1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief Defines the C++ Decl subclasses, other than those for templates 12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h). 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_CLANG_AST_DECLCXX_H 17 #define LLVM_CLANG_AST_DECLCXX_H 18 19 #include "clang/AST/ASTUnresolvedSet.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/Decl.h" 22 #include "clang/AST/Expr.h" 23 #include "clang/AST/LambdaCapture.h" 24 #include "llvm/ADT/DenseMap.h" 25 #include "llvm/ADT/PointerIntPair.h" 26 #include "llvm/Support/Compiler.h" 27 28 namespace clang { 29 30 class ClassTemplateDecl; 31 class ClassTemplateSpecializationDecl; 32 class CXXBasePath; 33 class CXXBasePaths; 34 class CXXConstructorDecl; 35 class CXXConversionDecl; 36 class CXXDestructorDecl; 37 class CXXMethodDecl; 38 class CXXRecordDecl; 39 class CXXMemberLookupCriteria; 40 class CXXFinalOverriderMap; 41 class CXXIndirectPrimaryBaseSet; 42 class FriendDecl; 43 class LambdaExpr; 44 class UsingDecl; 45 46 /// \brief Represents any kind of function declaration, whether it is a 47 /// concrete function or a function template. 48 class AnyFunctionDecl { 49 NamedDecl *Function; 50 51 AnyFunctionDecl(NamedDecl *ND) : Function(ND) { } 52 53 public: 54 AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { } 55 AnyFunctionDecl(FunctionTemplateDecl *FTD); 56 57 /// \brief Implicily converts any function or function template into a 58 /// named declaration. 59 operator NamedDecl *() const { return Function; } 60 61 /// \brief Retrieve the underlying function or function template. 62 NamedDecl *get() const { return Function; } 63 64 static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) { 65 return AnyFunctionDecl(ND); 66 } 67 }; 68 69 } // end namespace clang 70 71 namespace llvm { 72 // Provide PointerLikeTypeTraits for non-cvr pointers. 73 template<> 74 class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> { 75 public: 76 static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) { 77 return F.get(); 78 } 79 static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) { 80 return ::clang::AnyFunctionDecl::getFromNamedDecl( 81 static_cast< ::clang::NamedDecl*>(P)); 82 } 83 84 enum { NumLowBitsAvailable = 2 }; 85 }; 86 87 } // end namespace llvm 88 89 namespace clang { 90 91 /// \brief Represents an access specifier followed by colon ':'. 92 /// 93 /// An objects of this class represents sugar for the syntactic occurrence 94 /// of an access specifier followed by a colon in the list of member 95 /// specifiers of a C++ class definition. 96 /// 97 /// Note that they do not represent other uses of access specifiers, 98 /// such as those occurring in a list of base specifiers. 99 /// Also note that this class has nothing to do with so-called 100 /// "access declarations" (C++98 11.3 [class.access.dcl]). 101 class AccessSpecDecl : public Decl { 102 virtual void anchor(); 103 /// \brief The location of the ':'. 104 SourceLocation ColonLoc; 105 106 AccessSpecDecl(AccessSpecifier AS, DeclContext *DC, 107 SourceLocation ASLoc, SourceLocation ColonLoc) 108 : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) { 109 setAccess(AS); 110 } 111 AccessSpecDecl(EmptyShell Empty) 112 : Decl(AccessSpec, Empty) { } 113 public: 114 /// \brief The location of the access specifier. 115 SourceLocation getAccessSpecifierLoc() const { return getLocation(); } 116 /// \brief Sets the location of the access specifier. 117 void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); } 118 119 /// \brief The location of the colon following the access specifier. 120 SourceLocation getColonLoc() const { return ColonLoc; } 121 /// \brief Sets the location of the colon. 122 void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; } 123 124 SourceRange getSourceRange() const override LLVM_READONLY { 125 return SourceRange(getAccessSpecifierLoc(), getColonLoc()); 126 } 127 128 static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS, 129 DeclContext *DC, SourceLocation ASLoc, 130 SourceLocation ColonLoc) { 131 return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc); 132 } 133 static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); 134 135 // Implement isa/cast/dyncast/etc. 136 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 137 static bool classofKind(Kind K) { return K == AccessSpec; } 138 }; 139 140 141 /// \brief Represents a base class of a C++ class. 142 /// 143 /// Each CXXBaseSpecifier represents a single, direct base class (or 144 /// struct) of a C++ class (or struct). It specifies the type of that 145 /// base class, whether it is a virtual or non-virtual base, and what 146 /// level of access (public, protected, private) is used for the 147 /// derivation. For example: 148 /// 149 /// \code 150 /// class A { }; 151 /// class B { }; 152 /// class C : public virtual A, protected B { }; 153 /// \endcode 154 /// 155 /// In this code, C will have two CXXBaseSpecifiers, one for "public 156 /// virtual A" and the other for "protected B". 157 class CXXBaseSpecifier { 158 /// \brief The source code range that covers the full base 159 /// specifier, including the "virtual" (if present) and access 160 /// specifier (if present). 161 SourceRange Range; 162 163 /// \brief The source location of the ellipsis, if this is a pack 164 /// expansion. 165 SourceLocation EllipsisLoc; 166 167 /// \brief Whether this is a virtual base class or not. 168 bool Virtual : 1; 169 170 /// \brief Whether this is the base of a class (true) or of a struct (false). 171 /// 172 /// This determines the mapping from the access specifier as written in the 173 /// source code to the access specifier used for semantic analysis. 174 bool BaseOfClass : 1; 175 176 /// \brief Access specifier as written in the source code (may be AS_none). 177 /// 178 /// The actual type of data stored here is an AccessSpecifier, but we use 179 /// "unsigned" here to work around a VC++ bug. 180 unsigned Access : 2; 181 182 /// \brief Whether the class contains a using declaration 183 /// to inherit the named class's constructors. 184 bool InheritConstructors : 1; 185 186 /// \brief The type of the base class. 187 /// 188 /// This will be a class or struct (or a typedef of such). The source code 189 /// range does not include the \c virtual or the access specifier. 190 TypeSourceInfo *BaseTypeInfo; 191 192 public: 193 CXXBaseSpecifier() { } 194 195 CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A, 196 TypeSourceInfo *TInfo, SourceLocation EllipsisLoc) 197 : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC), 198 Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { } 199 200 /// \brief Retrieves the source range that contains the entire base specifier. 201 SourceRange getSourceRange() const LLVM_READONLY { return Range; } 202 SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); } 203 SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); } 204 205 /// \brief Determines whether the base class is a virtual base class (or not). 206 bool isVirtual() const { return Virtual; } 207 208 /// \brief Determine whether this base class is a base of a class declared 209 /// with the 'class' keyword (vs. one declared with the 'struct' keyword). 210 bool isBaseOfClass() const { return BaseOfClass; } 211 212 /// \brief Determine whether this base specifier is a pack expansion. 213 bool isPackExpansion() const { return EllipsisLoc.isValid(); } 214 215 /// \brief Determine whether this base class's constructors get inherited. 216 bool getInheritConstructors() const { return InheritConstructors; } 217 218 /// \brief Set that this base class's constructors should be inherited. 219 void setInheritConstructors(bool Inherit = true) { 220 InheritConstructors = Inherit; 221 } 222 223 /// \brief For a pack expansion, determine the location of the ellipsis. 224 SourceLocation getEllipsisLoc() const { 225 return EllipsisLoc; 226 } 227 228 /// \brief Returns the access specifier for this base specifier. 229 /// 230 /// This is the actual base specifier as used for semantic analysis, so 231 /// the result can never be AS_none. To retrieve the access specifier as 232 /// written in the source code, use getAccessSpecifierAsWritten(). 233 AccessSpecifier getAccessSpecifier() const { 234 if ((AccessSpecifier)Access == AS_none) 235 return BaseOfClass? AS_private : AS_public; 236 else 237 return (AccessSpecifier)Access; 238 } 239 240 /// \brief Retrieves the access specifier as written in the source code 241 /// (which may mean that no access specifier was explicitly written). 242 /// 243 /// Use getAccessSpecifier() to retrieve the access specifier for use in 244 /// semantic analysis. 245 AccessSpecifier getAccessSpecifierAsWritten() const { 246 return (AccessSpecifier)Access; 247 } 248 249 /// \brief Retrieves the type of the base class. 250 /// 251 /// This type will always be an unqualified class type. 252 QualType getType() const { 253 return BaseTypeInfo->getType().getUnqualifiedType(); 254 } 255 256 /// \brief Retrieves the type and source location of the base class. 257 TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; } 258 }; 259 260 /// \brief A lazy pointer to the definition data for a declaration. 261 /// FIXME: This is a little CXXRecordDecl-specific that the moment. 262 template<typename Decl, typename T> class LazyDefinitionDataPtr { 263 llvm::PointerUnion<T *, Decl *> DataOrCanonicalDecl; 264 265 LazyDefinitionDataPtr update() { 266 if (Decl *Canon = DataOrCanonicalDecl.template dyn_cast<Decl*>()) { 267 if (Canon->isCanonicalDecl()) 268 Canon->getMostRecentDecl(); 269 else 270 // Declaration isn't canonical any more; 271 // update it and perform path compression. 272 *this = Canon->getPreviousDecl()->DefinitionData.update(); 273 } 274 return *this; 275 } 276 277 public: 278 LazyDefinitionDataPtr(Decl *Canon) : DataOrCanonicalDecl(Canon) {} 279 LazyDefinitionDataPtr(T *Data) : DataOrCanonicalDecl(Data) {} 280 T *getNotUpdated() { return DataOrCanonicalDecl.template dyn_cast<T*>(); } 281 T *get() { return update().getNotUpdated(); } 282 }; 283 284 /// \brief Represents a C++ struct/union/class. 285 class CXXRecordDecl : public RecordDecl { 286 287 friend void TagDecl::startDefinition(); 288 289 /// Values used in DefinitionData fields to represent special members. 290 enum SpecialMemberFlags { 291 SMF_DefaultConstructor = 0x1, 292 SMF_CopyConstructor = 0x2, 293 SMF_MoveConstructor = 0x4, 294 SMF_CopyAssignment = 0x8, 295 SMF_MoveAssignment = 0x10, 296 SMF_Destructor = 0x20, 297 SMF_All = 0x3f 298 }; 299 300 struct DefinitionData { 301 DefinitionData(CXXRecordDecl *D); 302 303 /// \brief True if this class has any user-declared constructors. 304 bool UserDeclaredConstructor : 1; 305 306 /// \brief The user-declared special members which this class has. 307 unsigned UserDeclaredSpecialMembers : 6; 308 309 /// \brief True when this class is an aggregate. 310 bool Aggregate : 1; 311 312 /// \brief True when this class is a POD-type. 313 bool PlainOldData : 1; 314 315 /// true when this class is empty for traits purposes, 316 /// i.e. has no data members other than 0-width bit-fields, has no 317 /// virtual function/base, and doesn't inherit from a non-empty 318 /// class. Doesn't take union-ness into account. 319 bool Empty : 1; 320 321 /// \brief True when this class is polymorphic, i.e., has at 322 /// least one virtual member or derives from a polymorphic class. 323 bool Polymorphic : 1; 324 325 /// \brief True when this class is abstract, i.e., has at least 326 /// one pure virtual function, (that can come from a base class). 327 bool Abstract : 1; 328 329 /// \brief True when this class has standard layout. 330 /// 331 /// C++11 [class]p7. A standard-layout class is a class that: 332 /// * has no non-static data members of type non-standard-layout class (or 333 /// array of such types) or reference, 334 /// * has no virtual functions (10.3) and no virtual base classes (10.1), 335 /// * has the same access control (Clause 11) for all non-static data 336 /// members 337 /// * has no non-standard-layout base classes, 338 /// * either has no non-static data members in the most derived class and at 339 /// most one base class with non-static data members, or has no base 340 /// classes with non-static data members, and 341 /// * has no base classes of the same type as the first non-static data 342 /// member. 343 bool IsStandardLayout : 1; 344 345 /// \brief True when there are no non-empty base classes. 346 /// 347 /// This is a helper bit of state used to implement IsStandardLayout more 348 /// efficiently. 349 bool HasNoNonEmptyBases : 1; 350 351 /// \brief True when there are private non-static data members. 352 bool HasPrivateFields : 1; 353 354 /// \brief True when there are protected non-static data members. 355 bool HasProtectedFields : 1; 356 357 /// \brief True when there are private non-static data members. 358 bool HasPublicFields : 1; 359 360 /// \brief True if this class (or any subobject) has mutable fields. 361 bool HasMutableFields : 1; 362 363 /// \brief True if this class (or any nested anonymous struct or union) 364 /// has variant members. 365 bool HasVariantMembers : 1; 366 367 /// \brief True if there no non-field members declared by the user. 368 bool HasOnlyCMembers : 1; 369 370 /// \brief True if any field has an in-class initializer, including those 371 /// within anonymous unions or structs. 372 bool HasInClassInitializer : 1; 373 374 /// \brief True if any field is of reference type, and does not have an 375 /// in-class initializer. 376 /// 377 /// In this case, value-initialization of this class is illegal in C++98 378 /// even if the class has a trivial default constructor. 379 bool HasUninitializedReferenceMember : 1; 380 381 /// \brief These flags are \c true if a defaulted corresponding special 382 /// member can't be fully analyzed without performing overload resolution. 383 /// @{ 384 bool NeedOverloadResolutionForMoveConstructor : 1; 385 bool NeedOverloadResolutionForMoveAssignment : 1; 386 bool NeedOverloadResolutionForDestructor : 1; 387 /// @} 388 389 /// \brief These flags are \c true if an implicit defaulted corresponding 390 /// special member would be defined as deleted. 391 /// @{ 392 bool DefaultedMoveConstructorIsDeleted : 1; 393 bool DefaultedMoveAssignmentIsDeleted : 1; 394 bool DefaultedDestructorIsDeleted : 1; 395 /// @} 396 397 /// \brief The trivial special members which this class has, per 398 /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25, 399 /// C++11 [class.dtor]p5, or would have if the member were not suppressed. 400 /// 401 /// This excludes any user-declared but not user-provided special members 402 /// which have been declared but not yet defined. 403 unsigned HasTrivialSpecialMembers : 6; 404 405 /// \brief The declared special members of this class which are known to be 406 /// non-trivial. 407 /// 408 /// This excludes any user-declared but not user-provided special members 409 /// which have been declared but not yet defined, and any implicit special 410 /// members which have not yet been declared. 411 unsigned DeclaredNonTrivialSpecialMembers : 6; 412 413 /// \brief True when this class has a destructor with no semantic effect. 414 bool HasIrrelevantDestructor : 1; 415 416 /// \brief True when this class has at least one user-declared constexpr 417 /// constructor which is neither the copy nor move constructor. 418 bool HasConstexprNonCopyMoveConstructor : 1; 419 420 /// \brief True if a defaulted default constructor for this class would 421 /// be constexpr. 422 bool DefaultedDefaultConstructorIsConstexpr : 1; 423 424 /// \brief True if this class has a constexpr default constructor. 425 /// 426 /// This is true for either a user-declared constexpr default constructor 427 /// or an implicitly declared constexpr default constructor. 