Home | History | Annotate | Download | only in AST
      1 //===-- DeclCXX.h - Classes for representing C++ declarations -*- C++ -*-=====//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 ///
     10 /// \file
     11 /// \brief Defines the C++ Decl subclasses, other than those for templates
     12 /// (found in DeclTemplate.h) and friends (in DeclFriend.h).
     13 ///
     14 //===----------------------------------------------------------------------===//
     15 
     16 #ifndef LLVM_CLANG_AST_DECLCXX_H
     17 #define LLVM_CLANG_AST_DECLCXX_H
     18 
     19 #include "clang/AST/ASTUnresolvedSet.h"
     20 #include "clang/AST/Attr.h"
     21 #include "clang/AST/Decl.h"
     22 #include "clang/AST/Expr.h"
     23 #include "clang/AST/LambdaCapture.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PointerIntPair.h"
     26 #include "llvm/Support/Compiler.h"
     27 
     28 namespace clang {
     29 
     30 class ClassTemplateDecl;
     31 class ClassTemplateSpecializationDecl;
     32 class CXXBasePath;
     33 class CXXBasePaths;
     34 class CXXConstructorDecl;
     35 class CXXConversionDecl;
     36 class CXXDestructorDecl;
     37 class CXXMethodDecl;
     38 class CXXRecordDecl;
     39 class CXXMemberLookupCriteria;
     40 class CXXFinalOverriderMap;
     41 class CXXIndirectPrimaryBaseSet;
     42 class FriendDecl;
     43 class LambdaExpr;
     44 class UsingDecl;
     45 
     46 /// \brief Represents any kind of function declaration, whether it is a
     47 /// concrete function or a function template.
     48 class AnyFunctionDecl {
     49   NamedDecl *Function;
     50 
     51   AnyFunctionDecl(NamedDecl *ND) : Function(ND) { }
     52 
     53 public:
     54   AnyFunctionDecl(FunctionDecl *FD) : Function(FD) { }
     55   AnyFunctionDecl(FunctionTemplateDecl *FTD);
     56 
     57   /// \brief Implicily converts any function or function template into a
     58   /// named declaration.
     59   operator NamedDecl *() const { return Function; }
     60 
     61   /// \brief Retrieve the underlying function or function template.
     62   NamedDecl *get() const { return Function; }
     63 
     64   static AnyFunctionDecl getFromNamedDecl(NamedDecl *ND) {
     65     return AnyFunctionDecl(ND);
     66   }
     67 };
     68 
     69 } // end namespace clang
     70 
     71 namespace llvm {
     72   // Provide PointerLikeTypeTraits for non-cvr pointers.
     73   template<>
     74   class PointerLikeTypeTraits< ::clang::AnyFunctionDecl> {
     75   public:
     76     static inline void *getAsVoidPointer(::clang::AnyFunctionDecl F) {
     77       return F.get();
     78     }
     79     static inline ::clang::AnyFunctionDecl getFromVoidPointer(void *P) {
     80       return ::clang::AnyFunctionDecl::getFromNamedDecl(
     81                                       static_cast< ::clang::NamedDecl*>(P));
     82     }
     83 
     84     enum { NumLowBitsAvailable = 2 };
     85   };
     86 
     87 } // end namespace llvm
     88 
     89 namespace clang {
     90 
     91 /// \brief Represents an access specifier followed by colon ':'.
     92 ///
     93 /// An objects of this class represents sugar for the syntactic occurrence
     94 /// of an access specifier followed by a colon in the list of member
     95 /// specifiers of a C++ class definition.
     96 ///
     97 /// Note that they do not represent other uses of access specifiers,
     98 /// such as those occurring in a list of base specifiers.
     99 /// Also note that this class has nothing to do with so-called
    100 /// "access declarations" (C++98 11.3 [class.access.dcl]).
    101 class AccessSpecDecl : public Decl {
    102   virtual void anchor();
    103   /// \brief The location of the ':'.
    104   SourceLocation ColonLoc;
    105 
    106   AccessSpecDecl(AccessSpecifier AS, DeclContext *DC,
    107                  SourceLocation ASLoc, SourceLocation ColonLoc)
    108     : Decl(AccessSpec, DC, ASLoc), ColonLoc(ColonLoc) {
    109     setAccess(AS);
    110   }
    111   AccessSpecDecl(EmptyShell Empty)
    112     : Decl(AccessSpec, Empty) { }
    113 public:
    114   /// \brief The location of the access specifier.
    115   SourceLocation getAccessSpecifierLoc() const { return getLocation(); }
    116   /// \brief Sets the location of the access specifier.
    117   void setAccessSpecifierLoc(SourceLocation ASLoc) { setLocation(ASLoc); }
    118 
    119   /// \brief The location of the colon following the access specifier.
    120   SourceLocation getColonLoc() const { return ColonLoc; }
    121   /// \brief Sets the location of the colon.
    122   void setColonLoc(SourceLocation CLoc) { ColonLoc = CLoc; }
    123 
    124   SourceRange getSourceRange() const override LLVM_READONLY {
    125     return SourceRange(getAccessSpecifierLoc(), getColonLoc());
    126   }
    127 
    128   static AccessSpecDecl *Create(ASTContext &C, AccessSpecifier AS,
    129                                 DeclContext *DC, SourceLocation ASLoc,
    130                                 SourceLocation ColonLoc) {
    131     return new (C, DC) AccessSpecDecl(AS, DC, ASLoc, ColonLoc);
    132   }
    133   static AccessSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
    134 
    135   // Implement isa/cast/dyncast/etc.
    136   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
    137   static bool classofKind(Kind K) { return K == AccessSpec; }
    138 };
    139 
    140 
    141 /// \brief Represents a base class of a C++ class.
    142 ///
    143 /// Each CXXBaseSpecifier represents a single, direct base class (or
    144 /// struct) of a C++ class (or struct). It specifies the type of that
    145 /// base class, whether it is a virtual or non-virtual base, and what
    146 /// level of access (public, protected, private) is used for the
    147 /// derivation. For example:
    148 ///
    149 /// \code
    150 ///   class A { };
    151 ///   class B { };
    152 ///   class C : public virtual A, protected B { };
    153 /// \endcode
    154 ///
    155 /// In this code, C will have two CXXBaseSpecifiers, one for "public
    156 /// virtual A" and the other for "protected B".
    157 class CXXBaseSpecifier {
    158   /// \brief The source code range that covers the full base
    159   /// specifier, including the "virtual" (if present) and access
    160   /// specifier (if present).
    161   SourceRange Range;
    162 
    163   /// \brief The source location of the ellipsis, if this is a pack
    164   /// expansion.
    165   SourceLocation EllipsisLoc;
    166 
    167   /// \brief Whether this is a virtual base class or not.
    168   bool Virtual : 1;
    169 
    170   /// \brief Whether this is the base of a class (true) or of a struct (false).
    171   ///
    172   /// This determines the mapping from the access specifier as written in the
    173   /// source code to the access specifier used for semantic analysis.
    174   bool BaseOfClass : 1;
    175 
    176   /// \brief Access specifier as written in the source code (may be AS_none).
    177   ///
    178   /// The actual type of data stored here is an AccessSpecifier, but we use
    179   /// "unsigned" here to work around a VC++ bug.
    180   unsigned Access : 2;
    181 
    182   /// \brief Whether the class contains a using declaration
    183   /// to inherit the named class's constructors.
    184   bool InheritConstructors : 1;
    185 
    186   /// \brief The type of the base class.
    187   ///
    188   /// This will be a class or struct (or a typedef of such). The source code
    189   /// range does not include the \c virtual or the access specifier.
    190   TypeSourceInfo *BaseTypeInfo;
    191 
    192 public:
    193   CXXBaseSpecifier() { }
    194 
    195   CXXBaseSpecifier(SourceRange R, bool V, bool BC, AccessSpecifier A,
    196                    TypeSourceInfo *TInfo, SourceLocation EllipsisLoc)
    197     : Range(R), EllipsisLoc(EllipsisLoc), Virtual(V), BaseOfClass(BC),
    198       Access(A), InheritConstructors(false), BaseTypeInfo(TInfo) { }
    199 
    200   /// \brief Retrieves the source range that contains the entire base specifier.
    201   SourceRange getSourceRange() const LLVM_READONLY { return Range; }
    202   SourceLocation getLocStart() const LLVM_READONLY { return Range.getBegin(); }
    203   SourceLocation getLocEnd() const LLVM_READONLY { return Range.getEnd(); }
    204 
    205   /// \brief Determines whether the base class is a virtual base class (or not).
    206   bool isVirtual() const { return Virtual; }
    207 
    208   /// \brief Determine whether this base class is a base of a class declared
    209   /// with the 'class' keyword (vs. one declared with the 'struct' keyword).
    210   bool isBaseOfClass() const { return BaseOfClass; }
    211 
    212   /// \brief Determine whether this base specifier is a pack expansion.
    213   bool isPackExpansion() const { return EllipsisLoc.isValid(); }
    214 
    215   /// \brief Determine whether this base class's constructors get inherited.
    216   bool getInheritConstructors() const { return InheritConstructors; }
    217 
    218   /// \brief Set that this base class's constructors should be inherited.
    219   void setInheritConstructors(bool Inherit = true) {
    220     InheritConstructors = Inherit;
    221   }
    222 
    223   /// \brief For a pack expansion, determine the location of the ellipsis.
    224   SourceLocation getEllipsisLoc() const {
    225     return EllipsisLoc;
    226   }
    227 
    228   /// \brief Returns the access specifier for this base specifier.
    229   ///
    230   /// This is the actual base specifier as used for semantic analysis, so
    231   /// the result can never be AS_none. To retrieve the access specifier as
    232   /// written in the source code, use getAccessSpecifierAsWritten().
    233   AccessSpecifier getAccessSpecifier() const {
    234     if ((AccessSpecifier)Access == AS_none)
    235       return BaseOfClass? AS_private : AS_public;
    236     else
    237       return (AccessSpecifier)Access;
    238   }
    239 
    240   /// \brief Retrieves the access specifier as written in the source code
    241   /// (which may mean that no access specifier was explicitly written).
    242   ///
    243   /// Use getAccessSpecifier() to retrieve the access specifier for use in
    244   /// semantic analysis.
    245   AccessSpecifier getAccessSpecifierAsWritten() const {
    246     return (AccessSpecifier)Access;
    247   }
    248 
    249   /// \brief Retrieves the type of the base class.
    250   ///
    251   /// This type will always be an unqualified class type.
    252   QualType getType() const {
    253     return BaseTypeInfo->getType().getUnqualifiedType();
    254   }
    255 
    256   /// \brief Retrieves the type and source location of the base class.
    257   TypeSourceInfo *getTypeSourceInfo() const { return BaseTypeInfo; }
    258 };
    259 
    260 /// \brief A lazy pointer to the definition data for a declaration.
    261 /// FIXME: This is a little CXXRecordDecl-specific that the moment.
    262 template<typename Decl, typename T> class LazyDefinitionDataPtr {
    263   llvm::PointerUnion<T *, Decl *> DataOrCanonicalDecl;
    264 
    265   LazyDefinitionDataPtr update() {
    266     if (Decl *Canon = DataOrCanonicalDecl.template dyn_cast<Decl*>()) {
    267       if (Canon->isCanonicalDecl())
    268         Canon->getMostRecentDecl();
    269       else
    270         // Declaration isn't canonical any more;
    271         // update it and perform path compression.
    272         *this = Canon->getPreviousDecl()->DefinitionData.update();
    273     }
    274     return *this;
    275   }
    276 
    277 public:
    278   LazyDefinitionDataPtr(Decl *Canon) : DataOrCanonicalDecl(Canon) {}
    279   LazyDefinitionDataPtr(T *Data) : DataOrCanonicalDecl(Data) {}
    280   T *getNotUpdated() { return DataOrCanonicalDecl.template dyn_cast<T*>(); }
    281   T *get() { return update().getNotUpdated(); }
    282 };
    283 
    284 /// \brief Represents a C++ struct/union/class.
    285 class CXXRecordDecl : public RecordDecl {
    286 
    287   friend void TagDecl::startDefinition();
    288 
    289   /// Values used in DefinitionData fields to represent special members.
    290   enum SpecialMemberFlags {
    291     SMF_DefaultConstructor = 0x1,
    292     SMF_CopyConstructor = 0x2,
    293     SMF_MoveConstructor = 0x4,
    294     SMF_CopyAssignment = 0x8,
    295     SMF_MoveAssignment = 0x10,
    296     SMF_Destructor = 0x20,
    297     SMF_All = 0x3f
    298   };
    299 
    300   struct DefinitionData {
    301     DefinitionData(CXXRecordDecl *D);
    302 
    303     /// \brief True if this class has any user-declared constructors.
    304     bool UserDeclaredConstructor : 1;
    305 
    306     /// \brief The user-declared special members which this class has.
    307     unsigned UserDeclaredSpecialMembers : 6;
    308 
    309     /// \brief True when this class is an aggregate.
    310     bool Aggregate : 1;
    311 
    312     /// \brief True when this class is a POD-type.
    313     bool PlainOldData : 1;
    314 
    315     /// true when this class is empty for traits purposes,
    316     /// i.e. has no data members other than 0-width bit-fields, has no
    317     /// virtual function/base, and doesn't inherit from a non-empty
    318     /// class. Doesn't take union-ness into account.
    319     bool Empty : 1;
    320 
    321     /// \brief True when this class is polymorphic, i.e., has at
    322     /// least one virtual member or derives from a polymorphic class.
    323     bool Polymorphic : 1;
    324 
    325     /// \brief True when this class is abstract, i.e., has at least
    326     /// one pure virtual function, (that can come from a base class).
    327     bool Abstract : 1;
    328 
    329     /// \brief True when this class has standard layout.
    330     ///
    331     /// C++11 [class]p7.  A standard-layout class is a class that:
    332     /// * has no non-static data members of type non-standard-layout class (or
    333     ///   array of such types) or reference,
    334     /// * has no virtual functions (10.3) and no virtual base classes (10.1),
    335     /// * has the same access control (Clause 11) for all non-static data
    336     ///   members
    337     /// * has no non-standard-layout base classes,
    338     /// * either has no non-static data members in the most derived class and at
    339     ///   most one base class with non-static data members, or has no base
    340     ///   classes with non-static data members, and
    341     /// * has no base classes of the same type as the first non-static data
    342     ///   member.
    343     bool IsStandardLayout : 1;
    344 
    345     /// \brief True when there are no non-empty base classes.
    346     ///
    347     /// This is a helper bit of state used to implement IsStandardLayout more
    348     /// efficiently.
    349     bool HasNoNonEmptyBases : 1;
    350 
    351     /// \brief True when there are private non-static data members.
    352     bool HasPrivateFields : 1;
    353 
    354     /// \brief True when there are protected non-static data members.
    355     bool HasProtectedFields : 1;
    356 
    357     /// \brief True when there are private non-static data members.
    358     bool HasPublicFields : 1;
    359 
    360     /// \brief True if this class (or any subobject) has mutable fields.
    361     bool HasMutableFields : 1;
    362 
    363     /// \brief True if this class (or any nested anonymous struct or union)
    364     /// has variant members.
    365     bool HasVariantMembers : 1;
    366 
    367     /// \brief True if there no non-field members declared by the user.
    368     bool HasOnlyCMembers : 1;
    369 
    370     /// \brief True if any field has an in-class initializer, including those
    371     /// within anonymous unions or structs.
    372     bool HasInClassInitializer : 1;
    373 
    374     /// \brief True if any field is of reference type, and does not have an
    375     /// in-class initializer.
    376     ///
    377     /// In this case, value-initialization of this class is illegal in C++98
    378     /// even if the class has a trivial default constructor.
    379     bool HasUninitializedReferenceMember : 1;
    380 
    381     /// \brief These flags are \c true if a defaulted corresponding special
    382     /// member can't be fully analyzed without performing overload resolution.
    383     /// @{
    384     bool NeedOverloadResolutionForMoveConstructor : 1;
    385     bool NeedOverloadResolutionForMoveAssignment : 1;
    386     bool NeedOverloadResolutionForDestructor : 1;
    387     /// @}
    388 
    389     /// \brief These flags are \c true if an implicit defaulted corresponding
    390     /// special member would be defined as deleted.
    391     /// @{
    392     bool DefaultedMoveConstructorIsDeleted : 1;
    393     bool DefaultedMoveAssignmentIsDeleted : 1;
    394     bool DefaultedDestructorIsDeleted : 1;
    395     /// @}
    396 
    397     /// \brief The trivial special members which this class has, per
    398     /// C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25,
    399     /// C++11 [class.dtor]p5, or would have if the member were not suppressed.
    400     ///
    401     /// This excludes any user-declared but not user-provided special members
    402     /// which have been declared but not yet defined.
    403     unsigned HasTrivialSpecialMembers : 6;
    404 
    405     /// \brief The declared special members of this class which are known to be
    406     /// non-trivial.
    407     ///
    408     /// This excludes any user-declared but not user-provided special members
    409     /// which have been declared but not yet defined, and any implicit special
    410     /// members which have not yet been declared.
    411     unsigned DeclaredNonTrivialSpecialMembers : 6;
    412 
    413     /// \brief True when this class has a destructor with no semantic effect.
    414     bool HasIrrelevantDestructor : 1;
    415 
    416     /// \brief True when this class has at least one user-declared constexpr
    417     /// constructor which is neither the copy nor move constructor.
    418     bool HasConstexprNonCopyMoveConstructor : 1;
    419 
    420     /// \brief True if a defaulted default constructor for this class would
    421     /// be constexpr.
    422     bool DefaultedDefaultConstructorIsConstexpr : 1;
    423 
    424     /// \brief True if this class has a constexpr default constructor.
    425     ///
    426     /// This is true for either a user-declared constexpr default constructor
    427     /// or an implicitly declared constexpr default constructor.
    428     bool HasConstexprDefaultConstructor : 1;
    429 
    430     /// \brief True when this class contains at least one non-static data
    431     /// member or base class of non-literal or volatile type.
