1 /* 2 * This file is part of ltrace. 3 * Copyright (C) 2006,2010,2011,2012,2013 Petr Machata, Red Hat Inc. 4 * Copyright (C) 2010 Zachary T Welch, CodeSourcery 5 * Copyright (C) 2010 Joe Damato 6 * Copyright (C) 1997,1998,2001,2004,2007,2008,2009 Juan Cespedes 7 * Copyright (C) 2006 Olaf Hering, SUSE Linux GmbH 8 * Copyright (C) 2006 Eric Vaitl, Cisco Systems, Inc. 9 * Copyright (C) 2006 Paul Gilliam, IBM Corporation 10 * Copyright (C) 2006 Ian Wienand 11 * 12 * This program is free software; you can redistribute it and/or 13 * modify it under the terms of the GNU General Public License as 14 * published by the Free Software Foundation; either version 2 of the 15 * License, or (at your option) any later version. 16 * 17 * This program is distributed in the hope that it will be useful, but 18 * WITHOUT ANY WARRANTY; without even the implied warranty of 19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 20 * General Public License for more details. 21 * 22 * You should have received a copy of the GNU General Public License 23 * along with this program; if not, write to the Free Software 24 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 25 * 02110-1301 USA 26 */ 27 28 #include "config.h" 29 30 #include <assert.h> 31 #ifdef __linux__ 32 #include <endian.h> 33 #endif 34 #include <errno.h> 35 #include <fcntl.h> 36 #include <gelf.h> 37 #include <inttypes.h> 38 #include <search.h> 39 #include <stdbool.h> 40 #include <stdint.h> 41 #include <stdio.h> 42 #include <stdlib.h> 43 #include <string.h> 44 #include <strings.h> 45 #include <unistd.h> 46 47 #include "backend.h" 48 #include "filter.h" 49 #include "library.h" 50 #include "ltrace-elf.h" 51 #include "proc.h" 52 #include "debug.h" 53 #include "options.h" 54 55 #ifndef ARCH_HAVE_LTELF_DATA 56 int 57 arch_elf_init(struct ltelf *lte, struct library *lib) 58 { 59 return 0; 60 } 61 62 void 63 arch_elf_destroy(struct ltelf *lte) 64 { 65 } 66 #endif 67 68 #ifndef OS_HAVE_ADD_PLT_ENTRY 69 enum plt_status 70 os_elf_add_plt_entry(struct process *proc, struct ltelf *lte, 71 const char *a_name, GElf_Rela *rela, size_t ndx, 72 struct library_symbol **ret) 73 { 74 return PLT_DEFAULT; 75 } 76 #endif 77 78 #ifndef ARCH_HAVE_ADD_PLT_ENTRY 79 enum plt_status 80 arch_elf_add_plt_entry(struct process *proc, struct ltelf *lte, 81 const char *a_name, GElf_Rela *rela, size_t ndx, 82 struct library_symbol **ret) 83 { 84 return PLT_DEFAULT; 85 } 86 #endif 87 88 #ifndef OS_HAVE_ADD_FUNC_ENTRY 89 enum plt_status 90 os_elf_add_func_entry(struct process *proc, struct ltelf *lte, 91 const GElf_Sym *sym, 92 arch_addr_t addr, const char *name, 93 struct library_symbol **ret) 94 { 95 if (GELF_ST_TYPE(sym->st_info) != STT_FUNC) { 96 *ret = NULL; 97 return PLT_OK; 98 } else { 99 return PLT_DEFAULT; 100 } 101 } 102 #endif 103 104 #ifndef ARCH_HAVE_ADD_FUNC_ENTRY 105 enum plt_status 106 arch_elf_add_func_entry(struct process *proc, struct ltelf *lte, 107 const GElf_Sym *sym, 108 arch_addr_t addr, const char *name, 109 struct library_symbol **ret) 110 { 111 return PLT_DEFAULT; 112 } 113 #endif 114 115 Elf_Data * 116 elf_loaddata(Elf_Scn *scn, GElf_Shdr *shdr) 117 { 118 Elf_Data *data = elf_getdata(scn, NULL); 119 if (data == NULL || elf_getdata(scn, data) != NULL 120 || data->d_off || data->d_size != shdr->sh_size) 121 return NULL; 122 return data; 123 } 124 125 static int 126 elf_get_section_if(struct ltelf *lte, Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr, 127 int (*predicate)(Elf_Scn *, GElf_Shdr *, void *data), 128 void *data) 129 { 130 int i; 131 for (i = 1; i < lte->ehdr.e_shnum; ++i) { 132 Elf_Scn *scn; 133 GElf_Shdr shdr; 134 135 scn = elf_getscn(lte->elf, i); 136 if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { 137 debug(1, "Couldn't read section or header."); 138 return -1; 139 } 140 if (predicate(scn, &shdr, data)) { 141 *tgt_sec = scn; 142 *tgt_shdr = shdr; 143 return 0; 144 } 145 } 146 147 *tgt_sec = NULL; 148 return 0; 149 } 150 151 static int 152 inside_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) 153 { 154 GElf_Addr addr = *(GElf_Addr *)data; 155 return addr >= shdr->sh_addr 156 && addr < shdr->sh_addr + shdr->sh_size; 157 } 158 159 int 160 elf_get_section_covering(struct ltelf *lte, GElf_Addr addr, 161 Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) 162 { 163 return elf_get_section_if(lte, tgt_sec, tgt_shdr, 164 &inside_p, &addr); 165 } 166 167 static int 168 type_p(Elf_Scn *scn, GElf_Shdr *shdr, void *data) 169 { 170 GElf_Word type = *(GElf_Word *)data; 171 return shdr->sh_type == type; 172 } 173 174 int 