428 bool HasConstexprDefaultConstructor : 1; 429 430 /// \brief True when this class contains at least one non-static data 431 /// member or base class of non-literal or volatile type. 432 bool HasNonLiteralTypeFieldsOrBases : 1; 433 434 /// \brief True when visible conversion functions are already computed 435 /// and are available. 436 bool ComputedVisibleConversions : 1; 437 438 /// \brief Whether we have a C++11 user-provided default constructor (not 439 /// explicitly deleted or defaulted). 440 bool UserProvidedDefaultConstructor : 1; 441 442 /// \brief The special members which have been declared for this class, 443 /// either by the user or implicitly. 444 unsigned DeclaredSpecialMembers : 6; 445 446 /// \brief Whether an implicit copy constructor would have a const-qualified 447 /// parameter. 448 bool ImplicitCopyConstructorHasConstParam : 1; 449 450 /// \brief Whether an implicit copy assignment operator would have a 451 /// const-qualified parameter. 452 bool ImplicitCopyAssignmentHasConstParam : 1; 453 454 /// \brief Whether any declared copy constructor has a const-qualified 455 /// parameter. 456 bool HasDeclaredCopyConstructorWithConstParam : 1; 457 458 /// \brief Whether any declared copy assignment operator has either a 459 /// const-qualified reference parameter or a non-reference parameter. 460 bool HasDeclaredCopyAssignmentWithConstParam : 1; 461 462 /// \brief Whether this class describes a C++ lambda. 463 bool IsLambda : 1; 464 465 /// \brief Whether we are currently parsing base specifiers. 466 bool IsParsingBaseSpecifiers : 1; 467 468 /// \brief The number of base class specifiers in Bases. 469 unsigned NumBases; 470 471 /// \brief The number of virtual base class specifiers in VBases. 472 unsigned NumVBases; 473 474 /// \brief Base classes of this class. 475 /// 476 /// FIXME: This is wasted space for a union. 477 LazyCXXBaseSpecifiersPtr Bases; 478 479 /// \brief direct and indirect virtual base classes of this class. 480 LazyCXXBaseSpecifiersPtr VBases; 481 482 /// \brief The conversion functions of this C++ class (but not its 483 /// inherited conversion functions). 484 /// 485 /// Each of the entries in this overload set is a CXXConversionDecl. 486 LazyASTUnresolvedSet Conversions; 487 488 /// \brief The conversion functions of this C++ class and all those 489 /// inherited conversion functions that are visible in this class. 490 /// 491 /// Each of the entries in this overload set is a CXXConversionDecl or a 492 /// FunctionTemplateDecl. 493 LazyASTUnresolvedSet VisibleConversions; 494 495 /// \brief The declaration which defines this record. 496 CXXRecordDecl *Definition; 497 498 /// \brief The first friend declaration in this class, or null if there 499 /// aren't any. 500 /// 501 /// This is actually currently stored in reverse order. 502 LazyDeclPtr FirstFriend; 503 504 /// \brief Retrieve the set of direct base classes. 505 CXXBaseSpecifier *getBases() const { 506 if (!Bases.isOffset()) 507 return Bases.get(nullptr); 508 return getBasesSlowCase(); 509 } 510 511 /// \brief Retrieve the set of virtual base classes. 512 CXXBaseSpecifier *getVBases() const { 513 if (!VBases.isOffset()) 514 return VBases.get(nullptr); 515 return getVBasesSlowCase(); 516 } 517 518 private: 519 CXXBaseSpecifier *getBasesSlowCase() const; 520 CXXBaseSpecifier *getVBasesSlowCase() const; 521 }; 522 523 typedef LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData> 524 DefinitionDataPtr; 525 friend class LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>; 526 527 mutable DefinitionDataPtr DefinitionData; 528 529 /// \brief Describes a C++ closure type (generated by a lambda expression). 530 struct LambdaDefinitionData : public DefinitionData { 531 typedef LambdaCapture Capture; 532 533 LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info, 534 bool Dependent, bool IsGeneric, 535 LambdaCaptureDefault CaptureDefault) 536 : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric), 537 CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0), 538 ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr), 539 MethodTyInfo(Info) { 540 IsLambda = true; 541 542 // C++11 [expr.prim.lambda]p3: 543 // This class type is neither an aggregate nor a literal type. 544 Aggregate = false; 545 PlainOldData = false; 546 HasNonLiteralTypeFieldsOrBases = true; 547 } 548 549 /// \brief Whether this lambda is known to be dependent, even if its 550 /// context isn't dependent. 551 /// 552 /// A lambda with a non-dependent context can be dependent if it occurs 553 /// within the default argument of a function template, because the 554 /// lambda will have been created with the enclosing context as its 555 /// declaration context, rather than function. This is an unfortunate 556 /// artifact of having to parse the default arguments before. 557 unsigned Dependent : 1; 558 559 /// \brief Whether this lambda is a generic lambda. 560 unsigned IsGenericLambda : 1; 561 562 /// \brief The Default Capture. 563 unsigned CaptureDefault : 2; 564 565 /// \brief The number of captures in this lambda is limited 2^NumCaptures. 566 unsigned NumCaptures : 15; 567 568 /// \brief The number of explicit captures in this lambda. 569 unsigned NumExplicitCaptures : 13; 570 571 /// \brief The number used to indicate this lambda expression for name 572 /// mangling in the Itanium C++ ABI. 573 unsigned ManglingNumber; 574 575 /// \brief The declaration that provides context for this lambda, if the 576 /// actual DeclContext does not suffice. This is used for lambdas that 577 /// occur within default arguments of function parameters within the class 578 /// or within a data member initializer. 579 Decl *ContextDecl; 580 581 /// \brief The list of captures, both explicit and implicit, for this 582 /// lambda. 583 Capture *Captures; 584 585 /// \brief The type of the call method. 586 TypeSourceInfo *MethodTyInfo; 587 588 }; 589 590 struct DefinitionData &data() const { 591 auto *DD = DefinitionData.get(); 592 assert(DD && "queried property of class with no definition"); 593 return *DD; 594 } 595 596 struct LambdaDefinitionData &getLambdaData() const { 597 // No update required: a merged definition cannot change any lambda 598 // properties. 599 auto *DD = DefinitionData.getNotUpdated(); 600 assert(DD && DD->IsLambda && "queried lambda property of non-lambda class"); 601 return static_cast<LambdaDefinitionData&>(*DD); 602 } 603 604 /// \brief The template or declaration that this declaration 605 /// describes or was instantiated from, respectively. 606 /// 607 /// For non-templates, this value will be null. For record 608 /// declarations that describe a class template, this will be a 609 /// pointer to a ClassTemplateDecl. For member 610 /// classes of class template specializations, this will be the 611 /// MemberSpecializationInfo referring to the member class that was 612 /// instantiated or specialized. 613 llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*> 614 TemplateOrInstantiation; 615 616 friend class DeclContext; 617 friend class LambdaExpr; 618 619 /// \brief Called from setBases and addedMember to notify the class that a 620 /// direct or virtual base class or a member of class type has been added. 621 void addedClassSubobject(CXXRecordDecl *Base); 622 623 /// \brief Notify the class that member has been added. 624 /// 625 /// This routine helps maintain information about the class based on which 626 /// members have been added. It will be invoked by DeclContext::addDecl() 627 /// whenever a member is added to this record. 628 void addedMember(Decl *D); 629 630 void markedVirtualFunctionPure(); 631 friend void FunctionDecl::setPure(bool); 632 633 friend class ASTNodeImporter; 634 635 /// \brief Get the head of our list of friend declarations, possibly 636 /// deserializing the friends from an external AST source. 637 FriendDecl *getFirstFriend() const; 638 639 protected: 640 CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC, 641 SourceLocation StartLoc, SourceLocation IdLoc, 642 IdentifierInfo *Id, CXXRecordDecl *PrevDecl); 643 644 public: 645 /// \brief Iterator that traverses the base classes of a class. 646 typedef CXXBaseSpecifier* base_class_iterator; 647 648 /// \brief Iterator that traverses the base classes of a class. 649 typedef const CXXBaseSpecifier* base_class_const_iterator; 650 651 CXXRecordDecl *getCanonicalDecl() override { 652 return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl()); 653 } 654 const CXXRecordDecl *getCanonicalDecl() const { 655 return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl(); 656 } 657 658 CXXRecordDecl *getPreviousDecl() { 659 return cast_or_null<CXXRecordDecl>( 660 static_cast<RecordDecl *>(this)->getPreviousDecl()); 661 } 662 const CXXRecordDecl *getPreviousDecl() const { 663 return const_cast<CXXRecordDecl*>(this)->getPreviousDecl(); 664 } 665 666 CXXRecordDecl *getMostRecentDecl() { 667 return cast<CXXRecordDecl>( 668 static_cast<RecordDecl *>(this)->getMostRecentDecl()); 669 } 670 671 const CXXRecordDecl *getMostRecentDecl() const { 672 return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl(); 673 } 674 675 CXXRecordDecl *getDefinition() const { 676 auto *DD = DefinitionData.get(); 677 return DD ? DD->Definition : nullptr; 678 } 679 680 bool hasDefinition() const { return DefinitionData.get(); } 681 682 static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC, 683 SourceLocation StartLoc, SourceLocation IdLoc, 684 IdentifierInfo *Id, 685 CXXRecordDecl *PrevDecl = nullptr, 686 bool DelayTypeCreation = false); 687 static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC, 688 TypeSourceInfo *Info, SourceLocation Loc, 689 bool DependentLambda, bool IsGeneric, 690 LambdaCaptureDefault CaptureDefault); 691 static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID); 692 693 bool isDynamicClass() const { 694 return data().Polymorphic || data().NumVBases != 0; 695 } 696 697 void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; } 698 699 bool isParsingBaseSpecifiers() const { 700 return data().IsParsingBaseSpecifiers; 701 } 702 703 /// \brief Sets the base classes of this struct or class. 704 void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases); 705 706 /// \brief Retrieves the number of base classes of this class. 707 unsigned getNumBases() const { return data().NumBases; } 708 709 typedef llvm::iterator_range<base_class_iterator> base_class_range; 710 typedef llvm::iterator_range<base_class_const_iterator> 711 base_class_const_range; 712 713 base_class_range bases() { 714 return base_class_range(bases_begin(), bases_end()); 715 } 716 base_class_const_range bases() const { 717 return base_class_const_range(bases_begin(), bases_end()); 718 } 719 720 base_class_iterator bases_begin() { return data().getBases(); } 721 base_class_const_iterator bases_begin() const { return data().getBases(); } 722 base_class_iterator bases_end() { return bases_begin() + data().NumBases; } 723 base_class_const_iterator bases_end() const { 724 return bases_begin() + data().NumBases; 725 } 726 727 /// \brief Retrieves the number of virtual base classes of this class. 728 unsigned getNumVBases() const { return data().NumVBases; } 729 730 base_class_range vbases() { 731 return base_class_range(vbases_begin(), vbases_end()); 732 } 733 base_class_const_range vbases() const { 734 return base_class_const_range(vbases_begin(), vbases_end()); 735 } 736 737 base_class_iterator vbases_begin() { return data().getVBases(); } 738 base_class_const_iterator vbases_begin() const { return data().getVBases(); } 739 base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; } 740 base_class_const_iterator vbases_end() const { 741 return vbases_begin() + data().NumVBases; 742 } 743 744 /// \brief Determine whether this class has any dependent base classes which 745 /// are not the current instantiation. 746 bool hasAnyDependentBases() const; 747 748 /// Iterator access to method members. The method iterator visits 749 /// all method members of the class, including non-instance methods, 750 /// special methods, etc. 751 typedef specific_decl_iterator<CXXMethodDecl> method_iterator; 752 typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>> 753 method_range; 754 755 method_range methods() const { 756 return method_range(method_begin(), method_end()); 757 } 758 759 /// \brief Method begin iterator. Iterates in the order the methods 760 /// were declared. 761 method_iterator method_begin() const { 762 return method_iterator(decls_begin()); 763 } 764 /// \brief Method past-the-end iterator. 765 method_iterator method_end() const { 766 return method_iterator(decls_end()); 767 } 768 769 /// Iterator access to constructor members. 770 typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator; 771 typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>> 772 ctor_range; 773 774 ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); } 775 776 ctor_iterator ctor_begin() const { 777 return ctor_iterator(decls_begin()); 778 } 779 ctor_iterator ctor_end() const { 780 return ctor_iterator(decls_end()); 781 } 782 783 /// An iterator over friend declarations. All of these are defined 784 /// in DeclFriend.h. 785 class friend_iterator; 786 typedef llvm::iterator_range<friend_iterator> friend_range; 787 788 friend_range friends() const; 789 friend_iterator friend_begin() const; 790 friend_iterator friend_end() const; 791 void pushFriendDecl(FriendDecl *FD); 792 793 /// Determines whether this record has any friends. 794 bool hasFriends() const { 795 return data().FirstFriend.isValid(); 796 } 797 798 /// \brief \c true if we know for sure that this class has a single, 799 /// accessible, unambiguous move constructor that is not deleted. 800 bool hasSimpleMoveConstructor() const { 801 return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() && 802 !data().DefaultedMoveConstructorIsDeleted; 803 } 804 /// \brief \c true if we know for sure that this class has a single, 805 /// accessible, unambiguous move assignment operator that is not deleted. 806 bool hasSimpleMoveAssignment() const { 807 return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() && 808 !data().DefaultedMoveAssignmentIsDeleted; 809 } 810 /// \brief \c true if we know for sure that this class has an accessible 811 /// destructor that is not deleted. 812 bool hasSimpleDestructor() const { 813 return !hasUserDeclaredDestructor() && 814 !data().DefaultedDestructorIsDeleted; 815 } 816 817 /// \brief Determine whether this class has any default constructors. 818 bool hasDefaultConstructor() const { 819 return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) || 820 needsImplicitDefaultConstructor(); 821 } 822 823 /// \brief Determine if we need to declare a default constructor for 824 /// this class. 825 /// 826 /// This value is used for lazy creation of default constructors. 827 bool needsImplicitDefaultConstructor() const { 828 return !data().UserDeclaredConstructor && 829 !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) && 830 // C++14 [expr.prim.lambda]p20: 831 // The closure type associated with a lambda-expression has no 832 // default constructor. 833 !isLambda(); 834 } 835 836 /// \brief Determine whether this class has any user-declared constructors. 837 /// 838 /// When true, a default constructor will not be implicitly declared. 839 bool hasUserDeclaredConstructor() const { 840 return data().UserDeclaredConstructor; 841 } 842 843 /// \brief Whether this class has a user-provided default constructor 844 /// per C++11. 845 bool hasUserProvidedDefaultConstructor() const { 846 return data().UserProvidedDefaultConstructor; 847 } 848 849 /// \brief Determine whether this class has a user-declared copy constructor. 850 /// 851 /// When false, a copy constructor will be implicitly declared. 852 bool hasUserDeclaredCopyConstructor() const { 853 return data().UserDeclaredSpecialMembers & SMF_CopyConstructor; 854 } 855 856 /// \brief Determine whether this class needs an implicit copy 857 /// constructor to be lazily declared. 858 bool needsImplicitCopyConstructor() const { 859 return !