1 /* 2 * Copyright (C) 2011 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #include "calling_convention_x86.h" 18 19 #include "base/logging.h" 20 #include "handle_scope-inl.h" 21 #include "utils/x86/managed_register_x86.h" 22 23 namespace art { 24 namespace x86 { 25 26 // Calling convention 27 28 ManagedRegister X86ManagedRuntimeCallingConvention::InterproceduralScratchRegister() { 29 return X86ManagedRegister::FromCpuRegister(ECX); 30 } 31 32 ManagedRegister X86JniCallingConvention::InterproceduralScratchRegister() { 33 return X86ManagedRegister::FromCpuRegister(ECX); 34 } 35 36 ManagedRegister X86JniCallingConvention::ReturnScratchRegister() const { 37 return ManagedRegister::NoRegister(); // No free regs, so assembler uses push/pop 38 } 39 40 static ManagedRegister ReturnRegisterForShorty(const char* shorty, bool jni) { 41 if (shorty[0] == 'F' || shorty[0] == 'D') { 42 if (jni) { 43 return X86ManagedRegister::FromX87Register(ST0); 44 } else { 45 return X86ManagedRegister::FromXmmRegister(XMM0); 46 } 47 } else if (shorty[0] == 'J') { 48 return X86ManagedRegister::FromRegisterPair(EAX_EDX); 49 } else if (shorty[0] == 'V') { 50 return ManagedRegister::NoRegister(); 51 } else { 52 return X86ManagedRegister::FromCpuRegister(EAX); 53 } 54 } 55 56 ManagedRegister X86ManagedRuntimeCallingConvention::ReturnRegister() { 57 return ReturnRegisterForShorty(GetShorty(), false); 58 } 59 60 ManagedRegister X86JniCallingConvention::ReturnRegister() { 61 return ReturnRegisterForShorty(GetShorty(), true); 62 } 63 64 ManagedRegister X86JniCallingConvention::IntReturnRegister() { 65 return X86ManagedRegister::FromCpuRegister(EAX); 66 } 67 68 // Managed runtime calling convention 69 70 ManagedRegister X86ManagedRuntimeCallingConvention::MethodRegister() { 71 return X86ManagedRegister::FromCpuRegister(EAX); 72 } 73 74 bool X86ManagedRuntimeCallingConvention::IsCurrentParamInRegister() { 75 return false; // Everything is passed by stack 76 } 77 78 bool X86ManagedRuntimeCallingConvention::IsCurrentParamOnStack() { 79 // We assume all parameters are on stack, args coming via registers are spilled as entry_spills. 80 return true; 81 } 82 83 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamRegister() { 84 ManagedRegister res = ManagedRegister::NoRegister(); 85 if (!IsCurrentParamAFloatOrDouble()) { 86 switch (gpr_arg_count_) { 87 case 0: 88 res = X86ManagedRegister::FromCpuRegister(ECX); 89 break; 90 case 1: 91 res = X86ManagedRegister::FromCpuRegister(EDX); 92 break; 93 case 2: 94 // Don't split a long between the last register and the stack. 95 if (IsCurrentParamALong()) { 96 return ManagedRegister::NoRegister(); 97 } 98 res = X86ManagedRegister::FromCpuRegister(EBX); 99 break; 100 } 101 } else if (itr_float_and_doubles_ < 4) { 102 // First four float parameters are passed via XMM0..XMM3 103 res = X86ManagedRegister::FromXmmRegister( 104 static_cast<XmmRegister>(XMM0 + itr_float_and_doubles_)); 105 } 106 return res; 107 } 108 109 ManagedRegister X86ManagedRuntimeCallingConvention::CurrentParamHighLongRegister() { 110 ManagedRegister res = ManagedRegister::NoRegister(); 111 DCHECK(IsCurrentParamALong()); 112 switch (gpr_arg_count_) { 113 case 0: res = X86ManagedRegister::FromCpuRegister(EDX); break; 114 case 1: res = X86ManagedRegister::FromCpuRegister(EBX); break; 115 } 116 return res; 117 } 118 119 FrameOffset X86ManagedRuntimeCallingConvention::CurrentParamStackOffset() { 120 return FrameOffset(displacement_.Int32Value() + // displacement 121 kFramePointerSize + // Method* 122 (itr_slots_ * kFramePointerSize)); // offset into in args 123 } 124 125 const ManagedRegisterEntrySpills& X86ManagedRuntimeCallingConvention::EntrySpills() { 126 // We spill the argument registers on X86 to free them up for scratch use, we then assume 127 // all arguments are on the stack. 