175 elf_get_section_type(struct ltelf *lte, GElf_Word type, 176 Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) 177 { 178 return elf_get_section_if(lte, tgt_sec, tgt_shdr, 179 &type_p, &type); 180 } 181 182 struct section_named_data { 183 struct ltelf *lte; 184 const char *name; 185 }; 186 187 static int 188 name_p(Elf_Scn *scn, GElf_Shdr *shdr, void *d) 189 { 190 struct section_named_data *data = d; 191 const char *name = elf_strptr(data->lte->elf, 192 data->lte->ehdr.e_shstrndx, 193 shdr->sh_name); 194 return strcmp(name, data->name) == 0; 195 } 196 197 int 198 elf_get_section_named(struct ltelf *lte, const char *name, 199 Elf_Scn **tgt_sec, GElf_Shdr *tgt_shdr) 200 { 201 struct section_named_data data = { 202 .lte = lte, 203 .name = name, 204 }; 205 return elf_get_section_if(lte, tgt_sec, tgt_shdr, 206 &name_p, &data); 207 } 208 209 static struct elf_each_symbol_t 210 each_symbol_in(Elf_Data *symtab, const char *strtab, size_t count, 211 unsigned i, 212 enum callback_status (*cb)(GElf_Sym *symbol, 213 const char *name, void *data), 214 void *data) 215 { 216 for (; i < count; ++i) { 217 GElf_Sym sym; 218 if (gelf_getsym(symtab, i, &sym) == NULL) 219 return (struct elf_each_symbol_t){ i, -2 }; 220 221 switch (cb(&sym, strtab + sym.st_name, data)) { 222 case CBS_FAIL: 223 return (struct elf_each_symbol_t){ i, -1 }; 224 case CBS_STOP: 225 return (struct elf_each_symbol_t){ i + 1, 0 }; 226 case CBS_CONT: 227 break; 228 } 229 } 230 231 return (struct elf_each_symbol_t){ 0, 0 }; 232 } 233 234 /* N.B.: gelf_getsym takes integer argument. Since negative values 235 * are invalid as indices, we can use the extra bit to encode which 236 * symbol table we are looking into. ltrace currently doesn't handle 237 * more than two symbol tables anyway, nor does it handle the xindex 238 * stuff. */ 239 struct elf_each_symbol_t 240 elf_each_symbol(struct ltelf *lte, unsigned start_after, 241 enum callback_status (*cb)(GElf_Sym *symbol, 242 const char *name, void *data), 243 void *data) 244 { 245 unsigned index = start_after == 0 ? 0 : start_after >> 1; 246 247 /* Go through static symbol table first. */ 248 if ((start_after & 0x1) == 0) { 249 struct elf_each_symbol_t st 250 = each_symbol_in(lte->symtab, lte->strtab, 251 lte->symtab_count, index, cb, data); 252 253 /* If the iteration stopped prematurely, bail out. */ 254 if (st.restart != 0) 255 return ((struct elf_each_symbol_t) 256 { st.restart << 1, st.status }); 257 } 258 259 struct elf_each_symbol_t st 260 = each_symbol_in(lte->dynsym, lte->dynstr, lte->dynsym_count, 261 index, cb, data); 262 if (st.restart != 0) 263 return ((struct elf_each_symbol_t) 264 { st.restart << 1 | 0x1, st.status }); 265 266 return (struct elf_each_symbol_t){ 0, 0 }; 267 } 268 269 int 270 elf_can_read_next(Elf_Data *data, GElf_Xword offset, GElf_Xword size) 271 { 272 assert(data != NULL); 273 if (data->d_size < size || offset > data->d_size - size) { 274 debug(1, "Not enough data to read %"PRId64"-byte value" 275 " at offset %"PRId64".", size, offset); 276 return 0; 277 } 278 return 1; 279 } 280 281 #define DEF_READER(NAME, SIZE) \ 282 int \ 283 NAME(Elf_Data *data, GElf_Xword offset, uint##SIZE##_t *retp) \ 284 { \ 285 if (!elf_can_read_next(data, offset, SIZE / 8)) \ 286 return -1; \ 287 \ 288 if (data->d_buf == NULL) /* NODATA section */ { \ 289 *retp = 0; \ 290 return 0; \ 291 } \ 292 \ 293 union { \ 294 uint##SIZE##_t dst; \ 295 char buf[0]; \ 296 } u; \ 297 memcpy(u.buf, data->d_buf + offset, sizeof(u.dst)); \ 298 *retp = u.dst; \ 299 return 0; \ 300 } 301 302 DEF_READER(elf_read_u8, 8) 303 DEF_READER(elf_read_u16, 16) 304 DEF_READER(elf_read_u32, 32) 305 DEF_READER(elf_read_u64, 64) 306 307 #undef DEF_READER 308 309 #define DEF_READER(NAME, SIZE) \ 310 int \ 311 NAME(Elf_Data *data, GElf_Xword *offset, uint##SIZE##_t *retp) \ 312 { \ 313 int rc = elf_read_u##SIZE(data, *offset, retp); \ 314 if (rc < 0) \ 315 return rc; \ 316 *offset += SIZE / 8; \ 317 return 0; \ 318 } 319 320 DEF_READER(elf_read_next_u8, 8) 321 DEF_READER(elf_read_next_u16, 16) 322 DEF_READER(elf_read_next_u32, 32) 323 DEF_READER(elf_read_next_u64, 64) 324 325 #undef DEF_READER 326 327 int 328 elf_read_next_uleb128(Elf_Data *data, GElf_Xword *offset, uint64_t *retp) 329 { 330 uint64_t result = 0; 331 int shift = 0; 332 int size = 8 * sizeof result; 333 334 while (1) { 335 uint8_t byte; 336 if (elf_read_next_u8(data, offset, &byte) < 0) 337 return -1; 338 339 uint8_t payload = byte & 0x7f; 340 result |= (uint64_t)payload << shift; 341 shift += 7; 342 if (shift > size && byte != 0x1) 