Home | History | Annotate | Download | only in bigint
      1 // Copyright 2014 PDFium Authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 // Original code by Matt McCutchen, see the LICENSE file.
      6 
      7 #include "BigUnsigned.hh"
      8 
      9 // Memory management definitions have moved to the bottom of NumberlikeArray.hh.
     10 
     11 // The templates used by these constructors and converters are at the bottom of
     12 // BigUnsigned.hh.
     13 
     14 BigUnsigned::BigUnsigned(unsigned long  x) { initFromPrimitive      (x); }
     15 BigUnsigned::BigUnsigned(unsigned int   x) { initFromPrimitive      (x); }
     16 BigUnsigned::BigUnsigned(unsigned short x) { initFromPrimitive      (x); }
     17 BigUnsigned::BigUnsigned(         long  x) { initFromSignedPrimitive(x); }
     18 BigUnsigned::BigUnsigned(         int   x) { initFromSignedPrimitive(x); }
     19 BigUnsigned::BigUnsigned(         short x) { initFromSignedPrimitive(x); }
     20 
     21 unsigned long  BigUnsigned::toUnsignedLong () const { return convertToPrimitive      <unsigned long >(); }
     22 unsigned int   BigUnsigned::toUnsignedInt  () const { return convertToPrimitive      <unsigned int  >(); }
     23 unsigned short BigUnsigned::toUnsignedShort() const { return convertToPrimitive      <unsigned short>(); }
     24 long           BigUnsigned::toLong         () const { return convertToSignedPrimitive<         long >(); }
     25 int            BigUnsigned::toInt          () const { return convertToSignedPrimitive<         int  >(); }
     26 short          BigUnsigned::toShort        () const { return convertToSignedPrimitive<         short>(); }
     27 
     28 // BIT/BLOCK ACCESSORS
     29 
     30 void BigUnsigned::setBlock(Index i, Blk newBlock) {
     31 	if (newBlock == 0) {
     32 		if (i < len) {
     33 			blk[i] = 0;
     34 			zapLeadingZeros();
     35 		}
     36 		// If i >= len, no effect.
     37 	} else {
     38 		if (i >= len) {
     39 			// The nonzero block extends the number.
     40 			allocateAndCopy(i+1);
     41 			// Zero any added blocks that we aren't setting.
     42 			for (Index j = len; j < i; j++)
     43 				blk[j] = 0;
     44 			len = i+1;
     45 		}
     46 		blk[i] = newBlock;
     47 	}
     48 }
     49 
     50 /* Evidently the compiler wants BigUnsigned:: on the return type because, at
     51  * that point, it hasn't yet parsed the BigUnsigned:: on the name to get the
     52  * proper scope. */
     53 BigUnsigned::Index BigUnsigned::bitLength() const {
     54 	if (isZero())
     55 		return 0;
     56 	else {
     57 		Blk leftmostBlock = getBlock(len - 1);
     58 		Index leftmostBlockLen = 0;
     59 		while (leftmostBlock != 0) {
     60 			leftmostBlock >>= 1;
     61 			leftmostBlockLen++;
     62 		}
     63 		return leftmostBlockLen + (len - 1) * N;
     64 	}
     65 }
     66 
     67 void BigUnsigned::setBit(Index bi, bool newBit) {
     68 	Index blockI = bi / N;
     69 	Blk block = getBlock(blockI), mask = Blk(1) << (bi % N);
     70 	block = newBit ? (block | mask) : (block & ~mask);
     71 	setBlock(blockI, block);
     72 }
     73 
     74 // COMPARISON
     75 BigUnsigned::CmpRes BigUnsigned::compareTo(const BigUnsigned &x) const {
     76 	// A bigger length implies a bigger number.
     77 	if (len < x.len)
     78 		return less;
     79 	else if (len > x.len)
     80 		return greater;
     81 	else {
     82 		// Compare blocks one by one from left to right.
     83 		Index i = len;
     84 		while (i > 0) {
     85 			i--;
     86 			if (blk[i] == x.blk[i])
     87 				continue;
     88 			else if (blk[i] > x.blk[i])
     89 				return greater;
     90 			else
     91 				return less;
     92 		}
     93 		// If no blocks differed, the numbers are equal.