(data().DeclaredSpecialMembers & SMF_CopyConstructor); 860 } 861 862 /// \brief Determine whether we need to eagerly declare a defaulted copy 863 /// constructor for this class. 864 bool needsOverloadResolutionForCopyConstructor() const { 865 return data().HasMutableFields; 866 } 867 868 /// \brief Determine whether an implicit copy constructor for this type 869 /// would have a parameter with a const-qualified reference type. 870 bool implicitCopyConstructorHasConstParam() const { 871 return data().ImplicitCopyConstructorHasConstParam; 872 } 873 874 /// \brief Determine whether this class has a copy constructor with 875 /// a parameter type which is a reference to a const-qualified type. 876 bool hasCopyConstructorWithConstParam() const { 877 return data().HasDeclaredCopyConstructorWithConstParam || 878 (needsImplicitCopyConstructor() && 879 implicitCopyConstructorHasConstParam()); 880 } 881 882 /// \brief Whether this class has a user-declared move constructor or 883 /// assignment operator. 884 /// 885 /// When false, a move constructor and assignment operator may be 886 /// implicitly declared. 887 bool hasUserDeclaredMoveOperation() const { 888 return data().UserDeclaredSpecialMembers & 889 (SMF_MoveConstructor | SMF_MoveAssignment); 890 } 891 892 /// \brief Determine whether this class has had a move constructor 893 /// declared by the user. 894 bool hasUserDeclaredMoveConstructor() const { 895 return data().UserDeclaredSpecialMembers & SMF_MoveConstructor; 896 } 897 898 /// \brief Determine whether this class has a move constructor. 899 bool hasMoveConstructor() const { 900 return (data().DeclaredSpecialMembers & SMF_MoveConstructor) || 901 needsImplicitMoveConstructor(); 902 } 903 904 /// \brief Set that we attempted to declare an implicitly move 905 /// constructor, but overload resolution failed so we deleted it. 906 void setImplicitMoveConstructorIsDeleted() { 907 assert((data().DefaultedMoveConstructorIsDeleted || 908 needsOverloadResolutionForMoveConstructor()) && 909 "move constructor should not be deleted"); 910 data().DefaultedMoveConstructorIsDeleted = true; 911 } 912 913 /// \brief Determine whether this class should get an implicit move 914 /// constructor or if any existing special member function inhibits this. 915 bool needsImplicitMoveConstructor() const { 916 return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) && 917 !hasUserDeclaredCopyConstructor() && 918 !hasUserDeclaredCopyAssignment() && 919 !hasUserDeclaredMoveAssignment() && 920 !hasUserDeclaredDestructor(); 921 } 922 923 /// \brief Determine whether we need to eagerly declare a defaulted move 924 /// constructor for this class. 925 bool needsOverloadResolutionForMoveConstructor() const { 926 return data().NeedOverloadResolutionForMoveConstructor; 927 } 928 929 /// \brief Determine whether this class has a user-declared copy assignment 930 /// operator. 931 /// 932 /// When false, a copy assigment operator will be implicitly declared. 933 bool hasUserDeclaredCopyAssignment() const { 934 return data().UserDeclaredSpecialMembers & SMF_CopyAssignment; 935 } 936 937 /// \brief Determine whether this class needs an implicit copy 938 /// assignment operator to be lazily declared. 939 bool needsImplicitCopyAssignment() const { 940 return !(data().DeclaredSpecialMembers & SMF_CopyAssignment); 941 } 942 943 /// \brief Determine whether we need to eagerly declare a defaulted copy 944 /// assignment operator for this class. 945 bool needsOverloadResolutionForCopyAssignment() const { 946 return data().HasMutableFields; 947 } 948 949 /// \brief Determine whether an implicit copy assignment operator for this 950 /// type would have a parameter with a const-qualified reference type. 951 bool implicitCopyAssignmentHasConstParam() const { 952 return data().ImplicitCopyAssignmentHasConstParam; 953 } 954 955 /// \brief Determine whether this class has a copy assignment operator with 956 /// a parameter type which is a reference to a const-qualified type or is not 957 /// a reference. 958 bool hasCopyAssignmentWithConstParam() const { 959 return data().HasDeclaredCopyAssignmentWithConstParam || 960 (needsImplicitCopyAssignment() && 961 implicitCopyAssignmentHasConstParam()); 962 } 963 964 /// \brief Determine whether this class has had a move assignment 965 /// declared by the user. 966 bool hasUserDeclaredMoveAssignment() const { 967 return data().UserDeclaredSpecialMembers & SMF_MoveAssignment; 968 } 969 970 /// \brief Determine whether this class has a move assignment operator. 971 bool hasMoveAssignment() const { 972 return (data().DeclaredSpecialMembers & SMF_MoveAssignment) || 973 needsImplicitMoveAssignment(); 974 } 975 976 /// \brief Set that we attempted to declare an implicit move assignment 977 /// operator, but overload resolution failed so we deleted it. 978 void setImplicitMoveAssignmentIsDeleted() { 979 assert((data().DefaultedMoveAssignmentIsDeleted || 980 needsOverloadResolutionForMoveAssignment()) && 981 "move assignment should not be deleted"); 982 data().DefaultedMoveAssignmentIsDeleted = true; 983 } 984 985 /// \brief Determine whether this class should get an implicit move 986 /// assignment operator or if any existing special member function inhibits 987 /// this. 988 bool needsImplicitMoveAssignment() const { 989 return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) && 990 !hasUserDeclaredCopyConstructor() && 991 !hasUserDeclaredCopyAssignment() && 992 !hasUserDeclaredMoveConstructor() && 993 !hasUserDeclaredDestructor(); 994 } 995 996 /// \brief Determine whether we need to eagerly declare a move assignment 997 /// operator for this class. 998 bool needsOverloadResolutionForMoveAssignment() const { 999 return data().NeedOverloadResolutionForMoveAssignment; 1000 } 1001 1002 /// \brief Determine whether this class has a user-declared destructor. 1003 /// 1004 /// When false, a destructor will be implicitly declared. 1005 bool hasUserDeclaredDestructor() const { 1006 return data().UserDeclaredSpecialMembers & SMF_Destructor; 1007 } 1008 1009 /// \brief Determine whether this class needs an implicit destructor to 1010 /// be lazily declared. 1011 bool needsImplicitDestructor() const { 1012 return !(data().DeclaredSpecialMembers & SMF_Destructor); 1013 } 1014 1015 /// \brief Determine whether we need to eagerly declare a destructor for this 1016 /// class. 1017 bool needsOverloadResolutionForDestructor() const { 1018 return data().NeedOverloadResolutionForDestructor; 1019 } 1020 1021 /// \brief Determine whether this class describes a lambda function object. 1022 bool isLambda() const { 1023 // An update record can't turn a non-lambda into a lambda. 1024 auto *DD = DefinitionData.getNotUpdated(); 1025 return DD && DD->IsLambda; 1026 } 1027 1028 /// \brief Determine whether this class describes a generic 1029 /// lambda function object (i.e. function call operator is 1030 /// a template). 1031 bool isGenericLambda() const; 1032 1033 /// \brief Retrieve the lambda call operator of the closure type 1034 /// if this is a closure type. 1035 CXXMethodDecl *getLambdaCallOperator() const; 1036 1037 /// \brief Retrieve the lambda static invoker, the address of which 1038 /// is returned by the conversion operator, and the body of which 1039 /// is forwarded to the lambda call operator. 1040 CXXMethodDecl *getLambdaStaticInvoker() const; 1041 1042 /// \brief Retrieve the generic lambda's template parameter list. 1043 /// Returns null if the class does not represent a lambda or a generic 1044 /// lambda. 1045 TemplateParameterList *getGenericLambdaTemplateParameterList() const; 1046 1047 LambdaCaptureDefault getLambdaCaptureDefault() const { 1048 assert(isLambda()); 1049 return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault); 1050 } 1051 1052 /// \brief For a closure type, retrieve the mapping from captured 1053 /// variables and \c this to the non-static data members that store the 1054 /// values or references of the captures. 1055 /// 1056 /// \param Captures Will be populated with the mapping from captured 1057 /// variables to the corresponding fields. 1058 /// 1059 /// \param ThisCapture Will be set to the field declaration for the 1060 /// \c this capture. 1061 /// 1062 /// \note No entries will be added for init-captures, as they do not capture 1063 /// variables. 1064 void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, 1065 FieldDecl *&ThisCapture) const; 1066 1067 typedef const LambdaCapture *capture_const_iterator; 1068 typedef llvm::iterator_range<capture_const_iterator> capture_const_range; 1069 1070 capture_const_range captures() const { 1071 return capture_const_range(captures_begin(), captures_end()); 1072 } 1073 capture_const_iterator captures_begin() const { 1074 return isLambda() ? getLambdaData().Captures : nullptr; 1075 } 1076 capture_const_iterator captures_end() const { 1077 return isLambda() ? captures_begin() + getLambdaData().NumCaptures 1078 : nullptr; 1079 } 1080 1081 typedef UnresolvedSetIterator conversion_iterator; 1082 conversion_iterator conversion_begin() const { 1083 return data().Conversions.get(getASTContext()).begin(); 1084 } 1085 conversion_iterator conversion_end() const { 1086 return data().Conversions.get(getASTContext()).end(); 1087 } 1088 1089 /// Removes a conversion function from this class. The conversion 1090 /// function must currently be a member of this class. Furthermore, 1091 /// this class must currently be in the process of being defined. 1092 void removeConversion(const NamedDecl *Old); 1093 1094 /// \brief Get all conversion functions visible in current class, 1095 /// including conversion function templates. 1096 llvm::iterator_range<conversion_iterator> getVisibleConversionFunctions(); 1097 1098 /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]), 1099 /// which is a class with no user-declared constructors, no private 1100 /// or protected non-static data members, no base classes, and no virtual 1101 /// functions (C++ [dcl.init.aggr]p1). 1102 bool isAggregate() const { return data().Aggregate; } 1103 1104 /// \brief Whether this class has any in-class initializers 1105 /// for non-static data members (including those in anonymous unions or 1106 /// structs). 1107 bool hasInClassInitializer() const { return data().HasInClassInitializer; } 1108 1109 /// \brief Whether this class or any of its subobjects has any members of 1110 /// reference type which would make value-initialization ill-formed. 1111 /// 1112 /// Per C++03 [dcl.init]p5: 1113 /// - if T is a non-union class type without a user-declared constructor, 1114 /// then every non-static data member and base-class component of T is 1115 /// value-initialized [...] A program that calls for [...] 1116 /// value-initialization of an entity of reference type is ill-formed. 1117 bool hasUninitializedReferenceMember() const { 1118 return !isUnion() && !hasUserDeclaredConstructor() && 1119 data().HasUninitializedReferenceMember; 1120 } 1121 1122 /// \brief Whether this class is a POD-type (C++ [class]p4) 1123 /// 1124 /// For purposes of this function a class is POD if it is an aggregate 1125 /// that has no non-static non-POD data members, no reference data 1126 /// members, no user-defined copy assignment operator and no 1127 /// user-defined destructor. 1128 /// 1129 /// Note that this is the C++ TR1 definition of POD. 1130 bool isPOD() const { return data().PlainOldData; } 1131 1132 /// \brief True if this class is C-like, without C++-specific features, e.g. 1133 /// it contains only public fields, no bases, tag kind is not 'class', etc. 1134 bool isCLike() const; 1135 1136 /// \brief Determine whether this is an empty class in the sense of 1137 /// (C++11 [meta.unary.prop]). 1138 /// 1139 /// A non-union class is empty iff it has a virtual function, virtual base, 1140 /// data member (other than 0-width bit-field) or inherits from a non-empty 1141 /// class. 1142 /// 1143 /// \note This does NOT include a check for union-ness. 1144 bool isEmpty() const { return data().Empty; } 1145 1146 /// Whether this class is polymorphic (C++ [class.virtual]), 1147 /// which means that the class contains or inherits a virtual function. 1148 bool isPolymorphic() const { return data().Polymorphic; } 1149 1150 /// \brief Determine whether this class has a pure virtual function. 1151 /// 1152 /// The class is is abstract per (C++ [class.abstract]p2) if it declares 1153 /// a pure virtual function or inherits a pure virtual function that is 1154 /// not overridden. 1155 bool isAbstract() const { return data().Abstract; } 1156 1157 /// \brief Determine whether this class has standard layout per 1158 /// (C++ [class]p7) 1159 bool isStandardLayout() const { return data().IsStandardLayout; } 1160 1161 /// \brief Determine whether this class, or any of its class subobjects, 1162 /// contains a mutable field. 1163 bool hasMutableFields() const { return data().HasMutableFields; } 1164 1165 /// \brief Determine whether this class has any variant members. 1166 bool hasVariantMembers() const { return data().HasVariantMembers; } 1167 1168 /// \brief Determine whether this class has a trivial default constructor 1169 /// (C++11 [class.ctor]p5). 1170 bool hasTrivialDefaultConstructor() const { 1171 return hasDefaultConstructor() && 1172 (data().HasTrivialSpecialMembers & SMF_DefaultConstructor); 1173 } 1174 1175 /// \brief Determine whether this class has a non-trivial default constructor 1176 /// (C++11 [class.ctor]p5). 1177 bool hasNonTrivialDefaultConstructor() const { 1178 return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) || 1179 (needsImplicitDefaultConstructor() && 1180 !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor)); 1181 } 1182 1183 /// \brief Determine whether this class has at least one constexpr constructor 1184 /// other than the copy or move constructors. 1185 bool hasConstexprNonCopyMoveConstructor() const { 1186 return data().HasConstexprNonCopyMoveConstructor || 1187 (needsImplicitDefaultConstructor() && 1188 defaultedDefaultConstructorIsConstexpr()); 1189 } 1190 1191 /// \brief Determine whether a defaulted default constructor for this class 1192 /// would be constexpr. 1193 bool defaultedDefaultConstructorIsConstexpr() const { 1194 return data().DefaultedDefaultConstructorIsConstexpr && 1195 (!isUnion() || hasInClassInitializer() || !hasVariantMembers()); 1196 } 1197 1198 /// \brief Determine whether this class has a constexpr default constructor. 1199 bool hasConstexprDefaultConstructor() const { 1200 return data().HasConstexprDefaultConstructor || 1201 (needsImplicitDefaultConstructor() && 1202 defaultedDefaultConstructorIsConstexpr()); 1203 } 1204 1205 /// \brief Determine whether this class has a trivial copy constructor 1206 /// (C++ [class.copy]p6, C++11 [class.copy]p12) 1207 bool hasTrivialCopyConstructor() const { 1208 return data().HasTrivialSpecialMembers & SMF_CopyConstructor; 1209 } 1210 1211 /// \brief Determine whether this class has a non-trivial copy constructor 1212 /// (C++ [class.copy]p6, C++11 [class.copy]p12) 1213 bool hasNonTrivialCopyConstructor() const { 1214 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor || 1215 !hasTrivialCopyConstructor(); 1216 } 1217 1218 /// \brief Determine whether this class has a trivial move constructor 1219 /// (C++11 [class.copy]p12) 1220 bool hasTrivialMoveConstructor() const { 1221 return hasMoveConstructor() && 1222 (data().HasTrivialSpecialMembers & SMF_MoveConstructor); 1223 } 1224 1225 /// \brief Determine whether this class has a non-trivial move constructor 1226 /// (C++11 [class.copy]p12) 1227 bool hasNonTrivialMoveConstructor() const { 1228 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) || 1229 (needsImplicitMoveConstructor() && 1230 !