1 // Copyright 2014 PDFium Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 // Original code by Matt McCutchen, see the LICENSE file. 6 7 #include "BigUnsigned.hh" 8 9 // Memory management definitions have moved to the bottom of NumberlikeArray.hh. 10 11 // The templates used by these constructors and converters are at the bottom of 12 // BigUnsigned.hh. 13 14 BigUnsigned::BigUnsigned(unsigned long x) { initFromPrimitive (x); } 15 BigUnsigned::BigUnsigned(unsigned int x) { initFromPrimitive (x); } 16 BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive (x); } 17 BigUnsigned::BigUnsigned( long x) { initFromSignedPrimitive(x); } 18 BigUnsigned::BigUnsigned( int x) { initFromSignedPrimitive(x); } 19 BigUnsigned::BigUnsigned( short x) { initFromSignedPrimitive(x); } 20 21 unsigned long BigUnsigned::toUnsignedLong () const { return convertToPrimitive <unsigned long >(); } 22 unsigned int BigUnsigned::toUnsignedInt () const { return convertToPrimitive <unsigned int >(); } 23 unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive <unsigned short>(); } 24 long BigUnsigned::toLong () const { return convertToSignedPrimitive< long >(); } 25 int BigUnsigned::toInt () const { return convertToSignedPrimitive< int >(); } 26 short BigUnsigned::toShort () const { return convertToSignedPrimitive< short>(); } 27 28 // BIT/BLOCK ACCESSORS 29 30 void BigUnsigned::setBlock(Index i, Blk newBlock) { 31 if (newBlock == 0) { 32 if (i < len) { 33 blk[i] = 0; 34 zapLeadingZeros(); 35 } 36 // If i >= len, no effect. 37 } else { 38 if (i >= len) { 39 // The nonzero block extends the number. 40 allocateAndCopy(i+1); 41 // Zero any added blocks that we aren't setting. 42 for (Index j = len; j < i; j++) 43 blk[j] = 0; 44 len = i+1; 45 } 46 blk[i] = newBlock; 47 } 48 } 49 50 /* Evidently the compiler wants BigUnsigned:: on the return type because, at 51 * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the 52 * proper scope. */ 53 BigUnsigned::Index BigUnsigned::bitLength() const { 54 if (isZero()) 55 return 0; 56 else { 57 Blk leftmostBlock = getBlock(len - 1); 58 Index leftmostBlockLen = 0; 59 while (leftmostBlock != 0) { 60 leftmostBlock >>= 1; 61 leftmostBlockLen++; 62 } 63 return leftmostBlockLen + (len - 1) * N; 64 } 65 } 66 67 void BigUnsigned::setBit(Index bi, bool newBit) { 68 Index blockI = bi / N; 69 Blk block = getBlock(blockI), mask = Blk(1) << (bi % N); 70 block = newBit ? (block | mask) : (block & ~mask); 71 setBlock(blockI, block); 72 } 73 74 // COMPARISON 75 BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const { 76 // A bigger length implies a bigger number. 77 if (len < x.len) 78 return less; 79 else if (len > x.len) 80 return greater; 81 else { 82 // Compare blocks one by one from left to right. 83 Index i = len; 84 while (i > 0) { 85 i--; 86 if (blk[i] == x.blk[i]) 87 continue; 88 else if (blk[i] > x.blk[i]) 89 return greater; 90 else 91 return less; 92 } 93 // If no blocks differed, the numbers are equal. 94 return equal; 95 } 96 } 97 98 // COPY-LESS OPERATIONS 99 100 /* 101 * On most calls to copy-less operations, it's safe to read the inputs little by 102 * little and write the outputs little by little. However, if one of the 103 * inputs is coming from the same variable into which the output is to be 104 * stored (an "aliased" call), we risk overwriting the input before we read it. 105 * In this case, we first compute the result into a temporary BigUnsigned 106 * variable and then copy it into the requested output variable *this. 107 * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on 108 * aliased calls) to generate code for this check. 109 * 110 * I adopted this approach on 2007.02.13 (see Assignment Operators in 111 * BigUnsigned.hh). Before then, put-here operations rejected aliased calls 112 * with an exception. I think doing the right thing is better. 