    432     bool HasNonLiteralTypeFieldsOrBases : 1;
    433 
    434     /// \brief True when visible conversion functions are already computed
    435     /// and are available.
    436     bool ComputedVisibleConversions : 1;
    437 
    438     /// \brief Whether we have a C++11 user-provided default constructor (not
    439     /// explicitly deleted or defaulted).
    440     bool UserProvidedDefaultConstructor : 1;
    441 
    442     /// \brief The special members which have been declared for this class,
    443     /// either by the user or implicitly.
    444     unsigned DeclaredSpecialMembers : 6;
    445 
    446     /// \brief Whether an implicit copy constructor would have a const-qualified
    447     /// parameter.
    448     bool ImplicitCopyConstructorHasConstParam : 1;
    449 
    450     /// \brief Whether an implicit copy assignment operator would have a
    451     /// const-qualified parameter.
    452     bool ImplicitCopyAssignmentHasConstParam : 1;
    453 
    454     /// \brief Whether any declared copy constructor has a const-qualified
    455     /// parameter.
    456     bool HasDeclaredCopyConstructorWithConstParam : 1;
    457 
    458     /// \brief Whether any declared copy assignment operator has either a
    459     /// const-qualified reference parameter or a non-reference parameter.
    460     bool HasDeclaredCopyAssignmentWithConstParam : 1;
    461 
    462     /// \brief Whether this class describes a C++ lambda.
    463     bool IsLambda : 1;
    464 
    465     /// \brief Whether we are currently parsing base specifiers.
    466     bool IsParsingBaseSpecifiers : 1;
    467 
    468     /// \brief The number of base class specifiers in Bases.
    469     unsigned NumBases;
    470 
    471     /// \brief The number of virtual base class specifiers in VBases.
    472     unsigned NumVBases;
    473 
    474     /// \brief Base classes of this class.
    475     ///
    476     /// FIXME: This is wasted space for a union.
    477     LazyCXXBaseSpecifiersPtr Bases;
    478 
    479     /// \brief direct and indirect virtual base classes of this class.
    480     LazyCXXBaseSpecifiersPtr VBases;
    481 
    482     /// \brief The conversion functions of this C++ class (but not its
    483     /// inherited conversion functions).
    484     ///
    485     /// Each of the entries in this overload set is a CXXConversionDecl.
    486     LazyASTUnresolvedSet Conversions;
    487 
    488     /// \brief The conversion functions of this C++ class and all those
    489     /// inherited conversion functions that are visible in this class.
    490     ///
    491     /// Each of the entries in this overload set is a CXXConversionDecl or a
    492     /// FunctionTemplateDecl.
    493     LazyASTUnresolvedSet VisibleConversions;
    494 
    495     /// \brief The declaration which defines this record.
    496     CXXRecordDecl *Definition;
    497 
    498     /// \brief The first friend declaration in this class, or null if there
    499     /// aren't any.
    500     ///
    501     /// This is actually currently stored in reverse order.
    502     LazyDeclPtr FirstFriend;
    503 
    504     /// \brief Retrieve the set of direct base classes.
    505     CXXBaseSpecifier *getBases() const {
    506       if (!Bases.isOffset())
    507         return Bases.get(nullptr);
    508       return getBasesSlowCase();
    509     }
    510 
    511     /// \brief Retrieve the set of virtual base classes.
    512     CXXBaseSpecifier *getVBases() const {
    513       if (!VBases.isOffset())
    514         return VBases.get(nullptr);
    515       return getVBasesSlowCase();
    516     }
    517 
    518   private:
    519     CXXBaseSpecifier *getBasesSlowCase() const;
    520     CXXBaseSpecifier *getVBasesSlowCase() const;
    521   };
    522 
    523   typedef LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>
    524       DefinitionDataPtr;
    525   friend class LazyDefinitionDataPtr<CXXRecordDecl, struct DefinitionData>;
    526 
    527   mutable DefinitionDataPtr DefinitionData;
    528 
    529   /// \brief Describes a C++ closure type (generated by a lambda expression).
    530   struct LambdaDefinitionData : public DefinitionData {
    531     typedef LambdaCapture Capture;
    532 
    533     LambdaDefinitionData(CXXRecordDecl *D, TypeSourceInfo *Info,
    534                          bool Dependent, bool IsGeneric,
    535                          LambdaCaptureDefault CaptureDefault)
    536       : DefinitionData(D), Dependent(Dependent), IsGenericLambda(IsGeneric),
    537         CaptureDefault(CaptureDefault), NumCaptures(0), NumExplicitCaptures(0),
    538         ManglingNumber(0), ContextDecl(nullptr), Captures(nullptr),
    539         MethodTyInfo(Info) {
    540       IsLambda = true;
    541 
    542       // C++11 [expr.prim.lambda]p3:
    543       //   This class type is neither an aggregate nor a literal type.
    544       Aggregate = false;
    545       PlainOldData = false;
    546       HasNonLiteralTypeFieldsOrBases = true;
    547     }
    548 
    549     /// \brief Whether this lambda is known to be dependent, even if its
    550     /// context isn't dependent.
    551     ///
    552     /// A lambda with a non-dependent context can be dependent if it occurs
    553     /// within the default argument of a function template, because the
    554     /// lambda will have been created with the enclosing context as its
    555     /// declaration context, rather than function. This is an unfortunate
    556     /// artifact of having to parse the default arguments before.
    557     unsigned Dependent : 1;
    558 
    559     /// \brief Whether this lambda is a generic lambda.
    560     unsigned IsGenericLambda : 1;
    561 
    562     /// \brief The Default Capture.
    563     unsigned CaptureDefault : 2;
    564 
    565     /// \brief The number of captures in this lambda is limited 2^NumCaptures.
    566     unsigned NumCaptures : 15;
    567 
    568     /// \brief The number of explicit captures in this lambda.
    569     unsigned NumExplicitCaptures : 13;
    570 
    571     /// \brief The number used to indicate this lambda expression for name
    572     /// mangling in the Itanium C++ ABI.
    573     unsigned ManglingNumber;
    574 
    575     /// \brief The declaration that provides context for this lambda, if the
    576     /// actual DeclContext does not suffice. This is used for lambdas that
    577     /// occur within default arguments of function parameters within the class
    578     /// or within a data member initializer.
    579     Decl *ContextDecl;
    580 
    581     /// \brief The list of captures, both explicit and implicit, for this
    582     /// lambda.
    583     Capture *Captures;
    584 
    585     /// \brief The type of the call method.
    586     TypeSourceInfo *MethodTyInfo;
    587 
    588   };
    589 
    590   struct DefinitionData &data() const {
    591     auto *DD = DefinitionData.get();
    592     assert(DD && "queried property of class with no definition");
    593     return *DD;
    594   }
    595 
    596   struct LambdaDefinitionData &getLambdaData() const {
    597     // No update required: a merged definition cannot change any lambda
    598     // properties.
    599     auto *DD = DefinitionData.getNotUpdated();
    600     assert(DD && DD->IsLambda && "queried lambda property of non-lambda class");
    601     return static_cast<LambdaDefinitionData&>(*DD);
    602   }
    603 
    604   /// \brief The template or declaration that this declaration
    605   /// describes or was instantiated from, respectively.
    606   ///
    607   /// For non-templates, this value will be null. For record
    608   /// declarations that describe a class template, this will be a
    609   /// pointer to a ClassTemplateDecl. For member
    610   /// classes of class template specializations, this will be the
    611   /// MemberSpecializationInfo referring to the member class that was
    612   /// instantiated or specialized.
    613   llvm::PointerUnion<ClassTemplateDecl*, MemberSpecializationInfo*>
    614     TemplateOrInstantiation;
    615 
    616   friend class DeclContext;
    617   friend class LambdaExpr;
    618 
    619   /// \brief Called from setBases and addedMember to notify the class that a
    620   /// direct or virtual base class or a member of class type has been added.
    621   void addedClassSubobject(CXXRecordDecl *Base);
    622 
    623   /// \brief Notify the class that member has been added.
    624   ///
    625   /// This routine helps maintain information about the class based on which
    626   /// members have been added. It will be invoked by DeclContext::addDecl()
    627   /// whenever a member is added to this record.
    628   void addedMember(Decl *D);
    629 
    630   void markedVirtualFunctionPure();
    631   friend void FunctionDecl::setPure(bool);
    632 
    633   friend class ASTNodeImporter;
    634 
    635   /// \brief Get the head of our list of friend declarations, possibly
    636   /// deserializing the friends from an external AST source.
    637   FriendDecl *getFirstFriend() const;
    638 
    639 protected:
    640   CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, DeclContext *DC,
    641                 SourceLocation StartLoc, SourceLocation IdLoc,
    642                 IdentifierInfo *Id, CXXRecordDecl *PrevDecl);
    643 
    644 public:
    645   /// \brief Iterator that traverses the base classes of a class.
    646   typedef CXXBaseSpecifier*       base_class_iterator;
    647 
    648   /// \brief Iterator that traverses the base classes of a class.
    649   typedef const CXXBaseSpecifier* base_class_const_iterator;
    650 
    651   CXXRecordDecl *getCanonicalDecl() override {
    652     return cast<CXXRecordDecl>(RecordDecl::getCanonicalDecl());
    653   }
    654   const CXXRecordDecl *getCanonicalDecl() const {
    655     return const_cast<CXXRecordDecl*>(this)->getCanonicalDecl();
    656   }
    657 
    658   CXXRecordDecl *getPreviousDecl() {
    659     return cast_or_null<CXXRecordDecl>(
    660             static_cast<RecordDecl *>(this)->getPreviousDecl());
    661   }
    662   const CXXRecordDecl *getPreviousDecl() const {
    663     return const_cast<CXXRecordDecl*>(this)->getPreviousDecl();
    664   }
    665 
    666   CXXRecordDecl *getMostRecentDecl() {
    667     return cast<CXXRecordDecl>(
    668             static_cast<RecordDecl *>(this)->getMostRecentDecl());
    669   }
    670 
    671   const CXXRecordDecl *getMostRecentDecl() const {
    672     return const_cast<CXXRecordDecl*>(this)->getMostRecentDecl();
    673   }
    674 
    675   CXXRecordDecl *getDefinition() const {
    676     auto *DD = DefinitionData.get();
    677     return DD ? DD->Definition : nullptr;
    678   }
    679 
    680   bool hasDefinition() const { return DefinitionData.get(); }
    681 
    682   static CXXRecordDecl *Create(const ASTContext &C, TagKind TK, DeclContext *DC,
    683                                SourceLocation StartLoc, SourceLocation IdLoc,
    684                                IdentifierInfo *Id,
    685                                CXXRecordDecl *PrevDecl = nullptr,
    686                                bool DelayTypeCreation = false);
    687   static CXXRecordDecl *CreateLambda(const ASTContext &C, DeclContext *DC,
    688                                      TypeSourceInfo *Info, SourceLocation Loc,
    689                                      bool DependentLambda, bool IsGeneric,
    690                                      LambdaCaptureDefault CaptureDefault);
    691   static CXXRecordDecl *CreateDeserialized(const ASTContext &C, unsigned ID);
    692 
    693   bool isDynamicClass() const {
    694     return data().Polymorphic || data().NumVBases != 0;
    695   }
    696 
    697   void setIsParsingBaseSpecifiers() { data().IsParsingBaseSpecifiers = true; }
    698 
    699   bool isParsingBaseSpecifiers() const {
    700     return data().IsParsingBaseSpecifiers;
    701   }
    702 
    703   /// \brief Sets the base classes of this struct or class.
    704   void setBases(CXXBaseSpecifier const * const *Bases, unsigned NumBases);
    705 
    706   /// \brief Retrieves the number of base classes of this class.
    707   unsigned getNumBases() const { return data().NumBases; }
    708 
    709   typedef llvm::iterator_range<base_class_iterator> base_class_range;
    710   typedef llvm::iterator_range<base_class_const_iterator>
    711     base_class_const_range;
    712 
    713   base_class_range bases() {
    714     return base_class_range(bases_begin(), bases_end());
    715   }
    716   base_class_const_range bases() const {
    717     return base_class_const_range(bases_begin(), bases_end());
    718   }
    719 
    720   base_class_iterator bases_begin() { return data().getBases(); }
    721   base_class_const_iterator bases_begin() const { return data().getBases(); }
    722   base_class_iterator bases_end() { return bases_begin() + data().NumBases; }
    723   base_class_const_iterator bases_end() const {
    724     return bases_begin() + data().NumBases;
    725   }
    726 
    727   /// \brief Retrieves the number of virtual base classes of this class.
    728   unsigned getNumVBases() const { return data().NumVBases; }
    729 
    730   base_class_range vbases() {
    731     return base_class_range(vbases_begin(), vbases_end());
    732   }
    733   base_class_const_range vbases() const {
    734     return base_class_const_range(vbases_begin(), vbases_end());
    735   }
    736 
    737   base_class_iterator vbases_begin() { return data().getVBases(); }
    738   base_class_const_iterator vbases_begin() const { return data().getVBases(); }
    739   base_class_iterator vbases_end() { return vbases_begin() + data().NumVBases; }
    740   base_class_const_iterator vbases_end() const {
    741     return vbases_begin() + data().NumVBases;
    742   }
    743 
    744   /// \brief Determine whether this class has any dependent base classes which
    745   /// are not the current instantiation.
    746   bool hasAnyDependentBases() const;
    747 
    748   /// Iterator access to method members.  The method iterator visits
    749   /// all method members of the class, including non-instance methods,
    750   /// special methods, etc.
    751   typedef specific_decl_iterator<CXXMethodDecl> method_iterator;
    752   typedef llvm::iterator_range<specific_decl_iterator<CXXMethodDecl>>
    753     method_range;
    754 
    755   method_range methods() const {
    756     return method_range(method_begin(), method_end());
    757   }
    758 
    759   /// \brief Method begin iterator.  Iterates in the order the methods
    760   /// were declared.
    761   method_iterator method_begin() const {
    762     return method_iterator(decls_begin());
    763   }
    764   /// \brief Method past-the-end iterator.
    765   method_iterator method_end() const {
    766     return method_iterator(decls_end());
    767   }
    768 
    769   /// Iterator access to constructor members.
    770   typedef specific_decl_iterator<CXXConstructorDecl> ctor_iterator;
    771   typedef llvm::iterator_range<specific_decl_iterator<CXXConstructorDecl>>
    772     ctor_range;
    773 
    774   ctor_range ctors() const { return ctor_range(ctor_begin(), ctor_end()); }
    775 
    776   ctor_iterator ctor_begin() const {
    777     return ctor_iterator(decls_begin());
    778   }
    779   ctor_iterator ctor_end() const {
    780     return ctor_iterator(decls_end());
    781   }
    782 
    783   /// An iterator over friend declarations.  All of these are defined
    784   /// in DeclFriend.h.
    785   class friend_iterator;
    786   typedef llvm::iterator_range<friend_iterator> friend_range;
    787 
    788   friend_range friends() const;
    789   friend_iterator friend_begin() const;
    790   friend_iterator friend_end() const;
    791   void pushFriendDecl(FriendDecl *FD);
    792 
    793   /// Determines whether this record has any friends.
    794   bool hasFriends() const {
    795     return data().FirstFriend.isValid();
    796   }
    797 
    798   /// \brief \c true if we know for sure that this class has a single,
    799   /// accessible, unambiguous move constructor that is not deleted.
    800   bool hasSimpleMoveConstructor() const {
    801     return !hasUserDeclaredMoveConstructor() && hasMoveConstructor() &&
    802            !data().DefaultedMoveConstructorIsDeleted;
    803   }
    804   /// \brief \c true if we know for sure that this class has a single,
    805   /// accessible, unambiguous move assignment operator that is not deleted.
    806   bool hasSimpleMoveAssignment() const {
    807     return !hasUserDeclaredMoveAssignment() && hasMoveAssignment() &&
    808            !data().DefaultedMoveAssignmentIsDeleted;
    809   }
    810   /// \brief \c true if we know for sure that this class has an accessible
    811   /// destructor that is not deleted.
    812   bool hasSimpleDestructor() const {
    813     return !hasUserDeclaredDestructor() &&
    814            !data().DefaultedDestructorIsDeleted;
    815   }
    816 
    817   /// \brief Determine whether this class has any default constructors.
    818   bool hasDefaultConstructor() const {
    819     return (data().DeclaredSpecialMembers & SMF_DefaultConstructor) ||
    820            needsImplicitDefaultConstructor();
    821   }
    822 
    823   /// \brief Determine if we need to declare a default constructor for
    824   /// this class.
    825   ///
    826   /// This value is used for lazy creation of default constructors.
    827   bool needsImplicitDefaultConstructor() const {
    828     return !data().UserDeclaredConstructor &&
    829            !(data().DeclaredSpecialMembers & SMF_DefaultConstructor) &&
    830            // C++14 [expr.prim.lambda]p20:
    831            //   The closure type associated with a lambda-expression has no
    832            //   default constructor.
    833            !isLambda();
    834   }
    835 
    836   /// \brief Determine whether this class has any user-declared constructors.
    837   ///
    838   /// When true, a default constructor will not be implicitly declared.
    839   bool hasUserDeclaredConstructor() const {
    840     return data().UserDeclaredConstructor;
    841   }
    842 
    843   /// \brief Whether this class has a user-provided default constructor
    844   /// per C++11.
    845   bool hasUserProvidedDefaultConstructor() const {
    846     return data().UserProvidedDefaultConstructor;
    847   }
    848 
    849   /// \brief Determine whether this class has a user-declared copy constructor.
    850   ///
    851   /// When false, a copy constructor will be implicitly declared.
    852   bool hasUserDeclaredCopyConstructor() const {
    853     return data().UserDeclaredSpecialMembers & SMF_CopyConstructor;
    854   }
    855 
    856   /// \brief Determine whether this class needs an implicit copy
    857   /// constructor to be lazily declared.