     94 		return equal;
     95 	}
     96 }
     97 
     98 // COPY-LESS OPERATIONS
     99 
    100 /*
    101  * On most calls to copy-less operations, it's safe to read the inputs little by
    102  * little and write the outputs little by little.  However, if one of the
    103  * inputs is coming from the same variable into which the output is to be
    104  * stored (an "aliased" call), we risk overwriting the input before we read it.
    105  * In this case, we first compute the result into a temporary BigUnsigned
    106  * variable and then copy it into the requested output variable *this.
    107  * Each put-here operation uses the DTRT_ALIASED macro (Do The Right Thing on
    108  * aliased calls) to generate code for this check.
    109  *
    110  * I adopted this approach on 2007.02.13 (see Assignment Operators in
    111  * BigUnsigned.hh).  Before then, put-here operations rejected aliased calls
    112  * with an exception.  I think doing the right thing is better.
    113  *
    114  * Some of the put-here operations can probably handle aliased calls safely
    115  * without the extra copy because (for example) they process blocks strictly
    116  * right-to-left.  At some point I might determine which ones don't need the
    117  * copy, but my reasoning would need to be verified very carefully.  For now
    118  * I'll leave in the copy.
    119  */
    120 #define DTRT_ALIASED(cond, op) \
    121 	if (cond) { \
    122 		BigUnsigned tmpThis; \
    123 		tmpThis.op; \
    124 		*this = tmpThis; \
    125 		return; \
    126 	}
    127 
    128 
    129 
    130 void BigUnsigned::add(const BigUnsigned &a, const BigUnsigned &b) {
    131 	DTRT_ALIASED(this == &a || this == &b, add(a, b));
    132 	// If one argument is zero, copy the other.
    133 	if (a.len == 0) {
    134 		operator =(b);
    135 		return;
    136 	} else if (b.len == 0) {
    137 		operator =(a);
    138 		return;
    139 	}
    140 	// Some variables...
    141 	// Carries in and out of an addition stage
    142 	bool carryIn, carryOut;
    143 	Blk temp;
    144 	Index i;
    145 	// a2 points to the longer input, b2 points to the shorter
    146 	const BigUnsigned *a2, *b2;
    147 	if (a.len >= b.len) {
    148 		a2 = &a;
    149 		b2 = &b;
    150 	} else {
    151 		a2 = &b;
    152 		b2 = &a;
    153 	}
    154 	// Set prelimiary length and make room in this BigUnsigned
    155 	len = a2->len + 1;
    156 	allocate(len);
    157 	// For each block index that is present in both inputs...
    158 	for (i = 0, carryIn = false; i < b2->len; i++) {
    159 		// Add input blocks
    160 		temp = a2->blk[i] + b2->blk[i];
    161 		// If a rollover occurred, the result is less than either input.
    162 		// This test is used many times in the BigUnsigned code.
    163 		carryOut = (temp < a2->blk[i]);
    164 		// If a carry was input, handle it
    165 		if (carryIn) {
    166 			temp++;
    167 			carryOut |= (temp == 0);
    168 		}
    169 		blk[i] = temp; // Save the addition result
    170 		carryIn = carryOut; // Pass the carry along
    171 	}
    172 	// If there is a carry left over, increase blocks until
    173 	// one does not roll over.
    174 	for (; i < a2->len && carryIn; i++) {
    175 		temp = a2->blk[i] + 1;
    176 		carryIn = (temp == 0);
    177 		blk[i] = temp;
    178 	}
    179 	// If the carry was resolved but the larger number
    180 	// still has blocks, copy them over.
    181 	for (; i < a2->len; i++)
    182 		blk[i] = a2->blk[i];
    183 	// Set the extra block if there's still a carry, decrease length otherwise
    184 	if (carryIn)
    185 		blk[i] = 1;
    186 	else
    187 		len--;
    188 }
    189 
    190 void BigUnsigned::subtract(const BigUnsigned &a, const BigUnsigned &b) {
    191 	DTRT_ALIASED(this == &a || this == &b, subtract(a, b));
    192 	if (b.len == 0) {
    193 		// If b is zero, copy a.
    194 		operator =(a);
    195 		return;
    196 	} else if (a.len < b.len)
    197 		// If a is shorter than b, the result is negative.
    198         abort();
    199 	// Some variables...
    200 	bool borrowIn, borrowOut;
    201 	Blk temp;
    202 	Index i;
    203 	// Set preliminary length and make room
    204 	len = a.len;
    205 	allocate(len);
    206 	// For each block index that is present in both inputs...