113 * 114 * Some of the put-here operations can probably handle aliased calls safely 115 * without the extra copy because (for example) they process blocks strictly 116 * right-to-left. At some point I might determine which ones don't need the 117 * copy, but my reasoning would need to be verified very carefully. For now 118 * I'll leave in the copy. 119 */ 120 #define DTRT_ALIASED(cond, op) \ 121 if (cond) { \ 122 BigUnsigned tmpThis; \ 123 tmpThis.op; \ 124 *this = tmpThis; \ 125 return; \ 126 } 127 128 129 130 void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) { 131 DTRT_ALIASED(this == &a || this == &b, add(a, b)); 132 // If one argument is zero, copy the other. 133 if (a.len == 0) { 134 operator =(b); 135 return; 136 } else if (b.len == 0) { 137 operator =(a); 138 return; 139 } 140 // Some variables... 141 // Carries in and out of an addition stage 142 bool carryIn, carryOut; 143 Blk temp; 144 Index i; 145 // a2 points to the longer input, b2 points to the shorter 146 const BigUnsigned *a2, *b2; 147 if (a.len >= b.len) { 148 a2 = &a; 149 b2 = &b; 150 } else { 151 a2 = &b; 152 b2 = &a; 153 } 154 // Set prelimiary length and make room in this BigUnsigned 155 len = a2->len + 1; 156 allocate(len); 157 // For each block index that is present in both inputs... 158 for (i = 0, carryIn = false; i < b2->len; i++) { 159 // Add input blocks 160 temp = a2->blk[i] + b2->blk[i]; 161 // If a rollover occurred, the result is less than either input. 162 // This test is used many times in the BigUnsigned code. 163 carryOut = (temp < a2->blk[i]); 164 // If a carry was input, handle it 165 if (carryIn) { 166 temp++; 167 carryOut |= (temp == 0); 168 } 169 blk[i] = temp; // Save the addition result 170 carryIn = carryOut; // Pass the carry along 171 } 172 // If there is a carry left over, increase blocks until 173 // one does not roll over. 174 for (; i < a2->len && carryIn; i++) { 175 temp = a2->blk[i] + 1; 176 carryIn = (temp == 0); 177 blk[i] = temp; 178 } 179 // If the carry was resolved but the larger number 180 // still has blocks, copy them over. 181 for (; i < a2->len; i++) 182 blk[i] = a2->blk[i]; 183 // Set the extra block if there's still a carry, decrease length otherwise 184 if (carryIn) 185 blk[i] = 1; 186 else 187 len--; 188 } 189 190 void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) { 191 DTRT_ALIASED(this == &a || this == &b, subtract(a, b)); 192 if (b.len == 0) { 193 // If b is zero, copy a. 194 operator =(a); 195 return; 196 } else if (a.len < b.len) 197 // If a is shorter than b, the result is negative. 198 abort(); 199 // Some variables... 200 bool borrowIn, borrowOut; 201 Blk temp; 202 Index i; 203 // Set preliminary length and make room 204 len = a.len; 205 allocate(len); 206 // For each block index that is present in both inputs... 207 for (i = 0, borrowIn = false; i < b.len; i++) { 208 temp = a.blk[i] - b.blk[i]; 209 // If a reverse rollover occurred, 210 // the result is greater than the block from a. 211 borrowOut = (temp > a.blk[i]); 212 // Handle an incoming borrow 213 if (borrowIn) { 214 borrowOut |= (temp == 0); 215 temp--; 216 } 217 blk[i] = temp; // Save the subtraction result 218 borrowIn = borrowOut; // Pass the borrow along 219 } 220 // If there is a borrow left over, decrease blocks until 221 // one does not reverse rollover. 222 for (; i < a.len && borrowIn; i++) { 223 borrowIn = (a.blk[i] == 0); 224 blk[i] = a.blk[i] - 1; 225 } 226 /* If there's still a borrow, the result is negative. 