Home | History | Annotate | Download | only in Hexagon
      1 //===-- HexagonISelDAGToDAG.cpp - A dag to dag inst selector for Hexagon --===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines an instruction selector for the Hexagon target.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "Hexagon.h"
     15 #include "HexagonISelLowering.h"
     16 #include "HexagonMachineFunctionInfo.h"
     17 #include "HexagonTargetMachine.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/SelectionDAGISel.h"
     22 #include "llvm/IR/Intrinsics.h"
     23 #include "llvm/Support/CommandLine.h"
     24 #include "llvm/Support/Compiler.h"
     25 #include "llvm/Support/Debug.h"
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "hexagon-isel"
     29 
     30 static
     31 cl::opt<unsigned>
     32 MaxNumOfUsesForConstExtenders("ga-max-num-uses-for-constant-extenders",
     33   cl::Hidden, cl::init(2),
     34   cl::desc("Maximum number of uses of a global address such that we still us a"
     35            "constant extended instruction"));
     36 
     37 //===----------------------------------------------------------------------===//
     38 // Instruction Selector Implementation
     39 //===----------------------------------------------------------------------===//
     40 
     41 namespace llvm {
     42   void initializeHexagonDAGToDAGISelPass(PassRegistry&);
     43 }
     44 
     45 //===--------------------------------------------------------------------===//
     46 /// HexagonDAGToDAGISel - Hexagon specific code to select Hexagon machine
     47 /// instructions for SelectionDAG operations.
     48 ///
     49 namespace {
     50 class HexagonDAGToDAGISel : public SelectionDAGISel {
     51   const HexagonTargetMachine& HTM;
     52   const HexagonSubtarget *HST;
     53   const HexagonInstrInfo *HII;
     54   const HexagonRegisterInfo *HRI;
     55 public:
     56   explicit HexagonDAGToDAGISel(HexagonTargetMachine &tm,
     57                                CodeGenOpt::Level OptLevel)
     58       : SelectionDAGISel(tm, OptLevel), HTM(tm), HST(nullptr), HII(nullptr),
     59         HRI(nullptr) {
     60     initializeHexagonDAGToDAGISelPass(*PassRegistry::getPassRegistry());
     61   }
     62 
     63   bool runOnMachineFunction(MachineFunction &MF) override {
     64     // Reset the subtarget each time through.
     65     HST = &MF.getSubtarget<HexagonSubtarget>();
     66     HII = HST->getInstrInfo();
     67     HRI = HST->getRegisterInfo();
     68     SelectionDAGISel::runOnMachineFunction(MF);
     69     return true;
     70   }
     71 
     72   virtual void PreprocessISelDAG() override;
     73   virtual void EmitFunctionEntryCode() override;
     74 
     75   SDNode *Select(SDNode *N) override;
     76 
     77   // Complex Pattern Selectors.
     78   inline bool SelectAddrGA(SDValue &N, SDValue &R);
     79   inline bool SelectAddrGP(SDValue &N, SDValue &R);
     80   bool SelectGlobalAddress(SDValue &N, SDValue &R, bool UseGP);
     81   bool SelectAddrFI(SDValue &N, SDValue &R);
     82 
     83   const char *getPassName() const override {
     84     return "Hexagon DAG->DAG Pattern Instruction Selection";
     85   }
     86 
     87   SDNode *SelectFrameIndex(SDNode *N);
     88   /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
     89   /// inline asm expressions.
     90   bool SelectInlineAsmMemoryOperand(const SDValue &Op,
     91                                     unsigned ConstraintID,
     92                                     std::vector<SDValue> &OutOps) override;
     93   SDNode *SelectLoad(SDNode *N);
     94   SDNode *SelectBaseOffsetLoad(LoadSDNode *LD, SDLoc dl);
     95   SDNode *SelectIndexedLoad(LoadSDNode *LD, SDLoc dl);
     96   SDNode *SelectIndexedLoadZeroExtend64(LoadSDNode *LD, unsigned Opcode,
     97                                         SDLoc dl);
     98   SDNode *SelectIndexedLoadSignExtend64(LoadSDNode *LD, unsigned Opcode,
     99                                         SDLoc dl);
    100   SDNode *SelectBaseOffsetStore(StoreSDNode *ST, SDLoc dl);
    101   SDNode *SelectIndexedStore(StoreSDNode *ST, SDLoc dl);
    102   SDNode *SelectStore(SDNode *N);
    103   SDNode *SelectSHL(SDNode *N);
    104   SDNode *SelectMul(SDNode *N);
    105   SDNode *SelectZeroExtend(SDNode *N);
    106   SDNode *SelectIntrinsicWChain(SDNode *N);
    107   SDNode *SelectIntrinsicWOChain(SDNode *N);
    108   SDNode *SelectConstant(SDNode *N);
    109   SDNode *SelectConstantFP(SDNode *N);
    110   SDNode *SelectAdd(SDNode *N);
    111   SDNode *SelectBitOp(SDNode *N);
    112 
    113   // XformMskToBitPosU5Imm - Returns the bit position which
    114   // the single bit 32 bit mask represents.
    115   // Used in Clr and Set bit immediate memops.
    116   SDValue XformMskToBitPosU5Imm(uint32_t Imm, SDLoc DL) {
    117     int32_t bitPos;
    118     bitPos = Log2_32(Imm);
    119     assert(bitPos >= 0 && bitPos < 32 &&
    120            "Constant out of range for 32 BitPos Memops");
    121     return CurDAG->getTargetConstant(bitPos, DL, MVT::i32);
    122   }
    123 
    124   // XformMskToBitPosU4Imm - Returns the bit position which the single-bit
    125   // 16 bit mask represents. Used in Clr and Set bit immediate memops.
    126   SDValue XformMskToBitPosU4Imm(uint16_t Imm, SDLoc DL) {
    127     return XformMskToBitPosU5Imm(Imm, DL);
    128   }
    129 
    130   // XformMskToBitPosU3Imm - Returns the bit position which the single-bit
    131   // 8 bit mask represents. Used in Clr and Set bit immediate memops.
    132   SDValue XformMskToBitPosU3Imm(uint8_t Imm, SDLoc DL) {
    133     return XformMskToBitPosU5Imm(Imm, DL);
    134   }
    135 
    136   // Return true if there is exactly one bit set in V, i.e., if V is one of the
    137   // following integers: 2^0, 2^1, ..., 2^31.
    138   bool ImmIsSingleBit(uint32_t v) const {
    139     return isPowerOf2_32(v);
    140   }
    141 
    142   // XformM5ToU5Imm - Return a target constant with the specified value, of
    143   // type i32 where the negative literal is transformed into a positive literal
    144   // for use in -= memops.
    145   inline SDValue XformM5ToU5Imm(signed Imm, SDLoc DL) {
    146      assert((Imm >= -31 && Imm <= -1)  && "Constant out of range for Memops");
    147      return CurDAG->getTargetConstant(-Imm, DL, MVT::i32);
    148   }
    149 
    150   // XformU7ToU7M1Imm - Return a target constant decremented by 1, in range
    151   // [1..128], used in cmpb.gtu instructions.
    152   inline SDValue XformU7ToU7M1Imm(signed Imm, SDLoc DL) {
    153     assert((Imm >= 1 && Imm <= 128) && "Constant out of range for cmpb op");
    154     return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i8);
    155   }
    156 
    157   // XformS8ToS8M1Imm - Return a target constant decremented by 1.
    158   inline SDValue XformSToSM1Imm(signed Imm, SDLoc DL) {
    159     return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
    160   }
    161 
    162   // XformU8ToU8M1Imm - Return a target constant decremented by 1.
    163   inline SDValue XformUToUM1Imm(unsigned Imm, SDLoc DL) {
    164     assert((Imm >= 1) && "Cannot decrement unsigned int less than 1");
    165     return CurDAG->getTargetConstant(Imm - 1, DL, MVT::i32);
    166   }
    167 
    168   // XformSToSM2Imm - Return a target constant decremented by 2.
    169   inline SDValue XformSToSM2Imm(unsigned Imm, SDLoc DL) {
    170     return CurDAG->getTargetConstant(Imm - 2, DL, MVT::i32);
    171   }
    172 
    173   // XformSToSM3Imm - Return a target constant decremented by 3.
    174   inline SDValue XformSToSM3Imm(unsigned Imm, SDLoc DL) {
    175     return CurDAG->getTargetConstant(Imm - 3, DL, MVT::i32);
    176   }
    177 
    178   // Include the pieces autogenerated from the target description.
    179   #include "HexagonGenDAGISel.inc"
    180 
    181 private:
    182   bool isValueExtension(const SDValue &Val, unsigned FromBits, SDValue &Src);
    183 }; // end HexagonDAGToDAGISel
    184 }  // end anonymous namespace
    185 
    186 
    187 /// createHexagonISelDag - This pass converts a legalized DAG into a
    188 /// Hexagon-specific DAG, ready for instruction scheduling.