(data().HasTrivialSpecialMembers & SMF_MoveConstructor)); 1231 } 1232 1233 /// \brief Determine whether this class has a trivial copy assignment operator 1234 /// (C++ [class.copy]p11, C++11 [class.copy]p25) 1235 bool hasTrivialCopyAssignment() const { 1236 return data().HasTrivialSpecialMembers & SMF_CopyAssignment; 1237 } 1238 1239 /// \brief Determine whether this class has a non-trivial copy assignment 1240 /// operator (C++ [class.copy]p11, C++11 [class.copy]p25) 1241 bool hasNonTrivialCopyAssignment() const { 1242 return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment || 1243 !hasTrivialCopyAssignment(); 1244 } 1245 1246 /// \brief Determine whether this class has a trivial move assignment operator 1247 /// (C++11 [class.copy]p25) 1248 bool hasTrivialMoveAssignment() const { 1249 return hasMoveAssignment() && 1250 (data().HasTrivialSpecialMembers & SMF_MoveAssignment); 1251 } 1252 1253 /// \brief Determine whether this class has a non-trivial move assignment 1254 /// operator (C++11 [class.copy]p25) 1255 bool hasNonTrivialMoveAssignment() const { 1256 return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) || 1257 (needsImplicitMoveAssignment() && 1258 !(data().HasTrivialSpecialMembers & SMF_MoveAssignment)); 1259 } 1260 1261 /// \brief Determine whether this class has a trivial destructor 1262 /// (C++ [class.dtor]p3) 1263 bool hasTrivialDestructor() const { 1264 return data().HasTrivialSpecialMembers & SMF_Destructor; 1265 } 1266 1267 /// \brief Determine whether this class has a non-trivial destructor 1268 /// (C++ [class.dtor]p3) 1269 bool hasNonTrivialDestructor() const { 1270 return !(data().HasTrivialSpecialMembers & SMF_Destructor); 1271 } 1272 1273 /// \brief Determine whether this class has a destructor which has no 1274 /// semantic effect. 1275 /// 1276 /// Any such destructor will be trivial, public, defaulted and not deleted, 1277 /// and will call only irrelevant destructors. 1278 bool hasIrrelevantDestructor() const { 1279 return data().HasIrrelevantDestructor; 1280 } 1281 1282 /// \brief Determine whether this class has a non-literal or/ volatile type 1283 /// non-static data member or base class. 1284 bool hasNonLiteralTypeFieldsOrBases() const { 1285 return data().HasNonLiteralTypeFieldsOrBases; 1286 } 1287 1288 /// \brief Determine whether this class is considered trivially copyable per 1289 /// (C++11 [class]p6). 1290 bool isTriviallyCopyable() const; 1291 1292 /// \brief Determine whether this class is considered trivial. 1293 /// 1294 /// C++11 [class]p6: 1295 /// "A trivial class is a class that has a trivial default constructor and 1296 /// is trivially copiable." 1297 bool isTrivial() const { 1298 return isTriviallyCopyable() && hasTrivialDefaultConstructor(); 1299 } 1300 1301 /// \brief Determine whether this class is a literal type. 1302 /// 1303 /// C++11 [basic.types]p10: 1304 /// A class type that has all the following properties: 1305 /// - it has a trivial destructor 1306 /// - every constructor call and full-expression in the 1307 /// brace-or-equal-intializers for non-static data members (if any) is 1308 /// a constant expression. 1309 /// - it is an aggregate type or has at least one constexpr constructor 1310 /// or constructor template that is not a copy or move constructor, and 1311 /// - all of its non-static data members and base classes are of literal 1312 /// types 1313 /// 1314 /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by 1315 /// treating types with trivial default constructors as literal types. 1316 bool isLiteral() const { 1317 return hasTrivialDestructor() && 1318 (isAggregate() || hasConstexprNonCopyMoveConstructor() || 1319 hasTrivialDefaultConstructor()) && 1320 !hasNonLiteralTypeFieldsOrBases(); 1321 } 1322 1323 /// \brief If this record is an instantiation of a member class, 1324 /// retrieves the member class from which it was instantiated. 1325 /// 1326 /// This routine will return non-null for (non-templated) member 1327 /// classes of class templates. For example, given: 1328 /// 1329 /// \code 1330 /// template<typename T> 1331 /// struct X { 1332 /// struct A { }; 1333 /// }; 1334 /// \endcode 1335 /// 1336 /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl 1337 /// whose parent is the class template specialization X<int>. For 1338 /// this declaration, getInstantiatedFromMemberClass() will return 1339 /// the CXXRecordDecl X<T>::A. When a complete definition of 1340 /// X<int>::A is required, it will be instantiated from the 1341 /// declaration returned by getInstantiatedFromMemberClass(). 1342 CXXRecordDecl *getInstantiatedFromMemberClass() const; 1343 1344 /// \brief If this class is an instantiation of a member class of a 1345 /// class template specialization, retrieves the member specialization 1346 /// information. 1347 MemberSpecializationInfo *getMemberSpecializationInfo() const { 1348 return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); 1349 } 1350 1351 /// \brief Specify that this record is an instantiation of the 1352 /// member class \p RD. 1353 void setInstantiationOfMemberClass(CXXRecordDecl *RD, 1354 TemplateSpecializationKind TSK); 1355 1356 /// \brief Retrieves the class template that is described by this 1357 /// class declaration. 1358 /// 1359 /// Every class template is represented as a ClassTemplateDecl and a 1360 /// CXXRecordDecl. The former contains template properties (such as 1361 /// the template parameter lists) while the latter contains the 1362 /// actual description of the template's 1363 /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the 1364 /// CXXRecordDecl that from a ClassTemplateDecl, while 1365 /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from 1366 /// a CXXRecordDecl. 1367 ClassTemplateDecl *getDescribedClassTemplate() const { 1368 return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>(); 1369 } 1370 1371 void setDescribedClassTemplate(ClassTemplateDecl *Template) { 1372 TemplateOrInstantiation = Template; 1373 } 1374 1375 /// \brief Determine whether this particular class is a specialization or 1376 /// instantiation of a class template or member class of a class template, 1377 /// and how it was instantiated or specialized. 1378 TemplateSpecializationKind getTemplateSpecializationKind() const; 1379 1380 /// \brief Set the kind of specialization or template instantiation this is. 1381 void setTemplateSpecializationKind(TemplateSpecializationKind TSK); 1382 1383 /// \brief Retrieve the record declaration from which this record could be 1384 /// instantiated. Returns null if this class is not a template instantiation. 1385 const CXXRecordDecl *getTemplateInstantiationPattern() const; 1386 1387 CXXRecordDecl *getTemplateInstantiationPattern() { 1388 return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this) 1389 ->getTemplateInstantiationPattern()); 1390 } 1391 1392 /// \brief Returns the destructor decl for this class. 1393 CXXDestructorDecl *getDestructor() const; 1394 1395 /// \brief Returns true if the class destructor, or any implicitly invoked 1396 /// destructors are marked noreturn. 1397 bool isAnyDestructorNoReturn() const; 1398 1399 /// \brief If the class is a local class [class.local], returns 1400 /// the enclosing function declaration. 1401 const FunctionDecl *isLocalClass() const { 1402 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext())) 1403 return RD->isLocalClass(); 1404 1405 return dyn_cast<FunctionDecl>(getDeclContext()); 1406 } 1407 1408 FunctionDecl *isLocalClass() { 1409 return const_cast<FunctionDecl*>( 1410 const_cast<const CXXRecordDecl*>(this)->isLocalClass()); 1411 } 1412 1413 /// \brief Determine whether this dependent class is a current instantiation, 1414 /// when viewed from within the given context. 1415 bool isCurrentInstantiation(const DeclContext *CurContext) const; 1416 1417 /// \brief Determine whether this class is derived from the class \p Base. 1418 /// 1419 /// This routine only determines whether this class is derived from \p Base, 1420 /// but does not account for factors that may make a Derived -> Base class 1421 /// ill-formed, such as private/protected inheritance or multiple, ambiguous 1422 /// base class subobjects. 1423 /// 1424 /// \param Base the base class we are searching for. 1425 /// 1426 /// \returns true if this class is derived from Base, false otherwise. 1427 bool isDerivedFrom(const CXXRecordDecl *Base) const; 1428 1429 /// \brief Determine whether this class is derived from the type \p Base. 1430 /// 1431 /// This routine only determines whether this class is derived from \p Base, 1432 /// but does not account for factors that may make a Derived -> Base class 1433 /// ill-formed, such as private/protected inheritance or multiple, ambiguous 1434 /// base class subobjects. 1435 /// 1436 /// \param Base the base class we are searching for. 1437 /// 1438 /// \param Paths will contain the paths taken from the current class to the 1439 /// given \p Base class. 1440 /// 1441 /// \returns true if this class is derived from \p Base, false otherwise. 1442 /// 1443 /// \todo add a separate parameter to configure IsDerivedFrom, rather than 1444 /// tangling input and output in \p Paths 1445 bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const; 1446 1447 /// \brief Determine whether this class is virtually derived from 1448 /// the class \p Base. 1449 /// 1450 /// This routine only determines whether this class is virtually 1451 /// derived from \p Base, but does not account for factors that may 1452 /// make a Derived -> Base class ill-formed, such as 1453 /// private/protected inheritance or multiple, ambiguous base class 1454 /// subobjects. 1455 /// 1456 /// \param Base the base class we are searching for. 1457 /// 1458 /// \returns true if this class is virtually derived from Base, 1459 /// false otherwise. 1460 bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const; 1461 1462 /// \brief Determine whether this class is provably not derived from 1463 /// the type \p Base. 1464 bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const; 1465 1466 /// \brief Function type used by forallBases() as a callback. 1467 /// 1468 /// \param BaseDefinition the definition of the base class 1469 /// 1470 /// \returns true if this base matched the search criteria 1471 typedef llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)> 1472 ForallBasesCallback; 1473 1474 /// \brief Determines if the given callback holds for all the direct 1475 /// or indirect base classes of this type. 1476 /// 1477 /// The class itself does not count as a base class. This routine 1478 /// returns false if the class has non-computable base classes. 1479 /// 1480 /// \param BaseMatches Callback invoked for each (direct or indirect) base 1481 /// class of this type, or if \p AllowShortCircuit is true then until a call 1482 /// returns false. 1483 /// 1484 /// \param AllowShortCircuit if false, forces the callback to be called 1485 /// for every base class, even if a dependent or non-matching base was 1486 /// found. 1487 bool forallBases(ForallBasesCallback BaseMatches, 1488 bool AllowShortCircuit = true) const; 1489 1490 /// \brief Function type used by lookupInBases() to determine whether a 1491 /// specific base class subobject matches the lookup criteria. 1492 /// 1493 /// \param Specifier the base-class specifier that describes the inheritance 1494 /// from the base class we are trying to match. 1495 /// 1496 /// \param Path the current path, from the most-derived class down to the 1497 /// base named by the \p Specifier. 1498 /// 1499 /// \returns true if this base matched the search criteria, false otherwise. 1500 typedef llvm::function_ref<bool(const CXXBaseSpecifier *Specifier, 1501 CXXBasePath &Path)> BaseMatchesCallback; 1502 1503 /// \brief Look for entities within the base classes of this C++ class, 1504 /// transitively searching all base class subobjects. 1505 /// 1506 /// This routine uses the callback function \p BaseMatches to find base 1507 /// classes meeting some search criteria, walking all base class subobjects 1508 /// and populating the given \p Paths structure with the paths through the 1509 /// inheritance hierarchy that resulted in a match. On a successful search, 1510 /// the \p Paths structure can be queried to retrieve the matching paths and 1511 /// to determine if there were any ambiguities. 1512 /// 1513 /// \param BaseMatches callback function used to determine whether a given 1514 /// base matches the user-defined search criteria. 1515 /// 1516 /// \param Paths used to record the paths from this class to its base class 1517 /// subobjects that match the search criteria. 1518 /// 1519 /// \returns true if there exists any path from this class to a base class 1520 /// subobject that matches the search criteria. 1521 bool lookupInBases(BaseMatchesCallback BaseMatches, 1522 CXXBasePaths &Paths) const; 1523 1524 /// \brief Base-class lookup callback that determines whether the given 1525 /// base class specifier refers to a specific class declaration. 1526 /// 1527 /// This callback can be used with \c lookupInBases() to determine whether 1528 /// a given derived class has is a base class subobject of a particular type. 1529 /// The base record pointer should refer to the canonical CXXRecordDecl of the 1530 /// base class that we are searching for. 1531 static bool FindBaseClass(const CXXBaseSpecifier *Specifier, 1532 CXXBasePath &Path, const CXXRecordDecl *BaseRecord); 1533 1534 /// \brief Base-class lookup callback that determines whether the 1535 /// given base class specifier refers to a specific class 1536 /// declaration and describes virtual derivation. 1537 /// 1538 /// This callback can be used with \c lookupInBases() to determine 1539 /// whether a given derived class has is a virtual base class 1540 /// subobject of a particular type. The base record pointer should 1541 /// refer to the canonical CXXRecordDecl of the base class that we 1542 /// are searching for. 1543 static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier, 1544 CXXBasePath &Path, 1545 const CXXRecordDecl *BaseRecord); 1546 1547 /// \brief Base-class lookup callback that determines whether there exists 1548 /// a tag with the given name. 1549 /// 1550 /// This callback can be used with \c lookupInBases() to find tag members 1551 /// of the given name within a C++ class hierarchy. 1552 static bool FindTagMember(const CXXBaseSpecifier *Specifier, 1553 CXXBasePath &Path, DeclarationName Name); 1554 1555 /// \brief Base-class lookup callback that determines whether there exists 1556 /// a member with the given name. 1557 /// 1558 /// This callback can be used with \c lookupInBases() to find members 1559 /// of the given name within a C++ class hierarchy. 1560 static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier, 1561 CXXBasePath &Path, DeclarationName Name); 1562 1563 /// \brief Base-class lookup callback that determines whether there exists 1564 /// a member with the given name that can be used in a nested-name-specifier. 1565 /// 1566 /// This callback can be used with \c lookupInBases() to find members of 1567 /// the given name within a C++ class hierarchy that can occur within 1568 /// nested-name-specifiers. 1569 static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier, 1570 CXXBasePath &Path, 1571 DeclarationName Name); 1572 1573 /// \brief Retrieve the final overriders for each virtual member 1574 /// function in the class hierarchy where this class is the 1575 /// most-derived class in the class hierarchy. 1576 void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const; 1577 1578 /// \brief Get the indirect primary bases for this class. 1579 void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const; 1580 1581 /// Renders and displays an inheritance diagram 1582 /// for this C++ class and all of its base classes (transitively) using 1583 /// GraphViz. 1584 void viewInheritance(ASTContext& Context) const; 1585 1586 /// \brief Calculates the access of a decl that is reached 1587 /// along a path. 1588 static AccessSpecifier MergeAccess(AccessSpecifier PathAccess, 1589 AccessSpecifier DeclAccess) { 1590 assert(DeclAccess != AS_none); 1591 if (DeclAccess == AS_private) return AS_none; 1592 return (PathAccess > DeclAccess ? PathAccess : DeclAccess); 1593 } 1594 1595 /// \brief Indicates that the declaration of a defaulted or deleted special 1596 /// member function is now complete. 