1 2 /*--------------------------------------------------------------------*/ 3 /*--- An sparse array (of words) implementation. ---*/ 4 /*--- m_sparsewa.c ---*/ 5 /*--------------------------------------------------------------------*/ 6 7 /* 8 This file is part of Valgrind, a dynamic binary instrumentation 9 framework. 10 11 Copyright (C) 2008-2015 OpenWorks Ltd 12 info (at) open-works.co.uk 13 14 This program is free software; you can redistribute it and/or 15 modify it under the terms of the GNU General Public License as 16 published by the Free Software Foundation; either version 2 of the 17 License, or (at your option) any later version. 18 19 This program is distributed in the hope that it will be useful, but 20 WITHOUT ANY WARRANTY; without even the implied warranty of 21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 22 General Public License for more details. 23 24 You should have received a copy of the GNU General Public License 25 along with this program; if not, write to the Free Software 26 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 27 02111-1307, USA. 28 29 The GNU General Public License is contained in the file COPYING. 30 */ 31 32 #include "pub_core_basics.h" 33 #include "pub_core_libcassert.h" 34 #include "pub_core_libcbase.h" 35 #include "pub_core_sparsewa.h" /* self */ 36 37 ///////////////////////////////////////////////////////// 38 // // 39 // SparseWA: Implementation // 40 // // 41 ///////////////////////////////////////////////////////// 42 43 //////// SWA data structures 44 45 // (UInt) `echo "Level Zero Byte Map" | md5sum` 46 #define Level0_MAGIC 0x458ec222 47 48 // (UInt) `echo "Level N Byte Map" | md5sum` 49 #define LevelN_MAGIC 0x0a280a1a 50 51 /* It's important that the .magic field appears at offset zero in both 52 structs, so that we can reliably distinguish between them. */ 53 54 typedef 55 struct { 56 UWord magic; 57 UWord words[256]; 58 Int nInUse; 59 UChar inUse[256/8]; 60 } 61 Level0; 62 63 typedef 64 struct { 65 UWord magic; 66 void* child[256]; /* either LevelN* or Level0* */ 67 Int nInUse; 68 Int level; /* 3 .. 1 on 32-bit, 7 .. 1 on 64-bit */ 69 } 70 LevelN; 71 72 typedef 73 struct { 74 UWord partial_key; 75 Int curr_ix; 76 void* curr_nd; /* LevelN* or Level0* */ 77 Int resume_point; /* 1, 2 or 3 */ 78 } 79 SWAStackElem; 80 81 struct _SparseWA { 82 void* (*alloc_nofail)(const HChar*,SizeT); 83 const HChar* cc; 84 void (*dealloc)(void*); 85 LevelN* root; 86 SWAStackElem iterStack[8]; 87 Int isUsed; 88 }; 89 90 //////// SWA helper functions (bitarray) 91 92 static inline UWord swa_bitarray_read ( const UChar* arr, UWord ix ) { 93 UWord bix = ix >> 3; 94 UWord off = ix & 7; 95 return (arr[bix] >> off) & 1; 96 } 97 98 static inline UWord swa_bitarray_read_then_set ( UChar* arr, UWord ix ) { 99 UWord bix = ix >> 3; 100 UWord off = ix & 7; 101 UChar old = arr[bix]; 102 UChar nyu = old | (1 << off); 103 arr[bix] = nyu; 104 return (old >> off) & 1; 105 } 106 107 static inline UWord swa_bitarray_read_then_clear ( UChar* arr, UWord ix ) { 108 UWord bix = ix >> 3; 109 