    189 ///
    190 namespace llvm {
    191 FunctionPass *createHexagonISelDag(HexagonTargetMachine &TM,
    192                                    CodeGenOpt::Level OptLevel) {
    193   return new HexagonDAGToDAGISel(TM, OptLevel);
    194 }
    195 }
    196 
    197 static void initializePassOnce(PassRegistry &Registry) {
    198   const char *Name = "Hexagon DAG->DAG Pattern Instruction Selection";
    199   PassInfo *PI = new PassInfo(Name, "hexagon-isel",
    200                               &SelectionDAGISel::ID, nullptr, false, false);
    201   Registry.registerPass(*PI, true);
    202 }
    203 
    204 void llvm::initializeHexagonDAGToDAGISelPass(PassRegistry &Registry) {
    205   CALL_ONCE_INITIALIZATION(initializePassOnce)
    206 }
    207 
    208 
    209 // Intrinsics that return a a predicate.
    210 static bool doesIntrinsicReturnPredicate(unsigned ID) {
    211   switch (ID) {
    212     default:
    213       return false;
    214     case Intrinsic::hexagon_C2_cmpeq:
    215     case Intrinsic::hexagon_C2_cmpgt:
    216     case Intrinsic::hexagon_C2_cmpgtu:
    217     case Intrinsic::hexagon_C2_cmpgtup:
    218     case Intrinsic::hexagon_C2_cmpgtp:
    219     case Intrinsic::hexagon_C2_cmpeqp:
    220     case Intrinsic::hexagon_C2_bitsset:
    221     case Intrinsic::hexagon_C2_bitsclr:
    222     case Intrinsic::hexagon_C2_cmpeqi:
    223     case Intrinsic::hexagon_C2_cmpgti:
    224     case Intrinsic::hexagon_C2_cmpgtui:
    225     case Intrinsic::hexagon_C2_cmpgei:
    226     case Intrinsic::hexagon_C2_cmpgeui:
    227     case Intrinsic::hexagon_C2_cmplt:
    228     case Intrinsic::hexagon_C2_cmpltu:
    229     case Intrinsic::hexagon_C2_bitsclri:
    230     case Intrinsic::hexagon_C2_and:
    231     case Intrinsic::hexagon_C2_or:
    232     case Intrinsic::hexagon_C2_xor:
    233     case Intrinsic::hexagon_C2_andn:
    234     case Intrinsic::hexagon_C2_not:
    235     case Intrinsic::hexagon_C2_orn:
    236     case Intrinsic::hexagon_C2_pxfer_map:
    237     case Intrinsic::hexagon_C2_any8:
    238     case Intrinsic::hexagon_C2_all8:
    239     case Intrinsic::hexagon_A2_vcmpbeq:
    240     case Intrinsic::hexagon_A2_vcmpbgtu:
    241     case Intrinsic::hexagon_A2_vcmpheq:
    242     case Intrinsic::hexagon_A2_vcmphgt:
    243     case Intrinsic::hexagon_A2_vcmphgtu:
    244     case Intrinsic::hexagon_A2_vcmpweq:
    245     case Intrinsic::hexagon_A2_vcmpwgt:
    246     case Intrinsic::hexagon_A2_vcmpwgtu:
    247     case Intrinsic::hexagon_C2_tfrrp:
    248     case Intrinsic::hexagon_S2_tstbit_i:
    249     case Intrinsic::hexagon_S2_tstbit_r:
    250       return true;
    251   }
    252 }
    253 
    254 SDNode *HexagonDAGToDAGISel::SelectIndexedLoadSignExtend64(LoadSDNode *LD,
    255                                                            unsigned Opcode,
    256                                                            SDLoc dl) {
    257   SDValue Chain = LD->getChain();
    258   EVT LoadedVT = LD->getMemoryVT();
    259   SDValue Base = LD->getBasePtr();
    260   SDValue Offset = LD->getOffset();
    261   SDNode *OffsetNode = Offset.getNode();
    262   int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
    263 
    264   if (HII->isValidAutoIncImm(LoadedVT, Val)) {
    265     SDValue TargetConst = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    266     SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::i32,
    267                                               MVT::Other, Base, TargetConst,
    268                                               Chain);
    269     SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
    270                                               SDValue(Result_1, 0));
    271     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    272     MemOp[0] = LD->getMemOperand();
    273     cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    274     const SDValue Froms[] = { SDValue(LD, 0),
    275                               SDValue(LD, 1),
    276                               SDValue(LD, 2) };
    277     const SDValue Tos[]   = { SDValue(Result_2, 0),
    278                               SDValue(Result_1, 1),
    279                               SDValue(Result_1, 2) };
    280     ReplaceUses(Froms, Tos, 3);
    281     return Result_2;
    282   }
    283 
    284   SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    285   SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    286   SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32, MVT::Other,
    287                                             Base, TargetConst0, Chain);
    288   SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_sxtw, dl, MVT::i64,
    289                                             SDValue(Result_1, 0));
    290   SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    291                                             Base, TargetConstVal,
    292                                             SDValue(Result_1, 1));
    293   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    294   MemOp[0] = LD->getMemOperand();
    295   cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    296   const SDValue Froms[] = { SDValue(LD, 0),
    297                             SDValue(LD, 1),
    298                             SDValue(LD, 2) };
    299   const SDValue Tos[]   = { SDValue(Result_2, 0),
    300                             SDValue(Result_3, 0),
    301                             SDValue(Result_1, 1) };
    302   ReplaceUses(Froms, Tos, 3);
    303   return Result_2;
    304 }
    305 
    306 
    307 SDNode *HexagonDAGToDAGISel::SelectIndexedLoadZeroExtend64(LoadSDNode *LD,
    308                                                            unsigned Opcode,
    309                                                            SDLoc dl) {
    310   SDValue Chain = LD->getChain();
    311   EVT LoadedVT = LD->getMemoryVT();
    312   SDValue Base = LD->getBasePtr();
    313   SDValue Offset = LD->getOffset();
    314   SDNode *OffsetNode = Offset.getNode();
    315   int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
    316 
    317   if (HII->isValidAutoIncImm(LoadedVT, Val)) {
    318     SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    319     SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    320     SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
    321                                               MVT::i32, MVT::Other, Base,
    322                                               TargetConstVal, Chain);
    323     SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
    324                                               MVT::i64, MVT::Other,
    325                                               TargetConst0,
    326                                               SDValue(Result_1,0));
    327     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    328     MemOp[0] = LD->getMemOperand();
    329     cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    330     const SDValue Froms[] = { SDValue(LD, 0),
    331                               SDValue(LD, 1),
    332                               SDValue(LD, 2) };
    333     const SDValue Tos[]   = { SDValue(Result_2, 0),
    334                               SDValue(Result_1, 1),
    335                               SDValue(Result_1, 2) };
    336     ReplaceUses(Froms, Tos, 3);
    337     return Result_2;
    338   }
    339 
    340   // Generate an indirect load.
    341   SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    342   SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    343   SDNode *Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
    344                                             MVT::Other, Base, TargetConst0,
    345                                             Chain);
    346   SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A4_combineir, dl,
    347                                             MVT::i64, MVT::Other,
    348                                             TargetConst0,
    349                                             SDValue(Result_1,0));
    350   // Add offset to base.
    351   SDNode* Result_3 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    352                                             Base, TargetConstVal,
    353                                             SDValue(Result_1, 1));
    354   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    355   MemOp[0] = LD->getMemOperand();
    356   cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    357   const SDValue Froms[] = { SDValue(LD, 0),
    358                             SDValue(LD, 1),
    359                             SDValue(LD, 2) };
    360   const SDValue Tos[]   = { SDValue(Result_2, 0), // Load value.
    361                             SDValue(Result_3, 0), // New address.
    362                             SDValue(Result_1, 1) };
    363   ReplaceUses(Froms, Tos, 3);
    364   return Result_2;
    365 }
    366 
    367 
    368 SDNode *HexagonDAGToDAGISel::SelectIndexedLoad(LoadSDNode *LD, SDLoc dl) {
    369   SDValue Chain = LD->getChain();
    370   SDValue Base = LD->getBasePtr();
    371   SDValue Offset = LD->getOffset();
    372   SDNode *OffsetNode = Offset.getNode();
    373   // Get the constant value.
    374   int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
    375   EVT LoadedVT = LD->getMemoryVT();
    376   unsigned Opcode = 0;
    377 
    378   // Check for zero extended loads. Treat any-extend loads as zero extended
    379   // loads.
    380   ISD::LoadExtType ExtType = LD->getExtensionType();
    381   bool IsZeroExt = (ExtType == ISD::ZEXTLOAD || ExtType == ISD::EXTLOAD);
    382   bool HasVecOffset = false;
    383 
    384   // Figure out the opcode.
