1 /* 2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 12 #define WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 13 14 // MSVC++ requires this to be set before any other includes to get M_PI. 15 #define _USE_MATH_DEFINES 16 17 #include <math.h> 18 #include <stddef.h> // size_t 19 #include <stdio.h> // FILE 20 #include <vector> 21 22 #include "webrtc/base/arraysize.h" 23 #include "webrtc/base/platform_file.h" 24 #include "webrtc/common.h" 25 #include "webrtc/modules/audio_processing/beamformer/array_util.h" 26 #include "webrtc/typedefs.h" 27 28 struct AecCore; 29 30 namespace webrtc { 31 32 class AudioFrame; 33 34 template<typename T> 35 class Beamformer; 36 37 class StreamConfig; 38 class ProcessingConfig; 39 40 class EchoCancellation; 41 class EchoControlMobile; 42 class GainControl; 43 class HighPassFilter; 44 class LevelEstimator; 45 class NoiseSuppression; 46 class VoiceDetection; 47 48 // Use to enable the extended filter mode in the AEC, along with robustness 49 // measures around the reported system delays. It comes with a significant 50 // increase in AEC complexity, but is much more robust to unreliable reported 51 // delays. 52 // 53 // Detailed changes to the algorithm: 54 // - The filter length is changed from 48 to 128 ms. This comes with tuning of 55 // several parameters: i) filter adaptation stepsize and error threshold; 56 // ii) non-linear processing smoothing and overdrive. 57 // - Option to ignore the reported delays on platforms which we deem 58 // sufficiently unreliable. See WEBRTC_UNTRUSTED_DELAY in echo_cancellation.c. 59 // - Faster startup times by removing the excessive "startup phase" processing 60 // of reported delays. 61 // - Much more conservative adjustments to the far-end read pointer. We smooth 62 // the delay difference more heavily, and back off from the difference more. 63 // Adjustments force a readaptation of the filter, so they should be avoided 64 // except when really necessary. 65 struct ExtendedFilter { 66 ExtendedFilter() : enabled(false) {} 67 explicit ExtendedFilter(bool enabled) : enabled(enabled) {} 68 static const ConfigOptionID identifier = ConfigOptionID::kExtendedFilter; 69 bool enabled; 70 }; 71 72 // Enables delay-agnostic echo cancellation. This feature relies on internally 73 // estimated delays between the process and reverse streams, thus not relying 74 // on reported system delays. This configuration only applies to 75 // EchoCancellation and not EchoControlMobile. It can be set in the constructor 76 // or using AudioProcessing::SetExtraOptions(). 77 struct DelayAgnostic { 78 DelayAgnostic() : enabled(false) {} 79 explicit DelayAgnostic(bool enabled) : enabled(enabled) {} 80 static const ConfigOptionID identifier = ConfigOptionID::kDelayAgnostic; 81 bool enabled; 82 }; 83 84 // Use to enable experimental gain control (AGC). At startup the experimental 85 // AGC moves the microphone volume up to |startup_min_volume| if the current 86 // microphone volume is set too low. The value is clamped to its operating range 87 // [12, 255]. Here, 255 maps to 100%. 88 // 89 // Must be provided through AudioProcessing::Create(Confg&). 90 #if defined(WEBRTC_CHROMIUM_BUILD) 91 static const int kAgcStartupMinVolume = 85; 92 #else 93 static const int kAgcStartupMinVolume = 0; 94 #endif // defined(WEBRTC_CHROMIUM_BUILD) 95 struct ExperimentalAgc { 96 ExperimentalAgc() : enabled(true), startup_min_volume(kAgcStartupMinVolume) {} 97 explicit ExperimentalAgc(bool enabled) 98 : enabled(enabled), startup_min_volume(kAgcStartupMinVolume) {} 99 ExperimentalAgc(bool enabled, int startup_min_volume) 100 : enabled(enabled), startup_min_volume(startup_min_volume) {} 101 static const ConfigOptionID identifier = ConfigOptionID::kExperimentalAgc; 102 bool enabled; 103 int startup_min_volume; 104 }; 105 106 // Use to enable experimental noise suppression. It can be set in the 107 // constructor or using AudioProcessing::SetExtraOptions(). 108 struct ExperimentalNs { 109 ExperimentalNs() : enabled(false) {} 110 explicit ExperimentalNs(bool enabled) : enabled(enabled) {} 111 static const ConfigOptionID identifier = ConfigOptionID::kExperimentalNs; 112 bool enabled; 113 }; 114 115 // Use to enable beamforming. Must be provided through the constructor. It will 116 // have no impact if used with AudioProcessing::SetExtraOptions(). 