1597 void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD); 1598 1599 /// \brief Indicates that the definition of this class is now complete. 1600 void completeDefinition() override; 1601 1602 /// \brief Indicates that the definition of this class is now complete, 1603 /// and provides a final overrider map to help determine 1604 /// 1605 /// \param FinalOverriders The final overrider map for this class, which can 1606 /// be provided as an optimization for abstract-class checking. If NULL, 1607 /// final overriders will be computed if they are needed to complete the 1608 /// definition. 1609 void completeDefinition(CXXFinalOverriderMap *FinalOverriders); 1610 1611 /// \brief Determine whether this class may end up being abstract, even though 1612 /// it is not yet known to be abstract. 1613 /// 1614 /// \returns true if this class is not known to be abstract but has any 1615 /// base classes that are abstract. In this case, \c completeDefinition() 1616 /// will need to compute final overriders to determine whether the class is 1617 /// actually abstract. 1618 bool mayBeAbstract() const; 1619 1620 /// \brief If this is the closure type of a lambda expression, retrieve the 1621 /// number to be used for name mangling in the Itanium C++ ABI. 1622 /// 1623 /// Zero indicates that this closure type has internal linkage, so the 1624 /// mangling number does not matter, while a non-zero value indicates which 1625 /// lambda expression this is in this particular context. 1626 unsigned getLambdaManglingNumber() const { 1627 assert(isLambda() && "Not a lambda closure type!"); 1628 return getLambdaData().ManglingNumber; 1629 } 1630 1631 /// \brief Retrieve the declaration that provides additional context for a 1632 /// lambda, when the normal declaration context is not specific enough. 1633 /// 1634 /// Certain contexts (default arguments of in-class function parameters and 1635 /// the initializers of data members) have separate name mangling rules for 1636 /// lambdas within the Itanium C++ ABI. For these cases, this routine provides 1637 /// the declaration in which the lambda occurs, e.g., the function parameter 1638 /// or the non-static data member. Otherwise, it returns NULL to imply that 1639 /// the declaration context suffices. 1640 Decl *getLambdaContextDecl() const { 1641 assert(isLambda() && "Not a lambda closure type!"); 1642 return getLambdaData().ContextDecl; 1643 } 1644 1645 /// \brief Set the mangling number and context declaration for a lambda 1646 /// class. 1647 void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) { 1648 getLambdaData().ManglingNumber = ManglingNumber; 1649 getLambdaData().ContextDecl = ContextDecl; 1650 } 1651 1652 /// \brief Returns the inheritance model used for this record. 1653 MSInheritanceAttr::Spelling getMSInheritanceModel() const; 1654 /// \brief Calculate what the inheritance model would be for this class. 1655 MSInheritanceAttr::Spelling calculateInheritanceModel() const; 1656 1657 /// In the Microsoft C++ ABI, use zero for the field offset of a null data 1658 /// member pointer if we can guarantee that zero is not a valid field offset, 1659 /// or if the member pointer has multiple fields. Polymorphic classes have a 1660 /// vfptr at offset zero, so we can use zero for null. If there are multiple 1661 /// fields, we can use zero even if it is a valid field offset because 1662 /// null-ness testing will check the other fields. 1663 bool nullFieldOffsetIsZero() const { 1664 return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false, 1665 getMSInheritanceModel()) || 1666 (hasDefinition() && isPolymorphic()); 1667 } 1668 1669 /// \brief Controls when vtordisps will be emitted if this record is used as a 1670 /// virtual base. 1671 MSVtorDispAttr::Mode getMSVtorDispMode() const; 1672 1673 /// \brief Determine whether this lambda expression was known to be dependent 1674 /// at the time it was created, even if its context does not appear to be 1675 /// dependent. 1676 /// 1677 /// This flag is a workaround for an issue with parsing, where default 1678 /// arguments are parsed before their enclosing function declarations have 1679 /// been created. This means that any lambda expressions within those 1680 /// default arguments will have as their DeclContext the context enclosing 1681 /// the function declaration, which may be non-dependent even when the 1682 /// function declaration itself is dependent. This flag indicates when we 1683 /// know that the lambda is dependent despite that. 1684 bool isDependentLambda() const { 1685 return isLambda() && getLambdaData().Dependent; 1686 } 1687 1688 TypeSourceInfo *getLambdaTypeInfo() const { 1689 return getLambdaData().MethodTyInfo; 1690 } 1691 1692 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 1693 static bool classofKind(Kind K) { 1694 return K >= firstCXXRecord && K <= lastCXXRecord; 1695 } 1696 1697 friend class ASTDeclReader; 1698 friend class ASTDeclWriter; 1699 friend class ASTReader; 1700 friend class ASTWriter; 1701 }; 1702 1703 /// \brief Represents a static or instance method of a struct/union/class. 1704 /// 1705 /// In the terminology of the C++ Standard, these are the (static and 1706 /// non-static) member functions, whether virtual or not. 1707 class CXXMethodDecl : public FunctionDecl { 1708 void anchor() override; 1709 protected: 1710 CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD, 1711 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo, 1712 QualType T, TypeSourceInfo *TInfo, 1713 StorageClass SC, bool isInline, 1714 bool isConstexpr, SourceLocation EndLocation) 1715 : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo, 1716 SC, isInline, isConstexpr) { 1717 if (EndLocation.isValid()) 1718 setRangeEnd(EndLocation); 1719 } 1720 1721 public: 1722 static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD, 1723 SourceLocation StartLoc, 1724 const DeclarationNameInfo &NameInfo, 1725 QualType T, TypeSourceInfo *TInfo, 1726 StorageClass SC, 1727 bool isInline, 1728 bool isConstexpr, 1729 SourceLocation EndLocation); 1730 1731 static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID); 1732 1733 bool isStatic() const; 1734 bool isInstance() const { return !isStatic(); } 1735 1736 /// Returns true if the given operator is implicitly static in a record 1737 /// context. 1738 static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) { 1739 // [class.free]p1: 1740 // Any allocation function for a class T is a static member 1741 // (even if not explicitly declared static). 1742 // [class.free]p6 Any deallocation function for a class X is a static member 1743 // (even if not explicitly declared static). 1744 return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete || 1745 OOK == OO_Array_Delete; 1746 } 1747 1748 bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); } 1749 bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); } 1750 1751 bool isVirtual() const { 1752 CXXMethodDecl *CD = 1753 cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl()); 1754 1755 // Member function is virtual if it is marked explicitly so, or if it is 1756 // declared in __interface -- then it is automatically pure virtual. 1757 if (CD->isVirtualAsWritten() || CD->isPure()) 1758 return true; 1759 1760 return (CD->begin_overridden_methods() != CD->end_overridden_methods()); 1761 } 1762 1763 /// \brief Determine whether this is a usual deallocation function 1764 /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded 1765 /// delete or delete[] operator with a particular signature. 1766 bool isUsualDeallocationFunction() const; 1767 1768 /// \brief Determine whether this is a copy-assignment operator, regardless 1769 /// of whether it was declared implicitly or explicitly. 1770 bool isCopyAssignmentOperator() const; 1771 1772 /// \brief Determine whether this is a move assignment operator. 1773 bool isMoveAssignmentOperator() const; 1774 1775 CXXMethodDecl *getCanonicalDecl() override { 1776 return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl()); 1777 } 1778 const CXXMethodDecl *getCanonicalDecl() const { 1779 return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl(); 1780 } 1781 1782 CXXMethodDecl *getMostRecentDecl() { 1783 return cast<CXXMethodDecl>( 1784 static_cast<FunctionDecl *>(this)->getMostRecentDecl()); 1785 } 1786 const CXXMethodDecl *getMostRecentDecl() const { 1787 return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl(); 1788 } 1789 1790 /// True if this method is user-declared and was not 1791 /// deleted or defaulted on its first declaration. 1792 bool isUserProvided() const { 1793 return !(isDeleted() || getCanonicalDecl()->isDefaulted()); 1794 } 1795 1796 /// 1797 void addOverriddenMethod(const CXXMethodDecl *MD); 1798 1799 typedef const CXXMethodDecl *const* method_iterator; 1800 1801 method_iterator begin_overridden_methods() const; 1802 method_iterator end_overridden_methods() const; 1803 unsigned size_overridden_methods() const; 1804 1805 /// Returns the parent of this method declaration, which 1806 /// is the class in which this method is defined. 1807 const CXXRecordDecl *getParent() const { 1808 return cast<CXXRecordDecl>(FunctionDecl::getParent()); 1809 } 1810 1811 /// Returns the parent of this method declaration, which 1812 /// is the class in which this method is defined. 1813 CXXRecordDecl *getParent() { 1814 return const_cast<CXXRecordDecl *>( 1815 cast<CXXRecordDecl>(FunctionDecl::getParent())); 1816 } 1817 1818 /// \brief Returns the type of the \c this pointer. 1819 /// 1820 /// Should only be called for instance (i.e., non-static) methods. 1821 QualType getThisType(ASTContext &C) const; 1822 1823 unsigned getTypeQualifiers() const { 1824 return getType()->getAs<FunctionProtoType>()->getTypeQuals(); 1825 } 1826 1827 /// \brief Retrieve the ref-qualifier associated with this method. 1828 /// 1829 /// In the following example, \c f() has an lvalue ref-qualifier, \c g() 1830 /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier. 1831 /// @code 1832 /// struct X { 1833 /// void f() &; 1834 /// void g() &&; 1835 /// void h(); 1836 /// }; 1837 /// @endcode 1838 RefQualifierKind getRefQualifier() const { 1839 return getType()->getAs<FunctionProtoType>()->getRefQualifier(); 1840 } 1841 1842 bool hasInlineBody() const; 1843 1844 /// \brief Determine whether this is a lambda closure type's static member 1845 /// function that is used for the result of the lambda's conversion to 1846 /// function pointer (for a lambda with no captures). 1847 /// 1848 /// The function itself, if used, will have a placeholder body that will be 1849 /// supplied by IR generation to either forward to the function call operator 1850 /// or clone the function call operator. 1851 bool isLambdaStaticInvoker() const; 1852 1853 /// \brief Find the method in \p RD that corresponds to this one. 1854 /// 1855 /// Find if \p RD or one of the classes it inherits from override this method. 1856 /// If so, return it. \p RD is assumed to be a subclass of the class defining 1857 /// this method (or be the class itself), unless \p MayBeBase is set to true. 1858 CXXMethodDecl * 1859 getCorrespondingMethodInClass(const CXXRecordDecl *RD, 1860 bool MayBeBase = false); 1861 1862 const CXXMethodDecl * 1863 getCorrespondingMethodInClass(const CXXRecordDecl *RD, 1864 bool MayBeBase = false) const { 1865 return const_cast<CXXMethodDecl *>(this) 1866 ->getCorrespondingMethodInClass(RD, MayBeBase); 1867 } 1868 1869 // Implement isa/cast/dyncast/etc. 1870 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 1871 static bool classofKind(Kind K) { 1872 return K >= firstCXXMethod && K <= lastCXXMethod; 1873 } 1874 }; 1875 1876 /// \brief Represents a C++ base or member initializer. 1877 /// 1878 /// This is part of a constructor initializer that 1879 /// initializes one non-static member variable or one base class. For 1880 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member 1881 /// initializers: 1882 /// 1883 /// \code 1884 /// class A { }; 1885 /// class B : public A { 1886 /// float f; 1887 /// public: 1888 /// B(A& a) : A(a), f(3.14159) { } 1889 /// }; 1890 /// \endcode 1891 class CXXCtorInitializer { 1892 /// \brief Either the base class name/delegating constructor type (stored as 1893 /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field 1894 /// (IndirectFieldDecl*) being initialized. 1895 llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *> 1896 Initializee; 1897 1898 /// \brief The source location for the field name or, for a base initializer 1899 /// pack expansion, the location of the ellipsis. 1900 /// 1901 /// In the case of a delegating 1902 /// constructor, it will still include the type's source location as the 1903 /// Initializee points to the CXXConstructorDecl (to allow loop detection). 1904 SourceLocation MemberOrEllipsisLocation; 1905 1906 /// \brief The argument used to initialize the base or member, which may 1907 /// end up constructing an object (when multiple arguments are involved). 1908 Stmt *Init; 1909 1910 /// \brief Location of the left paren of the ctor-initializer. 1911 SourceLocation LParenLoc; 1912 1913 /// \brief Location of the right paren of the ctor-initializer. 1914 SourceLocation RParenLoc; 1915 1916 /// \brief If the initializee is a type, whether that type makes this 1917 /// a delegating initialization. 1918 bool IsDelegating : 1; 1919 1920 /// \brief If the initializer is a base initializer, this keeps track 1921 /// of whether the base is virtual or not. 1922 bool IsVirtual : 1; 1923 1924 /// \brief Whether or not the initializer is explicitly written 1925 /// in the sources. 1926 bool IsWritten : 1; 1927 1928 /// If IsWritten is true, then this number keeps track of the textual order 1929 /// of this initializer in the original sources, counting from 0; otherwise, 1930 /// it stores the number of array index variables stored after this object 1931 /// in memory. 1932 unsigned SourceOrderOrNumArrayIndices : 13; 1933 1934 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 1935 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1936 SourceLocation R, VarDecl **Indices, unsigned NumIndices); 1937 1938 public: 1939 /// \brief Creates a new base-class initializer. 1940 explicit 1941 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual, 1942 SourceLocation L, Expr *Init, SourceLocation R, 1943 SourceLocation EllipsisLoc); 1944 1945 /// \brief Creates a new member initializer. 1946 explicit 1947 CXXCtorInitializer(ASTContext &Context, FieldDecl *Member, 1948 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1949 SourceLocation R); 1950 1951 /// \brief Creates a new anonymous field initializer. 1952 explicit 1953 CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member, 1954 SourceLocation MemberLoc, SourceLocation L, Expr *Init, 1955 SourceLocation R); 1956 1957 /// \brief Creates a new delegating initializer. 1958 explicit 1959 CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, 1960 SourceLocation L, Expr *Init, SourceLocation R); 1961 1962 /// \brief Creates a new member initializer that optionally contains 1963 /// array indices used to describe an elementwise initialization. 1964 static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member, 1965 SourceLocation MemberLoc, SourceLocation L, 1966 Expr *Init, SourceLocation R, 1967 VarDecl **Indices, unsigned NumIndices); 1968 1969 /// \brief Determine whether this initializer is initializing a base class. 1970 bool isBaseInitializer() const { 1971 return Initializee.is<TypeSourceInfo*>() && !IsDelegating; 1972 } 1973 1974 /// \brief Determine whether this initializer is initializing a non-static 1975 /// data member. 