    385   if (LoadedVT == MVT::i64) {
    386     if (HII->isValidAutoIncImm(LoadedVT, Val))
    387       Opcode = Hexagon::L2_loadrd_pi;
    388     else
    389       Opcode = Hexagon::L2_loadrd_io;
    390   } else if (LoadedVT == MVT::i32) {
    391     if (HII->isValidAutoIncImm(LoadedVT, Val))
    392       Opcode = Hexagon::L2_loadri_pi;
    393     else
    394       Opcode = Hexagon::L2_loadri_io;
    395   } else if (LoadedVT == MVT::i16) {
    396     if (HII->isValidAutoIncImm(LoadedVT, Val))
    397       Opcode = IsZeroExt ? Hexagon::L2_loadruh_pi : Hexagon::L2_loadrh_pi;
    398     else
    399       Opcode = IsZeroExt ? Hexagon::L2_loadruh_io : Hexagon::L2_loadrh_io;
    400   } else if (LoadedVT == MVT::i8) {
    401     if (HII->isValidAutoIncImm(LoadedVT, Val))
    402       Opcode = IsZeroExt ? Hexagon::L2_loadrub_pi : Hexagon::L2_loadrb_pi;
    403     else
    404       Opcode = IsZeroExt ? Hexagon::L2_loadrub_io : Hexagon::L2_loadrb_io;
    405   } else if (LoadedVT == MVT::v16i32 || LoadedVT == MVT::v8i64 ||
    406              LoadedVT == MVT::v32i16 || LoadedVT == MVT::v64i8) {
    407     HasVecOffset = true;
    408     if (HII->isValidAutoIncImm(LoadedVT, Val)) {
    409       Opcode = Hexagon::V6_vL32b_pi;
    410     }
    411     else
    412       Opcode = Hexagon::V6_vL32b_ai;
    413   // 128B
    414   } else if (LoadedVT == MVT::v32i32 || LoadedVT == MVT::v16i64 ||
    415              LoadedVT == MVT::v64i16 || LoadedVT == MVT::v128i8) {
    416     HasVecOffset = true;
    417     if (HII->isValidAutoIncImm(LoadedVT, Val)) {
    418       Opcode = Hexagon::V6_vL32b_pi_128B;
    419     }
    420     else
    421       Opcode = Hexagon::V6_vL32b_ai_128B;
    422   } else
    423     llvm_unreachable("unknown memory type");
    424 
    425   // For zero extended i64 loads, we need to add combine instructions.
    426   if (LD->getValueType(0) == MVT::i64 && IsZeroExt)
    427     return SelectIndexedLoadZeroExtend64(LD, Opcode, dl);
    428   // Handle sign extended i64 loads.
    429   if (LD->getValueType(0) == MVT::i64 && ExtType == ISD::SEXTLOAD)
    430     return SelectIndexedLoadSignExtend64(LD, Opcode, dl);
    431 
    432   if (HII->isValidAutoIncImm(LoadedVT, Val)) {
    433     SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    434     SDNode* Result = CurDAG->getMachineNode(Opcode, dl,
    435                                             LD->getValueType(0),
    436                                             MVT::i32, MVT::Other, Base,
    437                                             TargetConstVal, Chain);
    438     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    439     MemOp[0] = LD->getMemOperand();
    440     cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
    441     if (HasVecOffset) {
    442       const SDValue Froms[] = { SDValue(LD, 0),
    443                                 SDValue(LD, 2)
    444       };
    445       const SDValue Tos[]   = { SDValue(Result, 0),
    446                                 SDValue(Result, 2)
    447       };
    448       ReplaceUses(Froms, Tos, 2);
    449     } else {
    450       const SDValue Froms[] = { SDValue(LD, 0),
    451                                 SDValue(LD, 1),
    452                                 SDValue(LD, 2)
    453       };
    454       const SDValue Tos[]   = { SDValue(Result, 0),
    455                                 SDValue(Result, 1),
    456                                 SDValue(Result, 2)
    457       };
    458       ReplaceUses(Froms, Tos, 3);
    459     }
    460     return Result;
    461   } else {
    462     SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    463     SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    464     SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl,
    465                                               LD->getValueType(0),
    466                                               MVT::Other, Base, TargetConst0,
    467                                               Chain);
    468     SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    469                                               Base, TargetConstVal,
    470                                               SDValue(Result_1, 1));
    471     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    472     MemOp[0] = LD->getMemOperand();
    473     cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    474     const SDValue Froms[] = { SDValue(LD, 0),
    475                               SDValue(LD, 1),
    476                               SDValue(LD, 2)
    477     };
    478     const SDValue Tos[]   = { SDValue(Result_1, 0),
    479                               SDValue(Result_2, 0),
    480                               SDValue(Result_1, 1)
    481     };
    482     ReplaceUses(Froms, Tos, 3);
    483     return Result_1;
    484   }
    485 }
    486 
    487 
    488 SDNode *HexagonDAGToDAGISel::SelectLoad(SDNode *N) {
    489   SDNode *result;
    490   SDLoc dl(N);
    491   LoadSDNode *LD = cast<LoadSDNode>(N);
    492   ISD::MemIndexedMode AM = LD->getAddressingMode();
    493 
    494   // Handle indexed loads.
    495   if (AM != ISD::UNINDEXED) {
    496     result = SelectIndexedLoad(LD, dl);
    497   } else {
    498     result = SelectCode(LD);
    499   }
    500 
    501   return result;
    502 }
    503 
    504 
    505 SDNode *HexagonDAGToDAGISel::SelectIndexedStore(StoreSDNode *ST, SDLoc dl) {
    506   SDValue Chain = ST->getChain();
    507   SDValue Base = ST->getBasePtr();
    508   SDValue Offset = ST->getOffset();
    509   SDValue Value = ST->getValue();
    510   SDNode *OffsetNode = Offset.getNode();
    511   // Get the constant value.
    512   int32_t Val = cast<ConstantSDNode>(OffsetNode)->getSExtValue();
    513   EVT StoredVT = ST->getMemoryVT();
    514   EVT ValueVT = Value.getValueType();
    515 
    516   // Offset value must be within representable range
    517   // and must have correct alignment properties.
    518   if (HII->isValidAutoIncImm(StoredVT, Val)) {
    519     unsigned Opcode = 0;
    520 
    521     // Figure out the post inc version of opcode.
    522     if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_pi;
    523     else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_pi;
    524     else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_pi;
    525     else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_pi;
    526     else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
    527              StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8) {
    528       Opcode = Hexagon::V6_vS32b_pi;
    529     }
    530     // 128B
    531     else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
    532              StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8) {
    533       Opcode = Hexagon::V6_vS32b_pi_128B;
    534     } else llvm_unreachable("unknown memory type");
    535 
    536     if (ST->isTruncatingStore() && ValueVT.getSizeInBits() == 64) {
    537       assert(StoredVT.getSizeInBits() < 64 && "Not a truncating store");
    538       Value = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg,
    539                                              dl, MVT::i32, Value);
    540     }
    541     SDValue Ops[] = {Base, CurDAG->getTargetConstant(Val, dl, MVT::i32), Value,
    542                      Chain};
    543     // Build post increment store.
    544     SDNode* Result = CurDAG->getMachineNode(Opcode, dl, MVT::i32,
    545                                             MVT::Other, Ops);
    546     MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    547     MemOp[0] = ST->getMemOperand();
    548     cast<MachineSDNode>(Result)->setMemRefs(MemOp, MemOp + 1);
    549 
    550     ReplaceUses(ST, Result);
    551     ReplaceUses(SDValue(ST,1), SDValue(Result,1));
    552     return Result;
    553   }
    554 
    555   // Note: Order of operands matches the def of instruction:
    556   // def S2_storerd_io
    557   //   : STInst<(outs), (ins IntRegs:$base, imm:$offset, DoubleRegs:$src1), ...
    558   // and it differs for POST_ST* for instance.
    559   SDValue Ops[] = { Base, CurDAG->getTargetConstant(0, dl, MVT::i32), Value,
    560                     Chain};
    561   unsigned Opcode = 0;
    562 
    563   // Figure out the opcode.
    564   if (StoredVT == MVT::i64) Opcode = Hexagon::S2_storerd_io;
    565   else if (StoredVT == MVT::i32) Opcode = Hexagon::S2_storeri_io;
    566   else if (StoredVT == MVT::i16) Opcode = Hexagon::S2_storerh_io;
    567   else if (StoredVT == MVT::i8) Opcode = Hexagon::S2_storerb_io;
    568   else if (StoredVT == MVT::v16i32 || StoredVT == MVT::v8i64 ||
    569            StoredVT == MVT::v32i16 || StoredVT == MVT::v64i8)
    570      Opcode = Hexagon::V6_vS32b_ai;
    571   // 128B
    572   else if (StoredVT == MVT::v32i32 || StoredVT == MVT::v16i64 ||
    573            StoredVT == MVT::v64i16 || StoredVT == MVT::v128i8)
    574      Opcode = Hexagon::V6_vS32b_ai_128B;
    575   else llvm_unreachable("unknown memory type");
    576 
    577   // Build regular store.
    578   SDValue TargetConstVal = CurDAG->getTargetConstant(Val, dl, MVT::i32);
    579   SDNode* Result_1 = CurDAG->getMachineNode(Opcode, dl, MVT::Other, Ops);
    580   // Build splitted incriment instruction.