117 struct Beamforming { 118 Beamforming() 119 : enabled(false), 120 array_geometry(), 121 target_direction( 122 SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) {} 123 Beamforming(bool enabled, const std::vector<Point>& array_geometry) 124 : Beamforming(enabled, 125 array_geometry, 126 SphericalPointf(static_cast<float>(M_PI) / 2.f, 0.f, 1.f)) { 127 } 128 Beamforming(bool enabled, 129 const std::vector<Point>& array_geometry, 130 SphericalPointf target_direction) 131 : enabled(enabled), 132 array_geometry(array_geometry), 133 target_direction(target_direction) {} 134 static const ConfigOptionID identifier = ConfigOptionID::kBeamforming; 135 const bool enabled; 136 const std::vector<Point> array_geometry; 137 const SphericalPointf target_direction; 138 }; 139 140 // Use to enable intelligibility enhancer in audio processing. Must be provided 141 // though the constructor. It will have no impact if used with 142 // AudioProcessing::SetExtraOptions(). 143 // 144 // Note: If enabled and the reverse stream has more than one output channel, 145 // the reverse stream will become an upmixed mono signal. 146 struct Intelligibility { 147 Intelligibility() : enabled(false) {} 148 explicit Intelligibility(bool enabled) : enabled(enabled) {} 149 static const ConfigOptionID identifier = ConfigOptionID::kIntelligibility; 150 bool enabled; 151 }; 152 153 // The Audio Processing Module (APM) provides a collection of voice processing 154 // components designed for real-time communications software. 155 // 156 // APM operates on two audio streams on a frame-by-frame basis. Frames of the 157 // primary stream, on which all processing is applied, are passed to 158 // |ProcessStream()|. Frames of the reverse direction stream, which are used for 159 // analysis by some components, are passed to |AnalyzeReverseStream()|. On the 160 // client-side, this will typically be the near-end (capture) and far-end 161 // (render) streams, respectively. APM should be placed in the signal chain as 162 // close to the audio hardware abstraction layer (HAL) as possible. 163 // 164 // On the server-side, the reverse stream will normally not be used, with 165 // processing occurring on each incoming stream. 166 // 167 // Component interfaces follow a similar pattern and are accessed through 168 // corresponding getters in APM. All components are disabled at create-time, 169 // with default settings that are recommended for most situations. New settings 170 // can be applied without enabling a component. Enabling a component triggers 171 // memory allocation and initialization to allow it to start processing the 172 // streams. 173 // 174 // Thread safety is provided with the following assumptions to reduce locking 175 // overhead: 176 // 1. The stream getters and setters are called from the same thread as 177 // ProcessStream(). More precisely, stream functions are never called 178 // concurrently with ProcessStream(). 179 // 2. Parameter getters are never called concurrently with the corresponding 180 // setter. 181 // 182 // APM accepts only linear PCM audio data in chunks of 10 ms. The int16 183 // interfaces use interleaved data, while the float interfaces use deinterleaved 184 // data. 185 // 186 // Usage example, omitting error checking: 187 // AudioProcessing* apm = AudioProcessing::Create(0); 188 // 189 // apm->high_pass_filter()->Enable(true); 190 // 191 // apm->echo_cancellation()->enable_drift_compensation(false); 192 // apm->echo_cancellation()->Enable(true); 193 // 194 // apm->noise_reduction()->set_level(kHighSuppression); 195 // apm->noise_reduction()->Enable(true); 196 // 197 // apm->gain_control()->set_analog_level_limits(0, 255); 198 // apm->gain_control()->set_mode(kAdaptiveAnalog); 199 // apm->gain_control()->Enable(true); 200 // 201 // apm->voice_detection()->Enable(true); 202 // 203 // // Start a voice call... 204 // 205 // // ... Render frame arrives bound for the audio HAL ... 206 // apm->AnalyzeReverseStream(render_frame); 207 // 208 // // ... Capture frame arrives from the audio HAL ... 209 // // Call required set_stream_ functions. 210 // apm->set_stream_delay_ms(delay_ms); 211 // apm->gain_control()->set_stream_analog_level(analog_level); 212 // 213 // apm->ProcessStream(capture_frame); 214 // 215 // // Call required stream_ functions. 216 // analog_level = apm->gain_control()->stream_analog_level(); 217 // has_voice = apm->stream_has_voice(); 218 // 219 // // Repeate render and capture processing for the duration of the call... 220 // // Start a new call... 221 // apm->Initialize(); 222 // 223 // // Close the application... 224 // delete apm; 225 // 226 class AudioProcessing { 227 public: 228 // TODO(mgraczyk): Remove once all methods that use ChannelLayout are gone. 229 enum ChannelLayout { 230 kMono, 231 // Left, right. 232 kStereo, 233 // Mono, keyboard mic. 234 kMonoAndKeyboard, 235 // Left, right, keyboard mic. 236 kStereoAndKeyboard 237 }; 238 239 // Creates an APM instance. Use one instance for every primary audio stream 240 // requiring processing. On the client-side, this would typically be one 241 // instance for the near-end stream, and additional instances for each far-end 242 // stream which requires processing. On the server-side, this would typically 243 // be one instance for every incoming stream. 