227 * Throw an exception, but zero out this object so as to leave it in a 228 * predictable state. */ 229 if (borrowIn) { 230 len = 0; 231 abort(); 232 } else 233 // Copy over the rest of the blocks 234 for (; i < a.len; i++) 235 blk[i] = a.blk[i]; 236 // Zap leading zeros 237 zapLeadingZeros(); 238 } 239 240 /* 241 * About the multiplication and division algorithms: 242 * 243 * I searched unsucessfully for fast C++ built-in operations like the `b_0' 244 * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer 245 * Programming'' (replace `place' by `Blk'): 246 * 247 * ``b_0[:] multiplication of a one-place integer by another one-place 248 * integer, giving a two-place answer; 249 * 250 * ``c_0[:] division of a two-place integer by a one-place integer, 251 * provided that the quotient is a one-place integer, and yielding 252 * also a one-place remainder.'' 253 * 254 * I also missed his note that ``[b]y adjusting the word size, if 255 * necessary, nearly all computers will have these three operations 256 * available'', so I gave up on trying to use algorithms similar to his. 257 * A future version of the library might include such algorithms; I 258 * would welcome contributions from others for this. 259 * 260 * I eventually decided to use bit-shifting algorithms. To multiply `a' 261 * and `b', we zero out the result. Then, for each `1' bit in `a', we 262 * shift `b' left the appropriate amount and add it to the result. 263 * Similarly, to divide `a' by `b', we shift `b' left varying amounts, 264 * repeatedly trying to subtract it from `a'. When we succeed, we note 265 * the fact by setting a bit in the quotient. While these algorithms 266 * have the same O(n^2) time complexity as Knuth's, the ``constant factor'' 267 * is likely to be larger. 268 * 269 * Because I used these algorithms, which require single-block addition 270 * and subtraction rather than single-block multiplication and division, 271 * the innermost loops of all four routines are very similar. Study one 272 * of them and all will become clear. 273 */ 274 275 /* 276 * This is a little inline function used by both the multiplication 277 * routine and the division routine. 278 * 279 * `getShiftedBlock' returns the `x'th block of `num << y'. 280 * `y' may be anything from 0 to N - 1, and `x' may be anything from 281 * 0 to `num.len'. 282 * 283 * Two things contribute to this block: 284 * 285 * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left. 286 * 287 * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right. 288 * 289 * But we must be careful if `x == 0' or `x == num.len', in 290 * which case we should use 0 instead of (2) or (1), respectively. 291 * 292 * If `y == 0', then (2) contributes 0, as it should. However, 293 * in some computer environments, for a reason I cannot understand, 294 * `a >> b' means `a >> (b % N)'. This means `num.blk[x-1] >> (N - y)' 295 * will return `num.blk[x-1]' instead of the desired 0 when `y == 0'; 296 * the test `y == 0' handles this case specially. 297 */ 298 inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num, 299 BigUnsigned::Index x, unsigned int y) { 300 BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y)); 301 BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y); 302 return part1 | part2; 303 } 304 305 void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) { 306 DTRT_ALIASED(this == &a || this == &b, multiply(a, b)); 307 // If either a or b is zero, set to zero. 308 if (a.len == 0 || b.len == 0) { 309 len = 0; 310 return; 311 } 312 /* 313 * Overall method: 314 * 315 * Set this = 0. 316 * For each 1-bit of `a' (say the `i2'th bit of block `i'): 317 * Add `b << (i blocks and i2 bits)' to *this. 318 */ 319 // Variables for the calculation 320 Index i, j, k; 321 unsigned int i2; 322 Blk temp; 323 bool carryIn, carryOut; 324 // Set preliminary length and make room 325 len = a.len + b.len; 326 allocate(len); 327 // Zero out this object 328 for (i = 0; i < len; i++) 329 blk[i] = 0; 330 // For each block of the first number... 331 for (i = 0; i < a.len; i++) { 332 // For each 1-bit of that block... 