    581   SDNode* Result_2 = CurDAG->getMachineNode(Hexagon::A2_addi, dl, MVT::i32,
    582                                             Base,
    583                                             TargetConstVal,
    584                                             SDValue(Result_1, 0));
    585   MachineSDNode::mmo_iterator MemOp = MF->allocateMemRefsArray(1);
    586   MemOp[0] = ST->getMemOperand();
    587   cast<MachineSDNode>(Result_1)->setMemRefs(MemOp, MemOp + 1);
    588 
    589   ReplaceUses(SDValue(ST,0), SDValue(Result_2,0));
    590   ReplaceUses(SDValue(ST,1), SDValue(Result_1,0));
    591   return Result_2;
    592 }
    593 
    594 SDNode *HexagonDAGToDAGISel::SelectStore(SDNode *N) {
    595   SDLoc dl(N);
    596   StoreSDNode *ST = cast<StoreSDNode>(N);
    597   ISD::MemIndexedMode AM = ST->getAddressingMode();
    598 
    599   // Handle indexed stores.
    600   if (AM != ISD::UNINDEXED) {
    601     return SelectIndexedStore(ST, dl);
    602   }
    603 
    604   return SelectCode(ST);
    605 }
    606 
    607 SDNode *HexagonDAGToDAGISel::SelectMul(SDNode *N) {
    608   SDLoc dl(N);
    609 
    610   //
    611   // %conv.i = sext i32 %tmp1 to i64
    612   // %conv2.i = sext i32 %add to i64
    613   // %mul.i = mul nsw i64 %conv2.i, %conv.i
    614   //
    615   //   --- match with the following ---
    616   //
    617   // %mul.i = mpy (%tmp1, %add)
    618   //
    619 
    620   if (N->getValueType(0) == MVT::i64) {
    621     // Shifting a i64 signed multiply.
    622     SDValue MulOp0 = N->getOperand(0);
    623     SDValue MulOp1 = N->getOperand(1);
    624 
    625     SDValue OP0;
    626     SDValue OP1;
    627 
    628     // Handle sign_extend and sextload.
    629     if (MulOp0.getOpcode() == ISD::SIGN_EXTEND) {
    630       SDValue Sext0 = MulOp0.getOperand(0);
    631       if (Sext0.getNode()->getValueType(0) != MVT::i32) {
    632         return SelectCode(N);
    633       }
    634 
    635       OP0 = Sext0;
    636     } else if (MulOp0.getOpcode() == ISD::LOAD) {
    637       LoadSDNode *LD = cast<LoadSDNode>(MulOp0.getNode());
    638       if (LD->getMemoryVT() != MVT::i32 ||
    639           LD->getExtensionType() != ISD::SEXTLOAD ||
    640           LD->getAddressingMode() != ISD::UNINDEXED) {
    641         return SelectCode(N);
    642       }
    643 
    644       SDValue Chain = LD->getChain();
    645       SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    646       OP0 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
    647                                             MVT::Other,
    648                                             LD->getBasePtr(), TargetConst0,
    649                                             Chain), 0);
    650     } else {
    651       return SelectCode(N);
    652     }
    653 
    654     // Same goes for the second operand.
    655     if (MulOp1.getOpcode() == ISD::SIGN_EXTEND) {
    656       SDValue Sext1 = MulOp1.getOperand(0);
    657       if (Sext1.getNode()->getValueType(0) != MVT::i32) {
    658         return SelectCode(N);
    659       }
    660 
    661       OP1 = Sext1;
    662     } else if (MulOp1.getOpcode() == ISD::LOAD) {
    663       LoadSDNode *LD = cast<LoadSDNode>(MulOp1.getNode());
    664       if (LD->getMemoryVT() != MVT::i32 ||
    665           LD->getExtensionType() != ISD::SEXTLOAD ||
    666           LD->getAddressingMode() != ISD::UNINDEXED) {
    667         return SelectCode(N);
    668       }
    669 
    670       SDValue Chain = LD->getChain();
    671       SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    672       OP1 = SDValue(CurDAG->getMachineNode(Hexagon::L2_loadri_io, dl, MVT::i32,
    673                                             MVT::Other,
    674                                             LD->getBasePtr(), TargetConst0,
    675                                             Chain), 0);
    676     } else {
    677       return SelectCode(N);
    678     }
    679 
    680     // Generate a mpy instruction.
    681     SDNode *Result = CurDAG->getMachineNode(Hexagon::M2_dpmpyss_s0, dl, MVT::i64,
    682                                             OP0, OP1);
    683     ReplaceUses(N, Result);
    684     return Result;
    685   }
    686 
    687   return SelectCode(N);
    688 }
    689 
    690 SDNode *HexagonDAGToDAGISel::SelectSHL(SDNode *N) {
    691   SDLoc dl(N);
    692   if (N->getValueType(0) == MVT::i32) {
    693     SDValue Shl_0 = N->getOperand(0);
    694     SDValue Shl_1 = N->getOperand(1);
    695     // RHS is const.
    696     if (Shl_1.getOpcode() == ISD::Constant) {
    697       if (Shl_0.getOpcode() == ISD::MUL) {
    698         SDValue Mul_0 = Shl_0.getOperand(0); // Val
    699         SDValue Mul_1 = Shl_0.getOperand(1); // Const
    700         // RHS of mul is const.
    701         if (Mul_1.getOpcode() == ISD::Constant) {
    702           int32_t ShlConst =
    703             cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
    704           int32_t MulConst =
    705             cast<ConstantSDNode>(Mul_1.getNode())->getSExtValue();
    706           int32_t ValConst = MulConst << ShlConst;
    707           SDValue Val = CurDAG->getTargetConstant(ValConst, dl,
    708                                                   MVT::i32);
    709           if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Val.getNode()))
    710             if (isInt<9>(CN->getSExtValue())) {
    711               SDNode* Result =
    712                 CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl,
    713                                        MVT::i32, Mul_0, Val);
    714               ReplaceUses(N, Result);
    715               return Result;
    716             }
    717 
    718         }
    719       } else if (Shl_0.getOpcode() == ISD::SUB) {
    720         SDValue Sub_0 = Shl_0.getOperand(0); // Const 0
    721         SDValue Sub_1 = Shl_0.getOperand(1); // Val
    722         if (Sub_0.getOpcode() == ISD::Constant) {
    723           int32_t SubConst =
    724             cast<ConstantSDNode>(Sub_0.getNode())->getSExtValue();
    725           if (SubConst == 0) {
    726             if (Sub_1.getOpcode() == ISD::SHL) {
    727               SDValue Shl2_0 = Sub_1.getOperand(0); // Val
    728               SDValue Shl2_1 = Sub_1.getOperand(1); // Const
    729               if (Shl2_1.getOpcode() == ISD::Constant) {
    730                 int32_t ShlConst =
    731                   cast<ConstantSDNode>(Shl_1.getNode())->getSExtValue();
    732                 int32_t Shl2Const =
    733                   cast<ConstantSDNode>(Shl2_1.getNode())->getSExtValue();
    734                 int32_t ValConst = 1 << (ShlConst+Shl2Const);
    735                 SDValue Val = CurDAG->getTargetConstant(-ValConst, dl,
    736                                                         MVT::i32);
    737                 if (ConstantSDNode *CN =
    738                     dyn_cast<ConstantSDNode>(Val.getNode()))
    739                   if (isInt<9>(CN->getSExtValue())) {
    740                     SDNode* Result =
    741                       CurDAG->getMachineNode(Hexagon::M2_mpysmi, dl, MVT::i32,
    742                                              Shl2_0, Val);
    743                     ReplaceUses(N, Result);
    744                     return Result;
    745                   }
    746               }
    747             }
    748           }
    749         }
    750       }
    751     }
    752   }
    753   return SelectCode(N);
    754 }
    755 
    756 
    757 //
    758 // If there is an zero_extend followed an intrinsic in DAG (this means - the
    759 // result of the intrinsic is predicate); convert the zero_extend to
    760 // transfer instruction.
    761 //
    762 // Zero extend -> transfer is lowered here. Otherwise, zero_extend will be
    763 // converted into a MUX as predicate registers defined as 1 bit in the
    764 // compiler. Architecture defines them as 8-bit registers.
    765 // We want to preserve all the lower 8-bits and, not just 1 LSB bit.
    766 //
    767 SDNode *HexagonDAGToDAGISel::SelectZeroExtend(SDNode *N) {
    768   SDLoc dl(N);
    769 
    770   SDValue Op0 = N->getOperand(0);
    771   EVT OpVT = Op0.getValueType();
    772   unsigned OpBW = OpVT.getSizeInBits();
    773 
    774   // Special handling for zero-extending a vector of booleans.
