Home | History | Annotate | Download | only in base
      1 // Copyright 2014 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 #ifndef V8_BASE_MACROS_H_
      6 #define V8_BASE_MACROS_H_
      7 
      8 #include <stddef.h>
      9 #include <stdint.h>
     10 
     11 #include <cstring>
     12 
     13 #include "src/base/build_config.h"
     14 #include "src/base/compiler-specific.h"
     15 #include "src/base/logging.h"
     16 
     17 
     18 // TODO(all) Replace all uses of this macro with C++'s offsetof. To do that, we
     19 // have to make sure that only standard-layout types and simple field
     20 // designators are used.
     21 #define OFFSET_OF(type, field) \
     22   (reinterpret_cast<intptr_t>(&(reinterpret_cast<type*>(16)->field)) - 16)
     23 
     24 
     25 #if V8_OS_NACL
     26 
     27 // ARRAYSIZE_UNSAFE performs essentially the same calculation as arraysize,
     28 // but can be used on anonymous types or types defined inside
     29 // functions.  It's less safe than arraysize as it accepts some
     30 // (although not all) pointers.  Therefore, you should use arraysize
     31 // whenever possible.
     32 //
     33 // The expression ARRAYSIZE_UNSAFE(a) is a compile-time constant of type
     34 // size_t.
     35 //
     36 // ARRAYSIZE_UNSAFE catches a few type errors.  If you see a compiler error
     37 //
     38 //   "warning: division by zero in ..."
     39 //
     40 // when using ARRAYSIZE_UNSAFE, you are (wrongfully) giving it a pointer.
     41 // You should only use ARRAYSIZE_UNSAFE on statically allocated arrays.
     42 //
     43 // The following comments are on the implementation details, and can
     44 // be ignored by the users.
     45 //
     46 // ARRAYSIZE_UNSAFE(arr) works by inspecting sizeof(arr) (the # of bytes in
     47 // the array) and sizeof(*(arr)) (the # of bytes in one array
     48 // element).  If the former is divisible by the latter, perhaps arr is
     49 // indeed an array, in which case the division result is the # of
     50 // elements in the array.  Otherwise, arr cannot possibly be an array,
     51 // and we generate a compiler error to prevent the code from
     52 // compiling.
     53 //
     54 // Since the size of bool is implementation-defined, we need to cast
     55 // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final
     56 // result has type size_t.
     57 //
     58 // This macro is not perfect as it wrongfully accepts certain
     59 // pointers, namely where the pointer size is divisible by the pointee
     60 // size.  Since all our code has to go through a 32-bit compiler,
     61 // where a pointer is 4 bytes, this means all pointers to a type whose
     62 // size is 3 or greater than 4 will be (righteously) rejected.
     63 #define ARRAYSIZE_UNSAFE(a)     \
     64   ((sizeof(a) / sizeof(*(a))) / \
     65    static_cast<size_t>(!(sizeof(a) % sizeof(*(a)))))  // NOLINT
     66 
     67 // TODO(bmeurer): For some reason, the NaCl toolchain cannot handle the correct
     68 // definition of arraysize() below, so we have to use the unsafe version for
     69 // now.
     70 #define arraysize ARRAYSIZE_UNSAFE
     71 
     72 #else  // V8_OS_NACL
     73 
     74 // The arraysize(arr) macro returns the # of elements in an array arr.
     75 // The expression is a compile-time constant, and therefore can be
     76 // used in defining new arrays, for example.  If you use arraysize on
     77 // a pointer by mistake, you will get a compile-time error.
     78 //
     79 // One caveat is that arraysize() doesn't accept any array of an
     80 // anonymous type or a type defined inside a function.  In these rare
     81 // cases, you have to use the unsafe ARRAYSIZE_UNSAFE() macro below.  This is
     82 // due to a limitation in C++'s template system.  The limitation might
     83 // eventually be removed, but it hasn't happened yet.
     84 #define arraysize(array) (sizeof(ArraySizeHelper(array)))
     85 
     86 
     87 // This template function declaration is used in defining arraysize.
     88 // Note that the function doesn't need an implementation, as we only
     89 // use its type.
     90 template <typename T, size_t N>
     91 char (&ArraySizeHelper(T (&array)[N]))[N];
     92 
     93 
     94 #if !V8_CC_MSVC
     95 // That gcc wants both of these prototypes seems mysterious. VC, for
     96 // its part, can't decide which to use (another mystery). Matching of
     97 // template overloads: the final frontier.
     98 template <typename T, size_t N>
     99 char (&ArraySizeHelper(const T (&array)[N]))[N];
    100 #endif
    101 
    102 #endif  // V8_OS_NACL
    103 
    104 
    105 // bit_cast<Dest,Source> is a template function that implements the
    106 // equivalent of "*reinterpret_cast<Dest*>(&source)".  We need this in
    107 // very low-level functions like the protobuf library and fast math
    108 // support.