343 return -1; 344 if ((byte & 0x80) == 0) 345 break; 346 } 347 348 if (retp != NULL) 349 *retp = result; 350 return 0; 351 } 352 353 int 354 elf_read_uleb128(Elf_Data *data, GElf_Xword offset, uint64_t *retp) 355 { 356 return elf_read_next_uleb128(data, &offset, retp); 357 } 358 359 int 360 ltelf_init(struct ltelf *lte, const char *filename) 361 { 362 memset(lte, 0, sizeof *lte); 363 lte->fd = open(filename, O_RDONLY); 364 if (lte->fd == -1) { 365 fprintf(stderr, "Can't open %s: %s\n", filename, 366 strerror(errno)); 367 return 1; 368 } 369 370 elf_version(EV_CURRENT); 371 372 #ifdef HAVE_ELF_C_READ_MMAP 373 lte->elf = elf_begin(lte->fd, ELF_C_READ_MMAP, NULL); 374 #else 375 lte->elf = elf_begin(lte->fd, ELF_C_READ, NULL); 376 #endif 377 378 if (lte->elf == NULL || elf_kind(lte->elf) != ELF_K_ELF) { 379 fprintf(stderr, "\"%s\" is not an ELF file\n", filename); 380 exit(EXIT_FAILURE); 381 } 382 383 if (gelf_getehdr(lte->elf, <e->ehdr) == NULL) { 384 fprintf(stderr, "can't read ELF header of \"%s\": %s\n", 385 filename, elf_errmsg(-1)); 386 exit(EXIT_FAILURE); 387 } 388 389 if (lte->ehdr.e_type != ET_EXEC && lte->ehdr.e_type != ET_DYN) { 390 fprintf(stderr, "\"%s\" is neither an ELF executable" 391 " nor a shared library\n", filename); 392 exit(EXIT_FAILURE); 393 } 394 395 if (1 396 #ifdef LT_ELF_MACHINE 397 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS 398 || lte->ehdr.e_machine != LT_ELF_MACHINE) 399 #endif 400 #ifdef LT_ELF_MACHINE2 401 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS2 402 || lte->ehdr.e_machine != LT_ELF_MACHINE2) 403 #endif 404 #ifdef LT_ELF_MACHINE3 405 && (lte->ehdr.e_ident[EI_CLASS] != LT_ELFCLASS3 406 || lte->ehdr.e_machine != LT_ELF_MACHINE3) 407 #endif 408 ) { 409 fprintf(stderr, 410 "\"%s\" is ELF from incompatible architecture\n", 411 filename); 412 exit(EXIT_FAILURE); 413 } 414 415 VECT_INIT(<e->plt_relocs, GElf_Rela); 416 417 return 0; 418 } 419 420 void 421 ltelf_destroy(struct ltelf *lte) 422 { 423 debug(DEBUG_FUNCTION, "close_elf()"); 424 elf_end(lte->elf); 425 close(lte->fd); 426 VECT_DESTROY(<e->plt_relocs, GElf_Rela, NULL, NULL); 427 } 428 429 static void 430 read_symbol_table(struct ltelf *lte, const char *filename, 431 Elf_Scn *scn, GElf_Shdr *shdr, const char *name, 432 Elf_Data **datap, size_t *countp, const char **strsp) 433 { 434 *datap = elf_getdata(scn, NULL); 435 *countp = shdr->sh_size / shdr->sh_entsize; 436 if ((*datap == NULL || elf_getdata(scn, *datap) != NULL) 437 && options.static_filter != NULL) { 438 fprintf(stderr, "Couldn't get data of section" 439 " %s from \"%s\": %s\n", 440 name, filename, elf_errmsg(-1)); 441 exit(EXIT_FAILURE); 442 } 443 444 scn = elf_getscn(lte->elf, shdr->sh_link); 445 GElf_Shdr shdr2; 446 if (scn == NULL || gelf_getshdr(scn, &shdr2) == NULL) { 447 fprintf(stderr, "Couldn't get header of section" 448 " #%d from \"%s\": %s\n", 449 shdr->sh_link, filename, elf_errmsg(-1)); 450 exit(EXIT_FAILURE); 451 } 452 453 Elf_Data *data = elf_getdata(scn, NULL); 454 if (data == NULL || elf_getdata(scn, data) != NULL 455 || shdr2.sh_size != data->d_size || data->d_off) { 456 fprintf(stderr, "Couldn't get data of section" 457 " #%d from \"%s\": %s\n", 458 shdr2.sh_link, filename, elf_errmsg(-1)); 459 exit(EXIT_FAILURE); 460 } 461 462 *strsp = data->d_buf; 463 } 464 465 static int 466 rel_to_rela(struct ltelf *lte, const GElf_Rel *rel, GElf_Rela *rela) 467 { 468 rela->r_offset = rel->r_offset; 469 rela->r_info = rel->r_info; 470 471 Elf_Scn *sec; 472 GElf_Shdr shdr; 473 if (elf_get_section_covering(lte, rel->r_offset, &sec, &shdr) < 0 474 || sec == NULL) 475 return -1; 476 477 Elf_Data *data = elf_loaddata(sec, &shdr); 478 if (data == NULL) 479 return -1; 480 481 GElf_Xword offset = rel->r_offset - shdr.sh_addr - data->d_off; 482 uint64_t value; 483 if (lte->ehdr.e_ident[EI_CLASS] == ELFCLASS32) { 484 uint32_t tmp; 485 if (elf_read_u32(data, offset, &tmp) < 0) 486 return -1; 487 value = tmp; 488 } else if (elf_read_u64(data, offset, &value) < 0) { 489 return -1; 490 } 491 492 rela->r_addend = value; 493 return 0; 494 } 495 496 int 497 elf_read_relocs(struct ltelf *lte, Elf_Scn *scn, GElf_Shdr *shdr, 498 struct vect *rela_vec) 499 { 500 if (vect_reserve_additional(rela_vec, lte->ehdr.e_shnum) < 0) 501 return -1; 502 503 Elf_Data *relplt = elf_loaddata(scn, shdr); 504 if (relplt == NULL) { 505 fprintf(stderr, "Couldn't load .rel*.plt data.\n"); 506 return -1; 507 } 508 509 if ((shdr->sh_size % shdr->sh_entsize) != 0) { 510 fprintf(stderr, ".rel*.plt size (%" PRIx64 "d) not a multiple " 511 "of its sh_entsize (%" PRIx64 "d).