1 /* 2 * Copyright 2013 Google Inc. 3 * 4 * Use of this source code is governed by a BSD-style license that can be 5 * found in the LICENSE file. 6 */ 7 8 #include <emmintrin.h> 9 #include "SkBitmap.h" 10 #include "SkBitmapFilter_opts_SSE2.h" 11 #include "SkBitmapProcState.h" 12 #include "SkColor.h" 13 #include "SkColorPriv.h" 14 #include "SkConvolver.h" 15 #include "SkShader.h" 16 #include "SkUnPreMultiply.h" 17 18 #if 0 19 static inline void print128i(__m128i value) { 20 int *v = (int*) &value; 21 printf("% .11d % .11d % .11d % .11d\n", v[0], v[1], v[2], v[3]); 22 } 23 24 static inline void print128i_16(__m128i value) { 25 short *v = (short*) &value; 26 printf("% .5d % .5d % .5d % .5d % .5d % .5d % .5d % .5d\n", v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]); 27 } 28 29 static inline void print128i_8(__m128i value) { 30 unsigned char *v = (unsigned char*) &value; 31 printf("%.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u %.3u\n", 32 v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7], 33 v[8], v[9], v[10], v[11], v[12], v[13], v[14], v[15] 34 ); 35 } 36 37 static inline void print128f(__m128 value) { 38 float *f = (float*) &value; 39 printf("%3.4f %3.4f %3.4f %3.4f\n", f[0], f[1], f[2], f[3]); 40 } 41 #endif 42 43 // Convolves horizontally along a single row. The row data is given in 44 // |src_data| and continues for the num_values() of the filter. 45 void convolveHorizontally_SSE2(const unsigned char* src_data, 46 const SkConvolutionFilter1D& filter, 47 unsigned char* out_row, 48 bool /*has_alpha*/) { 49 int num_values = filter.numValues(); 50 51 int filter_offset, filter_length; 52 __m128i zero = _mm_setzero_si128(); 53 __m128i mask[4]; 54 // |mask| will be used to decimate all extra filter coefficients that are 55 // loaded by SIMD when |filter_length| is not divisible by 4. 56 // mask[0] is not used in following algorithm. 57 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); 58 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); 59 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); 60 61 // Output one pixel each iteration, calculating all channels (RGBA) together. 62 for (int out_x = 0; out_x < num_values; out_x++) { 63 const SkConvolutionFilter1D::ConvolutionFixed* filter_values = 64 filter.FilterForValue(out_x, &filter_offset, &filter_length); 65 66 __m128i accum = _mm_setzero_si128(); 67 68 // Compute the first pixel in this row that the filter affects. It will 69 // touch |filter_length| pixels (4 bytes each) after this. 70 const __m128i* row_to_filter = 71 reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]); 72 73 // We will load and accumulate with four coefficients per iteration. 74 for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) { 75 76 // Load 4 coefficients => duplicate 1st and 2nd of them for all channels. 77 __m128i coeff, coeff16; 78 // [16] xx xx xx xx c3 c2 c1 c0 79 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); 80 // [16] xx xx xx xx c1 c1 c0 c0 81 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); 82 // [16] c1 c1 c1 c1 c0 c0 c0 c0 83 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); 84 85 // Load four pixels => unpack the first two pixels to 16 bits => 86 // multiply with coefficients => accumulate the convolution result. 87 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 88 __m128i src8 = _mm_loadu_si128(row_to_filter); 89 // [16] a1 b1 g1 r1 a0 b0 g0 r0 90 __m128i src16 = _mm_unpacklo_epi8(src8, zero); 91 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); 92 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); 93 // [32] a0*c0 b0*c0 g0*c0 r0*c0 94 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); 95 accum = _mm_add_epi32(accum, t); 96 // [32] a1*c1 b1*c1 g1*c1 r1*c1 97 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 98 accum = _mm_add_epi32(accum, t); 99 100 // Duplicate 3rd and 4th coefficients for all channels => 101 // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients 102 // => accumulate the convolution results. 