    109 //
    110 //   float f = 3.14159265358979;
    111 //   int i = bit_cast<int32>(f);
    112 //   // i = 0x40490fdb
    113 //
    114 // The classical address-casting method is:
    115 //
    116 //   // WRONG
    117 //   float f = 3.14159265358979;            // WRONG
    118 //   int i = * reinterpret_cast<int*>(&f);  // WRONG
    119 //
    120 // The address-casting method actually produces undefined behavior
    121 // according to ISO C++ specification section 3.10 -15 -.  Roughly, this
    122 // section says: if an object in memory has one type, and a program
    123 // accesses it with a different type, then the result is undefined
    124 // behavior for most values of "different type".
    125 //
    126 // This is true for any cast syntax, either *(int*)&f or
    127 // *reinterpret_cast<int*>(&f).  And it is particularly true for
    128 // conversions between integral lvalues and floating-point lvalues.
    129 //
    130 // The purpose of 3.10 -15- is to allow optimizing compilers to assume
    131 // that expressions with different types refer to different memory.  gcc
    132 // 4.0.1 has an optimizer that takes advantage of this.  So a
    133 // non-conforming program quietly produces wildly incorrect output.
    134 //
    135 // The problem is not the use of reinterpret_cast.  The problem is type
    136 // punning: holding an object in memory of one type and reading its bits
    137 // back using a different type.
    138 //
    139 // The C++ standard is more subtle and complex than this, but that
    140 // is the basic idea.
    141 //
    142 // Anyways ...
    143 //
    144 // bit_cast<> calls memcpy() which is blessed by the standard,
    145 // especially by the example in section 3.9 .  Also, of course,
    146 // bit_cast<> wraps up the nasty logic in one place.
    147 //
    148 // Fortunately memcpy() is very fast.  In optimized mode, with a
    149 // constant size, gcc 2.95.3, gcc 4.0.1, and msvc 7.1 produce inline
    150 // code with the minimal amount of data movement.  On a 32-bit system,
    151 // memcpy(d,s,4) compiles to one load and one store, and memcpy(d,s,8)
    152 // compiles to two loads and two stores.
    153 //
    154 // I tested this code with gcc 2.95.3, gcc 4.0.1, icc 8.1, and msvc 7.1.
    155 //
    156 // WARNING: if Dest or Source is a non-POD type, the result of the memcpy
    157 // is likely to surprise you.
    158 template <class Dest, class Source>
    159 V8_INLINE Dest bit_cast(Source const& source) {
    160   static_assert(sizeof(Dest) == sizeof(Source),
    161                 "source and dest must be same size");
    162   Dest dest;
    163   memcpy(&dest, &source, sizeof(dest));
    164   return dest;
    165 }
    166 
    167 
    168 // Put this in the private: declarations for a class to be unassignable.
    169 #define DISALLOW_ASSIGN(TypeName) void operator=(const TypeName&)
    170 
    171 
    172 // A macro to disallow the evil copy constructor and operator= functions
    173 // This should be used in the private: declarations for a class
    174 #define DISALLOW_COPY_AND_ASSIGN(TypeName) \
    175   TypeName(const TypeName&) = delete;      \
    176   void operator=(const TypeName&) = delete
    177 
    178 
    179 // A macro to disallow all the implicit constructors, namely the
    180 // default constructor, copy constructor and operator= functions.
    181 //
    182 // This should be used in the private: declarations for a class
    183 // that wants to prevent anyone from instantiating it. This is
    184 // especially useful for classes containing only static methods.
    185 #define DISALLOW_IMPLICIT_CONSTRUCTORS(TypeName) \
    186   TypeName() = delete;                           \
    187   DISALLOW_COPY_AND_ASSIGN(TypeName)
    188 
    189 
    190 // Newly written code should use V8_INLINE and V8_NOINLINE directly.
    191 #define INLINE(declarator)    V8_INLINE declarator
    192 #define NO_INLINE(declarator) V8_NOINLINE declarator
    193 
    194 
    195 // Newly written code should use WARN_UNUSED_RESULT.
    196 #define MUST_USE_RESULT WARN_UNUSED_RESULT
    197 
    198 
    199 // Define V8_USE_ADDRESS_SANITIZER macros.
    200 #if defined(__has_feature)
    201 #if __has_feature(address_sanitizer)
    202 #define V8_USE_ADDRESS_SANITIZER 1
    203 #endif
    204 #endif
    205 
    206 // Define DISABLE_ASAN macros.
    207 #ifdef V8_USE_ADDRESS_SANITIZER
    208 #define DISABLE_ASAN __attribute__((no_sanitize_address))
    209 #else
    210 #define DISABLE_ASAN
    211 #endif
    212 
    213 
    214 #if V8_CC_GNU
    215 #define V8_IMMEDIATE_CRASH() __builtin_trap()
    216 #else
    217 #define V8_IMMEDIATE_CRASH() ((void(*)())0)()
    218 #endif
    219 
    220 
    221 // TODO(all) Replace all uses of this macro with static_assert, remove macro.