\n", 512 shdr->sh_size, shdr->sh_entsize); 513 return -1; 514 } 515 516 GElf_Xword relplt_count = shdr->sh_size / shdr->sh_entsize; 517 GElf_Xword i; 518 for (i = 0; i < relplt_count; ++i) { 519 GElf_Rela rela; 520 if (relplt->d_type == ELF_T_REL) { 521 GElf_Rel rel; 522 if (gelf_getrel(relplt, i, &rel) == NULL 523 || rel_to_rela(lte, &rel, &rela) < 0) 524 return -1; 525 526 } else if (gelf_getrela(relplt, i, &rela) == NULL) { 527 return -1; 528 } 529 530 if (VECT_PUSHBACK(rela_vec, &rela) < 0) 531 return -1; 532 } 533 534 return 0; 535 } 536 537 int 538 elf_load_dynamic_entry(struct ltelf *lte, int tag, GElf_Addr *valuep) 539 { 540 Elf_Scn *scn; 541 GElf_Shdr shdr; 542 if (elf_get_section_type(lte, SHT_DYNAMIC, &scn, &shdr) < 0 543 || scn == NULL) { 544 fail: 545 fprintf(stderr, "Couldn't get SHT_DYNAMIC: %s\n", 546 elf_errmsg(-1)); 547 return -1; 548 } 549 550 Elf_Data *data = elf_loaddata(scn, &shdr); 551 if (data == NULL) 552 goto fail; 553 554 size_t j; 555 for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { 556 GElf_Dyn dyn; 557 if (gelf_getdyn(data, j, &dyn) == NULL) 558 goto fail; 559 560 if(dyn.d_tag == tag) { 561 *valuep = dyn.d_un.d_ptr; 562 return 0; 563 } 564 } 565 566 return -1; 567 } 568 569 static int 570 ltelf_read_elf(struct ltelf *lte, const char *filename) 571 { 572 int i; 573 GElf_Addr relplt_addr = 0; 574 GElf_Addr soname_offset = 0; 575 GElf_Xword relplt_size = 0; 576 577 debug(DEBUG_FUNCTION, "ltelf_read_elf(filename=%s)", filename); 578 debug(1, "Reading ELF from %s...", filename); 579 580 for (i = 1; i < lte->ehdr.e_shnum; ++i) { 581 Elf_Scn *scn; 582 GElf_Shdr shdr; 583 const char *name; 584 585 scn = elf_getscn(lte->elf, i); 586 if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { 587 fprintf(stderr, "Couldn't get section #%d from" 588 " \"%s\": %s\n", i, filename, elf_errmsg(-1)); 589 exit(EXIT_FAILURE); 590 } 591 592 name = elf_strptr(lte->elf, lte->ehdr.e_shstrndx, shdr.sh_name); 593 if (name == NULL) { 594 fprintf(stderr, "Couldn't get name of section #%d from" 595 " \"%s\": %s\n", i, filename, elf_errmsg(-1)); 596 exit(EXIT_FAILURE); 597 } 598 599 if (shdr.sh_type == SHT_SYMTAB) { 600 read_symbol_table(lte, filename, 601 scn, &shdr, name, <e->symtab, 602 <e->symtab_count, <e->strtab); 603 604 } else if (shdr.sh_type == SHT_DYNSYM) { 605 read_symbol_table(lte, filename, 606 scn, &shdr, name, <e->dynsym, 607 <e->dynsym_count, <e->dynstr); 608 609 } else if (shdr.sh_type == SHT_DYNAMIC) { 610 Elf_Data *data; 611 size_t j; 612 613 lte->dyn_addr = shdr.sh_addr + lte->bias; 614 lte->dyn_sz = shdr.sh_size; 615 616 data = elf_getdata(scn, NULL); 617 if (data == NULL || elf_getdata(scn, data) != NULL) { 618 fprintf(stderr, "Couldn't get .dynamic data" 619 " from \"%s\": %s\n", 620 filename, strerror(errno)); 621 exit(EXIT_FAILURE); 622 } 623 624 for (j = 0; j < shdr.sh_size / shdr.sh_entsize; ++j) { 625 GElf_Dyn dyn; 626 627 if (gelf_getdyn(data, j, &dyn) == NULL) { 628 fprintf(stderr, "Couldn't get .dynamic" 629 " data from \"%s\": %s\n", 630 filename, strerror(errno)); 631 exit(EXIT_FAILURE); 632 } 633 if (dyn.d_tag == DT_JMPREL) 634 relplt_addr = dyn.d_un.d_ptr; 635 else if (dyn.d_tag == DT_PLTRELSZ) 636 relplt_size = dyn.d_un.d_val; 637 else if (dyn.d_tag == DT_SONAME) 638 soname_offset = dyn.d_un.d_val; 639 } 640 } else if (shdr.sh_type == SHT_PROGBITS 641 || shdr.sh_type == SHT_NOBITS) { 642 if (strcmp(name, ".plt") == 0) { 643 lte->plt_addr = shdr.sh_addr; 644 lte->plt_size = shdr.sh_size; 645 lte->plt_data = elf_loaddata(scn, &shdr); 646 if (lte->plt_data == NULL) 647 fprintf(stderr, 648 "Can't load .plt data\n"); 649 lte->plt_flags = shdr.sh_flags; 650 } 651 #ifdef ARCH_SUPPORTS_OPD 652 else if (strcmp(name, ".opd") == 0) { 653 lte->opd_addr = (GElf_Addr *) (long) shdr.sh_addr; 654 lte->opd_size = shdr.sh_size; 655 lte->opd = elf_rawdata(scn, NULL); 656 } 657 #endif 658 } 659 } 660 661 if (lte->dynsym == NULL || lte->dynstr == NULL) { 662 fprintf(stderr, "Couldn't find .dynsym or .dynstr in \"%s\"\n", 663 filename); 664 exit(EXIT_FAILURE); 665 } 666 667 if (!relplt_addr || !lte->plt_addr) { 668 debug(1, "%s has no PLT relocations", filename); 669 } else if (relplt_size == 0) { 670 debug(1, "%s has unknown PLT size", filename); 671 } else { 672 for (i = 1; i < lte->ehdr.e_shnum; ++i) { 673 Elf_Scn *scn; 674 GElf_Shdr shdr; 675 676 scn = elf_getscn(lte->elf, i); 677 if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) { 678 fprintf(stderr, "Couldn't get section header" 679 " from \"%s\": %s\n", 680 