103 // [16] xx xx xx xx c3 c3 c2 c2 104 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); 105 // [16] c3 c3 c3 c3 c2 c2 c2 c2 106 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); 107 // [16] a3 g3 b3 r3 a2 g2 b2 r2 108 src16 = _mm_unpackhi_epi8(src8, zero); 109 mul_hi = _mm_mulhi_epi16(src16, coeff16); 110 mul_lo = _mm_mullo_epi16(src16, coeff16); 111 // [32] a2*c2 b2*c2 g2*c2 r2*c2 112 t = _mm_unpacklo_epi16(mul_lo, mul_hi); 113 accum = _mm_add_epi32(accum, t); 114 // [32] a3*c3 b3*c3 g3*c3 r3*c3 115 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 116 accum = _mm_add_epi32(accum, t); 117 118 // Advance the pixel and coefficients pointers. 119 row_to_filter += 1; 120 filter_values += 4; 121 } 122 123 // When |filter_length| is not divisible by 4, we need to decimate some of 124 // the filter coefficient that was loaded incorrectly to zero; Other than 125 // that the algorithm is same with above, exceot that the 4th pixel will be 126 // always absent. 127 int r = filter_length&3; 128 if (r) { 129 // Note: filter_values must be padded to align_up(filter_offset, 8). 130 __m128i coeff, coeff16; 131 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); 132 // Mask out extra filter taps. 133 coeff = _mm_and_si128(coeff, mask[r]); 134 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); 135 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); 136 137 // Note: line buffer must be padded to align_up(filter_offset, 16). 138 // We resolve this by use C-version for the last horizontal line. 139 __m128i src8 = _mm_loadu_si128(row_to_filter); 140 __m128i src16 = _mm_unpacklo_epi8(src8, zero); 141 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); 142 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); 143 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); 144 accum = _mm_add_epi32(accum, t); 145 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 146 accum = _mm_add_epi32(accum, t); 147 148 src16 = _mm_unpackhi_epi8(src8, zero); 149 coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); 150 coeff16 = _mm_unpacklo_epi16(coeff16, coeff16); 151 mul_hi = _mm_mulhi_epi16(src16, coeff16); 152 mul_lo = _mm_mullo_epi16(src16, coeff16); 153 t = _mm_unpacklo_epi16(mul_lo, mul_hi); 154 accum = _mm_add_epi32(accum, t); 155 } 156 157 // Shift right for fixed point implementation. 158 accum = _mm_srai_epi32(accum, SkConvolutionFilter1D::kShiftBits); 159 160 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). 161 accum = _mm_packs_epi32(accum, zero); 162 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). 163 accum = _mm_packus_epi16(accum, zero); 164 165 // Store the pixel value of 32 bits. 166 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum); 167 out_row += 4; 168 } 169 } 170 171 // Convolves horizontally along four rows. The row data is given in 172 // |src_data| and continues for the num_values() of the filter. 173 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please 174 // refer to that function for detailed comments. 175 void convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4], 176 const SkConvolutionFilter1D& filter, 177 unsigned char* out_row[4], 178 size_t outRowBytes) { 179 SkDEBUGCODE(const unsigned char* out_row_0_start = out_row[0];) 180 181 int num_values = filter.numValues(); 182 183 int filter_offset, filter_length; 184 __m128i zero = _mm_setzero_si128(); 185 __m128i mask[4]; 186 // |mask| will be used to decimate all extra filter coefficients that are 187 // loaded by SIMD when |filter_length| is not divisible by 4. 188 // mask[0] is not used in following algorithm. 189 mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1); 190 mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1); 191 mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1); 192 193 // Output one pixel each iteration, calculating all channels (RGBA) together. 194 for (int out_x = 0; out_x < num_values; out_x++) { 195 const SkConvolutionFilter1D::ConvolutionFixed* filter_values = 196 filter.FilterForValue(out_x, &filter_offset, &filter_length); 197 198 // four pixels in a column per iteration. 