1976 bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); } 1977 1978 bool isAnyMemberInitializer() const { 1979 return isMemberInitializer() || isIndirectMemberInitializer(); 1980 } 1981 1982 bool isIndirectMemberInitializer() const { 1983 return Initializee.is<IndirectFieldDecl*>(); 1984 } 1985 1986 /// \brief Determine whether this initializer is an implicit initializer 1987 /// generated for a field with an initializer defined on the member 1988 /// declaration. 1989 /// 1990 /// In-class member initializers (also known as "non-static data member 1991 /// initializations", NSDMIs) were introduced in C++11. 1992 bool isInClassMemberInitializer() const { 1993 return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass; 1994 } 1995 1996 /// \brief Determine whether this initializer is creating a delegating 1997 /// constructor. 1998 bool isDelegatingInitializer() const { 1999 return Initializee.is<TypeSourceInfo*>() && IsDelegating; 2000 } 2001 2002 /// \brief Determine whether this initializer is a pack expansion. 2003 bool isPackExpansion() const { 2004 return isBaseInitializer() && MemberOrEllipsisLocation.isValid(); 2005 } 2006 2007 // \brief For a pack expansion, returns the location of the ellipsis. 2008 SourceLocation getEllipsisLoc() const { 2009 assert(isPackExpansion() && "Initializer is not a pack expansion"); 2010 return MemberOrEllipsisLocation; 2011 } 2012 2013 /// If this is a base class initializer, returns the type of the 2014 /// base class with location information. Otherwise, returns an NULL 2015 /// type location. 2016 TypeLoc getBaseClassLoc() const; 2017 2018 /// If this is a base class initializer, returns the type of the base class. 2019 /// Otherwise, returns null. 2020 const Type *getBaseClass() const; 2021 2022 /// Returns whether the base is virtual or not. 2023 bool isBaseVirtual() const { 2024 assert(isBaseInitializer() && "Must call this on base initializer!"); 2025 2026 return IsVirtual; 2027 } 2028 2029 /// \brief Returns the declarator information for a base class or delegating 2030 /// initializer. 2031 TypeSourceInfo *getTypeSourceInfo() const { 2032 return Initializee.dyn_cast<TypeSourceInfo *>(); 2033 } 2034 2035 /// \brief If this is a member initializer, returns the declaration of the 2036 /// non-static data member being initialized. Otherwise, returns null. 2037 FieldDecl *getMember() const { 2038 if (isMemberInitializer()) 2039 return Initializee.get<FieldDecl*>(); 2040 return nullptr; 2041 } 2042 FieldDecl *getAnyMember() const { 2043 if (isMemberInitializer()) 2044 return Initializee.get<FieldDecl*>(); 2045 if (isIndirectMemberInitializer()) 2046 return Initializee.get<IndirectFieldDecl*>()->getAnonField(); 2047 return nullptr; 2048 } 2049 2050 IndirectFieldDecl *getIndirectMember() const { 2051 if (isIndirectMemberInitializer()) 2052 return Initializee.get<IndirectFieldDecl*>(); 2053 return nullptr; 2054 } 2055 2056 SourceLocation getMemberLocation() const { 2057 return MemberOrEllipsisLocation; 2058 } 2059 2060 /// \brief Determine the source location of the initializer. 2061 SourceLocation getSourceLocation() const; 2062 2063 /// \brief Determine the source range covering the entire initializer. 2064 SourceRange getSourceRange() const LLVM_READONLY; 2065 2066 /// \brief Determine whether this initializer is explicitly written 2067 /// in the source code. 2068 bool isWritten() const { return IsWritten; } 2069 2070 /// \brief Return the source position of the initializer, counting from 0. 2071 /// If the initializer was implicit, -1 is returned. 2072 int getSourceOrder() const { 2073 return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1; 2074 } 2075 2076 /// \brief Set the source order of this initializer. 2077 /// 2078 /// This can only be called once for each initializer; it cannot be called 2079 /// on an initializer having a positive number of (implicit) array indices. 2080 /// 2081 /// This assumes that the initializer was written in the source code, and 2082 /// ensures that isWritten() returns true. 2083 void setSourceOrder(int pos) { 2084 assert(!IsWritten && 2085 "calling twice setSourceOrder() on the same initializer"); 2086 assert(SourceOrderOrNumArrayIndices == 0 && 2087 "setSourceOrder() used when there are implicit array indices"); 2088 assert(pos >= 0 && 2089 "setSourceOrder() used to make an initializer implicit"); 2090 IsWritten = true; 2091 SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos); 2092 } 2093 2094 SourceLocation getLParenLoc() const { return LParenLoc; } 2095 SourceLocation getRParenLoc() const { return RParenLoc; } 2096 2097 /// \brief Determine the number of implicit array indices used while 2098 /// described an array member initialization. 2099 unsigned getNumArrayIndices() const { 2100 return IsWritten ? 0 : SourceOrderOrNumArrayIndices; 2101 } 2102 2103 /// \brief Retrieve a particular array index variable used to 2104 /// describe an array member initialization. 2105 VarDecl *getArrayIndex(unsigned I) { 2106 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2107 return reinterpret_cast<VarDecl **>(this + 1)[I]; 2108 } 2109 const VarDecl *getArrayIndex(unsigned I) const { 2110 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2111 return reinterpret_cast<const VarDecl * const *>(this + 1)[I]; 2112 } 2113 void setArrayIndex(unsigned I, VarDecl *Index) { 2114 assert(I < getNumArrayIndices() && "Out of bounds member array index"); 2115 reinterpret_cast<VarDecl **>(this + 1)[I] = Index; 2116 } 2117 ArrayRef<VarDecl *> getArrayIndexes() { 2118 assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init"); 2119 return llvm::makeArrayRef(reinterpret_cast<VarDecl **>(this + 1), 2120 getNumArrayIndices()); 2121 } 2122 2123 /// \brief Get the initializer. 2124 Expr *getInit() const { return static_cast<Expr*>(Init); } 2125 }; 2126 2127 /// \brief Represents a C++ constructor within a class. 2128 /// 2129 /// For example: 2130 /// 2131 /// \code 2132 /// class X { 2133 /// public: 2134 /// explicit X(int); // represented by a CXXConstructorDecl. 2135 /// }; 2136 /// \endcode 2137 class CXXConstructorDecl : public CXXMethodDecl { 2138 void anchor() override; 2139 /// \brief Whether this constructor declaration has the \c explicit keyword 2140 /// specified. 2141 bool IsExplicitSpecified : 1; 2142 2143 /// \name Support for base and member initializers. 2144 /// \{ 2145 /// \brief The arguments used to initialize the base or member. 2146 LazyCXXCtorInitializersPtr CtorInitializers; 2147 unsigned NumCtorInitializers; 2148 /// \} 2149 2150 CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2151 const DeclarationNameInfo &NameInfo, 2152 QualType T, TypeSourceInfo *TInfo, 2153 bool isExplicitSpecified, bool isInline, 2154 bool isImplicitlyDeclared, bool isConstexpr) 2155 : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, 2156 SC_None, isInline, isConstexpr, SourceLocation()), 2157 IsExplicitSpecified(isExplicitSpecified), CtorInitializers(nullptr), 2158 NumCtorInitializers(0) { 2159 setImplicit(isImplicitlyDeclared); 2160 } 2161 2162 public: 2163 static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2164 static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2165 SourceLocation StartLoc, 2166 const DeclarationNameInfo &NameInfo, 2167 QualType T, TypeSourceInfo *TInfo, 2168 bool isExplicit, 2169 bool isInline, bool isImplicitlyDeclared, 2170 bool isConstexpr); 2171 2172 /// \brief Determine whether this constructor declaration has the 2173 /// \c explicit keyword specified. 2174 bool isExplicitSpecified() const { return IsExplicitSpecified; } 2175 2176 /// \brief Determine whether this constructor was marked "explicit" or not. 2177 bool isExplicit() const { 2178 return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified(); 2179 } 2180 2181 /// \brief Iterates through the member/base initializer list. 2182 typedef CXXCtorInitializer **init_iterator; 2183 2184 /// \brief Iterates through the member/base initializer list. 2185 typedef CXXCtorInitializer *const *init_const_iterator; 2186 2187 typedef llvm::iterator_range<init_iterator> init_range; 2188 typedef llvm::iterator_range<init_const_iterator> init_const_range; 2189 2190 init_range inits() { return init_range(init_begin(), init_end()); } 2191 init_const_range inits() const { 2192 return init_const_range(init_begin(), init_end()); 2193 } 2194 2195 /// \brief Retrieve an iterator to the first initializer. 2196 init_iterator init_begin() { 2197 const auto *ConstThis = this; 2198 return const_cast<init_iterator>(ConstThis->init_begin()); 2199 } 2200 /// \brief Retrieve an iterator to the first initializer. 2201 init_const_iterator init_begin() const; 2202 2203 /// \brief Retrieve an iterator past the last initializer. 2204 init_iterator init_end() { 2205 return init_begin() + NumCtorInitializers; 2206 } 2207 /// \brief Retrieve an iterator past the last initializer. 2208 init_const_iterator init_end() const { 2209 return init_begin() + NumCtorInitializers; 2210 } 2211 2212 typedef std::reverse_iterator<init_iterator> init_reverse_iterator; 2213 typedef std::reverse_iterator<init_const_iterator> 2214 init_const_reverse_iterator; 2215 2216 init_reverse_iterator init_rbegin() { 2217 return init_reverse_iterator(init_end()); 2218 } 2219 init_const_reverse_iterator init_rbegin() const { 2220 return init_const_reverse_iterator(init_end()); 2221 } 2222 2223 init_reverse_iterator init_rend() { 2224 return init_reverse_iterator(init_begin()); 2225 } 2226 init_const_reverse_iterator init_rend() const { 2227 return init_const_reverse_iterator(init_begin()); 2228 } 2229 2230 /// \brief Determine the number of arguments used to initialize the member 2231 /// or base. 2232 unsigned getNumCtorInitializers() const { 2233 return NumCtorInitializers; 2234 } 2235 2236 void setNumCtorInitializers(unsigned numCtorInitializers) { 2237 NumCtorInitializers = numCtorInitializers; 2238 } 2239 2240 void setCtorInitializers(CXXCtorInitializer **Initializers) { 2241 CtorInitializers = Initializers; 2242 } 2243 2244 /// \brief Determine whether this constructor is a delegating constructor. 2245 bool isDelegatingConstructor() const { 2246 return (getNumCtorInitializers() == 1) && 2247 init_begin()[0]->isDelegatingInitializer(); 2248 } 2249 2250 /// \brief When this constructor delegates to another, retrieve the target. 2251 CXXConstructorDecl *getTargetConstructor() const; 2252 2253 /// Whether this constructor is a default 2254 /// constructor (C++ [class.ctor]p5), which can be used to 2255 /// default-initialize a class of this type. 2256 bool isDefaultConstructor() const; 2257 2258 /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2, 2259 /// which can be used to copy the class. 2260 /// 2261 /// \p TypeQuals will be set to the qualifiers on the 2262 /// argument type. For example, \p TypeQuals would be set to \c 2263 /// Qualifiers::Const for the following copy constructor: 2264 /// 2265 /// \code 2266 /// class X { 2267 /// public: 2268 /// X(const X&); 2269 /// }; 2270 /// \endcode 2271 bool isCopyConstructor(unsigned &TypeQuals) const; 2272 2273 /// Whether this constructor is a copy 2274 /// constructor (C++ [class.copy]p2, which can be used to copy the 2275 /// class. 2276 bool isCopyConstructor() const { 2277 unsigned TypeQuals = 0; 2278 return isCopyConstructor(TypeQuals); 2279 } 2280 2281 /// \brief Determine whether this constructor is a move constructor 2282 /// (C++11 [class.copy]p3), which can be used to move values of the class. 2283 /// 2284 /// \param TypeQuals If this constructor is a move constructor, will be set 2285 /// to the type qualifiers on the referent of the first parameter's type. 2286 bool isMoveConstructor(unsigned &TypeQuals) const; 2287 2288 /// \brief Determine whether this constructor is a move constructor 2289 /// (C++11 [class.copy]p3), which can be used to move values of the class. 2290 bool isMoveConstructor() const { 2291 unsigned TypeQuals = 0; 2292 return isMoveConstructor(TypeQuals); 2293 } 2294 2295 /// \brief Determine whether this is a copy or move constructor. 2296 /// 2297 /// \param TypeQuals Will be set to the type qualifiers on the reference 2298 /// parameter, if in fact this is a copy or move constructor. 2299 bool isCopyOrMoveConstructor(unsigned &TypeQuals) const; 2300 2301 /// \brief Determine whether this a copy or move constructor. 2302 bool isCopyOrMoveConstructor() const { 2303 unsigned Quals; 2304 return isCopyOrMoveConstructor(Quals); 2305 } 2306 2307 /// Whether this constructor is a 2308 /// converting constructor (C++ [class.conv.ctor]), which can be 2309 /// used for user-defined conversions. 2310 bool isConvertingConstructor(bool AllowExplicit) const; 2311 2312 /// \brief Determine whether this is a member template specialization that 2313 /// would copy the object to itself. Such constructors are never used to copy 2314 /// an object. 2315 bool isSpecializationCopyingObject() const; 2316 2317 /// \brief Get the constructor that this inheriting constructor is based on. 2318 const CXXConstructorDecl *getInheritedConstructor() const; 2319 2320 /// \brief Set the constructor that this inheriting constructor is based on. 2321 void setInheritedConstructor(const CXXConstructorDecl *BaseCtor); 2322 2323 CXXConstructorDecl *getCanonicalDecl() override { 2324 return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl()); 2325 } 2326 const CXXConstructorDecl *getCanonicalDecl() const { 2327 return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl(); 2328 } 2329 2330 // Implement isa/cast/dyncast/etc. 2331 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2332 static bool classofKind(Kind K) { return K == CXXConstructor; } 2333 2334 friend class ASTDeclReader; 2335 friend class ASTDeclWriter; 2336 }; 2337 2338 /// \brief Represents a C++ destructor within a class. 2339 /// 2340 /// For example: 2341 /// 2342 /// \code 2343 /// class X { 2344 /// public: 2345 /// ~X(); // represented by a CXXDestructorDecl. 2346 /// }; 2347 /// \endcode 2348 class CXXDestructorDecl : public CXXMethodDecl { 2349 void anchor() override; 2350 2351 FunctionDecl *OperatorDelete; 2352 2353 CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2354 const DeclarationNameInfo &NameInfo, 2355 QualType T, TypeSourceInfo *TInfo, 2356 bool isInline, bool isImplicitlyDeclared) 2357 : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo, 2358 SC_None, isInline, /*isConstexpr=*/false, SourceLocation()), 2359 OperatorDelete(nullptr) { 2360 setImplicit(isImplicitlyDeclared); 2361 } 2362 2363 public: 2364 static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2365 SourceLocation StartLoc, 2366 const DeclarationNameInfo &NameInfo, 2367 QualType T, TypeSourceInfo* TInfo, 2368 bool isInline, 2369 bool isImplicitlyDeclared); 2370 static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID); 2371 2372 void setOperatorDelete(FunctionDecl *OD); 2373 const FunctionDecl *getOperatorDelete() const { 2374 return cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete; 2375 } 2376 2377 // Implement isa/cast/dyncast/etc. 2378 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2379 static bool classofKind(Kind K) { return K == CXXDestructor; } 2380 2381 friend class ASTDeclReader; 2382 friend class ASTDeclWriter; 2383 }; 2384 2385 /// \brief Represents a C++ conversion function within a class. 2386 /// 2387 /// For example: 2388 /// 2389 /// \code 2390 /// class X { 2391 /// public: 2392 /// operator bool(); 2393 /// }; 2394 /// \endcode 2395 class CXXConversionDecl : public CXXMethodDecl { 2396 void anchor() override; 2397 /// Whether this conversion function declaration is marked 2398 /// "explicit", meaning that it can only be applied when the user 2399 /// explicitly wrote a cast. This is a C++11 feature. 