filename, elf_errmsg(-1)); 681 exit(EXIT_FAILURE); 682 } 683 if (shdr.sh_addr == relplt_addr 684 && shdr.sh_size == relplt_size) { 685 if (elf_read_relocs(lte, scn, &shdr, 686 <e->plt_relocs) < 0) { 687 fprintf(stderr, "Couldn't get .rel*.plt" 688 " data from \"%s\": %s\n", 689 filename, elf_errmsg(-1)); 690 exit(EXIT_FAILURE); 691 } 692 break; 693 } 694 } 695 696 if (i == lte->ehdr.e_shnum) { 697 fprintf(stderr, 698 "Couldn't find .rel*.plt section in \"%s\"\n", 699 filename); 700 exit(EXIT_FAILURE); 701 } 702 } 703 debug(1, "%s %zd PLT relocations", filename, 704 vect_size(<e->plt_relocs)); 705 706 if (soname_offset != 0) 707 lte->soname = lte->dynstr + soname_offset; 708 709 return 0; 710 } 711 712 #ifndef ARCH_HAVE_GET_SYMINFO 713 int 714 arch_get_sym_info(struct ltelf *lte, const char *filename, 715 size_t sym_index, GElf_Rela *rela, GElf_Sym *sym) 716 { 717 return gelf_getsym(lte->dynsym, 718 ELF64_R_SYM(rela->r_info), sym) != NULL ? 0 : -1; 719 } 720 #endif 721 722 int 723 default_elf_add_plt_entry(struct process *proc, struct ltelf *lte, 724 const char *a_name, GElf_Rela *rela, size_t ndx, 725 struct library_symbol **ret) 726 { 727 char *name = strdup(a_name); 728 if (name == NULL) { 729 fail_message: 730 fprintf(stderr, "Couldn't create symbol for PLT entry: %s\n", 731 strerror(errno)); 732 fail: 733 free(name); 734 return -1; 735 } 736 737 GElf_Addr addr = arch_plt_sym_val(lte, ndx, rela); 738 739 struct library_symbol *libsym = malloc(sizeof(*libsym)); 740 if (libsym == NULL) 741 goto fail_message; 742 743 /* XXX The double cast should be removed when 744 * arch_addr_t becomes integral type. */ 745 arch_addr_t taddr = (arch_addr_t) 746 (uintptr_t)(addr + lte->bias); 747 748 if (library_symbol_init(libsym, taddr, name, 1, LS_TOPLT_EXEC) < 0) { 749 free(libsym); 750 goto fail; 751 } 752 753 libsym->next = *ret; 754 *ret = libsym; 755 return 0; 756 } 757 758 int 759 elf_add_plt_entry(struct process *proc, struct ltelf *lte, 760 const char *name, GElf_Rela *rela, size_t idx, 761 struct library_symbol **ret) 762 { 763 enum plt_status plts 764 = arch_elf_add_plt_entry(proc, lte, name, rela, idx, ret); 765 766 if (plts == PLT_DEFAULT) 767 plts = os_elf_add_plt_entry(proc, lte, name, rela, idx, ret); 768 769 switch (plts) { 770 case PLT_DEFAULT: 771 return default_elf_add_plt_entry(proc, lte, name, 772 rela, idx, ret); 773 case PLT_FAIL: 774 return -1; 775 case PLT_OK: 776 return 0; 777 } 778 779 assert(! "Invalid return from X_elf_add_plt_entry!"); 780 abort(); 781 } 782 783 static void 784 mark_chain_latent(struct library_symbol *libsym) 785 { 786 for (; libsym != NULL; libsym = libsym->next) { 787 debug(DEBUG_FUNCTION, "marking %s latent", libsym->name); 788 libsym->latent = 1; 789 } 790 } 791 792 static void 793 filter_symbol_chain(struct filter *filter, 794 struct library_symbol **libsymp, struct library *lib) 795 { 796 assert(libsymp != NULL); 797 struct library_symbol **ptr = libsymp; 798 while (*ptr != NULL) { 799 if (filter_matches_symbol(filter, (*ptr)->name, lib)) { 800 ptr = &(*ptr)->next; 801 } else { 802 struct library_symbol *sym = *ptr; 803 *ptr = (*ptr)->next; 804 library_symbol_destroy(sym); 805 free(sym); 806 } 807 } 808 } 809 810 static int 811 populate_plt(struct process *proc, const char *filename, 812 struct ltelf *lte, struct library *lib) 813 { 814 const bool latent_plts = options.export_filter != NULL; 815 const size_t count = vect_size(<e->plt_relocs); 816 817 size_t i; 818 for (i = 0; i < count; ++i) { 819 GElf_Rela *rela = VECT_ELEMENT(<e->plt_relocs, GElf_Rela, i); 820 GElf_Sym sym; 821 822 switch (arch_get_sym_info(lte, filename, i, rela, &sym)) { 823 default: 824 fprintf(stderr, 825 "Couldn't get relocation for symbol #%zd" 826 " from \"%s\": %s\n", 827 i, filename, elf_errmsg(-1)); 828 /* Fall through. */ 829 case 1: 830 continue; /* Skip this entry. */ 831 case 0: 832 break; 833 } 834 835 char const *name = lte->dynstr + sym.st_name; 836 int matched = filter_matches_symbol(options.plt_filter, 837 name, lib); 838 839 struct library_symbol *libsym = NULL; 840 if (elf_add_plt_entry(proc, lte, name, rela, i, &libsym) < 0) 841 return -1; 842 843 /* If we didn't match the PLT entry, filter the chain 844 * to only include the matching symbols (but include 845 * all if we are adding latent symbols) to allow 846 * backends to override the PLT symbol's name. */ 847 848 if (! matched && ! latent_plts) 849 filter_symbol_chain(options.plt_filter, &libsym, lib); 850 851 if (libsym != NULL) { 852 /* If we are adding those symbols just for 853 * tracing exports, mark