199 __m128i accum0 = _mm_setzero_si128(); 200 __m128i accum1 = _mm_setzero_si128(); 201 __m128i accum2 = _mm_setzero_si128(); 202 __m128i accum3 = _mm_setzero_si128(); 203 int start = (filter_offset<<2); 204 // We will load and accumulate with four coefficients per iteration. 205 for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) { 206 __m128i coeff, coeff16lo, coeff16hi; 207 // [16] xx xx xx xx c3 c2 c1 c0 208 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); 209 // [16] xx xx xx xx c1 c1 c0 c0 210 coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); 211 // [16] c1 c1 c1 c1 c0 c0 c0 c0 212 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); 213 // [16] xx xx xx xx c3 c3 c2 c2 214 coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); 215 // [16] c3 c3 c3 c3 c2 c2 c2 c2 216 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); 217 218 __m128i src8, src16, mul_hi, mul_lo, t; 219 220 #define ITERATION(src, accum) \ 221 src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \ 222 src16 = _mm_unpacklo_epi8(src8, zero); \ 223 mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \ 224 mul_lo = _mm_mullo_epi16(src16, coeff16lo); \ 225 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ 226 accum = _mm_add_epi32(accum, t); \ 227 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ 228 accum = _mm_add_epi32(accum, t); \ 229 src16 = _mm_unpackhi_epi8(src8, zero); \ 230 mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \ 231 mul_lo = _mm_mullo_epi16(src16, coeff16hi); \ 232 t = _mm_unpacklo_epi16(mul_lo, mul_hi); \ 233 accum = _mm_add_epi32(accum, t); \ 234 t = _mm_unpackhi_epi16(mul_lo, mul_hi); \ 235 accum = _mm_add_epi32(accum, t) 236 237 ITERATION(src_data[0] + start, accum0); 238 ITERATION(src_data[1] + start, accum1); 239 ITERATION(src_data[2] + start, accum2); 240 ITERATION(src_data[3] + start, accum3); 241 242 start += 16; 243 filter_values += 4; 244 } 245 246 int r = filter_length & 3; 247 if (r) { 248 // Note: filter_values must be padded to align_up(filter_offset, 8); 249 __m128i coeff; 250 coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values)); 251 // Mask out extra filter taps. 252 coeff = _mm_and_si128(coeff, mask[r]); 253 254 __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0)); 255 /* c1 c1 c1 c1 c0 c0 c0 c0 */ 256 coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo); 257 __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2)); 258 coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi); 259 260 __m128i src8, src16, mul_hi, mul_lo, t; 261 262 ITERATION(src_data[0] + start, accum0); 263 ITERATION(src_data[1] + start, accum1); 264 ITERATION(src_data[2] + start, accum2); 265 ITERATION(src_data[3] + start, accum3); 266 } 267 268 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); 269 accum0 = _mm_packs_epi32(accum0, zero); 270 accum0 = _mm_packus_epi16(accum0, zero); 271 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); 272 accum1 = _mm_packs_epi32(accum1, zero); 273 accum1 = _mm_packus_epi16(accum1, zero); 274 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); 275 accum2 = _mm_packs_epi32(accum2, zero); 276 accum2 = _mm_packus_epi16(accum2, zero); 277 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); 278 accum3 = _mm_packs_epi32(accum3, zero); 279 accum3 = _mm_packus_epi16(accum3, zero); 280 281 // We seem to be running off the edge here (chromium:491660). 282 SkASSERT(((size_t)out_row[0] - (size_t)out_row_0_start) < outRowBytes); 283 284 *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0); 285 *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1); 286 *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2); 287 *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3); 288 289 out_row[0] += 4; 290 out_row[1] += 4; 291 out_row[2] += 4; 292 out_row[3] += 4; 293 } 294 } 295 296 // Does vertical convolution to produce one output row. The filter values and 297 // length are given in the first two parameters. These are applied to each 298 // of the rows pointed to in the |source_data_rows| array, with each row 299 // being |pixel_width| wide. 300 // 301 // The output must have room for |pixel_width * 4| bytes. 