    858   bool needsImplicitCopyConstructor() const {
    859     return !(data().DeclaredSpecialMembers & SMF_CopyConstructor);
    860   }
    861 
    862   /// \brief Determine whether we need to eagerly declare a defaulted copy
    863   /// constructor for this class.
    864   bool needsOverloadResolutionForCopyConstructor() const {
    865     return data().HasMutableFields;
    866   }
    867 
    868   /// \brief Determine whether an implicit copy constructor for this type
    869   /// would have a parameter with a const-qualified reference type.
    870   bool implicitCopyConstructorHasConstParam() const {
    871     return data().ImplicitCopyConstructorHasConstParam;
    872   }
    873 
    874   /// \brief Determine whether this class has a copy constructor with
    875   /// a parameter type which is a reference to a const-qualified type.
    876   bool hasCopyConstructorWithConstParam() const {
    877     return data().HasDeclaredCopyConstructorWithConstParam ||
    878            (needsImplicitCopyConstructor() &&
    879             implicitCopyConstructorHasConstParam());
    880   }
    881 
    882   /// \brief Whether this class has a user-declared move constructor or
    883   /// assignment operator.
    884   ///
    885   /// When false, a move constructor and assignment operator may be
    886   /// implicitly declared.
    887   bool hasUserDeclaredMoveOperation() const {
    888     return data().UserDeclaredSpecialMembers &
    889              (SMF_MoveConstructor | SMF_MoveAssignment);
    890   }
    891 
    892   /// \brief Determine whether this class has had a move constructor
    893   /// declared by the user.
    894   bool hasUserDeclaredMoveConstructor() const {
    895     return data().UserDeclaredSpecialMembers & SMF_MoveConstructor;
    896   }
    897 
    898   /// \brief Determine whether this class has a move constructor.
    899   bool hasMoveConstructor() const {
    900     return (data().DeclaredSpecialMembers & SMF_MoveConstructor) ||
    901            needsImplicitMoveConstructor();
    902   }
    903 
    904   /// \brief Set that we attempted to declare an implicitly move
    905   /// constructor, but overload resolution failed so we deleted it.
    906   void setImplicitMoveConstructorIsDeleted() {
    907     assert((data().DefaultedMoveConstructorIsDeleted ||
    908             needsOverloadResolutionForMoveConstructor()) &&
    909            "move constructor should not be deleted");
    910     data().DefaultedMoveConstructorIsDeleted = true;
    911   }
    912 
    913   /// \brief Determine whether this class should get an implicit move
    914   /// constructor or if any existing special member function inhibits this.
    915   bool needsImplicitMoveConstructor() const {
    916     return !(data().DeclaredSpecialMembers & SMF_MoveConstructor) &&
    917            !hasUserDeclaredCopyConstructor() &&
    918            !hasUserDeclaredCopyAssignment() &&
    919            !hasUserDeclaredMoveAssignment() &&
    920            !hasUserDeclaredDestructor();
    921   }
    922 
    923   /// \brief Determine whether we need to eagerly declare a defaulted move
    924   /// constructor for this class.
    925   bool needsOverloadResolutionForMoveConstructor() const {
    926     return data().NeedOverloadResolutionForMoveConstructor;
    927   }
    928 
    929   /// \brief Determine whether this class has a user-declared copy assignment
    930   /// operator.
    931   ///
    932   /// When false, a copy assigment operator will be implicitly declared.
    933   bool hasUserDeclaredCopyAssignment() const {
    934     return data().UserDeclaredSpecialMembers & SMF_CopyAssignment;
    935   }
    936 
    937   /// \brief Determine whether this class needs an implicit copy
    938   /// assignment operator to be lazily declared.
    939   bool needsImplicitCopyAssignment() const {
    940     return !(data().DeclaredSpecialMembers & SMF_CopyAssignment);
    941   }
    942 
    943   /// \brief Determine whether we need to eagerly declare a defaulted copy
    944   /// assignment operator for this class.
    945   bool needsOverloadResolutionForCopyAssignment() const {
    946     return data().HasMutableFields;
    947   }
    948 
    949   /// \brief Determine whether an implicit copy assignment operator for this
    950   /// type would have a parameter with a const-qualified reference type.
    951   bool implicitCopyAssignmentHasConstParam() const {
    952     return data().ImplicitCopyAssignmentHasConstParam;
    953   }
    954 
    955   /// \brief Determine whether this class has a copy assignment operator with
    956   /// a parameter type which is a reference to a const-qualified type or is not
    957   /// a reference.
    958   bool hasCopyAssignmentWithConstParam() const {
    959     return data().HasDeclaredCopyAssignmentWithConstParam ||
    960            (needsImplicitCopyAssignment() &&
    961             implicitCopyAssignmentHasConstParam());
    962   }
    963 
    964   /// \brief Determine whether this class has had a move assignment
    965   /// declared by the user.
    966   bool hasUserDeclaredMoveAssignment() const {
    967     return data().UserDeclaredSpecialMembers & SMF_MoveAssignment;
    968   }
    969 
    970   /// \brief Determine whether this class has a move assignment operator.
    971   bool hasMoveAssignment() const {
    972     return (data().DeclaredSpecialMembers & SMF_MoveAssignment) ||
    973            needsImplicitMoveAssignment();
    974   }
    975 
    976   /// \brief Set that we attempted to declare an implicit move assignment
    977   /// operator, but overload resolution failed so we deleted it.
    978   void setImplicitMoveAssignmentIsDeleted() {
    979     assert((data().DefaultedMoveAssignmentIsDeleted ||
    980             needsOverloadResolutionForMoveAssignment()) &&
    981            "move assignment should not be deleted");
    982     data().DefaultedMoveAssignmentIsDeleted = true;
    983   }
    984 
    985   /// \brief Determine whether this class should get an implicit move
    986   /// assignment operator or if any existing special member function inhibits
    987   /// this.
    988   bool needsImplicitMoveAssignment() const {
    989     return !(data().DeclaredSpecialMembers & SMF_MoveAssignment) &&
    990            !hasUserDeclaredCopyConstructor() &&
    991            !hasUserDeclaredCopyAssignment() &&
    992            !hasUserDeclaredMoveConstructor() &&
    993            !hasUserDeclaredDestructor();
    994   }
    995 
    996   /// \brief Determine whether we need to eagerly declare a move assignment
    997   /// operator for this class.
    998   bool needsOverloadResolutionForMoveAssignment() const {
    999     return data().NeedOverloadResolutionForMoveAssignment;
   1000   }
   1001 
   1002   /// \brief Determine whether this class has a user-declared destructor.
   1003   ///
   1004   /// When false, a destructor will be implicitly declared.
   1005   bool hasUserDeclaredDestructor() const {
   1006     return data().UserDeclaredSpecialMembers & SMF_Destructor;
   1007   }
   1008 
   1009   /// \brief Determine whether this class needs an implicit destructor to
   1010   /// be lazily declared.
   1011   bool needsImplicitDestructor() const {
   1012     return !(data().DeclaredSpecialMembers & SMF_Destructor);
   1013   }
   1014 
   1015   /// \brief Determine whether we need to eagerly declare a destructor for this
   1016   /// class.
   1017   bool needsOverloadResolutionForDestructor() const {
   1018     return data().NeedOverloadResolutionForDestructor;
   1019   }
   1020 
   1021   /// \brief Determine whether this class describes a lambda function object.
   1022   bool isLambda() const {
   1023     // An update record can't turn a non-lambda into a lambda.
   1024     auto *DD = DefinitionData.getNotUpdated();
   1025     return DD && DD->IsLambda;
   1026   }
   1027 
   1028   /// \brief Determine whether this class describes a generic
   1029   /// lambda function object (i.e. function call operator is
   1030   /// a template).
   1031   bool isGenericLambda() const;
   1032 
   1033   /// \brief Retrieve the lambda call operator of the closure type
   1034   /// if this is a closure type.
   1035   CXXMethodDecl *getLambdaCallOperator() const;
   1036 
   1037   /// \brief Retrieve the lambda static invoker, the address of which
   1038   /// is returned by the conversion operator, and the body of which
   1039   /// is forwarded to the lambda call operator.
   1040   CXXMethodDecl *getLambdaStaticInvoker() const;
   1041 
   1042   /// \brief Retrieve the generic lambda's template parameter list.
   1043   /// Returns null if the class does not represent a lambda or a generic
   1044   /// lambda.
   1045   TemplateParameterList *getGenericLambdaTemplateParameterList() const;
   1046 
   1047   LambdaCaptureDefault getLambdaCaptureDefault() const {
   1048     assert(isLambda());
   1049     return static_cast<LambdaCaptureDefault>(getLambdaData().CaptureDefault);
   1050   }
   1051 
   1052   /// \brief For a closure type, retrieve the mapping from captured
   1053   /// variables and \c this to the non-static data members that store the
   1054   /// values or references of the captures.
   1055   ///
   1056   /// \param Captures Will be populated with the mapping from captured
   1057   /// variables to the corresponding fields.
   1058   ///
   1059   /// \param ThisCapture Will be set to the field declaration for the
   1060   /// \c this capture.
   1061   ///
   1062   /// \note No entries will be added for init-captures, as they do not capture
   1063   /// variables.
   1064   void getCaptureFields(llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures,
   1065                         FieldDecl *&ThisCapture) const;
   1066 
   1067   typedef const LambdaCapture *capture_const_iterator;
   1068   typedef llvm::iterator_range<capture_const_iterator> capture_const_range;
   1069 
   1070   capture_const_range captures() const {
   1071     return capture_const_range(captures_begin(), captures_end());
   1072   }
   1073   capture_const_iterator captures_begin() const {
   1074     return isLambda() ? getLambdaData().Captures : nullptr;
   1075   }
   1076   capture_const_iterator captures_end() const {
   1077     return isLambda() ? captures_begin() + getLambdaData().NumCaptures
   1078                       : nullptr;
   1079   }
   1080 
   1081   typedef UnresolvedSetIterator conversion_iterator;
   1082   conversion_iterator conversion_begin() const {
   1083     return data().Conversions.get(getASTContext()).begin();
   1084   }
   1085   conversion_iterator conversion_end() const {
   1086     return data().Conversions.get(getASTContext()).end();
   1087   }
   1088 
   1089   /// Removes a conversion function from this class.  The conversion
   1090   /// function must currently be a member of this class.  Furthermore,
   1091   /// this class must currently be in the process of being defined.
   1092   void removeConversion(const NamedDecl *Old);
   1093 
   1094   /// \brief Get all conversion functions visible in current class,
   1095   /// including conversion function templates.
   1096   llvm::iterator_range<conversion_iterator> getVisibleConversionFunctions();
   1097 
   1098   /// Determine whether this class is an aggregate (C++ [dcl.init.aggr]),
   1099   /// which is a class with no user-declared constructors, no private
   1100   /// or protected non-static data members, no base classes, and no virtual
   1101   /// functions (C++ [dcl.init.aggr]p1).
   1102   bool isAggregate() const { return data().Aggregate; }
   1103 
   1104   /// \brief Whether this class has any in-class initializers
   1105   /// for non-static data members (including those in anonymous unions or
   1106   /// structs).
   1107   bool hasInClassInitializer() const { return data().HasInClassInitializer; }
   1108 
   1109   /// \brief Whether this class or any of its subobjects has any members of
   1110   /// reference type which would make value-initialization ill-formed.
   1111   ///
   1112   /// Per C++03 [dcl.init]p5:
   1113   ///  - if T is a non-union class type without a user-declared constructor,
   1114   ///    then every non-static data member and base-class component of T is
   1115   ///    value-initialized [...] A program that calls for [...]
   1116   ///    value-initialization of an entity of reference type is ill-formed.
   1117   bool hasUninitializedReferenceMember() const {
   1118     return !isUnion() && !hasUserDeclaredConstructor() &&
   1119            data().HasUninitializedReferenceMember;
   1120   }
   1121 
   1122   /// \brief Whether this class is a POD-type (C++ [class]p4)
   1123   ///
   1124   /// For purposes of this function a class is POD if it is an aggregate
   1125   /// that has no non-static non-POD data members, no reference data
   1126   /// members, no user-defined copy assignment operator and no
   1127   /// user-defined destructor.
   1128   ///
   1129   /// Note that this is the C++ TR1 definition of POD.
   1130   bool isPOD() const { return data().PlainOldData; }
   1131 
   1132   /// \brief True if this class is C-like, without C++-specific features, e.g.
   1133   /// it contains only public fields, no bases, tag kind is not 'class', etc.
   1134   bool isCLike() const;
   1135 
   1136   /// \brief Determine whether this is an empty class in the sense of
   1137   /// (C++11 [meta.unary.prop]).
   1138   ///
   1139   /// A non-union class is empty iff it has a virtual function, virtual base,
   1140   /// data member (other than 0-width bit-field) or inherits from a non-empty
   1141   /// class.
   1142   ///
   1143   /// \note This does NOT include a check for union-ness.
   1144   bool isEmpty() const { return data().Empty; }
   1145 
   1146   /// Whether this class is polymorphic (C++ [class.virtual]),
   1147   /// which means that the class contains or inherits a virtual function.
   1148   bool isPolymorphic() const { return data().Polymorphic; }
   1149 
   1150   /// \brief Determine whether this class has a pure virtual function.
   1151   ///
   1152   /// The class is is abstract per (C++ [class.abstract]p2) if it declares
   1153   /// a pure virtual function or inherits a pure virtual function that is
   1154   /// not overridden.
   1155   bool isAbstract() const { return data().Abstract; }
   1156 
   1157   /// \brief Determine whether this class has standard layout per
   1158   /// (C++ [class]p7)
   1159   bool isStandardLayout() const { return data().IsStandardLayout; }
   1160 
   1161   /// \brief Determine whether this class, or any of its class subobjects,
   1162   /// contains a mutable field.
   1163   bool hasMutableFields() const { return data().HasMutableFields; }
   1164 
   1165   /// \brief Determine whether this class has any variant members.
   1166   bool hasVariantMembers() const { return data().HasVariantMembers; }
   1167 
   1168   /// \brief Determine whether this class has a trivial default constructor
   1169   /// (C++11 [class.ctor]p5).
   1170   bool hasTrivialDefaultConstructor() const {
   1171     return hasDefaultConstructor() &&
   1172            (data().HasTrivialSpecialMembers & SMF_DefaultConstructor);
   1173   }
   1174 
   1175   /// \brief Determine whether this class has a non-trivial default constructor
   1176   /// (C++11 [class.ctor]p5).
   1177   bool hasNonTrivialDefaultConstructor() const {
   1178     return (data().DeclaredNonTrivialSpecialMembers & SMF_DefaultConstructor) ||
   1179            (needsImplicitDefaultConstructor() &&
   1180             !(data().HasTrivialSpecialMembers & SMF_DefaultConstructor));
   1181   }
   1182 
   1183   /// \brief Determine whether this class has at least one constexpr constructor
   1184   /// other than the copy or move constructors.
   1185   bool hasConstexprNonCopyMoveConstructor() const {
   1186     return data().HasConstexprNonCopyMoveConstructor ||
   1187            (needsImplicitDefaultConstructor() &&
   1188             defaultedDefaultConstructorIsConstexpr());
   1189   }
   1190 
   1191   /// \brief Determine whether a defaulted default constructor for this class
   1192   /// would be constexpr.
   1193   bool defaultedDefaultConstructorIsConstexpr() const {
   1194     return data().DefaultedDefaultConstructorIsConstexpr &&
   1195            (!isUnion() || hasInClassInitializer() || !hasVariantMembers());
   1196   }
   1197 
   1198   /// \brief Determine whether this class has a constexpr default constructor.
   1199   bool hasConstexprDefaultConstructor() const {
   1200     return data().HasConstexprDefaultConstructor ||
   1201            (needsImplicitDefaultConstructor() &&
   1202             defaultedDefaultConstructorIsConstexpr());
   1203   }
   1204 
   1205   /// \brief Determine whether this class has a trivial copy constructor
   1206   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1207   bool hasTrivialCopyConstructor() const {
   1208     return data().HasTrivialSpecialMembers & SMF_CopyConstructor;
   1209   }
   1210 
   1211   /// \brief Determine whether this class has a non-trivial copy constructor
   1212   /// (C++ [class.copy]p6, C++11 [class.copy]p12)
   1213   bool hasNonTrivialCopyConstructor() const {
   1214     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyConstructor ||
   1215            !hasTrivialCopyConstructor();
   1216   }
   1217 
   1218   /// \brief Determine whether this class has a trivial move constructor
   1219   /// (C++11 [class.copy]p12)
   1220   bool hasTrivialMoveConstructor() const {
   1221     return hasMoveConstructor() &&
   1222            (data().HasTrivialSpecialMembers & SMF_MoveConstructor);
   1223   }
   1224 
   1225   /// \brief Determine whether this class has a non-trivial move constructor
   1226   /// (C++11 [class.copy]p12)
   1227   bool hasNonTrivialMoveConstructor() const {
   1228     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveConstructor) ||
   1229            (needsImplicitMoveConstructor() &&
   1230             !(data().HasTrivialSpecialMembers & SMF_MoveConstructor));
   1231   }
   1232 
   1233   /// \brief Determine whether this class has a trivial copy assignment operator
   1234   /// (C++ [class.copy]p11, C++11 [class.copy]p25)
   1235   bool hasTrivialCopyAssignment() const {
   1236     return data().HasTrivialSpecialMembers & SMF_CopyAssignment;
   1237   }
   1238 
   1239   /// \brief Determine whether this class has a non-trivial copy assignment
   1240   /// operator (C++ [class.copy]p11, C++11 [class.copy]p25)
   1241   bool hasNonTrivialCopyAssignment() const {
   1242     return data().DeclaredNonTrivialSpecialMembers & SMF_CopyAssignment ||
   1243            !hasTrivialCopyAssignment();
   1244   }
   1245 
   1246   /// \brief Determine whether this class has a trivial move assignment operator
   1247   /// (C++11 [class.copy]p25)
   1248   bool hasTrivialMoveAssignment() const {
   1249     return hasMoveAssignment() &&
   1250            (data().HasTrivialSpecialMembers & SMF_MoveAssignment);
   1251   }
   1252 
   1253   /// \brief Determine whether this class has a non-trivial move assignment
   1254   /// operator (C++11 [class.copy]p25)
   1255   bool hasNonTrivialMoveAssignment() const {
   1256     return (data().DeclaredNonTrivialSpecialMembers & SMF_MoveAssignment) ||
   1257            (needsImplicitMoveAssignment() &&
   1258             !(data().HasTrivialSpecialMembers & SMF_MoveAssignment));
   1259   }
   1260 
   1261   /// \brief Determine whether this class has a trivial destructor
   1262   /// (C++ [class.dtor]p3)
   1263   bool hasTrivialDestructor() const {
   1264     return data().HasTrivialSpecialMembers & SMF_Destructor;
   1265   }
   1266 
   1267   /// \brief Determine whether this class has a non-trivial destructor
   1268   /// (C++ [class.dtor]p3)
   1269   bool hasNonTrivialDestructor() const {
   1270     return !(data().HasTrivialSpecialMembers & SMF_Destructor);
   1271   }
   1272 
   1273   /// \brief Determine whether this class has a destructor which has no
   1274   /// semantic effect.