    775   if (OpVT.isVector() && OpVT.getVectorElementType() == MVT::i1 && OpBW <= 64) {
    776     SDNode *Mask = CurDAG->getMachineNode(Hexagon::C2_mask, dl, MVT::i64, Op0);
    777     unsigned NE = OpVT.getVectorNumElements();
    778     EVT ExVT = N->getValueType(0);
    779     unsigned ES = ExVT.getVectorElementType().getSizeInBits();
    780     uint64_t MV = 0, Bit = 1;
    781     for (unsigned i = 0; i < NE; ++i) {
    782       MV |= Bit;
    783       Bit <<= ES;
    784     }
    785     SDValue Ones = CurDAG->getTargetConstant(MV, dl, MVT::i64);
    786     SDNode *OnesReg = CurDAG->getMachineNode(Hexagon::CONST64_Int_Real, dl,
    787                                              MVT::i64, Ones);
    788     if (ExVT.getSizeInBits() == 32) {
    789       SDNode *And = CurDAG->getMachineNode(Hexagon::A2_andp, dl, MVT::i64,
    790                                            SDValue(Mask,0), SDValue(OnesReg,0));
    791       SDValue SubR = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
    792                                                MVT::i32);
    793       return CurDAG->getMachineNode(Hexagon::EXTRACT_SUBREG, dl, ExVT,
    794                                     SDValue(And,0), SubR);
    795     }
    796     return CurDAG->getMachineNode(Hexagon::A2_andp, dl, ExVT,
    797                                   SDValue(Mask,0), SDValue(OnesReg,0));
    798   }
    799 
    800   SDNode *IsIntrinsic = N->getOperand(0).getNode();
    801   if ((IsIntrinsic->getOpcode() == ISD::INTRINSIC_WO_CHAIN)) {
    802     unsigned ID =
    803       cast<ConstantSDNode>(IsIntrinsic->getOperand(0))->getZExtValue();
    804     if (doesIntrinsicReturnPredicate(ID)) {
    805       // Now we need to differentiate target data types.
    806       if (N->getValueType(0) == MVT::i64) {
    807         // Convert the zero_extend to Rs = Pd followed by A2_combinew(0,Rs).
    808         SDValue TargetConst0 = CurDAG->getTargetConstant(0, dl, MVT::i32);
    809         SDNode *Result_1 = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
    810                                                   MVT::i32,
    811                                                   SDValue(IsIntrinsic, 0));
    812         SDNode *Result_2 = CurDAG->getMachineNode(Hexagon::A2_tfrsi, dl,
    813                                                   MVT::i32,
    814                                                   TargetConst0);
    815         SDNode *Result_3 = CurDAG->getMachineNode(Hexagon::A2_combinew, dl,
    816                                                   MVT::i64, MVT::Other,
    817                                                   SDValue(Result_2, 0),
    818                                                   SDValue(Result_1, 0));
    819         ReplaceUses(N, Result_3);
    820         return Result_3;
    821       }
    822       if (N->getValueType(0) == MVT::i32) {
    823         // Convert the zero_extend to Rs = Pd
    824         SDNode* RsPd = CurDAG->getMachineNode(Hexagon::C2_tfrpr, dl,
    825                                               MVT::i32,
    826                                               SDValue(IsIntrinsic, 0));
    827         ReplaceUses(N, RsPd);
    828         return RsPd;
    829       }
    830       llvm_unreachable("Unexpected value type");
    831     }
    832   }
    833   return SelectCode(N);
    834 }
    835 
    836 //
    837 // Checking for intrinsics circular load/store, and bitreverse load/store
    838 // instrisics in order to select the correct lowered operation.
    839 //
    840 SDNode *HexagonDAGToDAGISel::SelectIntrinsicWChain(SDNode *N) {
    841   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
    842   if (IntNo == Intrinsic::hexagon_circ_ldd  ||
    843       IntNo == Intrinsic::hexagon_circ_ldw  ||
    844       IntNo == Intrinsic::hexagon_circ_lduh ||
    845       IntNo == Intrinsic::hexagon_circ_ldh  ||
    846       IntNo == Intrinsic::hexagon_circ_ldub ||
    847       IntNo == Intrinsic::hexagon_circ_ldb) {
    848     SDLoc dl(N);
    849     SDValue Chain = N->getOperand(0);
    850     SDValue Base = N->getOperand(2);
    851     SDValue Load = N->getOperand(3);
    852     SDValue ModifierExpr = N->getOperand(4);
    853     SDValue Offset = N->getOperand(5);
    854 
    855     // We need to add the rerurn type for the load.  This intrinsic has
    856     // two return types, one for the load and one for the post-increment.
    857     // Only the *_ld instructions push the extra return type, and bump the
    858     // result node operand number correspondingly.
    859     std::vector<EVT> ResTys;
    860     unsigned opc;
    861     unsigned memsize, align;
    862     MVT MvtSize = MVT::i32;
    863 
    864     if (IntNo == Intrinsic::hexagon_circ_ldd) {
    865       ResTys.push_back(MVT::i32);
    866       ResTys.push_back(MVT::i64);
    867       opc = Hexagon::L2_loadrd_pci_pseudo;
    868       memsize = 8;
    869       align = 8;
    870     } else if (IntNo == Intrinsic::hexagon_circ_ldw) {
    871       ResTys.push_back(MVT::i32);
    872       ResTys.push_back(MVT::i32);
    873       opc = Hexagon::L2_loadri_pci_pseudo;
    874       memsize = 4;
    875       align = 4;
    876     } else if (IntNo == Intrinsic::hexagon_circ_ldh) {
    877       ResTys.push_back(MVT::i32);
    878       ResTys.push_back(MVT::i32);
    879       opc = Hexagon::L2_loadrh_pci_pseudo;
    880       memsize = 2;
    881       align = 2;
    882       MvtSize = MVT::i16;
    883     } else if (IntNo == Intrinsic::hexagon_circ_lduh) {
    884       ResTys.push_back(MVT::i32);
    885       ResTys.push_back(MVT::i32);
    886       opc = Hexagon::L2_loadruh_pci_pseudo;
    887       memsize = 2;
    888       align = 2;
    889       MvtSize = MVT::i16;
    890     } else if (IntNo == Intrinsic::hexagon_circ_ldb) {
    891       ResTys.push_back(MVT::i32);
    892       ResTys.push_back(MVT::i32);
    893       opc = Hexagon::L2_loadrb_pci_pseudo;
    894       memsize = 1;
    895       align = 1;
    896       MvtSize = MVT::i8;
    897     } else if (IntNo == Intrinsic::hexagon_circ_ldub) {
    898       ResTys.push_back(MVT::i32);
    899       ResTys.push_back(MVT::i32);
    900       opc = Hexagon::L2_loadrub_pci_pseudo;
    901       memsize = 1;
    902       align = 1;
    903       MvtSize = MVT::i8;
    904     } else
    905       llvm_unreachable("no opc");
    906 
    907     ResTys.push_back(MVT::Other);
    908 
    909     // Copy over the arguments, which are the same mostly.
    910     SmallVector<SDValue, 5> Ops;
    911     Ops.push_back(Base);
    912     Ops.push_back(Load);
    913     Ops.push_back(ModifierExpr);
    914     int32_t Val = cast<ConstantSDNode>(Offset.getNode())->getSExtValue();
    915     Ops.push_back(CurDAG->getTargetConstant(Val, dl, MVT::i32));
    916     Ops.push_back(Chain);
    917     SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
    918 
    919     SDValue ST;
    920     MachineMemOperand *Mem =
    921       MF->getMachineMemOperand(MachinePointerInfo(),
    922                                MachineMemOperand::MOStore, memsize, align);
    923     if (MvtSize != MVT::i32)
    924       ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
    925                                  MvtSize, Mem);
    926     else
    927       ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
    928 
    929     SDNode* Store = SelectStore(ST.getNode());
    930 
    931     const SDValue Froms[] = { SDValue(N, 0),
    932                               SDValue(N, 1) };
    933     const SDValue Tos[]   = { SDValue(Result, 0),
    934                               SDValue(Store, 0) };
    935     ReplaceUses(Froms, Tos, 2);
    936     return Result;
    937   }
    938 
    939   if (IntNo == Intrinsic::hexagon_brev_ldd  ||
    940       IntNo == Intrinsic::hexagon_brev_ldw  ||
    941       IntNo == Intrinsic::hexagon_brev_ldh  ||
    942       IntNo == Intrinsic::hexagon_brev_lduh ||
    943       IntNo == Intrinsic::hexagon_brev_ldb  ||
    944       IntNo == Intrinsic::hexagon_brev_ldub) {
    945     SDLoc dl(N);
    946     SDValue Chain = N->getOperand(0);
    947     SDValue Base = N->getOperand(2);
    948     SDValue Load = N->getOperand(3);
    949     SDValue ModifierExpr = N->getOperand(4);
    950 
    951     // We need to add the rerurn type for the load.  This intrinsic has
    952     // two return types, one for the load and one for the post-increment.