244 static AudioProcessing* Create(); 245 // Allows passing in an optional configuration at create-time. 246 static AudioProcessing* Create(const Config& config); 247 // Only for testing. 248 static AudioProcessing* Create(const Config& config, 249 Beamformer<float>* beamformer); 250 virtual ~AudioProcessing() {} 251 252 // Initializes internal states, while retaining all user settings. This 253 // should be called before beginning to process a new audio stream. However, 254 // it is not necessary to call before processing the first stream after 255 // creation. 256 // 257 // It is also not necessary to call if the audio parameters (sample 258 // rate and number of channels) have changed. Passing updated parameters 259 // directly to |ProcessStream()| and |AnalyzeReverseStream()| is permissible. 260 // If the parameters are known at init-time though, they may be provided. 261 virtual int Initialize() = 0; 262 263 // The int16 interfaces require: 264 // - only |NativeRate|s be used 265 // - that the input, output and reverse rates must match 266 // - that |processing_config.output_stream()| matches 267 // |processing_config.input_stream()|. 268 // 269 // The float interfaces accept arbitrary rates and support differing input and 270 // output layouts, but the output must have either one channel or the same 271 // number of channels as the input. 272 virtual int Initialize(const ProcessingConfig& processing_config) = 0; 273 274 // Initialize with unpacked parameters. See Initialize() above for details. 275 // 276 // TODO(mgraczyk): Remove once clients are updated to use the new interface. 277 virtual int Initialize(int input_sample_rate_hz, 278 int output_sample_rate_hz, 279 int reverse_sample_rate_hz, 280 ChannelLayout input_layout, 281 ChannelLayout output_layout, 282 ChannelLayout reverse_layout) = 0; 283 284 // Pass down additional options which don't have explicit setters. This 285 // ensures the options are applied immediately. 286 virtual void SetExtraOptions(const Config& config) = 0; 287 288 // TODO(peah): Remove after voice engine no longer requires it to resample 289 // the reverse stream to the forward rate. 290 virtual int input_sample_rate_hz() const = 0; 291 292 // TODO(ajm): Only intended for internal use. Make private and friend the 293 // necessary classes? 294 virtual int proc_sample_rate_hz() const = 0; 295 virtual int proc_split_sample_rate_hz() const = 0; 296 virtual size_t num_input_channels() const = 0; 297 virtual size_t num_proc_channels() const = 0; 298 virtual size_t num_output_channels() const = 0; 299 virtual size_t num_reverse_channels() const = 0; 300 301 // Set to true when the output of AudioProcessing will be muted or in some 302 // other way not used. Ideally, the captured audio would still be processed, 303 // but some components may change behavior based on this information. 304 // Default false. 305 virtual void set_output_will_be_muted(bool muted) = 0; 306 307 // Processes a 10 ms |frame| of the primary audio stream. On the client-side, 308 // this is the near-end (or captured) audio. 309 // 310 // If needed for enabled functionality, any function with the set_stream_ tag 311 // must be called prior to processing the current frame. Any getter function 312 // with the stream_ tag which is needed should be called after processing. 313 // 314 // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| 315 // members of |frame| must be valid. If changed from the previous call to this 316 // method, it will trigger an initialization. 317 virtual int ProcessStream(AudioFrame* frame) = 0; 318 319 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 320 // of |src| points to a channel buffer, arranged according to 321 // |input_layout|. At output, the channels will be arranged according to 322 // |output_layout| at |output_sample_rate_hz| in |dest|. 323 // 324 // The output layout must have one channel or as many channels as the input. 325 // |src| and |dest| may use the same memory, if desired. 326 // 327 // TODO(mgraczyk): Remove once clients are updated to use the new interface. 328 virtual int ProcessStream(const float* const* src, 329 size_t samples_per_channel, 330 int input_sample_rate_hz, 331 ChannelLayout input_layout, 332 int output_sample_rate_hz, 333 ChannelLayout output_layout, 334 float* const* dest) = 0; 335 336 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 337 // |src| points to a channel buffer, arranged according to |input_stream|. At 338 // output, the channels will be arranged according to |output_stream| in 339 // |dest|. 