    207 	for (i = 0, borrowIn = false; i < b.len; i++) {
    208 		temp = a.blk[i] - b.blk[i];
    209 		// If a reverse rollover occurred,
    210 		// the result is greater than the block from a.
    211 		borrowOut = (temp > a.blk[i]);
    212 		// Handle an incoming borrow
    213 		if (borrowIn) {
    214 			borrowOut |= (temp == 0);
    215 			temp--;
    216 		}
    217 		blk[i] = temp; // Save the subtraction result
    218 		borrowIn = borrowOut; // Pass the borrow along
    219 	}
    220 	// If there is a borrow left over, decrease blocks until
    221 	// one does not reverse rollover.
    222 	for (; i < a.len && borrowIn; i++) {
    223 		borrowIn = (a.blk[i] == 0);
    224 		blk[i] = a.blk[i] - 1;
    225 	}
    226 	/* If there's still a borrow, the result is negative.
    227 	 * Throw an exception, but zero out this object so as to leave it in a
    228 	 * predictable state. */
    229 	if (borrowIn) {
    230 		len = 0;
    231         abort();
    232 	} else
    233 		// Copy over the rest of the blocks
    234 		for (; i < a.len; i++)
    235 			blk[i] = a.blk[i];
    236 	// Zap leading zeros
    237 	zapLeadingZeros();
    238 }
    239 
    240 /*
    241  * About the multiplication and division algorithms:
    242  *
    243  * I searched unsucessfully for fast C++ built-in operations like the `b_0'
    244  * and `c_0' Knuth describes in Section 4.3.1 of ``The Art of Computer
    245  * Programming'' (replace `place' by `Blk'):
    246  *
    247  *    ``b_0[:] multiplication of a one-place integer by another one-place
    248  *      integer, giving a two-place answer;
    249  *
    250  *    ``c_0[:] division of a two-place integer by a one-place integer,
    251  *      provided that the quotient is a one-place integer, and yielding
    252  *      also a one-place remainder.''
    253  *
    254  * I also missed his note that ``[b]y adjusting the word size, if
    255  * necessary, nearly all computers will have these three operations
    256  * available'', so I gave up on trying to use algorithms similar to his.
    257  * A future version of the library might include such algorithms; I
    258  * would welcome contributions from others for this.
    259  *
    260  * I eventually decided to use bit-shifting algorithms.  To multiply `a'
    261  * and `b', we zero out the result.  Then, for each `1' bit in `a', we
    262  * shift `b' left the appropriate amount and add it to the result.
    263  * Similarly, to divide `a' by `b', we shift `b' left varying amounts,
    264  * repeatedly trying to subtract it from `a'.  When we succeed, we note
    265  * the fact by setting a bit in the quotient.  While these algorithms
    266  * have the same O(n^2) time complexity as Knuth's, the ``constant factor''
    267  * is likely to be larger.
    268  *
    269  * Because I used these algorithms, which require single-block addition
    270  * and subtraction rather than single-block multiplication and division,
    271  * the innermost loops of all four routines are very similar.  Study one
    272  * of them and all will become clear.
    273  */
    274 
    275 /*
    276  * This is a little inline function used by both the multiplication
    277  * routine and the division routine.
    278  *
    279  * `getShiftedBlock' returns the `x'th block of `num << y'.
    280  * `y' may be anything from 0 to N - 1, and `x' may be anything from
    281  * 0 to `num.len'.
    282  *
    283  * Two things contribute to this block:
    284  *
    285  * (1) The `N - y' low bits of `num.blk[x]', shifted `y' bits left.
    286  *
    287  * (2) The `y' high bits of `num.blk[x-1]', shifted `N - y' bits right.
    288  *
    289  * But we must be careful if `x == 0' or `x == num.len', in
    290  * which case we should use 0 instead of (2) or (1), respectively.
    291  *
    292  * If `y == 0', then (2) contributes 0, as it should.  However,
    293  * in some computer environments, for a reason I cannot understand,
    294  * `a >> b' means `a >> (b % N)'.  This means `num.blk[x-1] >> (N - y)'
    295  * will return `num.blk[x-1]' instead of the desired 0 when `y == 0';
    296  * the test `y == 0' handles this case specially.