UWord off = ix & 7; 110 UChar old = arr[bix]; 111 UChar nyu = old & ~(1 << off); 112 arr[bix] = nyu; 113 return (old >> off) & 1; 114 } 115 116 //////// SWA helper functions (iteration) 117 118 static void swa_PUSH ( SparseWA* swa, UWord partial_key, Int curr_ix, 119 void* curr_nd, Int resume_point ) 120 { 121 Int sp = swa->isUsed; 122 const Int _3_or_7 = sizeof(void*) - 1; 123 // if (0) VG_(printf)("PUSH, old sp = %d\n", sp); 124 vg_assert(sp >= 0 && sp <= _3_or_7); 125 swa->iterStack[sp].partial_key = partial_key; 126 swa->iterStack[sp].curr_ix = curr_ix; 127 swa->iterStack[sp].curr_nd = curr_nd; 128 swa->iterStack[sp].resume_point = resume_point; 129 swa->isUsed = sp+1; 130 } 131 132 static void swa_POP ( SparseWA* swa, 133 UWord* partial_key, Int* curr_ix, 134 void** curr_nd, Int* resume_point ) 135 { 136 Int sp = swa->isUsed - 1; 137 const Int _3_or_7 = sizeof(void*) - 1; 138 // if (0) VG_(printf)("POP, old sp = %d\n", sp+1); 139 vg_assert(sp >= 0 && sp <= _3_or_7); 140 *partial_key = swa->iterStack[sp].partial_key; 141 *curr_ix = swa->iterStack[sp].curr_ix; 142 *curr_nd = swa->iterStack[sp].curr_nd; 143 *resume_point = swa->iterStack[sp].resume_point; 144 swa->isUsed = sp; 145 } 146 147 //////// SWA helper functions (allocation) 148 149 static LevelN* swa_new_LevelN ( const SparseWA* swa, Int level ) 150 { 151 LevelN* levelN = swa->alloc_nofail( swa->cc, sizeof(LevelN) ); 152 VG_(memset)(levelN, 0, sizeof(*levelN)); 153 levelN->magic = LevelN_MAGIC; 154 levelN->level = level; 155 return levelN; 156 } 157 158 static Level0* swa_new_Level0 ( const SparseWA* swa ) 159 { 160 Level0* level0 = swa->alloc_nofail( swa->cc, sizeof(Level0) ); 161 VG_(memset)(level0, 0, sizeof(*level0)); 162 level0->magic = Level0_MAGIC; 163 return level0; 164 } 165 166 167 //////// SWA public interface 168 169 void VG_(initIterSWA) ( SparseWA* swa ) 170 { 171 swa->isUsed = 0; 172 if (swa->root) swa_PUSH(swa, 0, 0, swa->root, 1/*start_new_node*/); 173 } 174 175 176 Bool VG_(nextIterSWA)( SparseWA* swa, 177 /*OUT*/UWord* keyP, /*OUT*/UWord* valP ) 178 { 179 UWord p_key; 180 Int curr_ix; 181 void* curr_nd; 182 Int resume_point; 183 184 /* dispatch whatever's on top of the stack; what that actually 185 means is to return to some previously-saved context. */ 186 dispatch: 187 188 if (swa->isUsed == 0) 189 return False; 190 191 swa_POP(swa, &p_key, &curr_ix, &curr_nd, &resume_point); 192 switch (resume_point) { 193 case 1: goto start_new_node; 194 case 2: goto resume_leaf_node; 195 case 3: goto resume_nonleaf_node; 196 default: vg_assert(0); 197 } 198 199 start_new_node: 200 if (*(UWord*)curr_nd == Level0_MAGIC) { 201 /* curr_nd is a leaf node */ 202 Level0* level0 = (Level0*)curr_nd; 203 for (curr_ix = 0; curr_ix < 256; curr_ix++) { 204 if (swa_bitarray_read(level0->inUse, curr_ix) == 1) { 205 swa_PUSH(swa, p_key, curr_ix, curr_nd, 2/*resume_leaf_node*/); 206 *keyP = (p_key << 8) + (UWord)curr_ix; 207 *valP = level0->words[curr_ix]; 208 return True; 209 resume_leaf_node: 210 level0 = (Level0*)curr_nd; 211 } 212 } 213 } else { 214 /* curr_nd