340 // 341 // The output must have one channel or as many channels as the input. |src| 342 // and |dest| may use the same memory, if desired. 343 virtual int ProcessStream(const float* const* src, 344 const StreamConfig& input_config, 345 const StreamConfig& output_config, 346 float* const* dest) = 0; 347 348 // Analyzes a 10 ms |frame| of the reverse direction audio stream. The frame 349 // will not be modified. On the client-side, this is the far-end (or to be 350 // rendered) audio. 351 // 352 // It is only necessary to provide this if echo processing is enabled, as the 353 // reverse stream forms the echo reference signal. It is recommended, but not 354 // necessary, to provide if gain control is enabled. On the server-side this 355 // typically will not be used. If you're not sure what to pass in here, 356 // chances are you don't need to use it. 357 // 358 // The |sample_rate_hz_|, |num_channels_|, and |samples_per_channel_| 359 // members of |frame| must be valid. |sample_rate_hz_| must correspond to 360 // |input_sample_rate_hz()| 361 // 362 // TODO(ajm): add const to input; requires an implementation fix. 363 // DEPRECATED: Use |ProcessReverseStream| instead. 364 // TODO(ekm): Remove once all users have updated to |ProcessReverseStream|. 365 virtual int AnalyzeReverseStream(AudioFrame* frame) = 0; 366 367 // Same as |AnalyzeReverseStream|, but may modify |frame| if intelligibility 368 // is enabled. 369 virtual int ProcessReverseStream(AudioFrame* frame) = 0; 370 371 // Accepts deinterleaved float audio with the range [-1, 1]. Each element 372 // of |data| points to a channel buffer, arranged according to |layout|. 373 // TODO(mgraczyk): Remove once clients are updated to use the new interface. 374 virtual int AnalyzeReverseStream(const float* const* data, 375 size_t samples_per_channel, 376 int rev_sample_rate_hz, 377 ChannelLayout layout) = 0; 378 379 // Accepts deinterleaved float audio with the range [-1, 1]. Each element of 380 // |data| points to a channel buffer, arranged according to |reverse_config|. 381 virtual int ProcessReverseStream(const float* const* src, 382 const StreamConfig& reverse_input_config, 383 const StreamConfig& reverse_output_config, 384 float* const* dest) = 0; 385 386 // This must be called if and only if echo processing is enabled. 387 // 388 // Sets the |delay| in ms between AnalyzeReverseStream() receiving a far-end 389 // frame and ProcessStream() receiving a near-end frame containing the 390 // corresponding echo. On the client-side this can be expressed as 391 // delay = (t_render - t_analyze) + (t_process - t_capture) 392 // where, 393 // - t_analyze is the time a frame is passed to AnalyzeReverseStream() and 394 // t_render is the time the first sample of the same frame is rendered by 395 // the audio hardware. 396 // - t_capture is the time the first sample of a frame is captured by the 397 // audio hardware and t_pull is the time the same frame is passed to 398 // ProcessStream(). 399 virtual int set_stream_delay_ms(int delay) = 0; 400 virtual int stream_delay_ms() const = 0; 401 virtual bool was_stream_delay_set() const = 0; 402 403 // Call to signal that a key press occurred (true) or did not occur (false) 404 // with this chunk of audio. 405 virtual void set_stream_key_pressed(bool key_pressed) = 0; 406 407 // Sets a delay |offset| in ms to add to the values passed in through 408 // set_stream_delay_ms(). May be positive or negative. 409 // 410 // Note that this could cause an otherwise valid value passed to 411 // set_stream_delay_ms() to return an error. 412 virtual void set_delay_offset_ms(int offset) = 0; 413 virtual int delay_offset_ms() const = 0; 414 415 // Starts recording debugging information to a file specified by |filename|, 416 // a NULL-terminated string. If there is an ongoing recording, the old file 417 // will be closed, and recording will continue in the newly specified file. 418 // An already existing file will be overwritten without warning. 419 static const size_t kMaxFilenameSize = 1024; 420 virtual int StartDebugRecording(const char filename[kMaxFilenameSize]) = 0; 421 422 // Same as above but uses an existing file handle. Takes ownership 423 // of |handle| and closes it at StopDebugRecording(). 424 virtual int StartDebugRecording(FILE* handle) = 0; 425 426 // Same as above but uses an existing PlatformFile handle. Takes ownership 427 // of |handle| and closes it at StopDebugRecording(). 428 // TODO(xians): Make this interface pure virtual. 429 virtual int StartDebugRecordingForPlatformFile(rtc::PlatformFile handle) { 430 return -1; 431 } 432 433 // Stops recording debugging information, and closes the file. Recording 434 // cannot be resumed in the same file (without overwriting it). 