302 template<bool has_alpha> 303 void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, 304 int filter_length, 305 unsigned char* const* source_data_rows, 306 int pixel_width, 307 unsigned char* out_row) { 308 int width = pixel_width & ~3; 309 310 __m128i zero = _mm_setzero_si128(); 311 __m128i accum0, accum1, accum2, accum3, coeff16; 312 const __m128i* src; 313 // Output four pixels per iteration (16 bytes). 314 for (int out_x = 0; out_x < width; out_x += 4) { 315 316 // Accumulated result for each pixel. 32 bits per RGBA channel. 317 accum0 = _mm_setzero_si128(); 318 accum1 = _mm_setzero_si128(); 319 accum2 = _mm_setzero_si128(); 320 accum3 = _mm_setzero_si128(); 321 322 // Convolve with one filter coefficient per iteration. 323 for (int filter_y = 0; filter_y < filter_length; filter_y++) { 324 325 // Duplicate the filter coefficient 8 times. 326 // [16] cj cj cj cj cj cj cj cj 327 coeff16 = _mm_set1_epi16(filter_values[filter_y]); 328 329 // Load four pixels (16 bytes) together. 330 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 331 src = reinterpret_cast<const __m128i*>( 332 &source_data_rows[filter_y][out_x << 2]); 333 __m128i src8 = _mm_loadu_si128(src); 334 335 // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels => 336 // multiply with current coefficient => accumulate the result. 337 // [16] a1 b1 g1 r1 a0 b0 g0 r0 338 __m128i src16 = _mm_unpacklo_epi8(src8, zero); 339 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); 340 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); 341 // [32] a0 b0 g0 r0 342 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); 343 accum0 = _mm_add_epi32(accum0, t); 344 // [32] a1 b1 g1 r1 345 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 346 accum1 = _mm_add_epi32(accum1, t); 347 348 // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels => 349 // multiply with current coefficient => accumulate the result. 350 // [16] a3 b3 g3 r3 a2 b2 g2 r2 351 src16 = _mm_unpackhi_epi8(src8, zero); 352 mul_hi = _mm_mulhi_epi16(src16, coeff16); 353 mul_lo = _mm_mullo_epi16(src16, coeff16); 354 // [32] a2 b2 g2 r2 355 t = _mm_unpacklo_epi16(mul_lo, mul_hi); 356 accum2 = _mm_add_epi32(accum2, t); 357 // [32] a3 b3 g3 r3 358 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 359 accum3 = _mm_add_epi32(accum3, t); 360 } 361 362 // Shift right for fixed point implementation. 363 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); 364 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); 365 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); 366 accum3 = _mm_srai_epi32(accum3, SkConvolutionFilter1D::kShiftBits); 367 368 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). 369 // [16] a1 b1 g1 r1 a0 b0 g0 r0 370 accum0 = _mm_packs_epi32(accum0, accum1); 371 // [16] a3 b3 g3 r3 a2 b2 g2 r2 372 accum2 = _mm_packs_epi32(accum2, accum3); 373 374 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). 375 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 376 accum0 = _mm_packus_epi16(accum0, accum2); 377 378 if (has_alpha) { 379 // Compute the max(ri, gi, bi) for each pixel. 380 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 381 __m128i a = _mm_srli_epi32(accum0, 8); 382 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 383 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. 384 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 385 a = _mm_srli_epi32(accum0, 16); 386 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 387 b = _mm_max_epu8(a, b); // Max of r and g and b. 388 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 389 b = _mm_slli_epi32(b, 24); 390 391 // Make sure the value of alpha channel is always larger than maximum 392 // value of color channels. 