   1275   ///
   1276   /// Any such destructor will be trivial, public, defaulted and not deleted,
   1277   /// and will call only irrelevant destructors.
   1278   bool hasIrrelevantDestructor() const {
   1279     return data().HasIrrelevantDestructor;
   1280   }
   1281 
   1282   /// \brief Determine whether this class has a non-literal or/ volatile type
   1283   /// non-static data member or base class.
   1284   bool hasNonLiteralTypeFieldsOrBases() const {
   1285     return data().HasNonLiteralTypeFieldsOrBases;
   1286   }
   1287 
   1288   /// \brief Determine whether this class is considered trivially copyable per
   1289   /// (C++11 [class]p6).
   1290   bool isTriviallyCopyable() const;
   1291 
   1292   /// \brief Determine whether this class is considered trivial.
   1293   ///
   1294   /// C++11 [class]p6:
   1295   ///    "A trivial class is a class that has a trivial default constructor and
   1296   ///    is trivially copiable."
   1297   bool isTrivial() const {
   1298     return isTriviallyCopyable() && hasTrivialDefaultConstructor();
   1299   }
   1300 
   1301   /// \brief Determine whether this class is a literal type.
   1302   ///
   1303   /// C++11 [basic.types]p10:
   1304   ///   A class type that has all the following properties:
   1305   ///     - it has a trivial destructor
   1306   ///     - every constructor call and full-expression in the
   1307   ///       brace-or-equal-intializers for non-static data members (if any) is
   1308   ///       a constant expression.
   1309   ///     - it is an aggregate type or has at least one constexpr constructor
   1310   ///       or constructor template that is not a copy or move constructor, and
   1311   ///     - all of its non-static data members and base classes are of literal
   1312   ///       types
   1313   ///
   1314   /// We resolve DR1361 by ignoring the second bullet. We resolve DR1452 by
   1315   /// treating types with trivial default constructors as literal types.
   1316   bool isLiteral() const {
   1317     return hasTrivialDestructor() &&
   1318            (isAggregate() || hasConstexprNonCopyMoveConstructor() ||
   1319             hasTrivialDefaultConstructor()) &&
   1320            !hasNonLiteralTypeFieldsOrBases();
   1321   }
   1322 
   1323   /// \brief If this record is an instantiation of a member class,
   1324   /// retrieves the member class from which it was instantiated.
   1325   ///
   1326   /// This routine will return non-null for (non-templated) member
   1327   /// classes of class templates. For example, given:
   1328   ///
   1329   /// \code
   1330   /// template<typename T>
   1331   /// struct X {
   1332   ///   struct A { };
   1333   /// };
   1334   /// \endcode
   1335   ///
   1336   /// The declaration for X<int>::A is a (non-templated) CXXRecordDecl
   1337   /// whose parent is the class template specialization X<int>. For
   1338   /// this declaration, getInstantiatedFromMemberClass() will return
   1339   /// the CXXRecordDecl X<T>::A. When a complete definition of
   1340   /// X<int>::A is required, it will be instantiated from the
   1341   /// declaration returned by getInstantiatedFromMemberClass().
   1342   CXXRecordDecl *getInstantiatedFromMemberClass() const;
   1343 
   1344   /// \brief If this class is an instantiation of a member class of a
   1345   /// class template specialization, retrieves the member specialization
   1346   /// information.
   1347   MemberSpecializationInfo *getMemberSpecializationInfo() const {
   1348     return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>();
   1349   }
   1350 
   1351   /// \brief Specify that this record is an instantiation of the
   1352   /// member class \p RD.
   1353   void setInstantiationOfMemberClass(CXXRecordDecl *RD,
   1354                                      TemplateSpecializationKind TSK);
   1355 
   1356   /// \brief Retrieves the class template that is described by this
   1357   /// class declaration.
   1358   ///
   1359   /// Every class template is represented as a ClassTemplateDecl and a
   1360   /// CXXRecordDecl. The former contains template properties (such as
   1361   /// the template parameter lists) while the latter contains the
   1362   /// actual description of the template's
   1363   /// contents. ClassTemplateDecl::getTemplatedDecl() retrieves the
   1364   /// CXXRecordDecl that from a ClassTemplateDecl, while
   1365   /// getDescribedClassTemplate() retrieves the ClassTemplateDecl from
   1366   /// a CXXRecordDecl.
   1367   ClassTemplateDecl *getDescribedClassTemplate() const {
   1368     return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl*>();
   1369   }
   1370 
   1371   void setDescribedClassTemplate(ClassTemplateDecl *Template) {
   1372     TemplateOrInstantiation = Template;
   1373   }
   1374 
   1375   /// \brief Determine whether this particular class is a specialization or
   1376   /// instantiation of a class template or member class of a class template,
   1377   /// and how it was instantiated or specialized.
   1378   TemplateSpecializationKind getTemplateSpecializationKind() const;
   1379 
   1380   /// \brief Set the kind of specialization or template instantiation this is.
   1381   void setTemplateSpecializationKind(TemplateSpecializationKind TSK);
   1382 
   1383   /// \brief Retrieve the record declaration from which this record could be
   1384   /// instantiated. Returns null if this class is not a template instantiation.
   1385   const CXXRecordDecl *getTemplateInstantiationPattern() const;
   1386 
   1387   CXXRecordDecl *getTemplateInstantiationPattern() {
   1388     return const_cast<CXXRecordDecl *>(const_cast<const CXXRecordDecl *>(this)
   1389                                            ->getTemplateInstantiationPattern());
   1390   }
   1391 
   1392   /// \brief Returns the destructor decl for this class.
   1393   CXXDestructorDecl *getDestructor() const;
   1394 
   1395   /// \brief Returns true if the class destructor, or any implicitly invoked
   1396   /// destructors are marked noreturn.
   1397   bool isAnyDestructorNoReturn() const;
   1398 
   1399   /// \brief If the class is a local class [class.local], returns
   1400   /// the enclosing function declaration.
   1401   const FunctionDecl *isLocalClass() const {
   1402     if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(getDeclContext()))
   1403       return RD->isLocalClass();
   1404 
   1405     return dyn_cast<FunctionDecl>(getDeclContext());
   1406   }
   1407 
   1408   FunctionDecl *isLocalClass() {
   1409     return const_cast<FunctionDecl*>(
   1410         const_cast<const CXXRecordDecl*>(this)->isLocalClass());
   1411   }
   1412 
   1413   /// \brief Determine whether this dependent class is a current instantiation,
   1414   /// when viewed from within the given context.
   1415   bool isCurrentInstantiation(const DeclContext *CurContext) const;
   1416 
   1417   /// \brief Determine whether this class is derived from the class \p Base.
   1418   ///
   1419   /// This routine only determines whether this class is derived from \p Base,
   1420   /// but does not account for factors that may make a Derived -> Base class
   1421   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1422   /// base class subobjects.
   1423   ///
   1424   /// \param Base the base class we are searching for.
   1425   ///
   1426   /// \returns true if this class is derived from Base, false otherwise.
   1427   bool isDerivedFrom(const CXXRecordDecl *Base) const;
   1428 
   1429   /// \brief Determine whether this class is derived from the type \p Base.
   1430   ///
   1431   /// This routine only determines whether this class is derived from \p Base,
   1432   /// but does not account for factors that may make a Derived -> Base class
   1433   /// ill-formed, such as private/protected inheritance or multiple, ambiguous
   1434   /// base class subobjects.
   1435   ///
   1436   /// \param Base the base class we are searching for.
   1437   ///
   1438   /// \param Paths will contain the paths taken from the current class to the
   1439   /// given \p Base class.
   1440   ///
   1441   /// \returns true if this class is derived from \p Base, false otherwise.
   1442   ///
   1443   /// \todo add a separate parameter to configure IsDerivedFrom, rather than
   1444   /// tangling input and output in \p Paths
   1445   bool isDerivedFrom(const CXXRecordDecl *Base, CXXBasePaths &Paths) const;
   1446 
   1447   /// \brief Determine whether this class is virtually derived from
   1448   /// the class \p Base.
   1449   ///
   1450   /// This routine only determines whether this class is virtually
   1451   /// derived from \p Base, but does not account for factors that may
   1452   /// make a Derived -> Base class ill-formed, such as
   1453   /// private/protected inheritance or multiple, ambiguous base class
   1454   /// subobjects.
   1455   ///
   1456   /// \param Base the base class we are searching for.
   1457   ///
   1458   /// \returns true if this class is virtually derived from Base,
   1459   /// false otherwise.
   1460   bool isVirtuallyDerivedFrom(const CXXRecordDecl *Base) const;
   1461 
   1462   /// \brief Determine whether this class is provably not derived from
   1463   /// the type \p Base.
   1464   bool isProvablyNotDerivedFrom(const CXXRecordDecl *Base) const;
   1465 
   1466   /// \brief Function type used by forallBases() as a callback.
   1467   ///
   1468   /// \param BaseDefinition the definition of the base class
   1469   ///
   1470   /// \returns true if this base matched the search criteria
   1471   typedef llvm::function_ref<bool(const CXXRecordDecl *BaseDefinition)>
   1472       ForallBasesCallback;
   1473 
   1474   /// \brief Determines if the given callback holds for all the direct
   1475   /// or indirect base classes of this type.
   1476   ///
   1477   /// The class itself does not count as a base class.  This routine
   1478   /// returns false if the class has non-computable base classes.
   1479   ///
   1480   /// \param BaseMatches Callback invoked for each (direct or indirect) base
   1481   /// class of this type, or if \p AllowShortCircuit is true then until a call
   1482   /// returns false.
   1483   ///
   1484   /// \param AllowShortCircuit if false, forces the callback to be called
   1485   /// for every base class, even if a dependent or non-matching base was
   1486   /// found.
   1487   bool forallBases(ForallBasesCallback BaseMatches,
   1488                    bool AllowShortCircuit = true) const;
   1489 
   1490   /// \brief Function type used by lookupInBases() to determine whether a
   1491   /// specific base class subobject matches the lookup criteria.
   1492   ///
   1493   /// \param Specifier the base-class specifier that describes the inheritance
   1494   /// from the base class we are trying to match.
   1495   ///
   1496   /// \param Path the current path, from the most-derived class down to the
   1497   /// base named by the \p Specifier.
   1498   ///
   1499   /// \returns true if this base matched the search criteria, false otherwise.
   1500   typedef llvm::function_ref<bool(const CXXBaseSpecifier *Specifier,
   1501                                   CXXBasePath &Path)> BaseMatchesCallback;
   1502 
   1503   /// \brief Look for entities within the base classes of this C++ class,
   1504   /// transitively searching all base class subobjects.
   1505   ///
   1506   /// This routine uses the callback function \p BaseMatches to find base
   1507   /// classes meeting some search criteria, walking all base class subobjects
   1508   /// and populating the given \p Paths structure with the paths through the
   1509   /// inheritance hierarchy that resulted in a match. On a successful search,
   1510   /// the \p Paths structure can be queried to retrieve the matching paths and
   1511   /// to determine if there were any ambiguities.
   1512   ///
   1513   /// \param BaseMatches callback function used to determine whether a given
   1514   /// base matches the user-defined search criteria.
   1515   ///
   1516   /// \param Paths used to record the paths from this class to its base class
   1517   /// subobjects that match the search criteria.
   1518   ///
   1519   /// \returns true if there exists any path from this class to a base class
   1520   /// subobject that matches the search criteria.
   1521   bool lookupInBases(BaseMatchesCallback BaseMatches,
   1522                      CXXBasePaths &Paths) const;
   1523 
   1524   /// \brief Base-class lookup callback that determines whether the given
   1525   /// base class specifier refers to a specific class declaration.
   1526   ///
   1527   /// This callback can be used with \c lookupInBases() to determine whether
   1528   /// a given derived class has is a base class subobject of a particular type.
   1529   /// The base record pointer should refer to the canonical CXXRecordDecl of the
   1530   /// base class that we are searching for.
   1531   static bool FindBaseClass(const CXXBaseSpecifier *Specifier,
   1532                             CXXBasePath &Path, const CXXRecordDecl *BaseRecord);
   1533 
   1534   /// \brief Base-class lookup callback that determines whether the
   1535   /// given base class specifier refers to a specific class
   1536   /// declaration and describes virtual derivation.
   1537   ///
   1538   /// This callback can be used with \c lookupInBases() to determine
   1539   /// whether a given derived class has is a virtual base class
   1540   /// subobject of a particular type.  The base record pointer should
   1541   /// refer to the canonical CXXRecordDecl of the base class that we
   1542   /// are searching for.
   1543   static bool FindVirtualBaseClass(const CXXBaseSpecifier *Specifier,
   1544                                    CXXBasePath &Path,
   1545                                    const CXXRecordDecl *BaseRecord);
   1546 
   1547   /// \brief Base-class lookup callback that determines whether there exists
   1548   /// a tag with the given name.
   1549   ///
   1550   /// This callback can be used with \c lookupInBases() to find tag members
   1551   /// of the given name within a C++ class hierarchy.
   1552   static bool FindTagMember(const CXXBaseSpecifier *Specifier,
   1553                             CXXBasePath &Path, DeclarationName Name);
   1554 
   1555   /// \brief Base-class lookup callback that determines whether there exists
   1556   /// a member with the given name.
   1557   ///
   1558   /// This callback can be used with \c lookupInBases() to find members
   1559   /// of the given name within a C++ class hierarchy.
   1560   static bool FindOrdinaryMember(const CXXBaseSpecifier *Specifier,
   1561                                  CXXBasePath &Path, DeclarationName Name);
   1562 
   1563   /// \brief Base-class lookup callback that determines whether there exists
   1564   /// a member with the given name that can be used in a nested-name-specifier.
   1565   ///
   1566   /// This callback can be used with \c lookupInBases() to find members of
   1567   /// the given name within a C++ class hierarchy that can occur within
   1568   /// nested-name-specifiers.
   1569   static bool FindNestedNameSpecifierMember(const CXXBaseSpecifier *Specifier,
   1570                                             CXXBasePath &Path,
   1571                                             DeclarationName Name);
   1572 
   1573   /// \brief Retrieve the final overriders for each virtual member
   1574   /// function in the class hierarchy where this class is the
   1575   /// most-derived class in the class hierarchy.
   1576   void getFinalOverriders(CXXFinalOverriderMap &FinaOverriders) const;
   1577 
   1578   /// \brief Get the indirect primary bases for this class.
   1579   void getIndirectPrimaryBases(CXXIndirectPrimaryBaseSet& Bases) const;
   1580 
   1581   /// Renders and displays an inheritance diagram
   1582   /// for this C++ class and all of its base classes (transitively) using
   1583   /// GraphViz.
   1584   void viewInheritance(ASTContext& Context) const;
   1585 
   1586   /// \brief Calculates the access of a decl that is reached
   1587   /// along a path.
   1588   static AccessSpecifier MergeAccess(AccessSpecifier PathAccess,
   1589                                      AccessSpecifier DeclAccess) {
   1590     assert(DeclAccess != AS_none);
   1591     if (DeclAccess == AS_private) return AS_none;
   1592     return (PathAccess > DeclAccess ? PathAccess : DeclAccess);
   1593   }
   1594 
   1595   /// \brief Indicates that the declaration of a defaulted or deleted special
   1596   /// member function is now complete.
   1597   void finishedDefaultedOrDeletedMember(CXXMethodDecl *MD);
   1598 
   1599   /// \brief Indicates that the definition of this class is now complete.
   1600   void completeDefinition() override;
   1601 
   1602   /// \brief Indicates that the definition of this class is now complete,
   1603   /// and provides a final overrider map to help determine
   1604   ///
   1605   /// \param FinalOverriders The final overrider map for this class, which can
   1606   /// be provided as an optimization for abstract-class checking. If NULL,
   1607   /// final overriders will be computed if they are needed to complete the
   1608   /// definition.
   1609   void completeDefinition(CXXFinalOverriderMap *FinalOverriders);
   1610 
   1611   /// \brief Determine whether this class may end up being abstract, even though
   1612   /// it is not yet known to be abstract.
   1613   ///
   1614   /// \returns true if this class is not known to be abstract but has any
   1615   /// base classes that are abstract. In this case, \c completeDefinition()
   1616   /// will need to compute final overriders to determine whether the class is
   1617   /// actually abstract.
   1618   bool mayBeAbstract() const;
   1619 
   1620   /// \brief If this is the closure type of a lambda expression, retrieve the
   1621   /// number to be used for name mangling in the Itanium C++ ABI.
   1622   ///
   1623   /// Zero indicates that this closure type has internal linkage, so the
   1624   /// mangling number does not matter, while a non-zero value indicates which
   1625   /// lambda expression this is in this particular context.