is a non-leaf node */ 215 LevelN* levelN; 216 vg_assert(*(UWord*)curr_nd == LevelN_MAGIC); 217 levelN = (LevelN*)curr_nd; 218 for (curr_ix = 0; curr_ix < 256; curr_ix++) { 219 if (levelN->child[curr_ix]) { 220 swa_PUSH(swa, p_key, curr_ix, curr_nd, 3/*resume_nonleaf_node*/); 221 p_key = (p_key << 8) + (UWord)curr_ix; 222 curr_nd = levelN->child[curr_ix]; 223 goto start_new_node; 224 resume_nonleaf_node: 225 levelN = (LevelN*)curr_nd; 226 } 227 } 228 } 229 230 goto dispatch; 231 } 232 233 234 SparseWA* VG_(newSWA) ( void*(*alloc_nofail)(const HChar* cc, SizeT), 235 const HChar* cc, 236 void(*dealloc)(void*) ) 237 { 238 SparseWA* swa; 239 vg_assert(alloc_nofail); 240 vg_assert(cc); 241 vg_assert(dealloc); 242 swa = alloc_nofail( cc, sizeof(SparseWA) ); 243 VG_(memset)(swa, 0, sizeof(*swa)); 244 swa->alloc_nofail = alloc_nofail; 245 swa->cc = cc; 246 swa->dealloc = dealloc; 247 swa->root = NULL; 248 return swa; 249 } 250 251 252 static void swa_deleteSWA_wrk ( void(*dealloc)(void*), void* nd ) 253 { 254 Int i; 255 vg_assert(nd); 256 if (*(UWord*)nd == LevelN_MAGIC) { 257 LevelN* levelN = (LevelN*)nd; 258 for (i = 0; i < 256; i++) { 259 if (levelN->child[i]) { 260 swa_deleteSWA_wrk( dealloc, levelN->child[i] ); 261 } 262 } 263 } else { 264 vg_assert(*(UWord*)nd == Level0_MAGIC); 265 } 266 dealloc(nd); 267 } 268 void VG_(deleteSWA) ( SparseWA* swa ) 269 { 270 if (swa->root) 271 swa_deleteSWA_wrk( swa->dealloc, swa->root ); 272 swa->dealloc(swa); 273 } 274 275 276 Bool VG_(lookupSWA) ( const SparseWA* swa, 277 /*OUT*/UWord* valP, 278 UWord key ) 279 { 280 Int i; 281 UWord ix; 282 Level0* level0; 283 LevelN* levelN; 284 const Int _3_or_7 = sizeof(void*) - 1; 285 286 vg_assert(swa); 287 levelN = swa->root; 288 289 /* levels 3/7 .. 1 */ 290 for (i = _3_or_7; i >= 1; i--) { 291 if (!levelN) return False; 292 vg_assert(levelN->level == i); 293 vg_assert(levelN->nInUse > 0); 294 ix = (key >> (i*8)) & 0xFF; 295 levelN = levelN->child[ix]; 296 } 297 298 /* level0 */ 299 level0 = (Level0*)levelN; 300 if (!level0) return False; 301 vg_assert(level0->magic == Level0_MAGIC); 302 vg_assert(level0->nInUse > 0); 303 ix = key & 0xFF; 304 if (swa_bitarray_read(level0->inUse, ix) == 0) return False; 305 *valP = level0->words[ix]; 306 return True; 307 } 308 309 310 Bool VG_(addToSWA) ( SparseWA* swa, UWord key, UWord val ) 311 { 312 Int i; 313 UWord ix; 314 Level0* level0; 315 LevelN* levelN; 316 Bool already_present; 317 const Int _3_or_7 = sizeof(void*) - 1; 318 319 vg_assert(swa); 320 321 if (!swa->root) 322 swa->root = swa_new_LevelN(swa, _3_or_7); 323 levelN = swa->root; 324 325 /* levels 3/7 .. 