    222 #define STATIC_ASSERT(test) static_assert(test, #test)
    223 
    224 
    225 // The USE(x) template is used to silence C++ compiler warnings
    226 // issued for (yet) unused variables (typically parameters).
    227 template <typename T>
    228 inline void USE(T) { }
    229 
    230 
    231 #define IS_POWER_OF_TWO(x) ((x) != 0 && (((x) & ((x) - 1)) == 0))
    232 
    233 
    234 // Define our own macros for writing 64-bit constants.  This is less fragile
    235 // than defining __STDC_CONSTANT_MACROS before including <stdint.h>, and it
    236 // works on compilers that don't have it (like MSVC).
    237 #if V8_CC_MSVC
    238 # define V8_UINT64_C(x)   (x ## UI64)
    239 # define V8_INT64_C(x)    (x ## I64)
    240 # if V8_HOST_ARCH_64_BIT
    241 #  define V8_INTPTR_C(x)  (x ## I64)
    242 #  define V8_PTR_PREFIX   "ll"
    243 # else
    244 #  define V8_INTPTR_C(x)  (x)
    245 #  define V8_PTR_PREFIX   ""
    246 # endif  // V8_HOST_ARCH_64_BIT
    247 #elif V8_CC_MINGW64
    248 # define V8_UINT64_C(x)   (x ## ULL)
    249 # define V8_INT64_C(x)    (x ## LL)
    250 # define V8_INTPTR_C(x)   (x ## LL)
    251 # define V8_PTR_PREFIX    "I64"
    252 #elif V8_HOST_ARCH_64_BIT
    253 # if V8_OS_MACOSX || V8_OS_OPENBSD
    254 #  define V8_UINT64_C(x)   (x ## ULL)
    255 #  define V8_INT64_C(x)    (x ## LL)
    256 # else
    257 #  define V8_UINT64_C(x)   (x ## UL)
    258 #  define V8_INT64_C(x)    (x ## L)
    259 # endif
    260 # define V8_INTPTR_C(x)   (x ## L)
    261 # define V8_PTR_PREFIX    "l"
    262 #else
    263 # define V8_UINT64_C(x)   (x ## ULL)
    264 # define V8_INT64_C(x)    (x ## LL)
    265 # define V8_INTPTR_C(x)   (x)
    266 #if V8_OS_AIX
    267 #define V8_PTR_PREFIX "l"
    268 #else
    269 # define V8_PTR_PREFIX    ""
    270 #endif
    271 #endif
    272 
    273 #define V8PRIxPTR V8_PTR_PREFIX "x"
    274 #define V8PRIdPTR V8_PTR_PREFIX "d"
    275 #define V8PRIuPTR V8_PTR_PREFIX "u"
    276 
    277 // Fix for Mac OS X defining uintptr_t as "unsigned long":
    278 #if V8_OS_MACOSX
    279 #undef V8PRIxPTR
    280 #define V8PRIxPTR "lx"
    281 #endif
    282 
    283 // The following macro works on both 32 and 64-bit platforms.
    284 // Usage: instead of writing 0x1234567890123456
    285 //      write V8_2PART_UINT64_C(0x12345678,90123456);
    286 #define V8_2PART_UINT64_C(a, b) (((static_cast<uint64_t>(a) << 32) + 0x##b##u))
    287 
    288 
    289 // Compute the 0-relative offset of some absolute value x of type T.
    290 // This allows conversion of Addresses and integral types into
    291 // 0-relative int offsets.
    292 template <typename T>
    293 inline intptr_t OffsetFrom(T x) {
    294   return x - static_cast<T>(0);
    295 }
    296 
    297 
    298 // Compute the absolute value of type T for some 0-relative offset x.
    299 // This allows conversion of 0-relative int offsets into Addresses and
    300 // integral types.
    301 template <typename T>
    302 inline T AddressFrom(intptr_t x) {
    303   return static_cast<T>(static_cast<T>(0) + x);
    304 }
    305 
    306 
    307 // Return the largest multiple of m which is <= x.
    308 template <typename T>
    309 inline T RoundDown(T x, intptr_t m) {
    310   DCHECK(IS_POWER_OF_TWO(m));
    311   return AddressFrom<T>(OffsetFrom(x) & -m);
    312 }
    313 
    314 
    315 // Return the smallest multiple of m which is >= x.
    316 template <typename T>
    317 inline T RoundUp(T x, intptr_t m) {
    318   return RoundDown<T>(static_cast<T>(x + m - 1), m);
    319 }
    320 
    321 
    322 namespace v8 {
    323 namespace base {
    324 
    325 // TODO(yangguo): This is a poor man's replacement for std::is_fundamental,
    326 // which requires C++11. Switch to std::is_fundamental once possible.
    327 template <typename T>
    328 inline bool is_fundamental() {
    329   return false;
    330 }
    331 
    332 template <>
    333 inline bool is_fundamental<uint8_t>() {
    334   return true;
    335 }
    336 
    337 }  // namespace base
    338 }  // namespace v8
    339 
    340 #endif   // V8_BASE_MACROS_H_
    341