435 virtual int StopDebugRecording() = 0; 436 437 // Use to send UMA histograms at end of a call. Note that all histogram 438 // specific member variables are reset. 439 virtual void UpdateHistogramsOnCallEnd() = 0; 440 441 // These provide access to the component interfaces and should never return 442 // NULL. The pointers will be valid for the lifetime of the APM instance. 443 // The memory for these objects is entirely managed internally. 444 virtual EchoCancellation* echo_cancellation() const = 0; 445 virtual EchoControlMobile* echo_control_mobile() const = 0; 446 virtual GainControl* gain_control() const = 0; 447 virtual HighPassFilter* high_pass_filter() const = 0; 448 virtual LevelEstimator* level_estimator() const = 0; 449 virtual NoiseSuppression* noise_suppression() const = 0; 450 virtual VoiceDetection* voice_detection() const = 0; 451 452 struct Statistic { 453 int instant; // Instantaneous value. 454 int average; // Long-term average. 455 int maximum; // Long-term maximum. 456 int minimum; // Long-term minimum. 457 }; 458 459 enum Error { 460 // Fatal errors. 461 kNoError = 0, 462 kUnspecifiedError = -1, 463 kCreationFailedError = -2, 464 kUnsupportedComponentError = -3, 465 kUnsupportedFunctionError = -4, 466 kNullPointerError = -5, 467 kBadParameterError = -6, 468 kBadSampleRateError = -7, 469 kBadDataLengthError = -8, 470 kBadNumberChannelsError = -9, 471 kFileError = -10, 472 kStreamParameterNotSetError = -11, 473 kNotEnabledError = -12, 474 475 // Warnings are non-fatal. 476 // This results when a set_stream_ parameter is out of range. Processing 477 // will continue, but the parameter may have been truncated. 478 kBadStreamParameterWarning = -13 479 }; 480 481 enum NativeRate { 482 kSampleRate8kHz = 8000, 483 kSampleRate16kHz = 16000, 484 kSampleRate32kHz = 32000, 485 kSampleRate48kHz = 48000 486 }; 487 488 static const int kNativeSampleRatesHz[]; 489 static const size_t kNumNativeSampleRates; 490 static const int kMaxNativeSampleRateHz; 491 static const int kMaxAECMSampleRateHz; 492 493 static const int kChunkSizeMs = 10; 494 }; 495 496 class StreamConfig { 497 public: 498 // sample_rate_hz: The sampling rate of the stream. 499 // 500 // num_channels: The number of audio channels in the stream, excluding the 501 // keyboard channel if it is present. When passing a 502 // StreamConfig with an array of arrays T*[N], 503 // 504 // N == {num_channels + 1 if has_keyboard 505 // {num_channels if !has_keyboard 506 // 507 // has_keyboard: True if the stream has a keyboard channel. When has_keyboard 508 // is true, the last channel in any corresponding list of 509 // channels is the keyboard channel. 510 StreamConfig(int sample_rate_hz = 0, 511 size_t num_channels = 0, 512 bool has_keyboard = false) 513 : sample_rate_hz_(sample_rate_hz), 514 num_channels_(num_channels), 515 has_keyboard_(has_keyboard), 516 num_frames_(calculate_frames(sample_rate_hz)) {} 517 518 void set_sample_rate_hz(int value) { 519 sample_rate_hz_ = value; 520 num_frames_ = calculate_frames(value); 521 } 522 void set_num_channels(size_t value) { num_channels_ = value; } 523 void set_has_keyboard(bool value) { has_keyboard_ = value; } 524 525 int sample_rate_hz() const { return sample_rate_hz_; } 526 527 // The number of channels in the stream, not including the keyboard channel if 528 // present. 529 size_t num_channels() const { return num_channels_; } 530 531 bool has_keyboard() const { return has_keyboard_; } 532 size_t num_frames() const { return num_frames_; } 533 size_t num_samples() const { return num_channels_ * num_frames_; } 534 535 bool operator==(const StreamConfig& other) const { 536 return sample_rate_hz_ == other.sample_rate_hz_ && 537 num_channels_ == other.num_channels_ && 538 has_keyboard_ == other.has_keyboard_; 539 } 540 541 bool operator!=(const StreamConfig& other) const { return !(*this == other); } 542 543 private: 544 static size_t calculate_frames(int sample_rate_hz) { 545 return static_cast<size_t>( 546 AudioProcessing::kChunkSizeMs * sample_rate_hz / 1000); 547 } 548 549 int sample_rate_hz_; 550 size_t num_channels_; 551 bool has_keyboard_; 552 size_t num_frames_; 553 }; 554 555 class ProcessingConfig { 556 public: 557 enum StreamName { 558 kInputStream, 559 kOutputStream, 560 kReverseInputStream, 561 kReverseOutputStream, 562 kNumStreamNames, 563 }; 564 565 const StreamConfig& input_stream() const { 566 return streams[StreamName::kInputStream]; 567 } 568 const StreamConfig& output_stream() const { 569 return streams[StreamName::kOutputStream]; 570 } 571 const StreamConfig& reverse_input_stream() const { 572 return streams[StreamName::kReverseInputStream]; 573 } 574 const StreamConfig& reverse_output_stream() const { 575 return streams[StreamName::kReverseOutputStream]; 576 } 577 578 StreamConfig& input_stream() { return streams[StreamName::kInputStream]; } 579 StreamConfig& output_stream() { return streams[StreamName::kOutputStream]; } 580 StreamConfig& reverse_input_stream() { 581 return streams[StreamName::kReverseInputStream]; 582 } 583 StreamConfig& reverse_output_stream() { 584 return streams[StreamName::kReverseOutputStream]; 585 } 586 587 bool operator==(const ProcessingConfig& other) const { 588 for (int i = 0; i < StreamName::kNumStreamNames; ++i) { 589 if (this->streams[i] != other.streams[i]) { 590 return false; 591 } 592 } 593 return true; 594 } 595 596 bool operator!