   1626   unsigned getLambdaManglingNumber() const {
   1627     assert(isLambda() && "Not a lambda closure type!");
   1628     return getLambdaData().ManglingNumber;
   1629   }
   1630 
   1631   /// \brief Retrieve the declaration that provides additional context for a
   1632   /// lambda, when the normal declaration context is not specific enough.
   1633   ///
   1634   /// Certain contexts (default arguments of in-class function parameters and
   1635   /// the initializers of data members) have separate name mangling rules for
   1636   /// lambdas within the Itanium C++ ABI. For these cases, this routine provides
   1637   /// the declaration in which the lambda occurs, e.g., the function parameter
   1638   /// or the non-static data member. Otherwise, it returns NULL to imply that
   1639   /// the declaration context suffices.
   1640   Decl *getLambdaContextDecl() const {
   1641     assert(isLambda() && "Not a lambda closure type!");
   1642     return getLambdaData().ContextDecl;
   1643   }
   1644 
   1645   /// \brief Set the mangling number and context declaration for a lambda
   1646   /// class.
   1647   void setLambdaMangling(unsigned ManglingNumber, Decl *ContextDecl) {
   1648     getLambdaData().ManglingNumber = ManglingNumber;
   1649     getLambdaData().ContextDecl = ContextDecl;
   1650   }
   1651 
   1652   /// \brief Returns the inheritance model used for this record.
   1653   MSInheritanceAttr::Spelling getMSInheritanceModel() const;
   1654   /// \brief Calculate what the inheritance model would be for this class.
   1655   MSInheritanceAttr::Spelling calculateInheritanceModel() const;
   1656 
   1657   /// In the Microsoft C++ ABI, use zero for the field offset of a null data
   1658   /// member pointer if we can guarantee that zero is not a valid field offset,
   1659   /// or if the member pointer has multiple fields.  Polymorphic classes have a
   1660   /// vfptr at offset zero, so we can use zero for null.  If there are multiple
   1661   /// fields, we can use zero even if it is a valid field offset because
   1662   /// null-ness testing will check the other fields.
   1663   bool nullFieldOffsetIsZero() const {
   1664     return !MSInheritanceAttr::hasOnlyOneField(/*IsMemberFunction=*/false,
   1665                                                getMSInheritanceModel()) ||
   1666            (hasDefinition() && isPolymorphic());
   1667   }
   1668 
   1669   /// \brief Controls when vtordisps will be emitted if this record is used as a
   1670   /// virtual base.
   1671   MSVtorDispAttr::Mode getMSVtorDispMode() const;
   1672 
   1673   /// \brief Determine whether this lambda expression was known to be dependent
   1674   /// at the time it was created, even if its context does not appear to be
   1675   /// dependent.
   1676   ///
   1677   /// This flag is a workaround for an issue with parsing, where default
   1678   /// arguments are parsed before their enclosing function declarations have
   1679   /// been created. This means that any lambda expressions within those
   1680   /// default arguments will have as their DeclContext the context enclosing
   1681   /// the function declaration, which may be non-dependent even when the
   1682   /// function declaration itself is dependent. This flag indicates when we
   1683   /// know that the lambda is dependent despite that.
   1684   bool isDependentLambda() const {
   1685     return isLambda() && getLambdaData().Dependent;
   1686   }
   1687 
   1688   TypeSourceInfo *getLambdaTypeInfo() const {
   1689     return getLambdaData().MethodTyInfo;
   1690   }
   1691 
   1692   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1693   static bool classofKind(Kind K) {
   1694     return K >= firstCXXRecord && K <= lastCXXRecord;
   1695   }
   1696 
   1697   friend class ASTDeclReader;
   1698   friend class ASTDeclWriter;
   1699   friend class ASTReader;
   1700   friend class ASTWriter;
   1701 };
   1702 
   1703 /// \brief Represents a static or instance method of a struct/union/class.
   1704 ///
   1705 /// In the terminology of the C++ Standard, these are the (static and
   1706 /// non-static) member functions, whether virtual or not.
   1707 class CXXMethodDecl : public FunctionDecl {
   1708   void anchor() override;
   1709 protected:
   1710   CXXMethodDecl(Kind DK, ASTContext &C, CXXRecordDecl *RD,
   1711                 SourceLocation StartLoc, const DeclarationNameInfo &NameInfo,
   1712                 QualType T, TypeSourceInfo *TInfo,
   1713                 StorageClass SC, bool isInline,
   1714                 bool isConstexpr, SourceLocation EndLocation)
   1715     : FunctionDecl(DK, C, RD, StartLoc, NameInfo, T, TInfo,
   1716                    SC, isInline, isConstexpr) {
   1717     if (EndLocation.isValid())
   1718       setRangeEnd(EndLocation);
   1719   }
   1720 
   1721 public:
   1722   static CXXMethodDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   1723                                SourceLocation StartLoc,
   1724                                const DeclarationNameInfo &NameInfo,
   1725                                QualType T, TypeSourceInfo *TInfo,
   1726                                StorageClass SC,
   1727                                bool isInline,
   1728                                bool isConstexpr,
   1729                                SourceLocation EndLocation);
   1730 
   1731   static CXXMethodDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   1732 
   1733   bool isStatic() const;
   1734   bool isInstance() const { return !isStatic(); }
   1735 
   1736   /// Returns true if the given operator is implicitly static in a record
   1737   /// context.
   1738   static bool isStaticOverloadedOperator(OverloadedOperatorKind OOK) {
   1739     // [class.free]p1:
   1740     // Any allocation function for a class T is a static member
   1741     // (even if not explicitly declared static).
   1742     // [class.free]p6 Any deallocation function for a class X is a static member
   1743     // (even if not explicitly declared static).
   1744     return OOK == OO_New || OOK == OO_Array_New || OOK == OO_Delete ||
   1745            OOK == OO_Array_Delete;
   1746   }
   1747 
   1748   bool isConst() const { return getType()->castAs<FunctionType>()->isConst(); }
   1749   bool isVolatile() const { return getType()->castAs<FunctionType>()->isVolatile(); }
   1750 
   1751   bool isVirtual() const {
   1752     CXXMethodDecl *CD =
   1753       cast<CXXMethodDecl>(const_cast<CXXMethodDecl*>(this)->getCanonicalDecl());
   1754 
   1755     // Member function is virtual if it is marked explicitly so, or if it is
   1756     // declared in __interface -- then it is automatically pure virtual.
   1757     if (CD->isVirtualAsWritten() || CD->isPure())
   1758       return true;
   1759 
   1760     return (CD->begin_overridden_methods() != CD->end_overridden_methods());
   1761   }
   1762 
   1763   /// \brief Determine whether this is a usual deallocation function
   1764   /// (C++ [basic.stc.dynamic.deallocation]p2), which is an overloaded
   1765   /// delete or delete[] operator with a particular signature.
   1766   bool isUsualDeallocationFunction() const;
   1767 
   1768   /// \brief Determine whether this is a copy-assignment operator, regardless
   1769   /// of whether it was declared implicitly or explicitly.
   1770   bool isCopyAssignmentOperator() const;
   1771 
   1772   /// \brief Determine whether this is a move assignment operator.
   1773   bool isMoveAssignmentOperator() const;
   1774 
   1775   CXXMethodDecl *getCanonicalDecl() override {
   1776     return cast<CXXMethodDecl>(FunctionDecl::getCanonicalDecl());
   1777   }
   1778   const CXXMethodDecl *getCanonicalDecl() const {
   1779     return const_cast<CXXMethodDecl*>(this)->getCanonicalDecl();
   1780   }
   1781 
   1782   CXXMethodDecl *getMostRecentDecl() {
   1783     return cast<CXXMethodDecl>(
   1784             static_cast<FunctionDecl *>(this)->getMostRecentDecl());
   1785   }
   1786   const CXXMethodDecl *getMostRecentDecl() const {
   1787     return const_cast<CXXMethodDecl*>(this)->getMostRecentDecl();
   1788   }
   1789 
   1790   /// True if this method is user-declared and was not
   1791   /// deleted or defaulted on its first declaration.
   1792   bool isUserProvided() const {
   1793     return !(isDeleted() || getCanonicalDecl()->isDefaulted());
   1794   }
   1795 
   1796   ///
   1797   void addOverriddenMethod(const CXXMethodDecl *MD);
   1798 
   1799   typedef const CXXMethodDecl *const* method_iterator;
   1800 
   1801   method_iterator begin_overridden_methods() const;
   1802   method_iterator end_overridden_methods() const;
   1803   unsigned size_overridden_methods() const;
   1804 
   1805   /// Returns the parent of this method declaration, which
   1806   /// is the class in which this method is defined.
   1807   const CXXRecordDecl *getParent() const {
   1808     return cast<CXXRecordDecl>(FunctionDecl::getParent());
   1809   }
   1810 
   1811   /// Returns the parent of this method declaration, which
   1812   /// is the class in which this method is defined.
   1813   CXXRecordDecl *getParent() {
   1814     return const_cast<CXXRecordDecl *>(
   1815              cast<CXXRecordDecl>(FunctionDecl::getParent()));
   1816   }
   1817 
   1818   /// \brief Returns the type of the \c this pointer.
   1819   ///
   1820   /// Should only be called for instance (i.e., non-static) methods.
   1821   QualType getThisType(ASTContext &C) const;
   1822 
   1823   unsigned getTypeQualifiers() const {
   1824     return getType()->getAs<FunctionProtoType>()->getTypeQuals();
   1825   }
   1826 
   1827   /// \brief Retrieve the ref-qualifier associated with this method.
   1828   ///
   1829   /// In the following example, \c f() has an lvalue ref-qualifier, \c g()
   1830   /// has an rvalue ref-qualifier, and \c h() has no ref-qualifier.
   1831   /// @code
   1832   /// struct X {
   1833   ///   void f() &;
   1834   ///   void g() &&;
   1835   ///   void h();
   1836   /// };
   1837   /// @endcode
   1838   RefQualifierKind getRefQualifier() const {
   1839     return getType()->getAs<FunctionProtoType>()->getRefQualifier();
   1840   }
   1841 
   1842   bool hasInlineBody() const;
   1843 
   1844   /// \brief Determine whether this is a lambda closure type's static member
   1845   /// function that is used for the result of the lambda's conversion to
   1846   /// function pointer (for a lambda with no captures).
   1847   ///
   1848   /// The function itself, if used, will have a placeholder body that will be
   1849   /// supplied by IR generation to either forward to the function call operator
   1850   /// or clone the function call operator.
   1851   bool isLambdaStaticInvoker() const;
   1852 
   1853   /// \brief Find the method in \p RD that corresponds to this one.
   1854   ///
   1855   /// Find if \p RD or one of the classes it inherits from override this method.
   1856   /// If so, return it. \p RD is assumed to be a subclass of the class defining
   1857   /// this method (or be the class itself), unless \p MayBeBase is set to true.
   1858   CXXMethodDecl *
   1859   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1860                                 bool MayBeBase = false);
   1861 
   1862   const CXXMethodDecl *
   1863   getCorrespondingMethodInClass(const CXXRecordDecl *RD,
   1864                                 bool MayBeBase = false) const {
   1865     return const_cast<CXXMethodDecl *>(this)
   1866               ->getCorrespondingMethodInClass(RD, MayBeBase);
   1867   }
   1868 
   1869   // Implement isa/cast/dyncast/etc.
   1870   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   1871   static bool classofKind(Kind K) {
   1872     return K >= firstCXXMethod && K <= lastCXXMethod;
   1873   }
   1874 };
   1875 
   1876 /// \brief Represents a C++ base or member initializer.
   1877 ///
   1878 /// This is part of a constructor initializer that
   1879 /// initializes one non-static member variable or one base class. For
   1880 /// example, in the following, both 'A(a)' and 'f(3.14159)' are member
   1881 /// initializers:
   1882 ///
   1883 /// \code
   1884 /// class A { };
   1885 /// class B : public A {
   1886 ///   float f;
   1887 /// public:
   1888 ///   B(A& a) : A(a), f(3.14159) { }
   1889 /// };
   1890 /// \endcode
   1891 class CXXCtorInitializer {
   1892   /// \brief Either the base class name/delegating constructor type (stored as
   1893   /// a TypeSourceInfo*), an normal field (FieldDecl), or an anonymous field
   1894   /// (IndirectFieldDecl*) being initialized.
   1895   llvm::PointerUnion3<TypeSourceInfo *, FieldDecl *, IndirectFieldDecl *>
   1896     Initializee;
   1897 
   1898   /// \brief The source location for the field name or, for a base initializer
   1899   /// pack expansion, the location of the ellipsis.
   1900   ///
   1901   /// In the case of a delegating
   1902   /// constructor, it will still include the type's source location as the
   1903   /// Initializee points to the CXXConstructorDecl (to allow loop detection).
   1904   SourceLocation MemberOrEllipsisLocation;
   1905 
   1906   /// \brief The argument used to initialize the base or member, which may
   1907   /// end up constructing an object (when multiple arguments are involved).
   1908   Stmt *Init;
   1909 
   1910   /// \brief Location of the left paren of the ctor-initializer.
   1911   SourceLocation LParenLoc;
   1912 
   1913   /// \brief Location of the right paren of the ctor-initializer.
   1914   SourceLocation RParenLoc;
   1915 
   1916   /// \brief If the initializee is a type, whether that type makes this
   1917   /// a delegating initialization.
   1918   bool IsDelegating : 1;
   1919 
   1920   /// \brief If the initializer is a base initializer, this keeps track
   1921   /// of whether the base is virtual or not.
   1922   bool IsVirtual : 1;
   1923 
   1924   /// \brief Whether or not the initializer is explicitly written
   1925   /// in the sources.
   1926   bool IsWritten : 1;
   1927 
   1928   /// If IsWritten is true, then this number keeps track of the textual order
   1929   /// of this initializer in the original sources, counting from 0; otherwise,
   1930   /// it stores the number of array index variables stored after this object
   1931   /// in memory.
   1932   unsigned SourceOrderOrNumArrayIndices : 13;
   1933 
   1934   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1935                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1936                      SourceLocation R, VarDecl **Indices, unsigned NumIndices);
   1937 
   1938 public:
   1939   /// \brief Creates a new base-class initializer.
   1940   explicit
   1941   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo, bool IsVirtual,
   1942                      SourceLocation L, Expr *Init, SourceLocation R,
   1943                      SourceLocation EllipsisLoc);
   1944 
   1945   /// \brief Creates a new member initializer.
   1946   explicit
   1947   CXXCtorInitializer(ASTContext &Context, FieldDecl *Member,
   1948                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1949                      SourceLocation R);
   1950 
   1951   /// \brief Creates a new anonymous field initializer.
   1952   explicit
   1953   CXXCtorInitializer(ASTContext &Context, IndirectFieldDecl *Member,
   1954                      SourceLocation MemberLoc, SourceLocation L, Expr *Init,
   1955                      SourceLocation R);
   1956 
   1957   /// \brief Creates a new delegating initializer.
   1958   explicit
   1959   CXXCtorInitializer(ASTContext &Context, TypeSourceInfo *TInfo,
   1960                      SourceLocation L, Expr *Init, SourceLocation R);
   1961 
   1962   /// \brief Creates a new member initializer that optionally contains
   1963   /// array indices used to describe an elementwise initialization.
   1964   static CXXCtorInitializer *Create(ASTContext &Context, FieldDecl *Member,
   1965                                     SourceLocation MemberLoc, SourceLocation L,
   1966                                     Expr *Init, SourceLocation R,
   1967                                     VarDecl **Indices, unsigned NumIndices);
   1968 
   1969   /// \brief Determine whether this initializer is initializing a base class.
   1970   bool isBaseInitializer() const {
   1971     return Initializee.is<TypeSourceInfo*>() && !IsDelegating;
   1972   }
   1973 
   1974   /// \brief Determine whether this initializer is initializing a non-static
   1975   /// data member.
   1976   bool isMemberInitializer() const { return Initializee.is<FieldDecl*>(); }
   1977 
   1978   bool isAnyMemberInitializer() const {
   1979     return isMemberInitializer() || isIndirectMemberInitializer();
   1980   }
   1981 
   1982   bool isIndirectMemberInitializer() const {
   1983     return Initializee.is<IndirectFieldDecl*>();
   1984   }
   1985 
   1986   /// \brief Determine whether this initializer is an implicit initializer
   1987   /// generated for a field with an initializer defined on the member
   1988   /// declaration.
   1989   ///
   1990   /// In-class member initializers (also known as "non-static data member
   1991   /// initializations", NSDMIs) were introduced in C++11.
   1992   bool isInClassMemberInitializer() const {
   1993     return Init->getStmtClass() == Stmt::CXXDefaultInitExprClass;
   1994   }
   1995 
   1996   /// \brief Determine whether this initializer is creating a delegating
   1997   /// constructor.
   1998   bool isDelegatingInitializer() const {
   1999     return Initializee.is<TypeSourceInfo*>() && IsDelegating;
   2000   }
   2001 
   2002   /// \brief Determine whether this initializer is a pack expansion.
   2003   bool isPackExpansion() const {
   2004     return isBaseInitializer() && MemberOrEllipsisLocation.isValid();
   2005   }
   2006 
   2007   // \brief For a pack expansion, returns the location of the ellipsis.
   2008   SourceLocation getEllipsisLoc() const {
   2009     assert(isPackExpansion() && "Initializer is not a pack expansion");
   2010     return MemberOrEllipsisLocation;
   2011   }
   2012 
   2013   /// If this is a base class initializer, returns the type of the
   2014   /// base class with location information. Otherwise, returns an NULL
   2015   /// type location.
   2016   TypeLoc getBaseClassLoc() const;
   2017 
   2018   /// If this is a base class initializer, returns the type of the base class.
   2019   /// Otherwise, returns null.
   2020   const Type *getBaseClass() const;
   2021 
   2022   /// Returns whether the base is virtual or not.
   2023   bool isBaseVirtual() const {
   2024     assert(isBaseInitializer() && "Must call this on base initializer!");
   2025 
   2026     return IsVirtual;
   2027   }
   2028 
   2029   /// \brief Returns the declarator information for a base class or delegating
   2030   /// initializer.