them all latent. */ 854 if (! matched && latent_plts) 855 mark_chain_latent(libsym); 856 library_add_symbol(lib, libsym); 857 } 858 } 859 return 0; 860 } 861 862 static void 863 delete_symbol_chain(struct library_symbol *libsym) 864 { 865 while (libsym != NULL) { 866 struct library_symbol *tmp = libsym->next; 867 library_symbol_destroy(libsym); 868 free(libsym); 869 libsym = tmp; 870 } 871 } 872 873 /* When -x rules result in request to trace several aliases, we only 874 * want to add such symbol once. The only way that those symbols 875 * differ in is their name, e.g. in glibc you have __GI___libc_free, 876 * __cfree, __free, __libc_free, cfree and free all defined on the 877 * same address. So instead we keep this unique symbol struct for 878 * each address, and replace name in libsym with a shorter variant if 879 * we find it. */ 880 struct unique_symbol { 881 arch_addr_t addr; 882 struct library_symbol *libsym; 883 }; 884 885 static int 886 unique_symbol_cmp(const void *key, const void *val) 887 { 888 const struct unique_symbol *sym_key = key; 889 const struct unique_symbol *sym_val = val; 890 return sym_key->addr != sym_val->addr; 891 } 892 893 static enum callback_status 894 symbol_with_address(struct library_symbol *sym, void *addrptr) 895 { 896 return sym->enter_addr == *(arch_addr_t *)addrptr 897 ? CBS_STOP : CBS_CONT; 898 } 899 900 static int 901 populate_this_symtab(struct process *proc, const char *filename, 902 struct ltelf *lte, struct library *lib, 903 Elf_Data *symtab, const char *strtab, size_t count, 904 struct library_exported_name **names) 905 { 906 /* If a valid NAMES is passed, we pass in *NAMES a list of 907 * symbol names that this library exports. */ 908 if (names != NULL) 909 *names = NULL; 910 911 /* Using sorted array would be arguably better, but this 912 * should be well enough for the number of symbols that we 913 * typically deal with. */ 914 size_t num_symbols = 0; 915 struct unique_symbol *symbols = malloc(sizeof(*symbols) * count); 916 if (symbols == NULL) { 917 fprintf(stderr, "couldn't insert symbols for -x: %s\n", 918 strerror(errno)); 919 return -1; 920 } 921 922 GElf_Word secflags[lte->ehdr.e_shnum]; 923 size_t i; 924 for (i = 1; i < lte->ehdr.e_shnum; ++i) { 925 Elf_Scn *scn = elf_getscn(lte->elf, i); 926 GElf_Shdr shdr; 927 if (scn == NULL || gelf_getshdr(scn, &shdr) == NULL) 928 secflags[i] = 0; 929 else 930 secflags[i] = shdr.sh_flags; 931 } 932 933 for (i = 0; i < count; ++i) { 934 GElf_Sym sym; 935 if (gelf_getsym(symtab, i, &sym) == NULL) { 936 fprintf(stderr, 937 "couldn't get symbol #%zd from %s: %s\n", 938 i, filename, elf_errmsg(-1)); 939 continue; 940 } 941 942 if (sym.st_value == 0 || sym.st_shndx == STN_UNDEF 943 /* Also ignore any special values besides direct 944 * section references. */ 945 || sym.st_shndx >= lte->ehdr.e_shnum) 946 continue; 947 948 /* Find symbol name and snip version. */ 949 const char *orig_name = strtab + sym.st_name; 950 const char *version = strchr(orig_name, '@'); 951 size_t len = version != NULL ? (assert(version > orig_name), 952 (size_t)(version - orig_name)) 953 : strlen(orig_name); 954 char name[len + 1]; 955 memcpy(name, orig_name, len); 956 name[len] = 0; 957 958 /* If we are interested in exports, store this name. */ 959 if (names != NULL) { 960 struct library_exported_name *export 961 = malloc(sizeof *export); 962 char *name_copy = strdup(name); 963 964 if (name_copy == NULL || export == NULL) { 965 free(name_copy); 966 free(export); 967 fprintf(stderr, "Couldn't store symbol %s. " 968 "Tracing may be incomplete.\n", name); 969 } else { 970 export->name = name_copy; 971 export->own_name = 1; 972 export->next = *names; 973 *names = export; 974 } 975 } 976 977 /* If the symbol is not matched, skip it. We already 978 * stored it to export list above. */ 979 if (!filter_matches_symbol(options.static_filter, name, lib)) 980 continue; 981 982 arch_addr_t addr = (arch_addr_t) 983 (uintptr_t)(sym.st_value + lte->bias); 984 arch_addr_t naddr; 985 986 /* On arches that support OPD, the value of typical 987 * function symbol will be a pointer to .opd, but some 988 * will point directly to .text. We don't want to 989 * translate those. */ 990 if (secflags[sym.st_shndx] & SHF_EXECINSTR) { 991 naddr = addr; 992 } else if (arch_translate_address(lte, addr, &naddr) < 0) { 993 fprintf(stderr, 994 "couldn't translate address of %s@%s: %s\n", 995 name, lib->soname, strerror(errno)); 996 continue; 997 } 998 999 char *full_name = strdup(name); 1000 if (full_name == NULL) { 1001 fprintf(stderr, "couldn't copy