    953     std::vector<EVT> ResTys;
    954     unsigned opc;
    955     unsigned memsize, align;
    956     MVT MvtSize = MVT::i32;
    957 
    958     if (IntNo == Intrinsic::hexagon_brev_ldd) {
    959       ResTys.push_back(MVT::i32);
    960       ResTys.push_back(MVT::i64);
    961       opc = Hexagon::L2_loadrd_pbr_pseudo;
    962       memsize = 8;
    963       align = 8;
    964     } else if (IntNo == Intrinsic::hexagon_brev_ldw) {
    965       ResTys.push_back(MVT::i32);
    966       ResTys.push_back(MVT::i32);
    967       opc = Hexagon::L2_loadri_pbr_pseudo;
    968       memsize = 4;
    969       align = 4;
    970     } else if (IntNo == Intrinsic::hexagon_brev_ldh) {
    971       ResTys.push_back(MVT::i32);
    972       ResTys.push_back(MVT::i32);
    973       opc = Hexagon::L2_loadrh_pbr_pseudo;
    974       memsize = 2;
    975       align = 2;
    976       MvtSize = MVT::i16;
    977     } else if (IntNo == Intrinsic::hexagon_brev_lduh) {
    978       ResTys.push_back(MVT::i32);
    979       ResTys.push_back(MVT::i32);
    980       opc = Hexagon::L2_loadruh_pbr_pseudo;
    981       memsize = 2;
    982       align = 2;
    983       MvtSize = MVT::i16;
    984     } else if (IntNo == Intrinsic::hexagon_brev_ldb) {
    985       ResTys.push_back(MVT::i32);
    986       ResTys.push_back(MVT::i32);
    987       opc = Hexagon::L2_loadrb_pbr_pseudo;
    988       memsize = 1;
    989       align = 1;
    990       MvtSize = MVT::i8;
    991     } else if (IntNo == Intrinsic::hexagon_brev_ldub) {
    992       ResTys.push_back(MVT::i32);
    993       ResTys.push_back(MVT::i32);
    994       opc = Hexagon::L2_loadrub_pbr_pseudo;
    995       memsize = 1;
    996       align = 1;
    997       MvtSize = MVT::i8;
    998     } else
    999       llvm_unreachable("no opc");
   1000 
   1001     ResTys.push_back(MVT::Other);
   1002 
   1003     // Copy over the arguments, which are the same mostly.
   1004     SmallVector<SDValue, 4> Ops;
   1005     Ops.push_back(Base);
   1006     Ops.push_back(Load);
   1007     Ops.push_back(ModifierExpr);
   1008     Ops.push_back(Chain);
   1009     SDNode* Result = CurDAG->getMachineNode(opc, dl, ResTys, Ops);
   1010     SDValue ST;
   1011     MachineMemOperand *Mem =
   1012       MF->getMachineMemOperand(MachinePointerInfo(),
   1013                                MachineMemOperand::MOStore, memsize, align);
   1014     if (MvtSize != MVT::i32)
   1015       ST = CurDAG->getTruncStore(Chain, dl, SDValue(Result, 1), Load,
   1016                                  MvtSize, Mem);
   1017     else
   1018       ST = CurDAG->getStore(Chain, dl, SDValue(Result, 1), Load, Mem);
   1019 
   1020     SDNode* Store = SelectStore(ST.getNode());
   1021 
   1022     const SDValue Froms[] = { SDValue(N, 0),
   1023                               SDValue(N, 1) };
   1024     const SDValue Tos[]   = { SDValue(Result, 0),
   1025                               SDValue(Store, 0) };
   1026     ReplaceUses(Froms, Tos, 2);
   1027     return Result;
   1028   }
   1029 
   1030   return SelectCode(N);
   1031 }
   1032 
   1033 //
   1034 // Checking for intrinsics which have predicate registers as operand(s)
   1035 // and lowering to the actual intrinsic.
   1036 //
   1037 SDNode *HexagonDAGToDAGISel::SelectIntrinsicWOChain(SDNode *N) {
   1038   unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   1039   unsigned Bits;
   1040   switch (IID) {
   1041   case Intrinsic::hexagon_S2_vsplatrb:
   1042     Bits = 8;
   1043     break;
   1044   case Intrinsic::hexagon_S2_vsplatrh:
   1045     Bits = 16;
   1046     break;
   1047   default:
   1048     return SelectCode(N);
   1049   }
   1050 
   1051   SDValue const &V = N->getOperand(1);
   1052   SDValue U;
   1053   if (isValueExtension(V, Bits, U)) {
   1054     SDValue R = CurDAG->getNode(N->getOpcode(), SDLoc(N), N->getValueType(0),
   1055       N->getOperand(0), U);
   1056     return SelectCode(R.getNode());
   1057   }
   1058   return SelectCode(N);
   1059 }
   1060 
   1061 //
   1062 // Map floating point constant values.
   1063 //
   1064 SDNode *HexagonDAGToDAGISel::SelectConstantFP(SDNode *N) {
   1065   SDLoc dl(N);
   1066   ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(N);
   1067   APFloat APF = CN->getValueAPF();
   1068   if (N->getValueType(0) == MVT::f32) {
   1069     return CurDAG->getMachineNode(Hexagon::TFRI_f, dl, MVT::f32,
   1070               CurDAG->getTargetConstantFP(APF.convertToFloat(), dl, MVT::f32));
   1071   }
   1072   else if (N->getValueType(0) == MVT::f64) {
   1073     return CurDAG->getMachineNode(Hexagon::CONST64_Float_Real, dl, MVT::f64,
   1074               CurDAG->getTargetConstantFP(APF.convertToDouble(), dl, MVT::f64));
   1075   }
   1076 
   1077   return SelectCode(N);
   1078 }
   1079 
   1080 //
   1081 // Map predicate true (encoded as -1 in LLVM) to a XOR.
   1082 //
   1083 SDNode *HexagonDAGToDAGISel::SelectConstant(SDNode *N) {
   1084   SDLoc dl(N);
   1085   if (N->getValueType(0) == MVT::i1) {
   1086     SDNode* Result = 0;
   1087     int32_t Val = cast<ConstantSDNode>(N)->getSExtValue();
   1088     if (Val == -1) {
   1089       Result = CurDAG->getMachineNode(Hexagon::TFR_PdTrue, dl, MVT::i1);
   1090     } else if (Val == 0) {
   1091       Result = CurDAG->getMachineNode(Hexagon::TFR_PdFalse, dl, MVT::i1);
   1092     }
   1093     if (Result) {
   1094       ReplaceUses(N, Result);
   1095       return Result;
   1096     }
   1097   }
   1098 
   1099   return SelectCode(N);
   1100 }
   1101 
   1102 
   1103 //
   1104 // Map add followed by a asr -> asr +=.
   1105 //
   1106 SDNode *HexagonDAGToDAGISel::SelectAdd(SDNode *N) {
   1107   SDLoc dl(N);
   1108   if (N->getValueType(0) != MVT::i32) {
   1109     return SelectCode(N);
   1110   }
   1111   // Identify nodes of the form: add(asr(...)).
   1112   SDNode* Src1 = N->getOperand(0).getNode();
   1113   if (Src1->getOpcode() != ISD::SRA || !Src1->hasOneUse()
   1114       || Src1->getValueType(0) != MVT::i32) {
   1115     return SelectCode(N);
   1116   }
   1117 
   1118   // Build Rd = Rd' + asr(Rs, Rt). The machine constraints will ensure that
   1119   // Rd and Rd' are assigned to the same register
   1120   SDNode* Result = CurDAG->getMachineNode(Hexagon::S2_asr_r_r_acc, dl, MVT::i32,
   1121                                           N->getOperand(1),
   1122                                           Src1->getOperand(0),
   1123                                           Src1->getOperand(1));
   1124   ReplaceUses(N, Result);
   1125 
   1126   return Result;
   1127 }
   1128 
   1129 //
   1130 // Map the following, where possible.
   1131 // AND/FABS -> clrbit
   1132 // OR -> setbit
   1133 // XOR/FNEG ->toggle_bit.
   1134 //
   1135 SDNode *HexagonDAGToDAGISel::SelectBitOp(SDNode *N) {
   1136   SDLoc dl(N);
   1137   EVT ValueVT = N->getValueType(0);
   1138 
   1139   // We handle only 32 and 64-bit bit ops.
   1140   if (!(ValueVT == MVT::i32 || ValueVT == MVT::i64 ||
   1141         ValueVT == MVT::f32 || ValueVT == MVT::f64))
   1142     return SelectCode(N);
   1143 
   1144   // We handly only fabs and fneg for V5.
   1145   unsigned Opc = N->getOpcode();
   1146   if ((Opc == ISD::FABS || Opc == ISD::FNEG) && !HST->hasV5TOps())
   1147     return SelectCode(N);
   1148 
   1149   int64_t Val = 0;
   1150   if (Opc != ISD::FABS && Opc != ISD::FNEG) {
   1151     if (N->getOperand(1).getOpcode() == ISD::Constant)
   1152       Val = cast<ConstantSDNode>((N)->getOperand(1))->getSExtValue();
   1153     else
   1154      return SelectCode(N);
   1155   }
   1156 
   1157   if (Opc == ISD::AND) {
   1158     // Check if this is a bit-clearing AND, if not select code the usual way.