2400 bool IsExplicitSpecified : 1; 2401 2402 CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, 2403 const DeclarationNameInfo &NameInfo, 2404 QualType T, TypeSourceInfo *TInfo, 2405 bool isInline, bool isExplicitSpecified, 2406 bool isConstexpr, SourceLocation EndLocation) 2407 : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo, 2408 SC_None, isInline, isConstexpr, EndLocation), 2409 IsExplicitSpecified(isExplicitSpecified) { } 2410 2411 public: 2412 static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD, 2413 SourceLocation StartLoc, 2414 const DeclarationNameInfo &NameInfo, 2415 QualType T, TypeSourceInfo *TInfo, 2416 bool isInline, bool isExplicit, 2417 bool isConstexpr, 2418 SourceLocation EndLocation); 2419 static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2420 2421 /// Whether this conversion function declaration is marked 2422 /// "explicit", meaning that it can only be used for direct initialization 2423 /// (including explitly written casts). This is a C++11 feature. 2424 bool isExplicitSpecified() const { return IsExplicitSpecified; } 2425 2426 /// \brief Whether this is an explicit conversion operator (C++11 and later). 2427 /// 2428 /// Explicit conversion operators are only considered for direct 2429 /// initialization, e.g., when the user has explicitly written a cast. 2430 bool isExplicit() const { 2431 return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified(); 2432 } 2433 2434 /// \brief Returns the type that this conversion function is converting to. 2435 QualType getConversionType() const { 2436 return getType()->getAs<FunctionType>()->getReturnType(); 2437 } 2438 2439 /// \brief Determine whether this conversion function is a conversion from 2440 /// a lambda closure type to a block pointer. 2441 bool isLambdaToBlockPointerConversion() const; 2442 2443 // Implement isa/cast/dyncast/etc. 2444 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2445 static bool classofKind(Kind K) { return K == CXXConversion; } 2446 2447 friend class ASTDeclReader; 2448 friend class ASTDeclWriter; 2449 }; 2450 2451 /// \brief Represents a linkage specification. 2452 /// 2453 /// For example: 2454 /// \code 2455 /// extern "C" void foo(); 2456 /// \endcode 2457 class LinkageSpecDecl : public Decl, public DeclContext { 2458 virtual void anchor(); 2459 public: 2460 /// \brief Represents the language in a linkage specification. 2461 /// 2462 /// The values are part of the serialization ABI for 2463 /// ASTs and cannot be changed without altering that ABI. To help 2464 /// ensure a stable ABI for this, we choose the DW_LANG_ encodings 2465 /// from the dwarf standard. 2466 enum LanguageIDs { 2467 lang_c = /* DW_LANG_C */ 0x0002, 2468 lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004 2469 }; 2470 private: 2471 /// \brief The language for this linkage specification. 2472 unsigned Language : 3; 2473 /// \brief True if this linkage spec has braces. 2474 /// 2475 /// This is needed so that hasBraces() returns the correct result while the 2476 /// linkage spec body is being parsed. Once RBraceLoc has been set this is 2477 /// not used, so it doesn't need to be serialized. 2478 unsigned HasBraces : 1; 2479 /// \brief The source location for the extern keyword. 2480 SourceLocation ExternLoc; 2481 /// \brief The source location for the right brace (if valid). 2482 SourceLocation RBraceLoc; 2483 2484 LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, 2485 SourceLocation LangLoc, LanguageIDs lang, bool HasBraces) 2486 : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), 2487 Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc), 2488 RBraceLoc(SourceLocation()) { } 2489 2490 public: 2491 static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC, 2492 SourceLocation ExternLoc, 2493 SourceLocation LangLoc, LanguageIDs Lang, 2494 bool HasBraces); 2495 static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2496 2497 /// \brief Return the language specified by this linkage specification. 2498 LanguageIDs getLanguage() const { return LanguageIDs(Language); } 2499 /// \brief Set the language specified by this linkage specification. 2500 void setLanguage(LanguageIDs L) { Language = L; } 2501 2502 /// \brief Determines whether this linkage specification had braces in 2503 /// its syntactic form. 2504 bool hasBraces() const { 2505 assert(!RBraceLoc.isValid() || HasBraces); 2506 return HasBraces; 2507 } 2508 2509 SourceLocation getExternLoc() const { return ExternLoc; } 2510 SourceLocation getRBraceLoc() const { return RBraceLoc; } 2511 void setExternLoc(SourceLocation L) { ExternLoc = L; } 2512 void setRBraceLoc(SourceLocation L) { 2513 RBraceLoc = L; 2514 HasBraces = RBraceLoc.isValid(); 2515 } 2516 2517 SourceLocation getLocEnd() const LLVM_READONLY { 2518 if (hasBraces()) 2519 return getRBraceLoc(); 2520 // No braces: get the end location of the (only) declaration in context 2521 // (if present). 2522 return decls_empty() ? getLocation() : decls_begin()->getLocEnd(); 2523 } 2524 2525 SourceRange getSourceRange() const override LLVM_READONLY { 2526 return SourceRange(ExternLoc, getLocEnd()); 2527 } 2528 2529 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2530 static bool classofKind(Kind K) { return K == LinkageSpec; } 2531 static DeclContext *castToDeclContext(const LinkageSpecDecl *D) { 2532 return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D)); 2533 } 2534 static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) { 2535 return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC)); 2536 } 2537 }; 2538 2539 /// \brief Represents C++ using-directive. 2540 /// 2541 /// For example: 2542 /// \code 2543 /// using namespace std; 2544 /// \endcode 2545 /// 2546 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide 2547 /// artificial names for all using-directives in order to store 2548 /// them in DeclContext effectively. 2549 class UsingDirectiveDecl : public NamedDecl { 2550 void anchor() override; 2551 /// \brief The location of the \c using keyword. 2552 SourceLocation UsingLoc; 2553 2554 /// \brief The location of the \c namespace keyword. 2555 SourceLocation NamespaceLoc; 2556 2557 /// \brief The nested-name-specifier that precedes the namespace. 2558 NestedNameSpecifierLoc QualifierLoc; 2559 2560 /// \brief The namespace nominated by this using-directive. 2561 NamedDecl *NominatedNamespace; 2562 2563 /// Enclosing context containing both using-directive and nominated 2564 /// namespace. 2565 DeclContext *CommonAncestor; 2566 2567 /// \brief Returns special DeclarationName used by using-directives. 2568 /// 2569 /// This is only used by DeclContext for storing UsingDirectiveDecls in 2570 /// its lookup structure. 2571 static DeclarationName getName() { 2572 return DeclarationName::getUsingDirectiveName(); 2573 } 2574 2575 UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc, 2576 SourceLocation NamespcLoc, 2577 NestedNameSpecifierLoc QualifierLoc, 2578 SourceLocation IdentLoc, 2579 NamedDecl *Nominated, 2580 DeclContext *CommonAncestor) 2581 : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc), 2582 NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc), 2583 NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { } 2584 2585 public: 2586 /// \brief Retrieve the nested-name-specifier that qualifies the 2587 /// name of the namespace, with source-location information. 2588 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2589 2590 /// \brief Retrieve the nested-name-specifier that qualifies the 2591 /// name of the namespace. 2592 NestedNameSpecifier *getQualifier() const { 2593 return QualifierLoc.getNestedNameSpecifier(); 2594 } 2595 2596 NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; } 2597 const NamedDecl *getNominatedNamespaceAsWritten() const { 2598 return NominatedNamespace; 2599 } 2600 2601 /// \brief Returns the namespace nominated by this using-directive. 2602 NamespaceDecl *getNominatedNamespace(); 2603 2604 const NamespaceDecl *getNominatedNamespace() const { 2605 return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace(); 2606 } 2607 2608 /// \brief Returns the common ancestor context of this using-directive and 2609 /// its nominated namespace. 2610 DeclContext *getCommonAncestor() { return CommonAncestor; } 2611 const DeclContext *getCommonAncestor() const { return CommonAncestor; } 2612 2613 /// \brief Return the location of the \c using keyword. 2614 SourceLocation getUsingLoc() const { return UsingLoc; } 2615 2616 // FIXME: Could omit 'Key' in name. 2617 /// \brief Returns the location of the \c namespace keyword. 2618 SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; } 2619 2620 /// \brief Returns the location of this using declaration's identifier. 2621 SourceLocation getIdentLocation() const { return getLocation(); } 2622 2623 static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC, 2624 SourceLocation UsingLoc, 2625 SourceLocation NamespaceLoc, 2626 NestedNameSpecifierLoc QualifierLoc, 2627 SourceLocation IdentLoc, 2628 NamedDecl *Nominated, 2629 DeclContext *CommonAncestor); 2630 static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2631 2632 SourceRange getSourceRange() const override LLVM_READONLY { 2633 return SourceRange(UsingLoc, getLocation()); 2634 } 2635 2636 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2637 static bool classofKind(Kind K) { return K == UsingDirective; } 2638 2639 // Friend for getUsingDirectiveName. 2640 friend class DeclContext; 2641 2642 friend class ASTDeclReader; 2643 }; 2644 2645 /// \brief Represents a C++ namespace alias. 2646 /// 2647 /// For example: 2648 /// 2649 /// \code 2650 /// namespace Foo = Bar; 2651 /// \endcode 2652 class NamespaceAliasDecl : public NamedDecl, 2653 public Redeclarable<NamespaceAliasDecl> { 2654 void anchor() override; 2655 2656 /// \brief The location of the \c namespace keyword. 2657 SourceLocation NamespaceLoc; 2658 2659 /// \brief The location of the namespace's identifier. 2660 /// 2661 /// This is accessed by TargetNameLoc. 2662 SourceLocation IdentLoc; 2663 2664 /// \brief The nested-name-specifier that precedes the namespace. 2665 NestedNameSpecifierLoc QualifierLoc; 2666 2667 /// \brief The Decl that this alias points to, either a NamespaceDecl or 2668 /// a NamespaceAliasDecl. 2669 NamedDecl *Namespace; 2670 2671 NamespaceAliasDecl(ASTContext &C, DeclContext *DC, 2672 SourceLocation NamespaceLoc, SourceLocation AliasLoc, 2673 IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc, 2674 SourceLocation IdentLoc, NamedDecl *Namespace) 2675 : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C), 2676 NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc), 2677 QualifierLoc(QualifierLoc), Namespace(Namespace) {} 2678 2679 typedef Redeclarable<NamespaceAliasDecl> redeclarable_base; 2680 NamespaceAliasDecl *getNextRedeclarationImpl() override; 2681 NamespaceAliasDecl *getPreviousDeclImpl() override; 2682 NamespaceAliasDecl *getMostRecentDeclImpl() override; 2683 2684 friend class ASTDeclReader; 2685 2686 public: 2687 static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC, 2688 SourceLocation NamespaceLoc, 2689 SourceLocation AliasLoc, 2690 IdentifierInfo *Alias, 2691 NestedNameSpecifierLoc QualifierLoc, 2692 SourceLocation IdentLoc, 2693 NamedDecl *Namespace); 2694 2695 static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2696 2697 typedef redeclarable_base::redecl_range redecl_range; 2698 typedef redeclarable_base::redecl_iterator redecl_iterator; 2699 using redeclarable_base::redecls_begin; 2700 using redeclarable_base::redecls_end; 2701 using redeclarable_base::redecls; 2702 using redeclarable_base::getPreviousDecl; 2703 using redeclarable_base::getMostRecentDecl; 2704 2705 NamespaceAliasDecl *getCanonicalDecl() override { 2706 return getFirstDecl(); 2707 } 2708 const NamespaceAliasDecl *getCanonicalDecl() const { 2709 return getFirstDecl(); 2710 } 2711 2712 /// \brief Retrieve the nested-name-specifier that qualifies the 2713 /// name of the namespace, with source-location information. 2714 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2715 2716 /// \brief Retrieve the nested-name-specifier that qualifies the 2717 /// name of the namespace. 2718 NestedNameSpecifier *getQualifier() const { 2719 return QualifierLoc.getNestedNameSpecifier(); 2720 } 2721 2722 /// \brief Retrieve the namespace declaration aliased by this directive. 2723 NamespaceDecl *getNamespace() { 2724 if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace)) 2725 return AD->getNamespace(); 2726 2727 return cast<NamespaceDecl>(Namespace); 2728 } 2729 2730 const NamespaceDecl *getNamespace() const { 2731 return const_cast<NamespaceAliasDecl*>(this)->getNamespace(); 2732 } 2733 2734 /// Returns the location of the alias name, i.e. 'foo' in 2735 /// "namespace foo = ns::bar;". 2736 SourceLocation getAliasLoc() const { return getLocation(); } 2737 2738 /// Returns the location of the \c namespace keyword. 2739 SourceLocation getNamespaceLoc() const { return NamespaceLoc; } 2740 2741 /// Returns the location of the identifier in the named namespace. 2742 SourceLocation getTargetNameLoc() const { return IdentLoc; } 2743 2744 /// \brief Retrieve the namespace that this alias refers to, which 2745 /// may either be a NamespaceDecl or a NamespaceAliasDecl. 2746 NamedDecl *getAliasedNamespace() const { return Namespace; } 2747 2748 SourceRange getSourceRange() const override LLVM_READONLY { 2749 return SourceRange(NamespaceLoc, IdentLoc); 2750 } 2751 2752 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2753 static bool classofKind(Kind K) { return K == NamespaceAlias; } 2754 }; 2755 2756 /// \brief Represents a shadow declaration introduced into a scope by a 2757 /// (resolved) using declaration. 2758 /// 2759 /// For example, 2760 /// \code 2761 /// namespace A { 2762 /// void foo(); 2763 /// } 2764 /// namespace B { 2765 /// using A::foo; // <- a UsingDecl 2766 /// // Also creates a UsingShadowDecl for A::foo() in B 2767 /// } 2768 /// \endcode 2769 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> { 2770 void anchor() override; 2771 2772 /// The referenced declaration. 2773 NamedDecl *Underlying; 2774 2775 /// \brief The using declaration which introduced this decl or the next using 2776 /// shadow declaration contained in the aforementioned using declaration. 2777 NamedDecl *UsingOrNextShadow; 2778 friend class UsingDecl; 2779 2780 UsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc, 2781 UsingDecl *Using, NamedDecl *Target) 2782 : NamedDecl(UsingShadow, DC, Loc, DeclarationName()), 2783 redeclarable_base(C), Underlying(Target), 2784 UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) { 2785 if (Target) { 2786 setDeclName(Target->getDeclName()); 2787 IdentifierNamespace = Target->getIdentifierNamespace(); 2788 } 2789 setImplicit(); 2790 } 2791 2792 typedef Redeclarable<UsingShadowDecl> redeclarable_base; 2793 UsingShadowDecl *getNextRedeclarationImpl() override { 2794 return getNextRedeclaration(); 2795 } 2796 UsingShadowDecl *getPreviousDeclImpl() override { 2797 return getPreviousDecl(); 2798 } 2799 UsingShadowDecl *getMostRecentDeclImpl() override { 2800 return getMostRecentDecl(); 2801 } 2802 2803 public: 2804 static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC, 2805 SourceLocation Loc, UsingDecl *Using, 2806 NamedDecl *Target) { 2807 return new (C, DC) UsingShadowDecl(C, DC, Loc, Using, Target); 2808 } 2809 2810 static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2811 2812 typedef redeclarable_base::redecl_range redecl_range; 2813 typedef redeclarable_base::redecl_iterator redecl_iterator; 2814 using redeclarable_base::redecls_begin; 2815 using redeclarable_base::redecls_end; 2816 using redeclarable_base::redecls; 2817 using redeclarable_base::getPreviousDecl; 2818 using redeclarable_base::getMostRecentDecl; 2819 2820 UsingShadowDecl *getCanonicalDecl() override { 2821 return getFirstDecl(); 2822 } 2823 const UsingShadowDecl *getCanonicalDecl() const { 2824 return getFirstDecl(); 2825 } 2826 2827 /// \brief Gets the underlying declaration which has been brought into the 2828 /// local scope. 2829 NamedDecl *getTargetDecl() const { return Underlying; } 2830 2831 /// \brief Sets the underlying declaration which has been brought into the 2832 /// local scope. 