    297  */
    298 inline BigUnsigned::Blk getShiftedBlock(const BigUnsigned &num,
    299 	BigUnsigned::Index x, unsigned int y) {
    300 	BigUnsigned::Blk part1 = (x == 0 || y == 0) ? 0 : (num.blk[x - 1] >> (BigUnsigned::N - y));
    301 	BigUnsigned::Blk part2 = (x == num.len) ? 0 : (num.blk[x] << y);
    302 	return part1 | part2;
    303 }
    304 
    305 void BigUnsigned::multiply(const BigUnsigned &a, const BigUnsigned &b) {
    306 	DTRT_ALIASED(this == &a || this == &b, multiply(a, b));
    307 	// If either a or b is zero, set to zero.
    308 	if (a.len == 0 || b.len == 0) {
    309 		len = 0;
    310 		return;
    311 	}
    312 	/*
    313 	 * Overall method:
    314 	 *
    315 	 * Set this = 0.
    316 	 * For each 1-bit of `a' (say the `i2'th bit of block `i'):
    317 	 *    Add `b << (i blocks and i2 bits)' to *this.
    318 	 */
    319 	// Variables for the calculation
    320 	Index i, j, k;
    321 	unsigned int i2;
    322 	Blk temp;
    323 	bool carryIn, carryOut;
    324 	// Set preliminary length and make room
    325 	len = a.len + b.len;
    326 	allocate(len);
    327 	// Zero out this object
    328 	for (i = 0; i < len; i++)
    329 		blk[i] = 0;
    330 	// For each block of the first number...
    331 	for (i = 0; i < a.len; i++) {
    332 		// For each 1-bit of that block...
    333 		for (i2 = 0; i2 < N; i2++) {
    334 			if ((a.blk[i] & (Blk(1) << i2)) == 0)
    335 				continue;
    336 			/*
    337 			 * Add b to this, shifted left i blocks and i2 bits.
    338 			 * j is the index in b, and k = i + j is the index in this.
    339 			 *
    340 			 * `getShiftedBlock', a short inline function defined above,
    341 			 * is now used for the bit handling.  It replaces the more
    342 			 * complex `bHigh' code, in which each run of the loop dealt
    343 			 * immediately with the low bits and saved the high bits to
    344 			 * be picked up next time.  The last run of the loop used to
    345 			 * leave leftover high bits, which were handled separately.
    346 			 * Instead, this loop runs an additional time with j == b.len.
    347 			 * These changes were made on 2005.01.11.
    348 			 */
    349 			for (j = 0, k = i, carryIn = false; j <= b.len; j++, k++) {
    350 				/*
    351 				 * The body of this loop is very similar to the body of the first loop
    352 				 * in `add', except that this loop does a `+=' instead of a `+'.
    353 				 */
    354 				temp = blk[k] + getShiftedBlock(b, j, i2);
    355 				carryOut = (temp < blk[k]);
    356 				if (carryIn) {
    357 					temp++;
    358 					carryOut |= (temp == 0);
    359 				}
    360 				blk[k] = temp;
    361 				carryIn = carryOut;
    362 			}
    363 			// No more extra iteration to deal with `bHigh'.
    364 			// Roll-over a carry as necessary.
    365 			for (; carryIn; k++) {
    366 				blk[k]++;
    367 				carryIn = (blk[k] == 0);
    368 			}
    369 		}
    370 	}
    371 	// Zap possible leading zero
    372 	if (blk[len - 1] == 0)
    373 		len--;
    374 }
    375 
    376 /*
    377  * DIVISION WITH REMAINDER
    378  * This monstrous function mods *this by the given divisor b while storing the
    379  * quotient in the given object q; at the end, *this contains the remainder.
    380  * The seemingly bizarre pattern of inputs and outputs was chosen so that the
    381  * function copies as little as possible (since it is implemented by repeated
    382  * subtraction of multiples of b from *this).
    383  *
    384  * "modWithQuotient" might be a better name for this function, but I would
    385  * rather not change the name now.
    386  */
    387 void BigUnsigned::divideWithRemainder(const BigUnsigned &b, BigUnsigned &q) {
    388 	/* Defending against aliased calls is more complex than usual because we
    389 	 * are writing to both *this and q.
