
    356 
    357 /// \brief A BumpPtrAllocator that allows only elements of a specific type to be
    358 /// allocated.
    359 ///
    360 /// This allows calling the destructor in DestroyAll() and when the allocator is
    361 /// destroyed.
    362 template <typename T> class SpecificBumpPtrAllocator {
    363   BumpPtrAllocator Allocator;
    364 
    365 public:
    366   SpecificBumpPtrAllocator() : Allocator() {}
    367   SpecificBumpPtrAllocator(SpecificBumpPtrAllocator &&Old)
    368       : Allocator(std::move(Old.Allocator)) {}
    369   ~SpecificBumpPtrAllocator() { DestroyAll(); }
    370 
    371   SpecificBumpPtrAllocator &operator=(SpecificBumpPtrAllocator &&RHS) {
    372     Allocator = std::move(RHS.Allocator);
    373     return *this;
    374   }
    375 
    376   /// Call the destructor of each allocated object and deallocate all but the
    377   /// current slab and reset the current pointer to the beginning of it, freeing
    378   /// all memory allocated so far.
    379   void DestroyAll() {
    380     auto DestroyElements = [](char *Begin, char *End) {
    381       assert(Begin == (char*)alignAddr(Begin, alignOf<T>()));
    382       for (char *Ptr = Begin; Ptr + sizeof(T) <= End; Ptr += sizeof(T))
    383         reinterpret_cast<T *>(Ptr)->~T();
    384     };
    385 
    386     for (auto I = Allocator.Slabs.begin(), E = Allocator.Slabs.end(); I != E;
    387          ++I) {
    388       size_t AllocatedSlabSize = BumpPtrAllocator::computeSlabSize(
    389           std::distance(Allocator.Slabs.begin(), I));
    390       char *Begin = (char*)alignAddr(*I, alignOf<T>());
    391       char *End = *I == Allocator.Slabs.back() ? Allocator.CurPtr
    392                                                : (char *)*I + AllocatedSlabSize;
    393 
    394       DestroyElements(Begin, End);
    395     }
    396 
    397     for (auto &PtrAndSize : Allocator.CustomSizedSlabs) {
    398       void *Ptr = PtrAndSize.first;
    399       size_t Size = PtrAndSize.second;
    400       DestroyElements((char*)alignAddr(Ptr, alignOf<T>()), (char *)Ptr + Size);
    401     }
    402 
    403     Allocator.Reset();
    404   }
    405 
    406   /// \brief Allocate space for an array of objects without constructing them.
    407   T *Allocate(size_t num = 1) { return Allocator.Allocate<T>(num); }
    408 };
    409 
    410 }  // end namespace llvm
    411 
    412 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    413 void *operator new(size_t Size,
    414                    llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize,
    415                                               SizeThreshold> &Allocator) {
    416   struct S {
    417     char c;
    418     union {
    419       double D;
    420       long double LD;
    421       long long L;
    422       void *P;
    423     } x;
    424   };
    425   return Allocator.Allocate(
    426       Size, std::min((size_t)llvm::NextPowerOf2(Size), offsetof(S, x)));
    427 }
    428 
    429 template <typename AllocatorT, size_t SlabSize, size_t SizeThreshold>
    430 void operator delete(
    431     void *, llvm::BumpPtrAllocatorImpl<AllocatorT, SlabSize, SizeThreshold> &) {
    432 }
    433 
    434 #endif // LLVM_SUPPORT_ALLOCATOR_H
    435