2833 void setTargetDecl(NamedDecl* ND) { 2834 assert(ND && "Target decl is null!"); 2835 Underlying = ND; 2836 IdentifierNamespace = ND->getIdentifierNamespace(); 2837 } 2838 2839 /// \brief Gets the using declaration to which this declaration is tied. 2840 UsingDecl *getUsingDecl() const; 2841 2842 /// \brief The next using shadow declaration contained in the shadow decl 2843 /// chain of the using declaration which introduced this decl. 2844 UsingShadowDecl *getNextUsingShadowDecl() const { 2845 return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow); 2846 } 2847 2848 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2849 static bool classofKind(Kind K) { return K == Decl::UsingShadow; } 2850 2851 friend class ASTDeclReader; 2852 friend class ASTDeclWriter; 2853 }; 2854 2855 /// \brief Represents a C++ using-declaration. 2856 /// 2857 /// For example: 2858 /// \code 2859 /// using someNameSpace::someIdentifier; 2860 /// \endcode 2861 class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> { 2862 void anchor() override; 2863 2864 /// \brief The source location of the 'using' keyword itself. 2865 SourceLocation UsingLocation; 2866 2867 /// \brief The nested-name-specifier that precedes the name. 2868 NestedNameSpecifierLoc QualifierLoc; 2869 2870 /// \brief Provides source/type location info for the declaration name 2871 /// embedded in the ValueDecl base class. 2872 DeclarationNameLoc DNLoc; 2873 2874 /// \brief The first shadow declaration of the shadow decl chain associated 2875 /// with this using declaration. 2876 /// 2877 /// The bool member of the pair store whether this decl has the \c typename 2878 /// keyword. 2879 llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow; 2880 2881 UsingDecl(DeclContext *DC, SourceLocation UL, 2882 NestedNameSpecifierLoc QualifierLoc, 2883 const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword) 2884 : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()), 2885 UsingLocation(UL), QualifierLoc(QualifierLoc), 2886 DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) { 2887 } 2888 2889 public: 2890 /// \brief Return the source location of the 'using' keyword. 2891 SourceLocation getUsingLoc() const { return UsingLocation; } 2892 2893 /// \brief Set the source location of the 'using' keyword. 2894 void setUsingLoc(SourceLocation L) { UsingLocation = L; } 2895 2896 /// \brief Retrieve the nested-name-specifier that qualifies the name, 2897 /// with source-location information. 2898 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 2899 2900 /// \brief Retrieve the nested-name-specifier that qualifies the name. 2901 NestedNameSpecifier *getQualifier() const { 2902 return QualifierLoc.getNestedNameSpecifier(); 2903 } 2904 2905 DeclarationNameInfo getNameInfo() const { 2906 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); 2907 } 2908 2909 /// \brief Return true if it is a C++03 access declaration (no 'using'). 2910 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } 2911 2912 /// \brief Return true if the using declaration has 'typename'. 2913 bool hasTypename() const { return FirstUsingShadow.getInt(); } 2914 2915 /// \brief Sets whether the using declaration has 'typename'. 2916 void setTypename(bool TN) { FirstUsingShadow.setInt(TN); } 2917 2918 /// \brief Iterates through the using shadow declarations associated with 2919 /// this using declaration. 2920 class shadow_iterator { 2921 /// \brief The current using shadow declaration. 2922 UsingShadowDecl *Current; 2923 2924 public: 2925 typedef UsingShadowDecl* value_type; 2926 typedef UsingShadowDecl* reference; 2927 typedef UsingShadowDecl* pointer; 2928 typedef std::forward_iterator_tag iterator_category; 2929 typedef std::ptrdiff_t difference_type; 2930 2931 shadow_iterator() : Current(nullptr) { } 2932 explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { } 2933 2934 reference operator*() const { return Current; } 2935 pointer operator->() const { return Current; } 2936 2937 shadow_iterator& operator++() { 2938 Current = Current->getNextUsingShadowDecl(); 2939 return *this; 2940 } 2941 2942 shadow_iterator operator++(int) { 2943 shadow_iterator tmp(*this); 2944 ++(*this); 2945 return tmp; 2946 } 2947 2948 friend bool operator==(shadow_iterator x, shadow_iterator y) { 2949 return x.Current == y.Current; 2950 } 2951 friend bool operator!=(shadow_iterator x, shadow_iterator y) { 2952 return x.Current != y.Current; 2953 } 2954 }; 2955 2956 typedef llvm::iterator_range<shadow_iterator> shadow_range; 2957 2958 shadow_range shadows() const { 2959 return shadow_range(shadow_begin(), shadow_end()); 2960 } 2961 shadow_iterator shadow_begin() const { 2962 return shadow_iterator(FirstUsingShadow.getPointer()); 2963 } 2964 shadow_iterator shadow_end() const { return shadow_iterator(); } 2965 2966 /// \brief Return the number of shadowed declarations associated with this 2967 /// using declaration. 2968 unsigned shadow_size() const { 2969 return std::distance(shadow_begin(), shadow_end()); 2970 } 2971 2972 void addShadowDecl(UsingShadowDecl *S); 2973 void removeShadowDecl(UsingShadowDecl *S); 2974 2975 static UsingDecl *Create(ASTContext &C, DeclContext *DC, 2976 SourceLocation UsingL, 2977 NestedNameSpecifierLoc QualifierLoc, 2978 const DeclarationNameInfo &NameInfo, 2979 bool HasTypenameKeyword); 2980 2981 static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID); 2982 2983 SourceRange getSourceRange() const override LLVM_READONLY; 2984 2985 /// Retrieves the canonical declaration of this declaration. 2986 UsingDecl *getCanonicalDecl() override { return getFirstDecl(); } 2987 const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); } 2988 2989 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 2990 static bool classofKind(Kind K) { return K == Using; } 2991 2992 friend class ASTDeclReader; 2993 friend class ASTDeclWriter; 2994 }; 2995 2996 /// \brief Represents a dependent using declaration which was not marked with 2997 /// \c typename. 2998 /// 2999 /// Unlike non-dependent using declarations, these *only* bring through 3000 /// non-types; otherwise they would break two-phase lookup. 3001 /// 3002 /// \code 3003 /// template \<class T> class A : public Base<T> { 3004 /// using Base<T>::foo; 3005 /// }; 3006 /// \endcode 3007 class UnresolvedUsingValueDecl : public ValueDecl, 3008 public Mergeable<UnresolvedUsingValueDecl> { 3009 void anchor() override; 3010 3011 /// \brief The source location of the 'using' keyword 3012 SourceLocation UsingLocation; 3013 3014 /// \brief The nested-name-specifier that precedes the name. 3015 NestedNameSpecifierLoc QualifierLoc; 3016 3017 /// \brief Provides source/type location info for the declaration name 3018 /// embedded in the ValueDecl base class. 3019 DeclarationNameLoc DNLoc; 3020 3021 UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty, 3022 SourceLocation UsingLoc, 3023 NestedNameSpecifierLoc QualifierLoc, 3024 const DeclarationNameInfo &NameInfo) 3025 : ValueDecl(UnresolvedUsingValue, DC, 3026 NameInfo.getLoc(), NameInfo.getName(), Ty), 3027 UsingLocation(UsingLoc), QualifierLoc(QualifierLoc), 3028 DNLoc(NameInfo.getInfo()) 3029 { } 3030 3031 public: 3032 /// \brief Returns the source location of the 'using' keyword. 3033 SourceLocation getUsingLoc() const { return UsingLocation; } 3034 3035 /// \brief Set the source location of the 'using' keyword. 3036 void setUsingLoc(SourceLocation L) { UsingLocation = L; } 3037 3038 /// \brief Return true if it is a C++03 access declaration (no 'using'). 3039 bool isAccessDeclaration() const { return UsingLocation.isInvalid(); } 3040 3041 /// \brief Retrieve the nested-name-specifier that qualifies the name, 3042 /// with source-location information. 3043 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 3044 3045 /// \brief Retrieve the nested-name-specifier that qualifies the name. 3046 NestedNameSpecifier *getQualifier() const { 3047 return QualifierLoc.getNestedNameSpecifier(); 3048 } 3049 3050 DeclarationNameInfo getNameInfo() const { 3051 return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc); 3052 } 3053 3054 static UnresolvedUsingValueDecl * 3055 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, 3056 NestedNameSpecifierLoc QualifierLoc, 3057 const DeclarationNameInfo &NameInfo); 3058 3059 static UnresolvedUsingValueDecl * 3060 CreateDeserialized(ASTContext &C, unsigned ID); 3061 3062 SourceRange getSourceRange() const override LLVM_READONLY; 3063 3064 /// Retrieves the canonical declaration of this declaration. 3065 UnresolvedUsingValueDecl *getCanonicalDecl() override { 3066 return getFirstDecl(); 3067 } 3068 const UnresolvedUsingValueDecl *getCanonicalDecl() const { 3069 return getFirstDecl(); 3070 } 3071 3072 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 3073 static bool classofKind(Kind K) { return K == UnresolvedUsingValue; } 3074 3075 friend class ASTDeclReader; 3076 friend class ASTDeclWriter; 3077 }; 3078 3079 /// \brief Represents a dependent using declaration which was marked with 3080 /// \c typename. 3081 /// 3082 /// \code 3083 /// template \<class T> class A : public Base<T> { 3084 /// using typename Base<T>::foo; 3085 /// }; 3086 /// \endcode 3087 /// 3088 /// The type associated with an unresolved using typename decl is 3089 /// currently always a typename type. 3090 class UnresolvedUsingTypenameDecl 3091 : public TypeDecl, 3092 public Mergeable<UnresolvedUsingTypenameDecl> { 3093 void anchor() override; 3094 3095 /// \brief The source location of the 'typename' keyword 3096 SourceLocation TypenameLocation; 3097 3098 /// \brief The nested-name-specifier that precedes the name. 3099 NestedNameSpecifierLoc QualifierLoc; 3100 3101 UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc, 3102 SourceLocation TypenameLoc, 3103 NestedNameSpecifierLoc QualifierLoc, 3104 SourceLocation TargetNameLoc, 3105 IdentifierInfo *TargetName) 3106 : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName, 3107 UsingLoc), 3108 TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { } 3109 3110 friend class ASTDeclReader; 3111 3112 public: 3113 /// \brief Returns the source location of the 'using' keyword. 3114 SourceLocation getUsingLoc() const { return getLocStart(); } 3115 3116 /// \brief Returns the source location of the 'typename' keyword. 3117 SourceLocation getTypenameLoc() const { return TypenameLocation; } 3118 3119 /// \brief Retrieve the nested-name-specifier that qualifies the name, 3120 /// with source-location information. 3121 NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; } 3122 3123 /// \brief Retrieve the nested-name-specifier that qualifies the name. 3124 NestedNameSpecifier *getQualifier() const { 3125 return QualifierLoc.getNestedNameSpecifier(); 3126 } 3127 3128 static UnresolvedUsingTypenameDecl * 3129 Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc, 3130 SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc, 3131 SourceLocation TargetNameLoc, DeclarationName TargetName); 3132 3133 static UnresolvedUsingTypenameDecl * 3134 CreateDeserialized(ASTContext &C, unsigned ID); 3135 3136 /// Retrieves the canonical declaration of this declaration. 3137 UnresolvedUsingTypenameDecl *getCanonicalDecl() override { 3138 return getFirstDecl(); 3139 } 3140 const UnresolvedUsingTypenameDecl *getCanonicalDecl() const { 3141 return getFirstDecl(); 3142 } 3143 3144 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 3145 static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; } 3146 }; 3147 3148 /// \brief Represents a C++11 static_assert declaration. 3149 class StaticAssertDecl : public Decl { 3150 virtual void anchor(); 3151 llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed; 3152 StringLiteral *Message; 3153 SourceLocation RParenLoc; 3154 3155 StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc, 3156 Expr *AssertExpr, StringLiteral *Message, 3157 SourceLocation RParenLoc, bool Failed) 3158 : Decl(StaticAssert, DC, StaticAssertLoc), 3159 AssertExprAndFailed(AssertExpr, Failed), Message(Message), 3160 RParenLoc(RParenLoc) { } 3161 3162 public: 3163 static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC, 3164 SourceLocation StaticAssertLoc, 3165 Expr *AssertExpr, StringLiteral *Message, 3166 SourceLocation RParenLoc, bool Failed); 3167 static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID); 3168 3169 Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); } 3170 const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); } 3171 3172 StringLiteral *getMessage() { return Message; } 3173 const StringLiteral *getMessage() const { return Message; } 3174 3175 bool isFailed() const { return AssertExprAndFailed.getInt(); } 3176 3177 SourceLocation getRParenLoc() const { return RParenLoc; } 3178 3179 SourceRange getSourceRange() const override LLVM_READONLY { 3180 return SourceRange(getLocation(), getRParenLoc()); 3181 } 3182 3183 static bool classof(const Decl *D) { return classofKind(D->getKind()); } 3184 static bool classofKind(Kind K) { return K == StaticAssert; } 3185 3186 friend class ASTDeclReader; 3187 }; 3188 3189 /// An instance of this class represents the declaration of a property 3190 /// member. This is a Microsoft extension to C++, first introduced in 3191 /// Visual Studio .NET 2003 as a parallel to similar features in C# 3192 /// and Managed C++. 3193 /// 3194 /// A property must always be a non-static class member. 3195 /// 3196 /// A property member superficially resembles a non-static data 3197 /// member, except preceded by a property attribute: 3198 /// __declspec(property(get=GetX, put=PutX)) int x; 3199 /// Either (but not both) of the 'get' and 'put' names may be omitted. 3200 /// 3201 /// A reference to a property is always an lvalue. If the lvalue 3202 /// undergoes lvalue-to-rvalue conversion, then a getter name is 3203 /// required, and that member is called with no arguments. 3204 /// If the lvalue is assigned into, then a setter name is required, 3205 /// and that member is called with one argument, the value assigned. 3206 /// Both operations are potentially overloaded. Compound assignments 3207 /// are permitted, as are the increment and decrement operators. 3208 /// 3209 /// The getter and putter methods are permitted to be overloaded, 3210 /// although their return and parameter types are subject to certain 3211 /// restrictions according to the type of the property. 3212 /// 3213 /// A property declared using an incomplete array type may 3214 /// additionally be subscripted, adding extra parameters to the getter 3215 /// and putter methods. 3216 class MSPropertyDecl : public DeclaratorDecl { 3217 IdentifierInfo *GetterId, *SetterId; 3218 3219 MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N, 3220 QualType T, TypeSourceInfo *TInfo, SourceLocation StartL, 3221 IdentifierInfo *Getter, IdentifierInfo *Setter) 3222 : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL), 3223 GetterId(Getter), SetterId(Setter) {} 3224 3225 public: 3226 static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC, 3227 SourceLocation L, DeclarationName N, QualType T, 3228 TypeSourceInfo *TInfo, SourceLocation StartL, 3229 IdentifierInfo *Getter, IdentifierInfo *Setter); 3230 static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID); 3231 3232 static bool classof(const Decl *D) { return D->getKind() == MSProperty; } 3233 3234 bool hasGetter() const { return GetterId != nullptr; } 3235 IdentifierInfo* getGetterId() const { return GetterId; } 3236 bool hasSetter() const { return SetterId != nullptr; } 3237 IdentifierInfo* getSetterId() const { return SetterId; } 3238 3239 friend class ASTDeclReader; 3240 }; 3241 3242 /// Insertion operator for diagnostics. This allows sending an AccessSpecifier 3243 /// into a diagnostic with <<. 3244 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB, 3245 AccessSpecifier AS); 3246 3247 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB, 3248 AccessSpecifier AS); 3249 3250 } // end namespace clang 3251 3252 #endif 3253