2 */ 326 for (i = _3_or_7; i >= 2; i--) { 327 /* levelN is the level-i map */ 328 vg_assert(levelN); 329 vg_assert(levelN->level == i); 330 ix = (key >> (i*8)) & 0xFF; 331 if (levelN->child[ix] == NULL) { 332 levelN->child[ix] = swa_new_LevelN(swa, i-1); 333 levelN->nInUse++; 334 } 335 vg_assert(levelN->nInUse >= 1 && levelN->nInUse <= 256); 336 levelN = levelN->child[ix]; 337 } 338 339 /* levelN is the level-1 map */ 340 vg_assert(levelN); 341 vg_assert(levelN->level == 1); 342 ix = (key >> (1*8)) & 0xFF; 343 if (levelN->child[ix] == NULL) { 344 levelN->child[ix] = swa_new_Level0(swa); 345 levelN->nInUse++; 346 } 347 vg_assert(levelN->nInUse >= 1 && levelN->nInUse <= 256); 348 level0 = levelN->child[ix]; 349 350 /* level0 is the level-0 map */ 351 vg_assert(level0); 352 vg_assert(level0->magic == Level0_MAGIC); 353 ix = key & 0xFF; 354 if (swa_bitarray_read_then_set(level0->inUse, ix) == 0) { 355 level0->nInUse++; 356 already_present = False; 357 } else { 358 already_present = True; 359 } 360 vg_assert(level0->nInUse >= 1 && level0->nInUse <= 256); 361 level0->words[ix] = val; 362 363 return already_present; 364 } 365 366 367 Bool VG_(delFromSWA) ( SparseWA* swa, 368 /*OUT*/UWord* oldV, UWord key ) 369 { 370 Int i; 371 UWord ix; 372 Level0* level0; 373 LevelN* levelN; 374 const Int _3_or_7 = sizeof(void*) - 1; 375 376 LevelN* visited[_3_or_7]; 377 UWord visitedIx[_3_or_7]; 378 Int nVisited = 0; 379 380 vg_assert(swa); 381 levelN = swa->root; 382 383 /* levels 3/7 .. 1 */ 384 for (i = _3_or_7; i >= 1; i--) { 385 /* level i */ 386 if (!levelN) return False; 387 vg_assert(levelN->level == i); 388 vg_assert(levelN->nInUse > 0); 389 ix = (key >> (i*8)) & 0xFF; 390 visited[nVisited] = levelN; 391 visitedIx[nVisited++] = ix; 392 levelN = levelN->child[ix]; 393 } 394 395 /* level 0 */ 396 level0 = (Level0*)levelN; 397 if (!level0) return False; 398 vg_assert(level0->magic == Level0_MAGIC); 399 vg_assert(level0->nInUse > 0); 400 ix = key & 0xFF; 401 402 if (swa_bitarray_read_then_clear(level0->inUse, ix) == 0) 403 return False; 404 405 *oldV = level0->words[ix]; 406 407 level0->nInUse--; 408 if (level0->nInUse > 0) 409 return True; 410 411 vg_assert(nVisited == _3_or_7); 412 swa->dealloc( level0 ); 413 414 /* levels 1 .. 3/7 */ 415 for (i = 1; i <= _3_or_7; i++) { 416 /* level i */ 417 nVisited--; 418 vg_assert(visited[nVisited]->child[ visitedIx[nVisited] ]); 419 visited[nVisited]->child[ visitedIx[nVisited] ] = NULL; 420 visited[nVisited]->nInUse--; 421 vg_assert(visited[nVisited]->nInUse >= 0); 422 if (visited[nVisited]->nInUse > 0) 423 return True; 424 swa->dealloc(visited[nVisited]); 425 } 426 427 vg_assert(nVisited == 0); 428 swa->root = NULL; 429 return True; 430 } 431 432 433 static UWord swa_sizeSWA_wrk ( const void* nd ) 434 { 435 Int i; 436 if (*(const UWord*)nd == LevelN_MAGIC) { 437 UWord sum = 0; 438 const LevelN* levelN = nd; 439 for (i = 0; i < 256; i++) { 440 if (levelN->child[i]) { 441 sum += swa_sizeSWA_wrk( levelN->child[i] ); 442 } 443 } 444 return sum; 445 } else { 446 const Level0* level0; 447 vg_assert(*(const UWord*)nd == Level0_MAGIC); 448 level0 = nd; 449 return level0->nInUse; 450 } 451 } 452 UWord VG_(sizeSWA) ( const SparseWA* swa ) 453 { 454 if (swa->root) 455 return swa_sizeSWA_wrk ( swa->root ); 456 else 457 return 0; 458 } 459 460 461 462 /*--------------------------------------------------------------------*/ 463 /*--- end m_sparsewa.c ---*/ 464 /*--------------------------------------------------------------------*/ 465