   1159     if ((ValueVT == MVT::i32 && isPowerOf2_32(~Val)) ||
   1160         (ValueVT == MVT::i64 && isPowerOf2_64(~Val)))
   1161       Val = ~Val;
   1162     else
   1163       return SelectCode(N);
   1164   }
   1165 
   1166   // If OR or AND is being fed by shl, srl and, sra don't do this change,
   1167   // because Hexagon provide |= &= on shl, srl, and sra.
   1168   // Traverse the DAG to see if there is shl, srl and sra.
   1169   if (Opc == ISD::OR || Opc == ISD::AND) {
   1170     switch (N->getOperand(0)->getOpcode()) {
   1171       default:
   1172         break;
   1173       case ISD::SRA:
   1174       case ISD::SRL:
   1175       case ISD::SHL:
   1176         return SelectCode(N);
   1177     }
   1178   }
   1179 
   1180   // Make sure it's power of 2.
   1181   unsigned BitPos = 0;
   1182   if (Opc != ISD::FABS && Opc != ISD::FNEG) {
   1183     if ((ValueVT == MVT::i32 && !isPowerOf2_32(Val)) ||
   1184         (ValueVT == MVT::i64 && !isPowerOf2_64(Val)))
   1185       return SelectCode(N);
   1186 
   1187     // Get the bit position.
   1188     BitPos = countTrailingZeros(uint64_t(Val));
   1189   } else {
   1190     // For fabs and fneg, it's always the 31st bit.
   1191     BitPos = 31;
   1192   }
   1193 
   1194   unsigned BitOpc = 0;
   1195   // Set the right opcode for bitwise operations.
   1196   switch (Opc) {
   1197     default:
   1198       llvm_unreachable("Only bit-wise/abs/neg operations are allowed.");
   1199     case ISD::AND:
   1200     case ISD::FABS:
   1201       BitOpc = Hexagon::S2_clrbit_i;
   1202       break;
   1203     case ISD::OR:
   1204       BitOpc = Hexagon::S2_setbit_i;
   1205       break;
   1206     case ISD::XOR:
   1207     case ISD::FNEG:
   1208       BitOpc = Hexagon::S2_togglebit_i;
   1209       break;
   1210   }
   1211 
   1212   SDNode *Result;
   1213   // Get the right SDVal for the opcode.
   1214   SDValue SDVal = CurDAG->getTargetConstant(BitPos, dl, MVT::i32);
   1215 
   1216   if (ValueVT == MVT::i32 || ValueVT == MVT::f32) {
   1217     Result = CurDAG->getMachineNode(BitOpc, dl, ValueVT,
   1218                                     N->getOperand(0), SDVal);
   1219   } else {
   1220     // 64-bit gymnastic to use REG_SEQUENCE. But it's worth it.
   1221     EVT SubValueVT;
   1222     if (ValueVT == MVT::i64)
   1223       SubValueVT = MVT::i32;
   1224     else
   1225       SubValueVT = MVT::f32;
   1226 
   1227     SDNode *Reg = N->getOperand(0).getNode();
   1228     SDValue RegClass = CurDAG->getTargetConstant(Hexagon::DoubleRegsRegClassID,
   1229                                                  dl, MVT::i64);
   1230 
   1231     SDValue SubregHiIdx = CurDAG->getTargetConstant(Hexagon::subreg_hireg, dl,
   1232                                                     MVT::i32);
   1233     SDValue SubregLoIdx = CurDAG->getTargetConstant(Hexagon::subreg_loreg, dl,
   1234                                                     MVT::i32);
   1235 
   1236     SDValue SubregHI = CurDAG->getTargetExtractSubreg(Hexagon::subreg_hireg, dl,
   1237                                                     MVT::i32, SDValue(Reg, 0));
   1238 
   1239     SDValue SubregLO = CurDAG->getTargetExtractSubreg(Hexagon::subreg_loreg, dl,
   1240                                                     MVT::i32, SDValue(Reg, 0));
   1241 
   1242     // Clear/set/toggle hi or lo registers depending on the bit position.
   1243     if (SubValueVT != MVT::f32 && BitPos < 32) {
   1244       SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
   1245                                                SubregLO, SDVal);
   1246       const SDValue Ops[] = { RegClass, SubregHI, SubregHiIdx,
   1247                               SDValue(Result0, 0), SubregLoIdx };
   1248       Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
   1249                                       dl, ValueVT, Ops);
   1250     } else {
   1251       if (Opc != ISD::FABS && Opc != ISD::FNEG)
   1252         SDVal = CurDAG->getTargetConstant(BitPos-32, dl, MVT::i32);
   1253       SDNode *Result0 = CurDAG->getMachineNode(BitOpc, dl, SubValueVT,
   1254                                                SubregHI, SDVal);
   1255       const SDValue Ops[] = { RegClass, SDValue(Result0, 0), SubregHiIdx,
   1256                               SubregLO, SubregLoIdx };
   1257       Result = CurDAG->getMachineNode(TargetOpcode::REG_SEQUENCE,
   1258                                       dl, ValueVT, Ops);
   1259     }
   1260   }
   1261 
   1262   ReplaceUses(N, Result);
   1263   return Result;
   1264 }
   1265 
   1266 
   1267 SDNode *HexagonDAGToDAGISel::SelectFrameIndex(SDNode *N) {
   1268   MachineFrameInfo *MFI = MF->getFrameInfo();
   1269   const HexagonFrameLowering *HFI = HST->getFrameLowering();
   1270   int FX = cast<FrameIndexSDNode>(N)->getIndex();
   1271   unsigned StkA = HFI->getStackAlignment();
   1272   unsigned MaxA = MFI->getMaxAlignment();
   1273   SDValue FI = CurDAG->getTargetFrameIndex(FX, MVT::i32);
   1274   SDLoc DL(N);
   1275   SDValue Zero = CurDAG->getTargetConstant(0, DL, MVT::i32);
   1276   SDNode *R = 0;
   1277 
   1278   // Use TFR_FI when:
   1279   // - the object is fixed, or
   1280   // - there are no objects with higher-than-default alignment, or
   1281   // - there are no dynamically allocated objects.
   1282   // Otherwise, use TFR_FIA.
   1283   if (FX < 0 || MaxA <= StkA || !MFI->hasVarSizedObjects()) {
   1284     R = CurDAG->getMachineNode(Hexagon::TFR_FI, DL, MVT::i32, FI, Zero);
   1285   } else {
   1286     auto &HMFI = *MF->getInfo<HexagonMachineFunctionInfo>();
   1287     unsigned AR = HMFI.getStackAlignBaseVReg();
   1288     SDValue CH = CurDAG->getEntryNode();
   1289     SDValue Ops[] = { CurDAG->getCopyFromReg(CH, DL, AR, MVT::i32), FI, Zero };
   1290     R = CurDAG->getMachineNode(Hexagon::TFR_FIA, DL, MVT::i32, Ops);
   1291   }
   1292 
   1293   if (N->getHasDebugValue())
   1294     CurDAG->TransferDbgValues(SDValue(N, 0), SDValue(R, 0));
   1295   return R;
   1296 }
   1297 
   1298 
   1299 SDNode *HexagonDAGToDAGISel::Select(SDNode *N) {
   1300   if (N->isMachineOpcode()) {
   1301     N->setNodeId(-1);
   1302     return nullptr;   // Already selected.
   1303   }
   1304 
   1305   switch (N->getOpcode()) {
   1306   case ISD::Constant:
   1307     return SelectConstant(N);
   1308 
   1309   case ISD::ConstantFP:
   1310     return SelectConstantFP(N);
   1311 
   1312   case ISD::FrameIndex:
   1313     return SelectFrameIndex(N);
   1314 
   1315   case ISD::ADD:
   1316     return SelectAdd(N);
   1317 
   1318   case ISD::SHL:
   1319     return SelectSHL(N);
   1320 
   1321   case ISD::LOAD:
   1322     return SelectLoad(N);
   1323 
   1324   case ISD::STORE:
   1325     return SelectStore(N);
   1326 
   1327   case ISD::MUL:
   1328     return SelectMul(N);
   1329 
   1330   case ISD::AND:
   1331   case ISD::OR:
   1332   case ISD::XOR:
   1333   case ISD::FABS:
   1334   case ISD::FNEG:
   1335     return SelectBitOp(N);
   1336 
   1337   case ISD::ZERO_EXTEND:
   1338     return SelectZeroExtend(N);
   1339 
   1340   case ISD::INTRINSIC_W_CHAIN:
   1341     return SelectIntrinsicWChain(N);
   1342 
   1343   case ISD::INTRINSIC_WO_CHAIN:
   1344     return SelectIntrinsicWOChain(N);
   1345   }
   1346 
   1347   return SelectCode(N);
   1348 }
   1349 
   1350 bool HexagonDAGToDAGISel::
   1351 SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
   1352                              std::vector<SDValue> &OutOps) {
   1353   SDValue Inp = Op, Res;
   1354 
   1355   switch (ConstraintID) {
   1356   default:
   1357     return true;
   1358   case InlineAsm::Constraint_i:
   1359   case InlineAsm::Constraint_o: // Offsetable.