name of %s@%s: %s\n", 1002 name, lib->soname, strerror(errno)); 1003 continue; 1004 } 1005 1006 struct library_symbol *libsym = NULL; 1007 enum plt_status plts 1008 = arch_elf_add_func_entry(proc, lte, &sym, 1009 naddr, full_name, &libsym); 1010 if (plts == PLT_DEFAULT) 1011 plts = os_elf_add_func_entry(proc, lte, &sym, 1012 naddr, full_name, &libsym); 1013 1014 switch (plts) { 1015 case PLT_DEFAULT:; 1016 /* Put the default symbol to the chain. */ 1017 struct library_symbol *tmp = malloc(sizeof *tmp); 1018 if (tmp == NULL 1019 || library_symbol_init(tmp, naddr, full_name, 1, 1020 LS_TOPLT_NONE) < 0) { 1021 free(tmp); 1022 1023 /* Either add the whole bunch, or none 1024 * of it. Note that for PLT_FAIL we 1025 * don't do this--it's the callee's 1026 * job to clean up after itself before 1027 * it bails out. */ 1028 delete_symbol_chain(libsym); 1029 libsym = NULL; 1030 1031 case PLT_FAIL: 1032 fprintf(stderr, "Couldn't add symbol %s@%s " 1033 "for tracing.\n", name, lib->soname); 1034 1035 break; 1036 } 1037 1038 full_name = NULL; 1039 tmp->next = libsym; 1040 libsym = tmp; 1041 break; 1042 1043 case PLT_OK: 1044 break; 1045 } 1046 1047 free(full_name); 1048 1049 struct library_symbol *tmp; 1050 for (tmp = libsym; tmp != NULL; ) { 1051 /* Look whether we already have a symbol for 1052 * this address. If not, add this one. If 1053 * yes, look if we should pick the new symbol 1054 * name. */ 1055 1056 struct unique_symbol key = { tmp->enter_addr, NULL }; 1057 struct unique_symbol *unique 1058 = lsearch(&key, symbols, &num_symbols, 1059 sizeof *symbols, &unique_symbol_cmp); 1060 1061 if (unique->libsym == NULL) { 1062 unique->libsym = tmp; 1063 unique->addr = tmp->enter_addr; 1064 tmp = tmp->next; 1065 unique->libsym->next = NULL; 1066 } else { 1067 if (strlen(tmp->name) 1068 < strlen(unique->libsym->name)) { 1069 library_symbol_set_name 1070 (unique->libsym, tmp->name, 1); 1071 tmp->name = NULL; 1072 } 1073 struct library_symbol *next = tmp->next; 1074 library_symbol_destroy(tmp); 1075 free(tmp); 1076 tmp = next; 1077 } 1078 } 1079 } 1080 1081 /* Now we do the union of this set of unique symbols with 1082 * what's already in the library. */ 1083 for (i = 0; i < num_symbols; ++i) { 1084 struct library_symbol *this_sym = symbols[i].libsym; 1085 assert(this_sym != NULL); 1086 struct library_symbol *other 1087 = library_each_symbol(lib, NULL, symbol_with_address, 1088 &this_sym->enter_addr); 1089 if (other != NULL) { 1090 library_symbol_destroy(this_sym); 1091 free(this_sym); 1092 symbols[i].libsym = NULL; 1093 } 1094 } 1095 1096 for (i = 0; i < num_symbols; ++i) 1097 if (symbols[i].libsym != NULL) 1098 library_add_symbol(lib, symbols[i].libsym); 1099 1100 free(symbols); 1101 return 0; 1102 } 1103 1104 static int 1105 populate_symtab(struct process *proc, const char *filename, 1106 struct ltelf *lte, struct library *lib, 1107 int symtabs, int exports) 1108 { 1109 int status; 1110 if (symtabs && lte->symtab != NULL && lte->strtab != NULL 1111 && (status = populate_this_symtab(proc, filename, lte, lib, 1112 lte->symtab, lte->strtab, 1113 lte->symtab_count, NULL)) < 0) 1114 return status; 1115 1116 /* Check whether we want to trace symbols implemented by this 1117 * library (-l). */ 1118 struct library_exported_name **names = NULL; 1119 if (exports) { 1120 debug(DEBUG_FUNCTION, "-l matches %s", lib->soname); 1121 names = &lib->exported_names; 1122 } 1123 1124 return populate_this_symtab(proc, filename, lte, lib, 1125 lte->dynsym, lte->dynstr, 1126 lte->dynsym_count, names); 1127 } 1128 1129 static int 1130 read_module(struct library *lib, struct process *proc, 1131 const char *filename, GElf_Addr bias, int main) 1132 { 1133 struct ltelf lte; 1134 if (ltelf_init(<e, filename) < 0) 1135 return -1; 1136 1137 /* XXX When we abstract ABI into a module, this should instead 1138 * become something like 1139 * 1140 * proc->abi = arch_get_abi(lte.ehdr); 1141 * 1142 * The code in ltelf_init needs to be replaced by this logic. 