333 for (i2 = 0; i2 < N; i2++) { 334 if ((a.blk[i] & (Blk(1) << i2)) == 0) 335 continue; 336 /* 337 * Add b to this, shifted left i blocks and i2 bits. 338 * j is the index in b, and k = i + j is the index in this. 339 * 340 * `getShiftedBlock', a short inline function defined above, 341 * is now used for the bit handling. It replaces the more 342 * complex `bHigh' code, in which each run of the loop dealt 343 * immediately with the low bits and saved the high bits to 344 * be picked up next time. The last run of the loop used to 345 * leave leftover high bits, which were handled separately. 346 * Instead, this loop runs an additional time with j == b.len. 347 * These changes were made on 2005.01.11. 348 */ 349 for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) { 350 /* 351 * The body of this loop is very similar to the body of the first loop 352 * in `add', except that this loop does a `+=' instead of a `+'. 353 */ 354 temp = blk[k] + getShiftedBlock(b, j, i2); 355 carryOut = (temp < blk[k]); 356 if (carryIn) { 357 temp++; 358 carryOut |= (temp == 0); 359 } 360 blk[k] = temp; 361 carryIn = carryOut; 362 } 363 // No more extra iteration to deal with `bHigh'. 364 // Roll-over a carry as necessary. 365 for (; carryIn; k++) { 366 blk[k]++; 367 carryIn = (blk[k] == 0); 368 } 369 } 370 } 371 // Zap possible leading zero 372 if (blk[len - 1] == 0) 373 len--; 374 } 375 376 /* 377 * DIVISION WITH REMAINDER 378 * This monstrous function mods *this by the given divisor b while storing the 379 * quotient in the given object q; at the end, *this contains the remainder. 380 * The seemingly bizarre pattern of inputs and outputs was chosen so that the 381 * function copies as little as possible (since it is implemented by repeated 382 * subtraction of multiples of b from *this). 383 * 384 * "modWithQuotient" might be a better name for this function, but I would 385 * rather not change the name now. 386 */ 387 void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) { 388 /* Defending against aliased calls is more complex than usual because we 389 * are writing to both *this and q. 390 * 391 * It would be silly to try to write quotient and remainder to the 392 * same variable. Rule that out right away. */ 393 if (this == &q) 394 abort(); 395 /* Now *this and q are separate, so the only concern is that b might be 396 * aliased to one of them. If so, use a temporary copy of b. */ 397 if (this == &b || &q == &b) { 398 BigUnsigned tmpB(b); 399 divideWithRemainder(tmpB, q); 400 return; 401 } 402 403 /* 404 * Knuth's definition of mod (which this function uses) is somewhat 405 * different from the C++ definition of % in case of division by 0. 406 * 407 * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no 408 * exceptions thrown. This allows us to preserve both Knuth's demand 409 * that a mod 0 == a and the useful property that 410 * (a / b) * b + (a % b) == a. 411 */ 412 if (b.len == 0) { 413 q.len = 0; 414 return; 415 } 416 417 /* 418 * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into 419 * *this at all. The quotient is 0 and *this is already the remainder (so leave it alone). 420 */ 421 if (len < b.len) { 422 q.len = 0; 423 return; 424 } 425 426 // At this point we know (*this).len >= b.len > 0. (Whew!) 427 428 /* 429 * Overall method: 430 * 431 * For each appropriate i and i2, decreasing: 432 * Subtract (b << (i blocks and i2 bits)) from *this, storing the 433 * result in subtractBuf. 434 * If the subtraction succeeds with a nonnegative result: 435 * Turn on bit i2 of block i of the quotient q. 436 * Copy subtractBuf back into *this. 437 * Otherwise bit i2 of block i remains off, and *this is unchanged. 438 * 439 * Eventually q will contain the entire quotient, and *this will 440 * be left with the remainder. 441 * 442 * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11. 