=(const ProcessingConfig& other) const { 597 return !(*this == other); 598 } 599 600 StreamConfig streams[StreamName::kNumStreamNames]; 601 }; 602 603 // The acoustic echo cancellation (AEC) component provides better performance 604 // than AECM but also requires more processing power and is dependent on delay 605 // stability and reporting accuracy. As such it is well-suited and recommended 606 // for PC and IP phone applications. 607 // 608 // Not recommended to be enabled on the server-side. 609 class EchoCancellation { 610 public: 611 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 612 // Enabling one will disable the other. 613 virtual int Enable(bool enable) = 0; 614 virtual bool is_enabled() const = 0; 615 616 // Differences in clock speed on the primary and reverse streams can impact 617 // the AEC performance. On the client-side, this could be seen when different 618 // render and capture devices are used, particularly with webcams. 619 // 620 // This enables a compensation mechanism, and requires that 621 // set_stream_drift_samples() be called. 622 virtual int enable_drift_compensation(bool enable) = 0; 623 virtual bool is_drift_compensation_enabled() const = 0; 624 625 // Sets the difference between the number of samples rendered and captured by 626 // the audio devices since the last call to |ProcessStream()|. Must be called 627 // if drift compensation is enabled, prior to |ProcessStream()|. 628 virtual void set_stream_drift_samples(int drift) = 0; 629 virtual int stream_drift_samples() const = 0; 630 631 enum SuppressionLevel { 632 kLowSuppression, 633 kModerateSuppression, 634 kHighSuppression 635 }; 636 637 // Sets the aggressiveness of the suppressor. A higher level trades off 638 // double-talk performance for increased echo suppression. 639 virtual int set_suppression_level(SuppressionLevel level) = 0; 640 virtual SuppressionLevel suppression_level() const = 0; 641 642 // Returns false if the current frame almost certainly contains no echo 643 // and true if it _might_ contain echo. 644 virtual bool stream_has_echo() const = 0; 645 646 // Enables the computation of various echo metrics. These are obtained 647 // through |GetMetrics()|. 648 virtual int enable_metrics(bool enable) = 0; 649 virtual bool are_metrics_enabled() const = 0; 650 651 // Each statistic is reported in dB. 652 // P_far: Far-end (render) signal power. 653 // P_echo: Near-end (capture) echo signal power. 654 // P_out: Signal power at the output of the AEC. 655 // P_a: Internal signal power at the point before the AEC's non-linear 656 // processor. 657 struct Metrics { 658 // RERL = ERL + ERLE 659 AudioProcessing::Statistic residual_echo_return_loss; 660 661 // ERL = 10log_10(P_far / P_echo) 662 AudioProcessing::Statistic echo_return_loss; 663 664 // ERLE = 10log_10(P_echo / P_out) 665 AudioProcessing::Statistic echo_return_loss_enhancement; 666 667 // (Pre non-linear processing suppression) A_NLP = 10log_10(P_echo / P_a) 668 AudioProcessing::Statistic a_nlp; 669 }; 670 671 // TODO(ajm): discuss the metrics update period. 672 virtual int GetMetrics(Metrics* metrics) = 0; 673 674 // Enables computation and logging of delay values. Statistics are obtained 675 // through |GetDelayMetrics()|. 676 virtual int enable_delay_logging(bool enable) = 0; 677 virtual bool is_delay_logging_enabled() const = 0; 678 679 // The delay metrics consists of the delay |median| and the delay standard 680 // deviation |std|. It also consists of the fraction of delay estimates 681 // |fraction_poor_delays| that can make the echo cancellation perform poorly. 682 // The values are aggregated until the first call to |GetDelayMetrics()| and 683 // afterwards aggregated and updated every second. 684 // Note that if there are several clients pulling metrics from 685 // |GetDelayMetrics()| during a session the first call from any of them will 686 // change to one second aggregation window for all. 687 // TODO(bjornv): Deprecated, remove. 