    390 	 *
    391 	 * It would be silly to try to write quotient and remainder to the
    392 	 * same variable.  Rule that out right away. */
    393 	if (this == &q)
    394         abort();
    395 	/* Now *this and q are separate, so the only concern is that b might be
    396 	 * aliased to one of them.  If so, use a temporary copy of b. */
    397 	if (this == &b || &q == &b) {
    398 		BigUnsigned tmpB(b);
    399 		divideWithRemainder(tmpB, q);
    400 		return;
    401 	}
    402 
    403 	/*
    404 	 * Knuth's definition of mod (which this function uses) is somewhat
    405 	 * different from the C++ definition of % in case of division by 0.
    406 	 *
    407 	 * We let a / 0 == 0 (it doesn't matter much) and a % 0 == a, no
    408 	 * exceptions thrown.  This allows us to preserve both Knuth's demand
    409 	 * that a mod 0 == a and the useful property that
    410 	 * (a / b) * b + (a % b) == a.
    411 	 */
    412 	if (b.len == 0) {
    413 		q.len = 0;
    414 		return;
    415 	}
    416 
    417 	/*
    418 	 * If *this.len < b.len, then *this < b, and we can be sure that b doesn't go into
    419 	 * *this at all.  The quotient is 0 and *this is already the remainder (so leave it alone).
    420 	 */
    421 	if (len < b.len) {
    422 		q.len = 0;
    423 		return;
    424 	}
    425 
    426 	// At this point we know (*this).len >= b.len > 0.  (Whew!)
    427 
    428 	/*
    429 	 * Overall method:
    430 	 *
    431 	 * For each appropriate i and i2, decreasing:
    432 	 *    Subtract (b << (i blocks and i2 bits)) from *this, storing the
    433 	 *      result in subtractBuf.
    434 	 *    If the subtraction succeeds with a nonnegative result:
    435 	 *        Turn on bit i2 of block i of the quotient q.
    436 	 *        Copy subtractBuf back into *this.
    437 	 *    Otherwise bit i2 of block i remains off, and *this is unchanged.
    438 	 *
    439 	 * Eventually q will contain the entire quotient, and *this will
    440 	 * be left with the remainder.
    441 	 *
    442 	 * subtractBuf[x] corresponds to blk[x], not blk[x+i], since 2005.01.11.
    443 	 * But on a single iteration, we don't touch the i lowest blocks of blk
    444 	 * (and don't use those of subtractBuf) because these blocks are
    445 	 * unaffected by the subtraction: we are subtracting
    446 	 * (b << (i blocks and i2 bits)), which ends in at least `i' zero
    447 	 * blocks. */
    448 	// Variables for the calculation
    449 	Index i, j, k;
    450 	unsigned int i2;
    451 	Blk temp;
    452 	bool borrowIn, borrowOut;
    453 
    454 	/*
    455 	 * Make sure we have an extra zero block just past the value.
    456 	 *
    457 	 * When we attempt a subtraction, we might shift `b' so
    458 	 * its first block begins a few bits left of the dividend,
    459 	 * and then we'll try to compare these extra bits with
    460 	 * a nonexistent block to the left of the dividend.  The
    461 	 * extra zero block ensures sensible behavior; we need
    462 	 * an extra block in `subtractBuf' for exactly the same reason.
    463 	 */
    464 	Index origLen = len; // Save real length.
    465 	/* To avoid an out-of-bounds access in case of reallocation, allocate
    466 	 * first and then increment the logical length. */
    467 	allocateAndCopy(len + 1);
    468 	len++;
    469 	blk[origLen] = 0; // Zero the added block.
    470 
    471 	// subtractBuf holds part of the result of a subtraction; see above.
    472 	Blk *subtractBuf = new Blk[len];
    473 
    474 	// Set preliminary length for quotient and make room
    475 	q.len = origLen - b.len + 1;
    476 	q.allocate(q.len);
    477 	// Zero out the quotient
    478 	for (i = 0; i < q.len; i++)
    479 		q.blk[i] = 0;
    480 
    481 	// For each possible left-shift of b in blocks...
    482 	i = q.len;
    483 	while (i > 0) {
    484 		i--;
    485 		// For each possible left-shift of b in bits...
    486 		// (Remember, N is the number of bits in a Blk.)
    487 		q.blk[i] = 0;
    488 		i2 = N;
    489 		while (i2 > 0) {
    490 			i2--;
    491 			/*
    492 			 * Subtract b, shifted left i blocks and i2 bits, from *this,
    493 			 * and store the answer in subtractBuf.  In the for loop, `k == i + j'.