   2031   TypeSourceInfo *getTypeSourceInfo() const {
   2032     return Initializee.dyn_cast<TypeSourceInfo *>();
   2033   }
   2034 
   2035   /// \brief If this is a member initializer, returns the declaration of the
   2036   /// non-static data member being initialized. Otherwise, returns null.
   2037   FieldDecl *getMember() const {
   2038     if (isMemberInitializer())
   2039       return Initializee.get<FieldDecl*>();
   2040     return nullptr;
   2041   }
   2042   FieldDecl *getAnyMember() const {
   2043     if (isMemberInitializer())
   2044       return Initializee.get<FieldDecl*>();
   2045     if (isIndirectMemberInitializer())
   2046       return Initializee.get<IndirectFieldDecl*>()->getAnonField();
   2047     return nullptr;
   2048   }
   2049 
   2050   IndirectFieldDecl *getIndirectMember() const {
   2051     if (isIndirectMemberInitializer())
   2052       return Initializee.get<IndirectFieldDecl*>();
   2053     return nullptr;
   2054   }
   2055 
   2056   SourceLocation getMemberLocation() const {
   2057     return MemberOrEllipsisLocation;
   2058   }
   2059 
   2060   /// \brief Determine the source location of the initializer.
   2061   SourceLocation getSourceLocation() const;
   2062 
   2063   /// \brief Determine the source range covering the entire initializer.
   2064   SourceRange getSourceRange() const LLVM_READONLY;
   2065 
   2066   /// \brief Determine whether this initializer is explicitly written
   2067   /// in the source code.
   2068   bool isWritten() const { return IsWritten; }
   2069 
   2070   /// \brief Return the source position of the initializer, counting from 0.
   2071   /// If the initializer was implicit, -1 is returned.
   2072   int getSourceOrder() const {
   2073     return IsWritten ? static_cast<int>(SourceOrderOrNumArrayIndices) : -1;
   2074   }
   2075 
   2076   /// \brief Set the source order of this initializer.
   2077   ///
   2078   /// This can only be called once for each initializer; it cannot be called
   2079   /// on an initializer having a positive number of (implicit) array indices.
   2080   ///
   2081   /// This assumes that the initializer was written in the source code, and
   2082   /// ensures that isWritten() returns true.
   2083   void setSourceOrder(int pos) {
   2084     assert(!IsWritten &&
   2085            "calling twice setSourceOrder() on the same initializer");
   2086     assert(SourceOrderOrNumArrayIndices == 0 &&
   2087            "setSourceOrder() used when there are implicit array indices");
   2088     assert(pos >= 0 &&
   2089            "setSourceOrder() used to make an initializer implicit");
   2090     IsWritten = true;
   2091     SourceOrderOrNumArrayIndices = static_cast<unsigned>(pos);
   2092   }
   2093 
   2094   SourceLocation getLParenLoc() const { return LParenLoc; }
   2095   SourceLocation getRParenLoc() const { return RParenLoc; }
   2096 
   2097   /// \brief Determine the number of implicit array indices used while
   2098   /// described an array member initialization.
   2099   unsigned getNumArrayIndices() const {
   2100     return IsWritten ? 0 : SourceOrderOrNumArrayIndices;
   2101   }
   2102 
   2103   /// \brief Retrieve a particular array index variable used to
   2104   /// describe an array member initialization.
   2105   VarDecl *getArrayIndex(unsigned I) {
   2106     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2107     return reinterpret_cast<VarDecl **>(this + 1)[I];
   2108   }
   2109   const VarDecl *getArrayIndex(unsigned I) const {
   2110     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2111     return reinterpret_cast<const VarDecl * const *>(this + 1)[I];
   2112   }
   2113   void setArrayIndex(unsigned I, VarDecl *Index) {
   2114     assert(I < getNumArrayIndices() && "Out of bounds member array index");
   2115     reinterpret_cast<VarDecl **>(this + 1)[I] = Index;
   2116   }
   2117   ArrayRef<VarDecl *> getArrayIndexes() {
   2118     assert(getNumArrayIndices() != 0 && "Getting indexes for non-array init");
   2119     return llvm::makeArrayRef(reinterpret_cast<VarDecl **>(this + 1),
   2120                               getNumArrayIndices());
   2121   }
   2122 
   2123   /// \brief Get the initializer.
   2124   Expr *getInit() const { return static_cast<Expr*>(Init); }
   2125 };
   2126 
   2127 /// \brief Represents a C++ constructor within a class.
   2128 ///
   2129 /// For example:
   2130 ///
   2131 /// \code
   2132 /// class X {
   2133 /// public:
   2134 ///   explicit X(int); // represented by a CXXConstructorDecl.
   2135 /// };
   2136 /// \endcode
   2137 class CXXConstructorDecl : public CXXMethodDecl {
   2138   void anchor() override;
   2139   /// \brief Whether this constructor declaration has the \c explicit keyword
   2140   /// specified.
   2141   bool IsExplicitSpecified : 1;
   2142 
   2143   /// \name Support for base and member initializers.
   2144   /// \{
   2145   /// \brief The arguments used to initialize the base or member.
   2146   LazyCXXCtorInitializersPtr CtorInitializers;
   2147   unsigned NumCtorInitializers;
   2148   /// \}
   2149 
   2150   CXXConstructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2151                      const DeclarationNameInfo &NameInfo,
   2152                      QualType T, TypeSourceInfo *TInfo,
   2153                      bool isExplicitSpecified, bool isInline,
   2154                      bool isImplicitlyDeclared, bool isConstexpr)
   2155     : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo,
   2156                     SC_None, isInline, isConstexpr, SourceLocation()),
   2157       IsExplicitSpecified(isExplicitSpecified), CtorInitializers(nullptr),
   2158       NumCtorInitializers(0) {
   2159     setImplicit(isImplicitlyDeclared);
   2160   }
   2161 
   2162 public:
   2163   static CXXConstructorDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2164   static CXXConstructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2165                                     SourceLocation StartLoc,
   2166                                     const DeclarationNameInfo &NameInfo,
   2167                                     QualType T, TypeSourceInfo *TInfo,
   2168                                     bool isExplicit,
   2169                                     bool isInline, bool isImplicitlyDeclared,
   2170                                     bool isConstexpr);
   2171 
   2172   /// \brief Determine whether this constructor declaration has the
   2173   /// \c explicit keyword specified.
   2174   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2175 
   2176   /// \brief Determine whether this constructor was marked "explicit" or not.
   2177   bool isExplicit() const {
   2178     return cast<CXXConstructorDecl>(getFirstDecl())->isExplicitSpecified();
   2179   }
   2180 
   2181   /// \brief Iterates through the member/base initializer list.
   2182   typedef CXXCtorInitializer **init_iterator;
   2183 
   2184   /// \brief Iterates through the member/base initializer list.
   2185   typedef CXXCtorInitializer *const *init_const_iterator;
   2186 
   2187   typedef llvm::iterator_range<init_iterator> init_range;
   2188   typedef llvm::iterator_range<init_const_iterator> init_const_range;
   2189 
   2190   init_range inits() { return init_range(init_begin(), init_end()); }
   2191   init_const_range inits() const {
   2192     return init_const_range(init_begin(), init_end());
   2193   }
   2194 
   2195   /// \brief Retrieve an iterator to the first initializer.
   2196   init_iterator init_begin() {
   2197     const auto *ConstThis = this;
   2198     return const_cast<init_iterator>(ConstThis->init_begin());
   2199   }
   2200   /// \brief Retrieve an iterator to the first initializer.
   2201   init_const_iterator init_begin() const;
   2202 
   2203   /// \brief Retrieve an iterator past the last initializer.
   2204   init_iterator       init_end()       {
   2205     return init_begin() + NumCtorInitializers;
   2206   }
   2207   /// \brief Retrieve an iterator past the last initializer.
   2208   init_const_iterator init_end() const {
   2209     return init_begin() + NumCtorInitializers;
   2210   }
   2211 
   2212   typedef std::reverse_iterator<init_iterator> init_reverse_iterator;
   2213   typedef std::reverse_iterator<init_const_iterator>
   2214           init_const_reverse_iterator;
   2215 
   2216   init_reverse_iterator init_rbegin() {
   2217     return init_reverse_iterator(init_end());
   2218   }
   2219   init_const_reverse_iterator init_rbegin() const {
   2220     return init_const_reverse_iterator(init_end());
   2221   }
   2222 
   2223   init_reverse_iterator init_rend() {
   2224     return init_reverse_iterator(init_begin());
   2225   }
   2226   init_const_reverse_iterator init_rend() const {
   2227     return init_const_reverse_iterator(init_begin());
   2228   }
   2229 
   2230   /// \brief Determine the number of arguments used to initialize the member
   2231   /// or base.
   2232   unsigned getNumCtorInitializers() const {
   2233       return NumCtorInitializers;
   2234   }
   2235 
   2236   void setNumCtorInitializers(unsigned numCtorInitializers) {
   2237     NumCtorInitializers = numCtorInitializers;
   2238   }
   2239 
   2240   void setCtorInitializers(CXXCtorInitializer **Initializers) {
   2241     CtorInitializers = Initializers;
   2242   }
   2243 
   2244   /// \brief Determine whether this constructor is a delegating constructor.
   2245   bool isDelegatingConstructor() const {
   2246     return (getNumCtorInitializers() == 1) &&
   2247            init_begin()[0]->isDelegatingInitializer();
   2248   }
   2249 
   2250   /// \brief When this constructor delegates to another, retrieve the target.
   2251   CXXConstructorDecl *getTargetConstructor() const;
   2252 
   2253   /// Whether this constructor is a default
   2254   /// constructor (C++ [class.ctor]p5), which can be used to
   2255   /// default-initialize a class of this type.
   2256   bool isDefaultConstructor() const;
   2257 
   2258   /// \brief Whether this constructor is a copy constructor (C++ [class.copy]p2,
   2259   /// which can be used to copy the class.
   2260   ///
   2261   /// \p TypeQuals will be set to the qualifiers on the
   2262   /// argument type. For example, \p TypeQuals would be set to \c
   2263   /// Qualifiers::Const for the following copy constructor:
   2264   ///
   2265   /// \code
   2266   /// class X {
   2267   /// public:
   2268   ///   X(const X&);
   2269   /// };
   2270   /// \endcode
   2271   bool isCopyConstructor(unsigned &TypeQuals) const;
   2272 
   2273   /// Whether this constructor is a copy
   2274   /// constructor (C++ [class.copy]p2, which can be used to copy the
   2275   /// class.
   2276   bool isCopyConstructor() const {
   2277     unsigned TypeQuals = 0;
   2278     return isCopyConstructor(TypeQuals);
   2279   }
   2280 
   2281   /// \brief Determine whether this constructor is a move constructor
   2282   /// (C++11 [class.copy]p3), which can be used to move values of the class.
   2283   ///
   2284   /// \param TypeQuals If this constructor is a move constructor, will be set
   2285   /// to the type qualifiers on the referent of the first parameter's type.
   2286   bool isMoveConstructor(unsigned &TypeQuals) const;
   2287 
   2288   /// \brief Determine whether this constructor is a move constructor
   2289   /// (C++11 [class.copy]p3), which can be used to move values of the class.
   2290   bool isMoveConstructor() const {
   2291     unsigned TypeQuals = 0;
   2292     return isMoveConstructor(TypeQuals);
   2293   }
   2294 
   2295   /// \brief Determine whether this is a copy or move constructor.
   2296   ///
   2297   /// \param TypeQuals Will be set to the type qualifiers on the reference
   2298   /// parameter, if in fact this is a copy or move constructor.
   2299   bool isCopyOrMoveConstructor(unsigned &TypeQuals) const;
   2300 
   2301   /// \brief Determine whether this a copy or move constructor.
   2302   bool isCopyOrMoveConstructor() const {
   2303     unsigned Quals;
   2304     return isCopyOrMoveConstructor(Quals);
   2305   }
   2306 
   2307   /// Whether this constructor is a
   2308   /// converting constructor (C++ [class.conv.ctor]), which can be
   2309   /// used for user-defined conversions.
   2310   bool isConvertingConstructor(bool AllowExplicit) const;
   2311 
   2312   /// \brief Determine whether this is a member template specialization that
   2313   /// would copy the object to itself. Such constructors are never used to copy
   2314   /// an object.
   2315   bool isSpecializationCopyingObject() const;
   2316 
   2317   /// \brief Get the constructor that this inheriting constructor is based on.
   2318   const CXXConstructorDecl *getInheritedConstructor() const;
   2319 
   2320   /// \brief Set the constructor that this inheriting constructor is based on.
   2321   void setInheritedConstructor(const CXXConstructorDecl *BaseCtor);
   2322 
   2323   CXXConstructorDecl *getCanonicalDecl() override {
   2324     return cast<CXXConstructorDecl>(FunctionDecl::getCanonicalDecl());
   2325   }
   2326   const CXXConstructorDecl *getCanonicalDecl() const {
   2327     return const_cast<CXXConstructorDecl*>(this)->getCanonicalDecl();
   2328   }
   2329 
   2330   // Implement isa/cast/dyncast/etc.
   2331   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2332   static bool classofKind(Kind K) { return K == CXXConstructor; }
   2333 
   2334   friend class ASTDeclReader;
   2335   friend class ASTDeclWriter;
   2336 };
   2337 
   2338 /// \brief Represents a C++ destructor within a class.
   2339 ///
   2340 /// For example:
   2341 ///
   2342 /// \code
   2343 /// class X {
   2344 /// public:
   2345 ///   ~X(); // represented by a CXXDestructorDecl.
   2346 /// };
   2347 /// \endcode
   2348 class CXXDestructorDecl : public CXXMethodDecl {
   2349   void anchor() override;
   2350 
   2351   FunctionDecl *OperatorDelete;
   2352 
   2353   CXXDestructorDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2354                     const DeclarationNameInfo &NameInfo,
   2355                     QualType T, TypeSourceInfo *TInfo,
   2356                     bool isInline, bool isImplicitlyDeclared)
   2357     : CXXMethodDecl(CXXDestructor, C, RD, StartLoc, NameInfo, T, TInfo,
   2358                     SC_None, isInline, /*isConstexpr=*/false, SourceLocation()),
   2359       OperatorDelete(nullptr) {
   2360     setImplicit(isImplicitlyDeclared);
   2361   }
   2362 
   2363 public:
   2364   static CXXDestructorDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2365                                    SourceLocation StartLoc,
   2366                                    const DeclarationNameInfo &NameInfo,
   2367                                    QualType T, TypeSourceInfo* TInfo,
   2368                                    bool isInline,
   2369                                    bool isImplicitlyDeclared);
   2370   static CXXDestructorDecl *CreateDeserialized(ASTContext & C, unsigned ID);
   2371 
   2372   void setOperatorDelete(FunctionDecl *OD);
   2373   const FunctionDecl *getOperatorDelete() const {
   2374     return cast<CXXDestructorDecl>(getFirstDecl())->OperatorDelete;
   2375   }
   2376 
   2377   // Implement isa/cast/dyncast/etc.
   2378   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2379   static bool classofKind(Kind K) { return K == CXXDestructor; }
   2380 
   2381   friend class ASTDeclReader;
   2382   friend class ASTDeclWriter;
   2383 };
   2384 
   2385 /// \brief Represents a C++ conversion function within a class.
   2386 ///
   2387 /// For example:
   2388 ///
   2389 /// \code
   2390 /// class X {
   2391 /// public:
   2392 ///   operator bool();
   2393 /// };
   2394 /// \endcode
   2395 class CXXConversionDecl : public CXXMethodDecl {
   2396   void anchor() override;
   2397   /// Whether this conversion function declaration is marked
   2398   /// "explicit", meaning that it can only be applied when the user
   2399   /// explicitly wrote a cast. This is a C++11 feature.
   2400   bool IsExplicitSpecified : 1;
   2401 
   2402   CXXConversionDecl(ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc,
   2403                     const DeclarationNameInfo &NameInfo,
   2404                     QualType T, TypeSourceInfo *TInfo,
   2405                     bool isInline, bool isExplicitSpecified,
   2406                     bool isConstexpr, SourceLocation EndLocation)
   2407     : CXXMethodDecl(CXXConversion, C, RD, StartLoc, NameInfo, T, TInfo,
   2408                     SC_None, isInline, isConstexpr, EndLocation),
   2409       IsExplicitSpecified(isExplicitSpecified) { }
   2410 
   2411 public:
   2412   static CXXConversionDecl *Create(ASTContext &C, CXXRecordDecl *RD,
   2413                                    SourceLocation StartLoc,
   2414                                    const DeclarationNameInfo &NameInfo,
   2415                                    QualType T, TypeSourceInfo *TInfo,
   2416                                    bool isInline, bool isExplicit,
   2417                                    bool isConstexpr,
   2418                                    SourceLocation EndLocation);
   2419   static CXXConversionDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2420 
   2421   /// Whether this conversion function declaration is marked
   2422   /// "explicit", meaning that it can only be used for direct initialization
   2423   /// (including explitly written casts).  This is a C++11 feature.
   2424   bool isExplicitSpecified() const { return IsExplicitSpecified; }
   2425 
   2426   /// \brief Whether this is an explicit conversion operator (C++11 and later).
   2427   ///
   2428   /// Explicit conversion operators are only considered for direct
   2429   /// initialization, e.g., when the user has explicitly written a cast.
   2430   bool isExplicit() const {
   2431     return cast<CXXConversionDecl>(getFirstDecl())->isExplicitSpecified();
   2432   }
   2433 
   2434   /// \brief Returns the type that this conversion function is converting to.
   2435   QualType getConversionType() const {
   2436     return getType()->getAs<FunctionType>()->getReturnType();
   2437   }
   2438 
   2439   /// \brief Determine whether this conversion function is a conversion from
   2440   /// a lambda closure type to a block pointer.
   2441   bool isLambdaToBlockPointerConversion() const;
   2442 
   2443   // Implement isa/cast/dyncast/etc.