443 * But on a single iteration, we don't touch the i lowest blocks of blk 444 * (and don't use those of subtractBuf) because these blocks are 445 * unaffected by the subtraction: we are subtracting 446 * (b << (i blocks and i2 bits)), which ends in at least `i' zero 447 * blocks. */ 448 // Variables for the calculation 449 Index i, j, k; 450 unsigned int i2; 451 Blk temp; 452 bool borrowIn, borrowOut; 453 454 /* 455 * Make sure we have an extra zero block just past the value. 456 * 457 * When we attempt a subtraction, we might shift `b' so 458 * its first block begins a few bits left of the dividend, 459 * and then we'll try to compare these extra bits with 460 * a nonexistent block to the left of the dividend. The 461 * extra zero block ensures sensible behavior; we need 462 * an extra block in `subtractBuf' for exactly the same reason. 463 */ 464 Index origLen = len; // Save real length. 465 /* To avoid an out-of-bounds access in case of reallocation, allocate 466 * first and then increment the logical length. */ 467 allocateAndCopy(len + 1); 468 len++; 469 blk[origLen] = 0; // Zero the added block. 470 471 // subtractBuf holds part of the result of a subtraction; see above. 472 Blk *subtractBuf = new Blk[len]; 473 474 // Set preliminary length for quotient and make room 475 q.len = origLen - b.len + 1; 476 q.allocate(q.len); 477 // Zero out the quotient 478 for (i = 0; i < q.len; i++) 479 q.blk[i] = 0; 480 481 // For each possible left-shift of b in blocks... 482 i = q.len; 483 while (i > 0) { 484 i--; 485 // For each possible left-shift of b in bits... 486 // (Remember, N is the number of bits in a Blk.) 487 q.blk[i] = 0; 488 i2 = N; 489 while (i2 > 0) { 490 i2--; 491 /* 492 * Subtract b, shifted left i blocks and i2 bits, from *this, 493 * and store the answer in subtractBuf. In the for loop, `k == i + j'. 494 * 495 * Compare this to the middle section of `multiply'. They 496 * are in many ways analogous. See especially the discussion 497 * of `getShiftedBlock'. 498 */ 499 for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) { 500 temp = blk[k] - getShiftedBlock(b, j, i2); 501 borrowOut = (temp > blk[k]); 502 if (borrowIn) { 503 borrowOut |= (temp == 0); 504 temp--; 505 } 506 // Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'. 507 subtractBuf[k] = temp; 508 borrowIn = borrowOut; 509 } 510 // No more extra iteration to deal with `bHigh'. 511 // Roll-over a borrow as necessary. 512 for (; k < origLen && borrowIn; k++) { 513 borrowIn = (blk[k] == 0); 514 subtractBuf[k] = blk[k] - 1; 515 } 516 /* 517 * If the subtraction was performed successfully (!borrowIn), 518 * set bit i2 in block i of the quotient. 519 * 520 * Then, copy the portion of subtractBuf filled by the subtraction 521 * back to *this. This portion starts with block i and ends-- 522 * where? Not necessarily at block `i + b.len'! Well, we 523 * increased k every time we saved a block into subtractBuf, so 524 * the region of subtractBuf we copy is just [i, k). 525 */ 526 if (!borrowIn) { 527 q.blk[i] |= (Blk(1) << i2); 528 while (k > i) { 529 k--; 530 blk[k] = subtractBuf[k]; 531 } 532 } 533 } 534 } 535 // Zap possible leading zero in quotient 536 if (q.blk[q.len - 1] == 0) 537 q.len--; 538 // Zap any/all leading zeros in remainder 539 zapLeadingZeros(); 540 // Deallocate subtractBuf. 541 // (Thanks to Brad Spencer for noticing my accidental omission of this!) 542 delete [] subtractBuf; 543 } 544 545 /* BITWISE OPERATORS 546 * These are straightforward blockwise operations except that they differ in 547 * the output length and the necessity of zapLeadingZeros. */ 548 549 void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) { 550 DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b)); 551 // The bitwise & can't be longer than either operand. 