   1360   case InlineAsm::Constraint_v: // Not offsetable.
   1361   case InlineAsm::Constraint_m: // Memory.
   1362     if (SelectAddrFI(Inp, Res))
   1363       OutOps.push_back(Res);
   1364     else
   1365       OutOps.push_back(Inp);
   1366     break;
   1367   }
   1368 
   1369   OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
   1370   return false;
   1371 }
   1372 
   1373 
   1374 void HexagonDAGToDAGISel::PreprocessISelDAG() {
   1375   SelectionDAG &DAG = *CurDAG;
   1376   std::vector<SDNode*> Nodes;
   1377   for (SDNode &Node : DAG.allnodes())
   1378     Nodes.push_back(&Node);
   1379 
   1380   // Simplify: (or (select c x 0) z)  ->  (select c (or x z) z)
   1381   //           (or (select c 0 y) z)  ->  (select c z (or y z))
   1382   // This may not be the right thing for all targets, so do it here.
   1383   for (auto I: Nodes) {
   1384     if (I->getOpcode() != ISD::OR)
   1385       continue;
   1386 
   1387     auto IsZero = [] (const SDValue &V) -> bool {
   1388       if (ConstantSDNode *SC = dyn_cast<ConstantSDNode>(V.getNode()))
   1389         return SC->isNullValue();
   1390       return false;
   1391     };
   1392     auto IsSelect0 = [IsZero] (const SDValue &Op) -> bool {
   1393       if (Op.getOpcode() != ISD::SELECT)
   1394         return false;
   1395       return IsZero(Op.getOperand(1))  || IsZero(Op.getOperand(2));
   1396     };
   1397 
   1398     SDValue N0 = I->getOperand(0), N1 = I->getOperand(1);
   1399     EVT VT = I->getValueType(0);
   1400     bool SelN0 = IsSelect0(N0);
   1401     SDValue SOp = SelN0 ? N0 : N1;
   1402     SDValue VOp = SelN0 ? N1 : N0;
   1403 
   1404     if (SOp.getOpcode() == ISD::SELECT && SOp.getNode()->hasOneUse()) {
   1405       SDValue SC = SOp.getOperand(0);
   1406       SDValue SX = SOp.getOperand(1);
   1407       SDValue SY = SOp.getOperand(2);
   1408       SDLoc DLS = SOp;
   1409       if (IsZero(SY)) {
   1410         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SX, VOp);
   1411         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, NewOr, VOp);
   1412         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
   1413       } else if (IsZero(SX)) {
   1414         SDValue NewOr = DAG.getNode(ISD::OR, DLS, VT, SY, VOp);
   1415         SDValue NewSel = DAG.getNode(ISD::SELECT, DLS, VT, SC, VOp, NewOr);
   1416         DAG.ReplaceAllUsesWith(I, NewSel.getNode());
   1417       }
   1418     }
   1419   }
   1420 }
   1421 
   1422 void HexagonDAGToDAGISel::EmitFunctionEntryCode() {
   1423   auto &HST = static_cast<const HexagonSubtarget&>(MF->getSubtarget());
   1424   auto &HFI = *HST.getFrameLowering();
   1425   if (!HFI.needsAligna(*MF))
   1426     return;
   1427 
   1428   MachineFrameInfo *MFI = MF->getFrameInfo();
   1429   MachineBasicBlock *EntryBB = &MF->front();
   1430   unsigned AR = FuncInfo->CreateReg(MVT::i32);
   1431   unsigned MaxA = MFI->getMaxAlignment();
   1432   BuildMI(EntryBB, DebugLoc(), HII->get(Hexagon::ALIGNA), AR)
   1433       .addImm(MaxA);
   1434   MF->getInfo<HexagonMachineFunctionInfo>()->setStackAlignBaseVReg(AR);
   1435 }
   1436 
   1437 // Match a frame index that can be used in an addressing mode.
   1438 bool HexagonDAGToDAGISel::SelectAddrFI(SDValue& N, SDValue &R) {
   1439   if (N.getOpcode() != ISD::FrameIndex)
   1440     return false;
   1441   auto &HFI = *HST->getFrameLowering();
   1442   MachineFrameInfo *MFI = MF->getFrameInfo();
   1443   int FX = cast<FrameIndexSDNode>(N)->getIndex();
   1444   if (!MFI->isFixedObjectIndex(FX) && HFI.needsAligna(*MF))
   1445     return false;
   1446   R = CurDAG->getTargetFrameIndex(FX, MVT::i32);
   1447   return true;
   1448 }
   1449 
   1450 inline bool HexagonDAGToDAGISel::SelectAddrGA(SDValue &N, SDValue &R) {
   1451   return SelectGlobalAddress(N, R, false);
   1452 }
   1453 
   1454 inline bool HexagonDAGToDAGISel::SelectAddrGP(SDValue &N, SDValue &R) {
   1455   return SelectGlobalAddress(N, R, true);
   1456 }
   1457 
   1458 bool HexagonDAGToDAGISel::SelectGlobalAddress(SDValue &N, SDValue &R,
   1459                                               bool UseGP) {
   1460   switch (N.getOpcode()) {
   1461   case ISD::ADD: {
   1462     SDValue N0 = N.getOperand(0);
   1463     SDValue N1 = N.getOperand(1);
   1464     unsigned GAOpc = N0.getOpcode();
   1465     if (UseGP && GAOpc != HexagonISD::CONST32_GP)
   1466       return false;
   1467     if (!UseGP && GAOpc != HexagonISD::CONST32)
   1468       return false;
   1469     if (ConstantSDNode *Const = dyn_cast<ConstantSDNode>(N1)) {
   1470       SDValue Addr = N0.getOperand(0);
   1471       if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Addr)) {
   1472         if (GA->getOpcode() == ISD::TargetGlobalAddress) {
   1473           uint64_t NewOff = GA->getOffset() + (uint64_t)Const->getSExtValue();
   1474           R = CurDAG->getTargetGlobalAddress(GA->getGlobal(), SDLoc(Const),
   1475                                              N.getValueType(), NewOff);
   1476           return true;
   1477         }
   1478       }
   1479     }
   1480     break;
   1481   }
   1482   case HexagonISD::CONST32:
   1483     // The operand(0) of CONST32 is TargetGlobalAddress, which is what we
   1484     // want in the instruction.
   1485     if (!UseGP)
   1486       R = N.getOperand(0);
   1487     return !UseGP;
   1488   case HexagonISD::CONST32_GP:
   1489     if (UseGP)
   1490       R = N.getOperand(0);
   1491     return UseGP;
   1492   default:
   1493     return false;
   1494   }
   1495 
   1496   return false;
   1497 }
   1498 
   1499 bool HexagonDAGToDAGISel::isValueExtension(const SDValue &Val,
   1500       unsigned FromBits, SDValue &Src) {
   1501   unsigned Opc = Val.getOpcode();
   1502   switch (Opc) {
   1503   case ISD::SIGN_EXTEND:
   1504   case ISD::ZERO_EXTEND:
   1505   case ISD::ANY_EXTEND: {
   1506     SDValue const &Op0 = Val.getOperand(0);
   1507     EVT T = Op0.getValueType();
   1508     if (T.isInteger() && T.getSizeInBits() == FromBits) {
   1509       Src = Op0;
   1510       return true;
   1511     }
   1512     break;
   1513   }
   1514   case ISD::SIGN_EXTEND_INREG:
   1515   case ISD::AssertSext:
   1516   case ISD::AssertZext:
   1517     if (Val.getOperand(0).getValueType().isInteger()) {
   1518       VTSDNode *T = cast<VTSDNode>(Val.getOperand(1));
   1519       if (T->getVT().getSizeInBits() == FromBits) {
   1520         Src = Val.getOperand(0);
   1521         return true;
   1522       }
   1523     }
   1524     break;
   1525   case ISD::AND: {
   1526     // Check if this is an AND with "FromBits" of lower bits set to 1.
   1527     uint64_t FromMask = (1 << FromBits) - 1;
   1528     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
   1529       if (C->getZExtValue() == FromMask) {
   1530         Src = Val.getOperand(1);
   1531         return true;
   1532       }
   1533     }
   1534     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
   1535       if (C->getZExtValue() == FromMask) {
   1536         Src = Val.getOperand(0);
   1537         return true;
   1538       }
   1539     }
   1540     break;
   1541   }
   1542   case ISD::OR:
   1543   case ISD::XOR: {
   1544     // OR/XOR with the lower "FromBits" bits set to 0.
   1545     uint64_t FromMask = (1 << FromBits) - 1;
   1546     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(0))) {
   1547       if ((C->getZExtValue() & FromMask) == 0) {
   1548         Src = Val.getOperand(1);
   1549         return true;
   1550       }
   1551     }
   1552     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Val.getOperand(1))) {
   1553       if ((C->getZExtValue() & FromMask) == 0) {
   1554         Src = Val.getOperand(0);
   1555         return true;
   1556       }
   1557     }
   1558   }
   1559   default:
   1560     break;
   1561   }
   1562   return false;
   1563 }
   1564