393 accum0 = _mm_max_epu8(b, accum0); 394 } else { 395 // Set value of alpha channels to 0xFF. 396 __m128i mask = _mm_set1_epi32(0xff000000); 397 accum0 = _mm_or_si128(accum0, mask); 398 } 399 400 // Store the convolution result (16 bytes) and advance the pixel pointers. 401 _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0); 402 out_row += 16; 403 } 404 405 // When the width of the output is not divisible by 4, We need to save one 406 // pixel (4 bytes) each time. And also the fourth pixel is always absent. 407 if (pixel_width & 3) { 408 accum0 = _mm_setzero_si128(); 409 accum1 = _mm_setzero_si128(); 410 accum2 = _mm_setzero_si128(); 411 for (int filter_y = 0; filter_y < filter_length; ++filter_y) { 412 coeff16 = _mm_set1_epi16(filter_values[filter_y]); 413 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 414 src = reinterpret_cast<const __m128i*>( 415 &source_data_rows[filter_y][width<<2]); 416 __m128i src8 = _mm_loadu_si128(src); 417 // [16] a1 b1 g1 r1 a0 b0 g0 r0 418 __m128i src16 = _mm_unpacklo_epi8(src8, zero); 419 __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16); 420 __m128i mul_lo = _mm_mullo_epi16(src16, coeff16); 421 // [32] a0 b0 g0 r0 422 __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi); 423 accum0 = _mm_add_epi32(accum0, t); 424 // [32] a1 b1 g1 r1 425 t = _mm_unpackhi_epi16(mul_lo, mul_hi); 426 accum1 = _mm_add_epi32(accum1, t); 427 // [16] a3 b3 g3 r3 a2 b2 g2 r2 428 src16 = _mm_unpackhi_epi8(src8, zero); 429 mul_hi = _mm_mulhi_epi16(src16, coeff16); 430 mul_lo = _mm_mullo_epi16(src16, coeff16); 431 // [32] a2 b2 g2 r2 432 t = _mm_unpacklo_epi16(mul_lo, mul_hi); 433 accum2 = _mm_add_epi32(accum2, t); 434 } 435 436 accum0 = _mm_srai_epi32(accum0, SkConvolutionFilter1D::kShiftBits); 437 accum1 = _mm_srai_epi32(accum1, SkConvolutionFilter1D::kShiftBits); 438 accum2 = _mm_srai_epi32(accum2, SkConvolutionFilter1D::kShiftBits); 439 // [16] a1 b1 g1 r1 a0 b0 g0 r0 440 accum0 = _mm_packs_epi32(accum0, accum1); 441 // [16] a3 b3 g3 r3 a2 b2 g2 r2 442 accum2 = _mm_packs_epi32(accum2, zero); 443 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 444 accum0 = _mm_packus_epi16(accum0, accum2); 445 if (has_alpha) { 446 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 447 __m128i a = _mm_srli_epi32(accum0, 8); 448 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 449 __m128i b = _mm_max_epu8(a, accum0); // Max of r and g. 450 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 451 a = _mm_srli_epi32(accum0, 16); 452 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 453 b = _mm_max_epu8(a, b); // Max of r and g and b. 454 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 455 b = _mm_slli_epi32(b, 24); 456 accum0 = _mm_max_epu8(b, accum0); 457 } else { 458 __m128i mask = _mm_set1_epi32(0xff000000); 459 accum0 = _mm_or_si128(accum0, mask); 460 } 461 462 for (int out_x = width; out_x < pixel_width; out_x++) { 463 *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0); 464 accum0 = _mm_srli_si128(accum0, 4); 465 out_row += 4; 466 } 467 } 468 } 469 470 void convolveVertically_SSE2(const SkConvolutionFilter1D::ConvolutionFixed* filter_values, 471 int filter_length, 472 unsigned char* const* source_data_rows, 473 int pixel_width, 474 unsigned char* out_row, 475 bool has_alpha) { 476 if (has_alpha) { 477 convolveVertically_SSE2<true>(filter_values, 478 filter_length, 479 source_data_rows, 480 pixel_width, 481 out_row); 482 } else { 483 convolveVertically_SSE2<false>(filter_values, 484 filter_length, 485 source_data_rows, 486 pixel_width, 487 out_row); 488 } 489 } 490 491 void applySIMDPadding_SSE2(SkConvolutionFilter1D *filter) { 492 // Padding |paddingCount| of more dummy coefficients after the coefficients 493 // of last filter to prevent SIMD instructions which load 8 or 16 bytes 494 // together to access invalid memory areas. We are not trying to align the 495 // coefficients right now due to the opaqueness of <vector> implementation. 496 // This has to be done after all |AddFilter| calls. 497 for (int i = 0; i < 8; ++i) { 498 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); 499 } 500 } 501