    494 			 *
    495 			 * Compare this to the middle section of `multiply'.  They
    496 			 * are in many ways analogous.  See especially the discussion
    497 			 * of `getShiftedBlock'.
    498 			 */
    499 			for (j = 0, k = i, borrowIn = false; j <= b.len; j++, k++) {
    500 				temp = blk[k] - getShiftedBlock(b, j, i2);
    501 				borrowOut = (temp > blk[k]);
    502 				if (borrowIn) {
    503 					borrowOut |= (temp == 0);
    504 					temp--;
    505 				}
    506 				// Since 2005.01.11, indices of `subtractBuf' directly match those of `blk', so use `k'.
    507 				subtractBuf[k] = temp;
    508 				borrowIn = borrowOut;
    509 			}
    510 			// No more extra iteration to deal with `bHigh'.
    511 			// Roll-over a borrow as necessary.
    512 			for (; k < origLen && borrowIn; k++) {
    513 				borrowIn = (blk[k] == 0);
    514 				subtractBuf[k] = blk[k] - 1;
    515 			}
    516 			/*
    517 			 * If the subtraction was performed successfully (!borrowIn),
    518 			 * set bit i2 in block i of the quotient.
    519 			 *
    520 			 * Then, copy the portion of subtractBuf filled by the subtraction
    521 			 * back to *this.  This portion starts with block i and ends--
    522 			 * where?  Not necessarily at block `i + b.len'!  Well, we
    523 			 * increased k every time we saved a block into subtractBuf, so
    524 			 * the region of subtractBuf we copy is just [i, k).
    525 			 */
    526 			if (!borrowIn) {
    527 				q.blk[i] |= (Blk(1) << i2);
    528 				while (k > i) {
    529 					k--;
    530 					blk[k] = subtractBuf[k];
    531 				}
    532 			}
    533 		}
    534 	}
    535 	// Zap possible leading zero in quotient
    536 	if (q.blk[q.len - 1] == 0)
    537 		q.len--;
    538 	// Zap any/all leading zeros in remainder
    539 	zapLeadingZeros();
    540 	// Deallocate subtractBuf.
    541 	// (Thanks to Brad Spencer for noticing my accidental omission of this!)
    542 	delete [] subtractBuf;
    543 }
    544 
    545 /* BITWISE OPERATORS
    546  * These are straightforward blockwise operations except that they differ in
    547  * the output length and the necessity of zapLeadingZeros. */
    548 
    549 void BigUnsigned::bitAnd(const BigUnsigned &a, const BigUnsigned &b) {
    550 	DTRT_ALIASED(this == &a || this == &b, bitAnd(a, b));
    551 	// The bitwise & can't be longer than either operand.
    552 	len = (a.len >= b.len) ? b.len : a.len;
    553 	allocate(len);
    554 	Index i;
    555 	for (i = 0; i < len; i++)
    556 		blk[i] = a.blk[i] & b.blk[i];
    557 	zapLeadingZeros();
    558 }
    559 
    560 void BigUnsigned::bitOr(const BigUnsigned &a, const BigUnsigned &b) {
    561 	DTRT_ALIASED(this == &a || this == &b, bitOr(a, b));
    562 	Index i;
    563 	const BigUnsigned *a2, *b2;
    564 	if (a.len >= b.len) {
    565 		a2 = &a;
    566 		b2 = &b;
    567 	} else {
    568 		a2 = &b;
    569 		b2 = &a;
    570 	}
    571 	allocate(a2->len);
    572 	for (i = 0; i < b2->len; i++)
    573 		blk[i] = a2->blk[i] | b2->blk[i];
    574 	for (; i < a2->len; i++)
    575 		blk[i] = a2->blk[i];
    576 	len = a2->len;
    577 	// Doesn't need zapLeadingZeros.