688 virtual int GetDelayMetrics(int* median, int* std) = 0; 689 virtual int GetDelayMetrics(int* median, int* std, 690 float* fraction_poor_delays) = 0; 691 692 // Returns a pointer to the low level AEC component. In case of multiple 693 // channels, the pointer to the first one is returned. A NULL pointer is 694 // returned when the AEC component is disabled or has not been initialized 695 // successfully. 696 virtual struct AecCore* aec_core() const = 0; 697 698 protected: 699 virtual ~EchoCancellation() {} 700 }; 701 702 // The acoustic echo control for mobile (AECM) component is a low complexity 703 // robust option intended for use on mobile devices. 704 // 705 // Not recommended to be enabled on the server-side. 706 class EchoControlMobile { 707 public: 708 // EchoCancellation and EchoControlMobile may not be enabled simultaneously. 709 // Enabling one will disable the other. 710 virtual int Enable(bool enable) = 0; 711 virtual bool is_enabled() const = 0; 712 713 // Recommended settings for particular audio routes. In general, the louder 714 // the echo is expected to be, the higher this value should be set. The 715 // preferred setting may vary from device to device. 716 enum RoutingMode { 717 kQuietEarpieceOrHeadset, 718 kEarpiece, 719 kLoudEarpiece, 720 kSpeakerphone, 721 kLoudSpeakerphone 722 }; 723 724 // Sets echo control appropriate for the audio routing |mode| on the device. 725 // It can and should be updated during a call if the audio routing changes. 726 virtual int set_routing_mode(RoutingMode mode) = 0; 727 virtual RoutingMode routing_mode() const = 0; 728 729 // Comfort noise replaces suppressed background noise to maintain a 730 // consistent signal level. 731 virtual int enable_comfort_noise(bool enable) = 0; 732 virtual bool is_comfort_noise_enabled() const = 0; 733 734 // A typical use case is to initialize the component with an echo path from a 735 // previous call. The echo path is retrieved using |GetEchoPath()|, typically 736 // at the end of a call. The data can then be stored for later use as an 737 // initializer before the next call, using |SetEchoPath()|. 738 // 739 // Controlling the echo path this way requires the data |size_bytes| to match 740 // the internal echo path size. This size can be acquired using 741 // |echo_path_size_bytes()|. |SetEchoPath()| causes an entire reset, worth 742 // noting if it is to be called during an ongoing call. 743 // 744 // It is possible that version incompatibilities may result in a stored echo 745 // path of the incorrect size. In this case, the stored path should be 746 // discarded. 747 virtual int SetEchoPath(const void* echo_path, size_t size_bytes) = 0; 748 virtual int GetEchoPath(void* echo_path, size_t size_bytes) const = 0; 749 750 // The returned path size is guaranteed not to change for the lifetime of 751 // the application. 752 static size_t echo_path_size_bytes(); 753 754 protected: 755 virtual ~EchoControlMobile() {} 756 }; 757 758 // The automatic gain control (AGC) component brings the signal to an 759 // appropriate range. This is done by applying a digital gain directly and, in 760 // the analog mode, prescribing an analog gain to be applied at the audio HAL. 761 // 762 // Recommended to be enabled on the client-side. 763 class GainControl { 764 public: 765 virtual int Enable(bool enable) = 0; 766 virtual bool is_enabled() const = 0; 767 768 // When an analog mode is set, this must be called prior to |ProcessStream()| 769 // to pass the current analog level from the audio HAL. Must be within the 770 // range provided to |set_analog_level_limits()|. 771 virtual int set_stream_analog_level(int level) = 0; 772 773 // When an analog mode is set, this should be called after |ProcessStream()| 774 // to obtain the recommended new analog level for the audio HAL. It is the 775 // users responsibility to apply this level. 776 virtual int stream_analog_level() = 0; 777 778 enum Mode { 779 // Adaptive mode intended for use if an analog volume control is available 780 // on the capture device. It will require the user to provide coupling 781 // between the OS mixer controls and AGC through the |stream_analog_level()| 782 // functions. 783 // 784 // It consists of an analog gain prescription for the audio device and a 785 // digital compression stage. 786 kAdaptiveAnalog, 787 788 // Adaptive mode intended for situations in which an analog volume control 789 // is unavailable. It operates in a similar fashion to the adaptive analog 790 // mode, but with scaling instead applied in the digital domain. As with 791 // the analog mode, it additionally uses a digital compression stage. 792 kAdaptiveDigital, 793 794 // Fixed mode which enables only the digital compression stage also used by 795 // the two adaptive modes. 