1 /*M/////////////////////////////////////////////////////////////////////////////////////// 2 // 3 // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 4 // 5 // By downloading, copying, installing or using the software you agree to this license. 6 // If you do not agree to this license, do not download, install, 7 // copy or use the software. 8 // 9 // 10 // License Agreement 11 // For Open Source Computer Vision Library 12 // 13 // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. 14 // Copyright (C) 2009, Willow Garage Inc., all rights reserved. 15 // Third party copyrights are property of their respective owners. 16 // 17 // Redistribution and use in source and binary forms, with or without modification, 18 // are permitted provided that the following conditions are met: 19 // 20 // * Redistribution's of source code must retain the above copyright notice, 21 // this list of conditions and the following disclaimer. 22 // 23 // * Redistribution's in binary form must reproduce the above copyright notice, 24 // this list of conditions and the following disclaimer in the documentation 25 // and/or other materials provided with the distribution. 26 // 27 // * The name of the copyright holders may not be used to endorse or promote products 28 // derived from this software without specific prior written permission. 29 // 30 // This software is provided by the copyright holders and contributors "as is" and 31 // any express or implied warranties, including, but not limited to, the implied 32 // warranties of merchantability and fitness for a particular purpose are disclaimed. 33 // In no event shall the Intel Corporation or contributors be liable for any direct, 34 // indirect, incidental, special, exemplary, or consequential damages 35 // (including, but not limited to, procurement of substitute goods or services; 36 // loss of use, data, or profits; or business interruption) however caused 37 // and on any theory of liability, whether in contract, strict liability, 38 // or tort (including negligence or otherwise) arising in any way out of 39 // the use of this software, even if advised of the possibility of such damage. 40 // 41 //M*/ 42 43 #include "precomp.hpp" 44 45 namespace cv 46 { 47 48 class ThinPlateSplineShapeTransformerImpl : public ThinPlateSplineShapeTransformer 49 { 50 public: 51 /* Constructors */ 52 ThinPlateSplineShapeTransformerImpl() 53 { 54 regularizationParameter=0; 55 name_ = "ShapeTransformer.TPS"; 56 tpsComputed=false; 57 } 58 59 ThinPlateSplineShapeTransformerImpl(double _regularizationParameter) 60 { 61 regularizationParameter=_regularizationParameter; 62 name_ = "ShapeTransformer.TPS"; 63 tpsComputed=false; 64 } 65 66 /* Destructor */ 67 ~ThinPlateSplineShapeTransformerImpl() 68 { 69 } 70 71 //! the main operators 72 virtual void estimateTransformation(InputArray transformingShape, InputArray targetShape, std::vector<DMatch> &matches); 73 virtual float applyTransformation(InputArray inPts, OutputArray output=noArray()); 74 virtual void warpImage(InputArray transformingImage, OutputArray output, 75 int flags, int borderMode, const Scalar& borderValue) const; 76 77 //! Setters/Getters 78 virtual void setRegularizationParameter(double _regularizationParameter) {regularizationParameter=_regularizationParameter;} 