1143 * Be warned that libltrace.c calls ltelf_init as well to 1144 * determine whether ABI is supported. This is to get 1145 * reasonable error messages when trying to run 64-bit binary 1146 * with 32-bit ltrace. It is desirable to preserve this. */ 1147 proc->e_machine = lte.ehdr.e_machine; 1148 proc->e_class = lte.ehdr.e_ident[EI_CLASS]; 1149 get_arch_dep(proc); 1150 1151 /* Find out the base address. For PIE main binaries we look 1152 * into auxv, otherwise we scan phdrs. */ 1153 if (main && lte.ehdr.e_type == ET_DYN) { 1154 arch_addr_t entry; 1155 if (process_get_entry(proc, &entry, NULL) < 0) { 1156 fprintf(stderr, "Couldn't find entry of PIE %s\n", 1157 filename); 1158 fail: 1159 ltelf_destroy(<e); 1160 return -1; 1161 } 1162 /* XXX The double cast should be removed when 1163 * arch_addr_t becomes integral type. */ 1164 lte.entry_addr = (GElf_Addr)(uintptr_t)entry; 1165 lte.bias = (GElf_Addr)(uintptr_t)entry - lte.ehdr.e_entry; 1166 1167 } else { 1168 GElf_Phdr phdr; 1169 size_t i; 1170 for (i = 0; gelf_getphdr (lte.elf, i, &phdr) != NULL; ++i) { 1171 if (phdr.p_type == PT_LOAD) { 1172 lte.base_addr = phdr.p_vaddr + bias; 1173 break; 1174 } 1175 } 1176 1177 lte.bias = bias; 1178 lte.entry_addr = lte.ehdr.e_entry + lte.bias; 1179 1180 if (lte.base_addr == 0) { 1181 fprintf(stderr, 1182 "Couldn't determine base address of %s\n", 1183 filename); 1184 goto fail; 1185 } 1186 } 1187 1188 if (ltelf_read_elf(<e, filename) < 0) 1189 goto fail; 1190 1191 if (arch_elf_init(<e, lib) < 0) { 1192 fprintf(stderr, "Backend initialization failed.\n"); 1193 goto fail; 1194 } 1195 1196 if (lib == NULL) 1197 goto fail; 1198 1199 /* Note that we set soname and pathname as soon as they are 1200 * allocated, so in case of further errors, this get released 1201 * when LIB is released, which should happen in the caller 1202 * when we return error. */ 1203 1204 if (lib->pathname == NULL) { 1205 char *pathname = strdup(filename); 1206 if (pathname == NULL) 1207 goto fail; 1208 library_set_pathname(lib, pathname, 1); 1209 } 1210 1211 if (lte.soname != NULL) { 1212 char *soname = strdup(lte.soname); 1213 if (soname == NULL) 1214 goto fail; 1215 library_set_soname(lib, soname, 1); 1216 } else { 1217 const char *soname = rindex(lib->pathname, '/'); 1218 if (soname != NULL) 1219 soname += 1; 1220 else 1221 soname = lib->pathname; 1222 library_set_soname(lib, soname, 0); 1223 } 1224 1225 /* XXX The double cast should be removed when 1226 * arch_addr_t becomes integral type. */ 1227 arch_addr_t entry = (arch_addr_t)(uintptr_t)lte.entry_addr; 1228 if (arch_translate_address(<e, entry, &entry) < 0) 1229 goto fail; 1230 1231 /* XXX The double cast should be removed when 1232 * arch_addr_t becomes integral type. */ 1233 lib->base = (arch_addr_t)(uintptr_t)lte.base_addr; 1234 lib->entry = entry; 1235 /* XXX The double cast should be removed when 1236 * arch_addr_t becomes integral type. */ 1237 lib->dyn_addr = (arch_addr_t)(uintptr_t)lte.dyn_addr; 1238 1239 /* There are two reasons that we need to inspect symbol tables 1240 * or populate PLT entries. Either the user requested 1241 * corresponding tracing features (respectively -x and -e), or 1242 * they requested tracing exported symbols (-l). 1243 * 1244 * In the latter case we need to keep even those PLT slots 1245 * that are not requested by -e (but we keep them latent). We 1246 * also need to inspect .dynsym to find what exports this 1247 * library provide, to turn on existing latent PLT 1248 * entries. */ 1249 1250 int plts = filter_matches_library(options.plt_filter, lib); 1251 if ((plts || options.export_filter != NULL) 1252 && populate_plt(proc, filename, <e, lib) < 0) 1253 goto fail; 1254 1255 int exports = filter_matches_library(options.export_filter, lib); 1256 int symtabs = filter_matches_library(options.static_filter, lib); 1257 if ((symtabs || exports) 1258 && populate_symtab(proc, filename, <e, lib, 1259 symtabs, exports) < 0) 1260 goto fail; 1261 1262 arch_elf_destroy(<e); 1263 ltelf_destroy(<e); 1264 return 0; 1265 } 1266 1267 int 1268 ltelf_read_library(struct library *lib, struct process *proc, 1269 const char *filename, GElf_Addr bias) 1270 { 1271 return read_module(lib, proc, filename, bias, 0); 1272 } 1273 1274 1275 struct library * 1276 ltelf_read_main_binary(struct process *proc, const char *path) 1277 { 1278 struct library *lib = malloc(sizeof(*lib)); 1279 if (lib == NULL || library_init(lib, LT_LIBTYPE_MAIN) < 0) { 1280 free(lib); 1281 return NULL; 1282 } 1283 library_set_pathname(lib, path, 0); 1284 1285 /* There is a race between running the process and reading its 1286 * binary for internal consumption. So open the binary from 1287 * the /proc filesystem. XXX Note that there is similar race 1288 * for libraries, but there we don't have a nice answer like 1289 * that. Presumably we could read the DSOs from the process 1290 * memory image, but that's not currently done. */ 1291 char *fname = pid2name(proc->pid); 1292 if (fname == NULL 1293 || read_module(lib, proc, fname, 0, 1) < 0) { 1294 library_destroy(lib); 1295 free(lib); 1296 lib = NULL; 1297 } 1298 1299 free(fname); 1300 return lib; 1301 } 1302