    578 }
    579 
    580 void BigUnsigned::bitXor(const BigUnsigned &a, const BigUnsigned &b) {
    581 	DTRT_ALIASED(this == &a || this == &b, bitXor(a, b));
    582 	Index i;
    583 	const BigUnsigned *a2, *b2;
    584 	if (a.len >= b.len) {
    585 		a2 = &a;
    586 		b2 = &b;
    587 	} else {
    588 		a2 = &b;
    589 		b2 = &a;
    590 	}
    591 	allocate(a2->len);
    592 	for (i = 0; i < b2->len; i++)
    593 		blk[i] = a2->blk[i] ^ b2->blk[i];
    594 	for (; i < a2->len; i++)
    595 		blk[i] = a2->blk[i];
    596 	len = a2->len;
    597 	zapLeadingZeros();
    598 }
    599 
    600 void BigUnsigned::bitShiftLeft(const BigUnsigned &a, int b) {
    601 	DTRT_ALIASED(this == &a, bitShiftLeft(a, b));
    602 	if (b < 0) {
    603 		if (b << 1 == 0)
    604             abort();
    605 		else {
    606 			bitShiftRight(a, -b);
    607 			return;
    608 		}
    609 	}
    610 	Index shiftBlocks = b / N;
    611 	unsigned int shiftBits = b % N;
    612 	// + 1: room for high bits nudged left into another block
    613 	len = a.len + shiftBlocks + 1;
    614 	allocate(len);
    615 	Index i, j;
    616 	for (i = 0; i < shiftBlocks; i++)
    617 		blk[i] = 0;
    618 	for (j = 0, i = shiftBlocks; j <= a.len; j++, i++)
    619 		blk[i] = getShiftedBlock(a, j, shiftBits);
    620 	// Zap possible leading zero
    621 	if (blk[len - 1] == 0)
    622 		len--;
    623 }
    624 
    625 void BigUnsigned::bitShiftRight(const BigUnsigned &a, int b) {
    626 	DTRT_ALIASED(this == &a, bitShiftRight(a, b));
    627 	if (b < 0) {
    628 		if (b << 1 == 0)
    629             abort();
    630 		else {
    631 			bitShiftLeft(a, -b);
    632 			return;
    633 		}
    634 	}
    635 	// This calculation is wacky, but expressing the shift as a left bit shift
    636 	// within each block lets us use getShiftedBlock.
    637 	Index rightShiftBlocks = (b + N - 1) / N;
    638 	unsigned int leftShiftBits = N * rightShiftBlocks - b;
    639 	// Now (N * rightShiftBlocks - leftShiftBits) == b
    640 	// and 0 <= leftShiftBits < N.
    641 	if (rightShiftBlocks >= a.len + 1) {
    642 		// All of a is guaranteed to be shifted off, even considering the left
    643 		// bit shift.
    644 		len = 0;
    645 		return;
    646 	}
    647 	// Now we're allocating a positive amount.
    648 	// + 1: room for high bits nudged left into another block
    649 	len = a.len + 1 - rightShiftBlocks;
    650 	allocate(len);
    651 	Index i, j;
    652 	for (j = rightShiftBlocks, i = 0; j <= a.len; j++, i++)
    653 		blk[i] = getShiftedBlock(a, j, leftShiftBits);
    654 	// Zap possible leading zero
    655 	if (blk[len - 1] == 0)
    656 		len--;
    657 }
    658 
    659 // INCREMENT/DECREMENT OPERATORS
    660 
    661 // Prefix increment
    662 void BigUnsigned::operator ++() {
    663 	Index i;
    664 	bool carry = true;
    665 	for (i = 0; i < len && carry; i++) {
    666 		blk[i]++;
    667 		carry = (blk[i] == 0);
    668 	}
    669 	if (carry) {
    670 		// Allocate and then increase length, as in divideWithRemainder
    671 		allocateAndCopy(len + 1);
    672 		len++;
    673 		blk[i] = 1;
    674 	}
    675 }
    676 
    677 // Postfix increment: same as prefix
    678 void BigUnsigned::operator ++(int) {
    679 	operator ++();
    680 }
    681 
    682 // Prefix decrement
    683 void BigUnsigned::operator --() {
    684 	if (len == 0)
    685         abort();
    686 	Index i;
    687 	bool borrow = true;
    688 	for (i = 0; borrow; i++) {
    689 		borrow = (blk[i] == 0);
    690 		blk[i]--;
    691 	}
    692 	// Zap possible leading zero (there can only be one)
    693 	if (blk[len - 1] == 0)
    694 		len--;
    695 }
    696 
    697 // Postfix decrement: same as prefix
    698 void BigUnsigned::operator --(int) {
    699 	operator --();
    700 }
    701