   2444   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2445   static bool classofKind(Kind K) { return K == CXXConversion; }
   2446 
   2447   friend class ASTDeclReader;
   2448   friend class ASTDeclWriter;
   2449 };
   2450 
   2451 /// \brief Represents a linkage specification.
   2452 ///
   2453 /// For example:
   2454 /// \code
   2455 ///   extern "C" void foo();
   2456 /// \endcode
   2457 class LinkageSpecDecl : public Decl, public DeclContext {
   2458   virtual void anchor();
   2459 public:
   2460   /// \brief Represents the language in a linkage specification.
   2461   ///
   2462   /// The values are part of the serialization ABI for
   2463   /// ASTs and cannot be changed without altering that ABI.  To help
   2464   /// ensure a stable ABI for this, we choose the DW_LANG_ encodings
   2465   /// from the dwarf standard.
   2466   enum LanguageIDs {
   2467     lang_c = /* DW_LANG_C */ 0x0002,
   2468     lang_cxx = /* DW_LANG_C_plus_plus */ 0x0004
   2469   };
   2470 private:
   2471   /// \brief The language for this linkage specification.
   2472   unsigned Language : 3;
   2473   /// \brief True if this linkage spec has braces.
   2474   ///
   2475   /// This is needed so that hasBraces() returns the correct result while the
   2476   /// linkage spec body is being parsed.  Once RBraceLoc has been set this is
   2477   /// not used, so it doesn't need to be serialized.
   2478   unsigned HasBraces : 1;
   2479   /// \brief The source location for the extern keyword.
   2480   SourceLocation ExternLoc;
   2481   /// \brief The source location for the right brace (if valid).
   2482   SourceLocation RBraceLoc;
   2483 
   2484   LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc,
   2485                   SourceLocation LangLoc, LanguageIDs lang, bool HasBraces)
   2486     : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec),
   2487       Language(lang), HasBraces(HasBraces), ExternLoc(ExternLoc),
   2488       RBraceLoc(SourceLocation()) { }
   2489 
   2490 public:
   2491   static LinkageSpecDecl *Create(ASTContext &C, DeclContext *DC,
   2492                                  SourceLocation ExternLoc,
   2493                                  SourceLocation LangLoc, LanguageIDs Lang,
   2494                                  bool HasBraces);
   2495   static LinkageSpecDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2496 
   2497   /// \brief Return the language specified by this linkage specification.
   2498   LanguageIDs getLanguage() const { return LanguageIDs(Language); }
   2499   /// \brief Set the language specified by this linkage specification.
   2500   void setLanguage(LanguageIDs L) { Language = L; }
   2501 
   2502   /// \brief Determines whether this linkage specification had braces in
   2503   /// its syntactic form.
   2504   bool hasBraces() const {
   2505     assert(!RBraceLoc.isValid() || HasBraces);
   2506     return HasBraces;
   2507   }
   2508 
   2509   SourceLocation getExternLoc() const { return ExternLoc; }
   2510   SourceLocation getRBraceLoc() const { return RBraceLoc; }
   2511   void setExternLoc(SourceLocation L) { ExternLoc = L; }
   2512   void setRBraceLoc(SourceLocation L) {
   2513     RBraceLoc = L;
   2514     HasBraces = RBraceLoc.isValid();
   2515   }
   2516 
   2517   SourceLocation getLocEnd() const LLVM_READONLY {
   2518     if (hasBraces())
   2519       return getRBraceLoc();
   2520     // No braces: get the end location of the (only) declaration in context
   2521     // (if present).
   2522     return decls_empty() ? getLocation() : decls_begin()->getLocEnd();
   2523   }
   2524 
   2525   SourceRange getSourceRange() const override LLVM_READONLY {
   2526     return SourceRange(ExternLoc, getLocEnd());
   2527   }
   2528 
   2529   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2530   static bool classofKind(Kind K) { return K == LinkageSpec; }
   2531   static DeclContext *castToDeclContext(const LinkageSpecDecl *D) {
   2532     return static_cast<DeclContext *>(const_cast<LinkageSpecDecl*>(D));
   2533   }
   2534   static LinkageSpecDecl *castFromDeclContext(const DeclContext *DC) {
   2535     return static_cast<LinkageSpecDecl *>(const_cast<DeclContext*>(DC));
   2536   }
   2537 };
   2538 
   2539 /// \brief Represents C++ using-directive.
   2540 ///
   2541 /// For example:
   2542 /// \code
   2543 ///    using namespace std;
   2544 /// \endcode
   2545 ///
   2546 /// \note UsingDirectiveDecl should be Decl not NamedDecl, but we provide
   2547 /// artificial names for all using-directives in order to store
   2548 /// them in DeclContext effectively.
   2549 class UsingDirectiveDecl : public NamedDecl {
   2550   void anchor() override;
   2551   /// \brief The location of the \c using keyword.
   2552   SourceLocation UsingLoc;
   2553 
   2554   /// \brief The location of the \c namespace keyword.
   2555   SourceLocation NamespaceLoc;
   2556 
   2557   /// \brief The nested-name-specifier that precedes the namespace.
   2558   NestedNameSpecifierLoc QualifierLoc;
   2559 
   2560   /// \brief The namespace nominated by this using-directive.
   2561   NamedDecl *NominatedNamespace;
   2562 
   2563   /// Enclosing context containing both using-directive and nominated
   2564   /// namespace.
   2565   DeclContext *CommonAncestor;
   2566 
   2567   /// \brief Returns special DeclarationName used by using-directives.
   2568   ///
   2569   /// This is only used by DeclContext for storing UsingDirectiveDecls in
   2570   /// its lookup structure.
   2571   static DeclarationName getName() {
   2572     return DeclarationName::getUsingDirectiveName();
   2573   }
   2574 
   2575   UsingDirectiveDecl(DeclContext *DC, SourceLocation UsingLoc,
   2576                      SourceLocation NamespcLoc,
   2577                      NestedNameSpecifierLoc QualifierLoc,
   2578                      SourceLocation IdentLoc,
   2579                      NamedDecl *Nominated,
   2580                      DeclContext *CommonAncestor)
   2581     : NamedDecl(UsingDirective, DC, IdentLoc, getName()), UsingLoc(UsingLoc),
   2582       NamespaceLoc(NamespcLoc), QualifierLoc(QualifierLoc),
   2583       NominatedNamespace(Nominated), CommonAncestor(CommonAncestor) { }
   2584 
   2585 public:
   2586   /// \brief Retrieve the nested-name-specifier that qualifies the
   2587   /// name of the namespace, with source-location information.
   2588   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2589 
   2590   /// \brief Retrieve the nested-name-specifier that qualifies the
   2591   /// name of the namespace.
   2592   NestedNameSpecifier *getQualifier() const {
   2593     return QualifierLoc.getNestedNameSpecifier();
   2594   }
   2595 
   2596   NamedDecl *getNominatedNamespaceAsWritten() { return NominatedNamespace; }
   2597   const NamedDecl *getNominatedNamespaceAsWritten() const {
   2598     return NominatedNamespace;
   2599   }
   2600 
   2601   /// \brief Returns the namespace nominated by this using-directive.
   2602   NamespaceDecl *getNominatedNamespace();
   2603 
   2604   const NamespaceDecl *getNominatedNamespace() const {
   2605     return const_cast<UsingDirectiveDecl*>(this)->getNominatedNamespace();
   2606   }
   2607 
   2608   /// \brief Returns the common ancestor context of this using-directive and
   2609   /// its nominated namespace.
   2610   DeclContext *getCommonAncestor() { return CommonAncestor; }
   2611   const DeclContext *getCommonAncestor() const { return CommonAncestor; }
   2612 
   2613   /// \brief Return the location of the \c using keyword.
   2614   SourceLocation getUsingLoc() const { return UsingLoc; }
   2615 
   2616   // FIXME: Could omit 'Key' in name.
   2617   /// \brief Returns the location of the \c namespace keyword.
   2618   SourceLocation getNamespaceKeyLocation() const { return NamespaceLoc; }
   2619 
   2620   /// \brief Returns the location of this using declaration's identifier.
   2621   SourceLocation getIdentLocation() const { return getLocation(); }
   2622 
   2623   static UsingDirectiveDecl *Create(ASTContext &C, DeclContext *DC,
   2624                                     SourceLocation UsingLoc,
   2625                                     SourceLocation NamespaceLoc,
   2626                                     NestedNameSpecifierLoc QualifierLoc,
   2627                                     SourceLocation IdentLoc,
   2628                                     NamedDecl *Nominated,
   2629                                     DeclContext *CommonAncestor);
   2630   static UsingDirectiveDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2631 
   2632   SourceRange getSourceRange() const override LLVM_READONLY {
   2633     return SourceRange(UsingLoc, getLocation());
   2634   }
   2635 
   2636   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2637   static bool classofKind(Kind K) { return K == UsingDirective; }
   2638 
   2639   // Friend for getUsingDirectiveName.
   2640   friend class DeclContext;
   2641 
   2642   friend class ASTDeclReader;
   2643 };
   2644 
   2645 /// \brief Represents a C++ namespace alias.
   2646 ///
   2647 /// For example:
   2648 ///
   2649 /// \code
   2650 /// namespace Foo = Bar;
   2651 /// \endcode
   2652 class NamespaceAliasDecl : public NamedDecl,
   2653                            public Redeclarable<NamespaceAliasDecl> {
   2654   void anchor() override;
   2655 
   2656   /// \brief The location of the \c namespace keyword.
   2657   SourceLocation NamespaceLoc;
   2658 
   2659   /// \brief The location of the namespace's identifier.
   2660   ///
   2661   /// This is accessed by TargetNameLoc.
   2662   SourceLocation IdentLoc;
   2663 
   2664   /// \brief The nested-name-specifier that precedes the namespace.
   2665   NestedNameSpecifierLoc QualifierLoc;
   2666 
   2667   /// \brief The Decl that this alias points to, either a NamespaceDecl or
   2668   /// a NamespaceAliasDecl.
   2669   NamedDecl *Namespace;
   2670 
   2671   NamespaceAliasDecl(ASTContext &C, DeclContext *DC,
   2672                      SourceLocation NamespaceLoc, SourceLocation AliasLoc,
   2673                      IdentifierInfo *Alias, NestedNameSpecifierLoc QualifierLoc,
   2674                      SourceLocation IdentLoc, NamedDecl *Namespace)
   2675       : NamedDecl(NamespaceAlias, DC, AliasLoc, Alias), redeclarable_base(C),
   2676         NamespaceLoc(NamespaceLoc), IdentLoc(IdentLoc),
   2677         QualifierLoc(QualifierLoc), Namespace(Namespace) {}
   2678 
   2679   typedef Redeclarable<NamespaceAliasDecl> redeclarable_base;
   2680   NamespaceAliasDecl *getNextRedeclarationImpl() override;
   2681   NamespaceAliasDecl *getPreviousDeclImpl() override;
   2682   NamespaceAliasDecl *getMostRecentDeclImpl() override;
   2683 
   2684   friend class ASTDeclReader;
   2685 
   2686 public:
   2687   static NamespaceAliasDecl *Create(ASTContext &C, DeclContext *DC,
   2688                                     SourceLocation NamespaceLoc,
   2689                                     SourceLocation AliasLoc,
   2690                                     IdentifierInfo *Alias,
   2691                                     NestedNameSpecifierLoc QualifierLoc,
   2692                                     SourceLocation IdentLoc,
   2693                                     NamedDecl *Namespace);
   2694 
   2695   static NamespaceAliasDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2696 
   2697   typedef redeclarable_base::redecl_range redecl_range;
   2698   typedef redeclarable_base::redecl_iterator redecl_iterator;
   2699   using redeclarable_base::redecls_begin;
   2700   using redeclarable_base::redecls_end;
   2701   using redeclarable_base::redecls;
   2702   using redeclarable_base::getPreviousDecl;
   2703   using redeclarable_base::getMostRecentDecl;
   2704 
   2705   NamespaceAliasDecl *getCanonicalDecl() override {
   2706     return getFirstDecl();
   2707   }
   2708   const NamespaceAliasDecl *getCanonicalDecl() const {
   2709     return getFirstDecl();
   2710   }
   2711 
   2712   /// \brief Retrieve the nested-name-specifier that qualifies the
   2713   /// name of the namespace, with source-location information.
   2714   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2715 
   2716   /// \brief Retrieve the nested-name-specifier that qualifies the
   2717   /// name of the namespace.
   2718   NestedNameSpecifier *getQualifier() const {
   2719     return QualifierLoc.getNestedNameSpecifier();
   2720   }
   2721 
   2722   /// \brief Retrieve the namespace declaration aliased by this directive.
   2723   NamespaceDecl *getNamespace() {
   2724     if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(Namespace))
   2725       return AD->getNamespace();
   2726 
   2727     return cast<NamespaceDecl>(Namespace);
   2728   }
   2729 
   2730   const NamespaceDecl *getNamespace() const {
   2731     return const_cast<NamespaceAliasDecl*>(this)->getNamespace();
   2732   }
   2733 
   2734   /// Returns the location of the alias name, i.e. 'foo' in
   2735   /// "namespace foo = ns::bar;".
   2736   SourceLocation getAliasLoc() const { return getLocation(); }
   2737 
   2738   /// Returns the location of the \c namespace keyword.
   2739   SourceLocation getNamespaceLoc() const { return NamespaceLoc; }
   2740 
   2741   /// Returns the location of the identifier in the named namespace.
   2742   SourceLocation getTargetNameLoc() const { return IdentLoc; }
   2743 
   2744   /// \brief Retrieve the namespace that this alias refers to, which
   2745   /// may either be a NamespaceDecl or a NamespaceAliasDecl.
   2746   NamedDecl *getAliasedNamespace() const { return Namespace; }
   2747 
   2748   SourceRange getSourceRange() const override LLVM_READONLY {
   2749     return SourceRange(NamespaceLoc, IdentLoc);
   2750   }
   2751 
   2752   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2753   static bool classofKind(Kind K) { return K == NamespaceAlias; }
   2754 };
   2755 
   2756 /// \brief Represents a shadow declaration introduced into a scope by a
   2757 /// (resolved) using declaration.
   2758 ///
   2759 /// For example,
   2760 /// \code
   2761 /// namespace A {
   2762 ///   void foo();
   2763 /// }
   2764 /// namespace B {
   2765 ///   using A::foo; // <- a UsingDecl
   2766 ///                 // Also creates a UsingShadowDecl for A::foo() in B
   2767 /// }
   2768 /// \endcode
   2769 class UsingShadowDecl : public NamedDecl, public Redeclarable<UsingShadowDecl> {
   2770   void anchor() override;
   2771 
   2772   /// The referenced declaration.
   2773   NamedDecl *Underlying;
   2774 
   2775   /// \brief The using declaration which introduced this decl or the next using
   2776   /// shadow declaration contained in the aforementioned using declaration.
   2777   NamedDecl *UsingOrNextShadow;
   2778   friend class UsingDecl;
   2779 
   2780   UsingShadowDecl(ASTContext &C, DeclContext *DC, SourceLocation Loc,
   2781                   UsingDecl *Using, NamedDecl *Target)
   2782     : NamedDecl(UsingShadow, DC, Loc, DeclarationName()),
   2783       redeclarable_base(C), Underlying(Target),
   2784       UsingOrNextShadow(reinterpret_cast<NamedDecl *>(Using)) {
   2785     if (Target) {
   2786       setDeclName(Target->getDeclName());
   2787       IdentifierNamespace = Target->getIdentifierNamespace();
   2788     }
   2789     setImplicit();
   2790   }
   2791 
   2792   typedef Redeclarable<UsingShadowDecl> redeclarable_base;
   2793   UsingShadowDecl *getNextRedeclarationImpl() override {
   2794     return getNextRedeclaration();
   2795   }
   2796   UsingShadowDecl *getPreviousDeclImpl() override {
   2797     return getPreviousDecl();
   2798   }
   2799   UsingShadowDecl *getMostRecentDeclImpl() override {
   2800     return getMostRecentDecl();
   2801   }
   2802 
   2803 public:
   2804   static UsingShadowDecl *Create(ASTContext &C, DeclContext *DC,
   2805                                  SourceLocation Loc, UsingDecl *Using,
   2806                                  NamedDecl *Target) {
   2807     return new (C, DC) UsingShadowDecl(C, DC, Loc, Using, Target);
   2808   }
   2809 
   2810   static UsingShadowDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2811 
   2812   typedef redeclarable_base::redecl_range redecl_range;
   2813   typedef redeclarable_base::redecl_iterator redecl_iterator;
   2814   using redeclarable_base::redecls_begin;
   2815   using redeclarable_base::redecls_end;
   2816   using redeclarable_base::redecls;
   2817   using redeclarable_base::getPreviousDecl;
   2818   using redeclarable_base::getMostRecentDecl;
   2819 
   2820   UsingShadowDecl *getCanonicalDecl() override {
   2821     return getFirstDecl();
   2822   }
   2823   const UsingShadowDecl *getCanonicalDecl() const {
   2824     return getFirstDecl();
   2825   }
   2826 
   2827   /// \brief Gets the underlying declaration which has been brought into the
   2828   /// local scope.
   2829   NamedDecl *getTargetDecl() const { return Underlying; }
   2830 
   2831   /// \brief Sets the underlying declaration which has been brought into the
   2832   /// local scope.
   2833   void setTargetDecl(NamedDecl* ND) {
   2834     assert(ND && "Target decl is null!");
   2835     Underlying = ND;
   2836     IdentifierNamespace = ND->getIdentifierNamespace();
   2837   }
   2838 
   2839   /// \brief Gets the using declaration to which this declaration is tied.
   2840   UsingDecl *getUsingDecl() const;
   2841 
   2842   /// \brief The next using shadow declaration contained in the shadow decl
   2843   /// chain of the using declaration which introduced this decl.