552 len = (a.len >= b.len) ? b.len : a.len; 553 allocate(len); 554 Index i; 555 for (i = 0; i < len; i++) 556 blk[i] = a.blk[i] & b.blk[i]; 557 zapLeadingZeros(); 558 } 559 560 void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) { 561 DTRT_ALIASED(this == &a || this == &b, bitOr(a, b)); 562 Index i; 563 const BigUnsigned *a2, *b2; 564 if (a.len >= b.len) { 565 a2 = &a; 566 b2 = &b; 567 } else { 568 a2 = &b; 569 b2 = &a; 570 } 571 allocate(a2->len); 572 for (i = 0; i < b2->len; i++) 573 blk[i] = a2->blk[i] | b2->blk[i]; 574 for (; i < a2->len; i++) 575 blk[i] = a2->blk[i]; 576 len = a2->len; 577 // Doesn't need zapLeadingZeros. 578 } 579 580 void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) { 581 DTRT_ALIASED(this == &a || this == &b, bitXor(a, b)); 582 Index i; 583 const BigUnsigned *a2, *b2; 584 if (a.len >= b.len) { 585 a2 = &a; 586 b2 = &b; 587 } else { 588 a2 = &b; 589 b2 = &a; 590 } 591 allocate(a2->len); 592 for (i = 0; i < b2->len; i++) 593 blk[i] = a2->blk[i] ^ b2->blk[i]; 594 for (; i < a2->len; i++) 595 blk[i] = a2->blk[i]; 596 len = a2->len; 597 zapLeadingZeros(); 598 } 599 600 void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) { 601 DTRT_ALIASED(this == &a, bitShiftLeft(a, b)); 602 if (b < 0) { 603 if (b << 1 == 0) 604 abort(); 605 else { 606 bitShiftRight(a, -b); 607 return; 608 } 609 } 610 Index shiftBlocks = b / N; 611 unsigned int shiftBits = b % N; 612 // + 1: room for high bits nudged left into another block 613 len = a.len + shiftBlocks + 1; 614 allocate(len); 615 Index i, j; 616 for (i = 0; i < shiftBlocks; i++) 617 blk[i] = 0; 618 for (j = 0, i = shiftBlocks; j <= a.len; j++, i++) 619 blk[i] = getShiftedBlock(a, j, shiftBits); 620 // Zap possible leading zero 621 if (blk[len - 1] == 0) 622 len--; 623 } 624 625 void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) { 626 DTRT_ALIASED(this == &a, bitShiftRight(a, b)); 627 if (b < 0) { 628 if (b << 1 == 0) 629 abort(); 630 else { 631 bitShiftLeft(a, -b); 632 return; 633 } 634 } 635 // This calculation is wacky, but expressing the shift as a left bit shift 636 // within each block lets us use getShiftedBlock. 637 Index rightShiftBlocks = (b + N - 1) / N; 638 unsigned int leftShiftBits = N * rightShiftBlocks - b; 639 // Now (N * rightShiftBlocks - leftShiftBits) == b 640 // and 0 <= leftShiftBits < N. 641 if (rightShiftBlocks >= a.len + 1) { 642 // All of a is guaranteed to be shifted off, even considering the left 643 // bit shift. 644 len = 0; 645 return; 646 } 647 // Now we're allocating a positive amount. 648 // + 1: room for high bits nudged left into another block 649 len = a.len + 1 - rightShiftBlocks; 650 allocate(len); 651 Index i, j; 652 for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++) 653 blk[i] = getShiftedBlock(a, j, leftShiftBits); 654 // Zap possible leading zero 655 if (blk[len - 1] == 0) 656 len--; 657 } 658 659 // INCREMENT/DECREMENT OPERATORS 660 661 // Prefix increment 662 void BigUnsigned::operator ++() { 663 Index i; 664 bool carry = true; 665 for (i = 0; i < len && carry; i++) { 666 blk[i]++; 667 carry = (blk[i] == 0); 668 } 669 if (carry) { 670 // Allocate and then increase length, as in divideWithRemainder 671 allocateAndCopy(len + 1); 672 len++; 673 blk[i] = 1; 674 } 675 } 676 677 // Postfix increment: same as prefix 678 void BigUnsigned::operator ++(int) { 679 operator ++(); 680 } 681 682 // Prefix decrement 683 void BigUnsigned::operator --() { 684 if (len == 0) 685 abort(); 686 Index i; 687 bool borrow = true; 688 for (i = 0; borrow; i++) { 689 borrow = (blk[i] == 0); 690 blk[i]--; 691 } 692 // Zap possible leading zero (there can only be one) 693 if (blk[len - 1] == 0) 694 len--; 695 } 696 697 // Postfix decrement: same as prefix 698 void BigUnsigned::operator --(int) { 699 operator --(); 700 } 701