79 virtual double getRegularizationParameter() const {return regularizationParameter;} 80 81 //! write/read 82 virtual void write(FileStorage& fs) const 83 { 84 fs << "name" << name_ 85 << "regularization" << regularizationParameter; 86 } 87 88 virtual void read(const FileNode& fn) 89 { 90 CV_Assert( (String)fn["name"] == name_ ); 91 regularizationParameter = (int)fn["regularization"]; 92 } 93 94 private: 95 bool tpsComputed; 96 double regularizationParameter; 97 float transformCost; 98 Mat tpsParameters; 99 Mat shapeReference; 100 101 protected: 102 String name_; 103 }; 104 105 static float distance(Point2f p, Point2f q) 106 { 107 Point2f diff = p - q; 108 float norma = diff.x*diff.x + diff.y*diff.y;// - 2*diff.x*diff.y; 109 if (norma<0) norma=0; 110 //else norma = std::sqrt(norma); 111 norma = norma*std::log(norma+FLT_EPSILON); 112 return norma; 113 } 114 115 static Point2f _applyTransformation(const Mat &shapeRef, const Point2f point, const Mat &tpsParameters) 116 { 117 Point2f out; 118 for (int i=0; i<2; i++) 119 { 120 float a1=tpsParameters.at<float>(tpsParameters.rows-3,i); 121 float ax=tpsParameters.at<float>(tpsParameters.rows-2,i); 122 float ay=tpsParameters.at<float>(tpsParameters.rows-1,i); 123 124 float affine=a1+ax*point.x+ay*point.y; 125 float nonrigid=0; 126 for (int j=0; j<shapeRef.rows; j++) 127 { 128 nonrigid+=tpsParameters.at<float>(j,i)* 129 distance(Point2f(shapeRef.at<float>(j,0),shapeRef.at<float>(j,1)), 130 point); 131 } 132 if (i==0) 133 { 134 out.x=affine+nonrigid; 135 } 136 if (i==1) 137 { 138 out.y=affine+nonrigid; 139 } 140 } 141 return out; 142 } 143 144 /* public methods */ 145 void ThinPlateSplineShapeTransformerImpl::warpImage(InputArray transformingImage, OutputArray output, 146 int flags, int borderMode, const Scalar& borderValue) const 147 { 148 CV_Assert(tpsComputed==true); 149 150 Mat theinput = transformingImage.getMat(); 151 Mat mapX(theinput.rows, theinput.cols, CV_32FC1); 152 Mat mapY(theinput.rows, theinput.cols, CV_32FC1); 153 154 for (int row = 0; row < theinput.rows; row++) 155 { 156 for (int col = 0; col < theinput.cols; col++) 157 { 158 Point2f pt = _applyTransformation(shapeReference, Point2f(float(col), float(row)), tpsParameters); 159 mapX.at<float>(row, col) = pt.x; 160 mapY.at<float>(row, col) = pt.y; 161 } 162 } 163 remap(transformingImage, output, mapX, mapY, flags, borderMode, borderValue); 164 } 165 166 float ThinPlateSplineShapeTransformerImpl::applyTransformation(InputArray inPts, OutputArray outPts) 167 { 168 CV_Assert(tpsComputed); 169 Mat pts1 = inPts.getMat(); 170 CV_Assert((pts1.channels()==2) && (pts1.cols>0)); 171 172 //Apply transformation in the complete set of points 173 // Ensambling output // 174 if (outPts.needed()) 175 { 176 outPts.create(1,pts1.cols, CV_32FC2); 177 Mat outMat = outPts.getMat(); 178 for (int i=0; i<pts1.cols; i++) 179 { 180 Point2f pt=pts1.at<Point2f>(0,i); 181 outMat.at<Point2f>(0,i)=_applyTransformation(shapeReference, pt, tpsParameters); 182 } 183 } 184 185 return transformCost; 186 } 187 188 void ThinPlateSplineShapeTransformerImpl::estimateTransformation(InputArray _pts1, InputArray _pts2, 189 std::vector<DMatch>& _matches ) 190 { 191 Mat pts1 = _pts1.getMat(); 192 Mat pts2 = _pts2.getMat(); 193 CV_Assert((pts1.channels()==2) && (pts1.cols>0) && (pts2.channels()==2) && (pts2.cols>0)); 194 CV_Assert(_matches.size()>1); 195 196 if (pts1.type() != CV_32F) 197 pts1.convertTo(pts1, CV_32F); 198 if (pts2.type() != CV_32F) 199 pts2.convertTo(pts2, CV_32F); 200 201 // Use only valid matchings // 202 std::vector<DMatch> matches; 203 for (size_t i=0; i<_matches.size(); i++) 204 { 205 if (_matches[i].queryIdx<pts1.cols && 206 _matches[i].trainIdx<pts2.cols) 207 { 208 matches.push_back(_matches[i]); 209 } 210 } 211 212 // Organizing the correspondent points in matrix style // 213 Mat shape1((int)matches.size(),2,CV_32F); // transforming shape 214 Mat shape2((int)matches.size(),2,CV_32F); // target shape 215 for (int i=0, end = (int)matches.size(); i<end; i++) 216 { 217 Point2f pt1=pts1.at<Point2f>(0,matches[i].queryIdx); 218 shape1.at<float>(i,0) = pt1.x; 219 shape1.at<float>(i,1) = pt1.y; 220 221 Point2f pt2=pts2.at<Point2f>(0,matches[i].trainIdx); 222 shape2.at<float>(i,0) = pt2.x; 223 shape2.at<float>(i,1) = pt2.y; 224 } 225 shape1.copyTo(shapeReference); 226 227 // Building the matrices for solving the L*(w|a)=(v|0) problem with L={[K|P];[P'|0]} 228 229 //Building K and P (Neede to buil L) 230 Mat matK((int)matches.size(),(int)matches.size(),CV_32F); 231 Mat matP((int)matches.size(),3,CV_32F); 232 for (int i=0, end=(int)matches.size(); i<end; i++) 233 { 234 for (int j=0; j<end; j++) 235 { 236 if (i==j) 237 { 238 matK.at<float>(i,j)=float(regularizationParameter); 239 } 240 else 241 { 242 matK.at<float>(i,j) = distance(Point2f(shape1.at<float>(i,0),shape1.at<float>(i,1)), 243 Point2f(shape1.at<float>(j,0),shape1.at<float>(j,1))); 244 } 245 } 246 matP.at<float>(i,0) = 1; 247 matP.at<float>(i,1) = shape1.at<float>(i,0); 248 matP.at<float>(i,2) = shape1.at<float>(i,1); 249 } 250 251 //Building L 252 Mat matL=Mat::zeros((int)matches.size()+3,(int)matches.size()+3,CV_32F); 253 Mat matLroi(matL, Rect(0,0,(int)matches.size(),(int)matches.size())); //roi for K 254 matK.copyTo(matLroi); 255 matLroi = Mat(matL,Rect((int)matches.size(),0,3,(int)matches.size())); //roi for P 256 matP.copyTo(matLroi); 257 Mat matPt; 258 transpose(matP,matPt); 259 matLroi = Mat(matL,Rect(0,(int)matches.size(),(int)matches.size(),3)); //roi for P' 260 matPt.copyTo(matLroi); 261 262 //Building B (v|0) 263 Mat matB = Mat::zeros((int)matches.size()+3,2,CV_32F); 264 for (int i=0, end = (int)matches.size(); i<end; i++) 265 { 266 matB.at<float>(i,0) = shape2.at<float>(i,0); //x's 267 matB.at<float>(i,1) = shape2.at<float>(i,1); //y's 268 } 269 270 //Obtaining transformation params (w|a) 271 solve(matL, matB, tpsParameters, DECOMP_LU); 272 //tpsParameters = matL.inv()*matB; 273 274 //Setting transform Cost and Shape reference 275 Mat w(tpsParameters, Rect(0,0,2,tpsParameters.rows-3)); 276 Mat Q=w.t()*matK*w; 277 transformCost=fabs(Q.at<float>(0,0)*Q.at<float>(1,1));//fabs(mean(Q.diag(0))[0]);//std::max(Q.at<float>(0,0),Q.at<float>(1,1)); 278 tpsComputed=true; 279 } 280 281 Ptr <ThinPlateSplineShapeTransformer> createThinPlateSplineShapeTransformer(double regularizationParameter) 282 { 283 return Ptr<ThinPlateSplineShapeTransformer>( new ThinPlateSplineShapeTransformerImpl(regularizationParameter) ); 284 } 285 286 } // cv 287