128 if (entry_spills_.size() == 0) { 129 ResetIterator(FrameOffset(0)); 130 while (HasNext()) { 131 ManagedRegister in_reg = CurrentParamRegister(); 132 bool is_long = IsCurrentParamALong(); 133 if (!in_reg.IsNoRegister()) { 134 int32_t size = IsParamADouble(itr_args_) ? 8 : 4; 135 int32_t spill_offset = CurrentParamStackOffset().Uint32Value(); 136 ManagedRegisterSpill spill(in_reg, size, spill_offset); 137 entry_spills_.push_back(spill); 138 if (is_long) { 139 // special case, as we need a second register here. 140 in_reg = CurrentParamHighLongRegister(); 141 DCHECK(!in_reg.IsNoRegister()); 142 // We have to spill the second half of the long. 143 ManagedRegisterSpill spill2(in_reg, size, spill_offset + 4); 144 entry_spills_.push_back(spill2); 145 } 146 147 // Keep track of the number of GPRs allocated. 148 if (!IsCurrentParamAFloatOrDouble()) { 149 if (is_long) { 150 // Long was allocated in 2 registers. 151 gpr_arg_count_ += 2; 152 } else { 153 gpr_arg_count_++; 154 } 155 } 156 } else if (is_long) { 157 // We need to skip the unused last register, which is empty. 158 // If we are already out of registers, this is harmless. 159 gpr_arg_count_ += 2; 160 } 161 Next(); 162 } 163 } 164 return entry_spills_; 165 } 166 167 // JNI calling convention 168 169 X86JniCallingConvention::X86JniCallingConvention(bool is_static, bool is_synchronized, 170 const char* shorty) 171 : JniCallingConvention(is_static, is_synchronized, shorty, kFramePointerSize) { 172 callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EBP)); 173 callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(ESI)); 174 callee_save_regs_.push_back(X86ManagedRegister::FromCpuRegister(EDI)); 175 } 176 177 uint32_t X86JniCallingConvention::CoreSpillMask() const { 178 return 1 << EBP | 1 << ESI | 1 << EDI | 1 << kNumberOfCpuRegisters; 179 } 180 181 size_t X86JniCallingConvention::FrameSize() { 182 // Method*, return address and callee save area size, local reference segment state 183 size_t frame_data_size = kX86PointerSize + 184 (2 + CalleeSaveRegisters().size()) * kFramePointerSize; 185 // References plus 2 words for HandleScope header 186 size_t handle_scope_size = HandleScope::SizeOf(kFramePointerSize, ReferenceCount()); 187 // Plus return value spill area size 188 return RoundUp(frame_data_size + handle_scope_size + SizeOfReturnValue(), kStackAlignment); 189 } 190 191 size_t X86JniCallingConvention::OutArgSize() { 192 return RoundUp(NumberOfOutgoingStackArgs() * kFramePointerSize, kStackAlignment); 193 } 194 195 bool X86JniCallingConvention::IsCurrentParamInRegister() { 196 return false; // Everything is passed by stack. 197 } 198 199 bool X86JniCallingConvention::IsCurrentParamOnStack() { 200 return true; // Everything is passed by stack. 201 } 202 203 ManagedRegister X86JniCallingConvention::CurrentParamRegister() { 204 LOG(FATAL) << "Should not reach here"; 205 return ManagedRegister::NoRegister(); 206 } 207 208 FrameOffset X86JniCallingConvention::CurrentParamStackOffset() { 209 return FrameOffset(displacement_.Int32Value() - OutArgSize() + (itr_slots_ * kFramePointerSize)); 210 } 211 212 size_t X86JniCallingConvention::NumberOfOutgoingStackArgs() { 213 size_t static_args = IsStatic() ? 1 : 0; // count jclass 214 // regular argument parameters and this 215 size_t param_args = NumArgs() + NumLongOrDoubleArgs(); 216 // count JNIEnv* and return pc (pushed after Method*) 217 size_t total_args = static_args + param_args + 2; 218 return total_args; 219 } 220 221 } // namespace x86 222 } // namespace art 223