   2844   UsingShadowDecl *getNextUsingShadowDecl() const {
   2845     return dyn_cast_or_null<UsingShadowDecl>(UsingOrNextShadow);
   2846   }
   2847 
   2848   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2849   static bool classofKind(Kind K) { return K == Decl::UsingShadow; }
   2850 
   2851   friend class ASTDeclReader;
   2852   friend class ASTDeclWriter;
   2853 };
   2854 
   2855 /// \brief Represents a C++ using-declaration.
   2856 ///
   2857 /// For example:
   2858 /// \code
   2859 ///    using someNameSpace::someIdentifier;
   2860 /// \endcode
   2861 class UsingDecl : public NamedDecl, public Mergeable<UsingDecl> {
   2862   void anchor() override;
   2863 
   2864   /// \brief The source location of the 'using' keyword itself.
   2865   SourceLocation UsingLocation;
   2866 
   2867   /// \brief The nested-name-specifier that precedes the name.
   2868   NestedNameSpecifierLoc QualifierLoc;
   2869 
   2870   /// \brief Provides source/type location info for the declaration name
   2871   /// embedded in the ValueDecl base class.
   2872   DeclarationNameLoc DNLoc;
   2873 
   2874   /// \brief The first shadow declaration of the shadow decl chain associated
   2875   /// with this using declaration.
   2876   ///
   2877   /// The bool member of the pair store whether this decl has the \c typename
   2878   /// keyword.
   2879   llvm::PointerIntPair<UsingShadowDecl *, 1, bool> FirstUsingShadow;
   2880 
   2881   UsingDecl(DeclContext *DC, SourceLocation UL,
   2882             NestedNameSpecifierLoc QualifierLoc,
   2883             const DeclarationNameInfo &NameInfo, bool HasTypenameKeyword)
   2884     : NamedDecl(Using, DC, NameInfo.getLoc(), NameInfo.getName()),
   2885       UsingLocation(UL), QualifierLoc(QualifierLoc),
   2886       DNLoc(NameInfo.getInfo()), FirstUsingShadow(nullptr, HasTypenameKeyword) {
   2887   }
   2888 
   2889 public:
   2890   /// \brief Return the source location of the 'using' keyword.
   2891   SourceLocation getUsingLoc() const { return UsingLocation; }
   2892 
   2893   /// \brief Set the source location of the 'using' keyword.
   2894   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   2895 
   2896   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   2897   /// with source-location information.
   2898   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   2899 
   2900   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   2901   NestedNameSpecifier *getQualifier() const {
   2902     return QualifierLoc.getNestedNameSpecifier();
   2903   }
   2904 
   2905   DeclarationNameInfo getNameInfo() const {
   2906     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   2907   }
   2908 
   2909   /// \brief Return true if it is a C++03 access declaration (no 'using').
   2910   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   2911 
   2912   /// \brief Return true if the using declaration has 'typename'.
   2913   bool hasTypename() const { return FirstUsingShadow.getInt(); }
   2914 
   2915   /// \brief Sets whether the using declaration has 'typename'.
   2916   void setTypename(bool TN) { FirstUsingShadow.setInt(TN); }
   2917 
   2918   /// \brief Iterates through the using shadow declarations associated with
   2919   /// this using declaration.
   2920   class shadow_iterator {
   2921     /// \brief The current using shadow declaration.
   2922     UsingShadowDecl *Current;
   2923 
   2924   public:
   2925     typedef UsingShadowDecl*          value_type;
   2926     typedef UsingShadowDecl*          reference;
   2927     typedef UsingShadowDecl*          pointer;
   2928     typedef std::forward_iterator_tag iterator_category;
   2929     typedef std::ptrdiff_t            difference_type;
   2930 
   2931     shadow_iterator() : Current(nullptr) { }
   2932     explicit shadow_iterator(UsingShadowDecl *C) : Current(C) { }
   2933 
   2934     reference operator*() const { return Current; }
   2935     pointer operator->() const { return Current; }
   2936 
   2937     shadow_iterator& operator++() {
   2938       Current = Current->getNextUsingShadowDecl();
   2939       return *this;
   2940     }
   2941 
   2942     shadow_iterator operator++(int) {
   2943       shadow_iterator tmp(*this);
   2944       ++(*this);
   2945       return tmp;
   2946     }
   2947 
   2948     friend bool operator==(shadow_iterator x, shadow_iterator y) {
   2949       return x.Current == y.Current;
   2950     }
   2951     friend bool operator!=(shadow_iterator x, shadow_iterator y) {
   2952       return x.Current != y.Current;
   2953     }
   2954   };
   2955 
   2956   typedef llvm::iterator_range<shadow_iterator> shadow_range;
   2957 
   2958   shadow_range shadows() const {
   2959     return shadow_range(shadow_begin(), shadow_end());
   2960   }
   2961   shadow_iterator shadow_begin() const {
   2962     return shadow_iterator(FirstUsingShadow.getPointer());
   2963   }
   2964   shadow_iterator shadow_end() const { return shadow_iterator(); }
   2965 
   2966   /// \brief Return the number of shadowed declarations associated with this
   2967   /// using declaration.
   2968   unsigned shadow_size() const {
   2969     return std::distance(shadow_begin(), shadow_end());
   2970   }
   2971 
   2972   void addShadowDecl(UsingShadowDecl *S);
   2973   void removeShadowDecl(UsingShadowDecl *S);
   2974 
   2975   static UsingDecl *Create(ASTContext &C, DeclContext *DC,
   2976                            SourceLocation UsingL,
   2977                            NestedNameSpecifierLoc QualifierLoc,
   2978                            const DeclarationNameInfo &NameInfo,
   2979                            bool HasTypenameKeyword);
   2980 
   2981   static UsingDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   2982 
   2983   SourceRange getSourceRange() const override LLVM_READONLY;
   2984 
   2985   /// Retrieves the canonical declaration of this declaration.
   2986   UsingDecl *getCanonicalDecl() override { return getFirstDecl(); }
   2987   const UsingDecl *getCanonicalDecl() const { return getFirstDecl(); }
   2988 
   2989   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   2990   static bool classofKind(Kind K) { return K == Using; }
   2991 
   2992   friend class ASTDeclReader;
   2993   friend class ASTDeclWriter;
   2994 };
   2995 
   2996 /// \brief Represents a dependent using declaration which was not marked with
   2997 /// \c typename.
   2998 ///
   2999 /// Unlike non-dependent using declarations, these *only* bring through
   3000 /// non-types; otherwise they would break two-phase lookup.
   3001 ///
   3002 /// \code
   3003 /// template \<class T> class A : public Base<T> {
   3004 ///   using Base<T>::foo;
   3005 /// };
   3006 /// \endcode
   3007 class UnresolvedUsingValueDecl : public ValueDecl,
   3008                                  public Mergeable<UnresolvedUsingValueDecl> {
   3009   void anchor() override;
   3010 
   3011   /// \brief The source location of the 'using' keyword
   3012   SourceLocation UsingLocation;
   3013 
   3014   /// \brief The nested-name-specifier that precedes the name.
   3015   NestedNameSpecifierLoc QualifierLoc;
   3016 
   3017   /// \brief Provides source/type location info for the declaration name
   3018   /// embedded in the ValueDecl base class.
   3019   DeclarationNameLoc DNLoc;
   3020 
   3021   UnresolvedUsingValueDecl(DeclContext *DC, QualType Ty,
   3022                            SourceLocation UsingLoc,
   3023                            NestedNameSpecifierLoc QualifierLoc,
   3024                            const DeclarationNameInfo &NameInfo)
   3025     : ValueDecl(UnresolvedUsingValue, DC,
   3026                 NameInfo.getLoc(), NameInfo.getName(), Ty),
   3027       UsingLocation(UsingLoc), QualifierLoc(QualifierLoc),
   3028       DNLoc(NameInfo.getInfo())
   3029   { }
   3030 
   3031 public:
   3032   /// \brief Returns the source location of the 'using' keyword.
   3033   SourceLocation getUsingLoc() const { return UsingLocation; }
   3034 
   3035   /// \brief Set the source location of the 'using' keyword.
   3036   void setUsingLoc(SourceLocation L) { UsingLocation = L; }
   3037 
   3038   /// \brief Return true if it is a C++03 access declaration (no 'using').
   3039   bool isAccessDeclaration() const { return UsingLocation.isInvalid(); }
   3040 
   3041   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   3042   /// with source-location information.
   3043   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   3044 
   3045   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   3046   NestedNameSpecifier *getQualifier() const {
   3047     return QualifierLoc.getNestedNameSpecifier();
   3048   }
   3049 
   3050   DeclarationNameInfo getNameInfo() const {
   3051     return DeclarationNameInfo(getDeclName(), getLocation(), DNLoc);
   3052   }
   3053 
   3054   static UnresolvedUsingValueDecl *
   3055     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   3056            NestedNameSpecifierLoc QualifierLoc,
   3057            const DeclarationNameInfo &NameInfo);
   3058 
   3059   static UnresolvedUsingValueDecl *
   3060   CreateDeserialized(ASTContext &C, unsigned ID);
   3061 
   3062   SourceRange getSourceRange() const override LLVM_READONLY;
   3063 
   3064   /// Retrieves the canonical declaration of this declaration.
   3065   UnresolvedUsingValueDecl *getCanonicalDecl() override {
   3066     return getFirstDecl();
   3067   }
   3068   const UnresolvedUsingValueDecl *getCanonicalDecl() const {
   3069     return getFirstDecl();
   3070   }
   3071 
   3072   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3073   static bool classofKind(Kind K) { return K == UnresolvedUsingValue; }
   3074 
   3075   friend class ASTDeclReader;
   3076   friend class ASTDeclWriter;
   3077 };
   3078 
   3079 /// \brief Represents a dependent using declaration which was marked with
   3080 /// \c typename.
   3081 ///
   3082 /// \code
   3083 /// template \<class T> class A : public Base<T> {
   3084 ///   using typename Base<T>::foo;
   3085 /// };
   3086 /// \endcode
   3087 ///
   3088 /// The type associated with an unresolved using typename decl is
   3089 /// currently always a typename type.
   3090 class UnresolvedUsingTypenameDecl
   3091     : public TypeDecl,
   3092       public Mergeable<UnresolvedUsingTypenameDecl> {
   3093   void anchor() override;
   3094 
   3095   /// \brief The source location of the 'typename' keyword
   3096   SourceLocation TypenameLocation;
   3097 
   3098   /// \brief The nested-name-specifier that precedes the name.
   3099   NestedNameSpecifierLoc QualifierLoc;
   3100 
   3101   UnresolvedUsingTypenameDecl(DeclContext *DC, SourceLocation UsingLoc,
   3102                               SourceLocation TypenameLoc,
   3103                               NestedNameSpecifierLoc QualifierLoc,
   3104                               SourceLocation TargetNameLoc,
   3105                               IdentifierInfo *TargetName)
   3106     : TypeDecl(UnresolvedUsingTypename, DC, TargetNameLoc, TargetName,
   3107                UsingLoc),
   3108       TypenameLocation(TypenameLoc), QualifierLoc(QualifierLoc) { }
   3109 
   3110   friend class ASTDeclReader;
   3111 
   3112 public:
   3113   /// \brief Returns the source location of the 'using' keyword.
   3114   SourceLocation getUsingLoc() const { return getLocStart(); }
   3115 
   3116   /// \brief Returns the source location of the 'typename' keyword.
   3117   SourceLocation getTypenameLoc() const { return TypenameLocation; }
   3118 
   3119   /// \brief Retrieve the nested-name-specifier that qualifies the name,
   3120   /// with source-location information.
   3121   NestedNameSpecifierLoc getQualifierLoc() const { return QualifierLoc; }
   3122 
   3123   /// \brief Retrieve the nested-name-specifier that qualifies the name.
   3124   NestedNameSpecifier *getQualifier() const {
   3125     return QualifierLoc.getNestedNameSpecifier();
   3126   }
   3127 
   3128   static UnresolvedUsingTypenameDecl *
   3129     Create(ASTContext &C, DeclContext *DC, SourceLocation UsingLoc,
   3130            SourceLocation TypenameLoc, NestedNameSpecifierLoc QualifierLoc,
   3131            SourceLocation TargetNameLoc, DeclarationName TargetName);
   3132 
   3133   static UnresolvedUsingTypenameDecl *
   3134   CreateDeserialized(ASTContext &C, unsigned ID);
   3135 
   3136   /// Retrieves the canonical declaration of this declaration.
   3137   UnresolvedUsingTypenameDecl *getCanonicalDecl() override {
   3138     return getFirstDecl();
   3139   }
   3140   const UnresolvedUsingTypenameDecl *getCanonicalDecl() const {
   3141     return getFirstDecl();
   3142   }
   3143 
   3144   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3145   static bool classofKind(Kind K) { return K == UnresolvedUsingTypename; }
   3146 };
   3147 
   3148 /// \brief Represents a C++11 static_assert declaration.
   3149 class StaticAssertDecl : public Decl {
   3150   virtual void anchor();
   3151   llvm::PointerIntPair<Expr *, 1, bool> AssertExprAndFailed;
   3152   StringLiteral *Message;
   3153   SourceLocation RParenLoc;
   3154 
   3155   StaticAssertDecl(DeclContext *DC, SourceLocation StaticAssertLoc,
   3156                    Expr *AssertExpr, StringLiteral *Message,
   3157                    SourceLocation RParenLoc, bool Failed)
   3158     : Decl(StaticAssert, DC, StaticAssertLoc),
   3159       AssertExprAndFailed(AssertExpr, Failed), Message(Message),
   3160       RParenLoc(RParenLoc) { }
   3161 
   3162 public:
   3163   static StaticAssertDecl *Create(ASTContext &C, DeclContext *DC,
   3164                                   SourceLocation StaticAssertLoc,
   3165                                   Expr *AssertExpr, StringLiteral *Message,
   3166                                   SourceLocation RParenLoc, bool Failed);
   3167   static StaticAssertDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   3168 
   3169   Expr *getAssertExpr() { return AssertExprAndFailed.getPointer(); }
   3170   const Expr *getAssertExpr() const { return AssertExprAndFailed.getPointer(); }
   3171 
   3172   StringLiteral *getMessage() { return Message; }
   3173   const StringLiteral *getMessage() const { return Message; }
   3174 
   3175   bool isFailed() const { return AssertExprAndFailed.getInt(); }
   3176 
   3177   SourceLocation getRParenLoc() const { return RParenLoc; }
   3178 
   3179   SourceRange getSourceRange() const override LLVM_READONLY {
   3180     return SourceRange(getLocation(), getRParenLoc());
   3181   }
   3182 
   3183   static bool classof(const Decl *D) { return classofKind(D->getKind()); }
   3184   static bool classofKind(Kind K) { return K == StaticAssert; }
   3185 
   3186   friend class ASTDeclReader;
   3187 };
   3188 
   3189 /// An instance of this class represents the declaration of a property
   3190 /// member.  This is a Microsoft extension to C++, first introduced in
   3191 /// Visual Studio .NET 2003 as a parallel to similar features in C#
   3192 /// and Managed C++.
   3193 ///
   3194 /// A property must always be a non-static class member.
   3195 ///
   3196 /// A property member superficially resembles a non-static data
   3197 /// member, except preceded by a property attribute:
   3198 ///   __declspec(property(get=GetX, put=PutX)) int x;
   3199 /// Either (but not both) of the 'get' and 'put' names may be omitted.
   3200 ///
   3201 /// A reference to a property is always an lvalue.  If the lvalue
   3202 /// undergoes lvalue-to-rvalue conversion, then a getter name is
   3203 /// required, and that member is called with no arguments.
   3204 /// If the lvalue is assigned into, then a setter name is required,
   3205 /// and that member is called with one argument, the value assigned.
   3206 /// Both operations are potentially overloaded.  Compound assignments
   3207 /// are permitted, as are the increment and decrement operators.
   3208 ///
   3209 /// The getter and putter methods are permitted to be overloaded,
   3210 /// although their return and parameter types are subject to certain
   3211 /// restrictions according to the type of the property.
   3212 ///
   3213 /// A property declared using an incomplete array type may
   3214 /// additionally be subscripted, adding extra parameters to the getter
   3215 /// and putter methods.
   3216 class MSPropertyDecl : public DeclaratorDecl {
   3217   IdentifierInfo *GetterId, *SetterId;
   3218 
   3219   MSPropertyDecl(DeclContext *DC, SourceLocation L, DeclarationName N,
   3220                  QualType T, TypeSourceInfo *TInfo, SourceLocation StartL,
   3221                  IdentifierInfo *Getter, IdentifierInfo *Setter)
   3222       : DeclaratorDecl(MSProperty, DC, L, N, T, TInfo, StartL),
   3223         GetterId(Getter), SetterId(Setter) {}
   3224 
   3225 public:
   3226   static MSPropertyDecl *Create(ASTContext &C, DeclContext *DC,
   3227                                 SourceLocation L, DeclarationName N, QualType T,
   3228                                 TypeSourceInfo *TInfo, SourceLocation StartL,
   3229                                 IdentifierInfo *Getter, IdentifierInfo *Setter);
   3230   static MSPropertyDecl *CreateDeserialized(ASTContext &C, unsigned ID);
   3231 
   3232   static bool classof(const Decl *D) { return D->getKind() == MSProperty; }
   3233 
   3234   bool hasGetter() const { return GetterId != nullptr; }
   3235   IdentifierInfo* getGetterId() const { return GetterId; }
   3236   bool hasSetter() const { return SetterId != nullptr; }
   3237   IdentifierInfo* getSetterId() const { return SetterId; }
   3238 
   3239   friend class ASTDeclReader;
   3240 };
   3241 
   3242 /// Insertion operator for diagnostics.  This allows sending an AccessSpecifier
   3243 /// into a diagnostic with <<.
   3244 const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
   3245                                     AccessSpecifier AS);
   3246 
   3247 const PartialDiagnostic &operator<<(const PartialDiagnostic &DB,
   3248                                     AccessSpecifier AS);
   3249 
   3250 } // end namespace clang
   3251 
   3252 #endif
   3253