796 // 797 // It is distinguished from the adaptive modes by considering only a 798 // short time-window of the input signal. It applies a fixed gain through 799 // most of the input level range, and compresses (gradually reduces gain 800 // with increasing level) the input signal at higher levels. This mode is 801 // preferred on embedded devices where the capture signal level is 802 // predictable, so that a known gain can be applied. 803 kFixedDigital 804 }; 805 806 virtual int set_mode(Mode mode) = 0; 807 virtual Mode mode() const = 0; 808 809 // Sets the target peak |level| (or envelope) of the AGC in dBFs (decibels 810 // from digital full-scale). The convention is to use positive values. For 811 // instance, passing in a value of 3 corresponds to -3 dBFs, or a target 812 // level 3 dB below full-scale. Limited to [0, 31]. 813 // 814 // TODO(ajm): use a negative value here instead, if/when VoE will similarly 815 // update its interface. 816 virtual int set_target_level_dbfs(int level) = 0; 817 virtual int target_level_dbfs() const = 0; 818 819 // Sets the maximum |gain| the digital compression stage may apply, in dB. A 820 // higher number corresponds to greater compression, while a value of 0 will 821 // leave the signal uncompressed. Limited to [0, 90]. 822 virtual int set_compression_gain_db(int gain) = 0; 823 virtual int compression_gain_db() const = 0; 824 825 // When enabled, the compression stage will hard limit the signal to the 826 // target level. Otherwise, the signal will be compressed but not limited 827 // above the target level. 828 virtual int enable_limiter(bool enable) = 0; 829 virtual bool is_limiter_enabled() const = 0; 830 831 // Sets the |minimum| and |maximum| analog levels of the audio capture device. 832 // Must be set if and only if an analog mode is used. Limited to [0, 65535]. 833 virtual int set_analog_level_limits(int minimum, 834 int maximum) = 0; 835 virtual int analog_level_minimum() const = 0; 836 virtual int analog_level_maximum() const = 0; 837 838 // Returns true if the AGC has detected a saturation event (period where the 839 // signal reaches digital full-scale) in the current frame and the analog 840 // level cannot be reduced. 841 // 842 // This could be used as an indicator to reduce or disable analog mic gain at 843 // the audio HAL. 844 virtual bool stream_is_saturated() const = 0; 845 846 protected: 847 virtual ~GainControl() {} 848 }; 849 850 // A filtering component which removes DC offset and low-frequency noise. 851 // Recommended to be enabled on the client-side. 852 class HighPassFilter { 853 public: 854 virtual int Enable(bool enable) = 0; 855 virtual bool is_enabled() const = 0; 856 857 protected: 858 virtual ~HighPassFilter() {} 859 }; 860 861 // An estimation component used to retrieve level metrics. 862 class LevelEstimator { 863 public: 864 virtual int Enable(bool enable) = 0; 865 virtual bool is_enabled() const = 0; 866 867 // Returns the root mean square (RMS) level in dBFs (decibels from digital 868 // full-scale), or alternately dBov. It is computed over all primary stream 869 // frames since the last call to RMS(). The returned value is positive but 870 // should be interpreted as negative. It is constrained to [0, 127]. 871 // 872 // The computation follows: https://tools.ietf.org/html/rfc6465 873 // with the intent that it can provide the RTP audio level indication. 874 // 875 // Frames passed to ProcessStream() with an |_energy| of zero are considered 876 // to have been muted. The RMS of the frame will be interpreted as -127. 877 virtual int RMS() = 0; 878 879 protected: 880 virtual ~LevelEstimator() {} 881 }; 882 883 // The noise suppression (NS) component attempts to remove noise while 884 // retaining speech. Recommended to be enabled on the client-side. 885 // 886 // Recommended to be enabled on the client-side. 887 class NoiseSuppression { 888 public: 889 virtual int Enable(bool enable) = 0; 890 virtual bool is_enabled() const = 0; 891 892 // Determines the aggressiveness of the suppression. Increasing the level 893 // will reduce the noise level at the expense of a higher speech distortion. 894 enum Level { 895 kLow, 896 kModerate, 897 kHigh, 898 kVeryHigh 899 }; 900 901 virtual int set_level(Level level) = 0; 902 virtual Level level() const = 0; 903 904 // Returns the internally computed prior speech probability of current frame 905 // averaged over output channels. This is not supported in fixed point, for 906 // which |kUnsupportedFunctionError| is returned. 907 virtual float speech_probability() const = 0; 908 909 protected: 910 virtual ~NoiseSuppression() {} 911 }; 912 913 // The voice activity detection (VAD) component analyzes the stream to 914 // determine if voice is present. A facility is also provided to pass in an 915 // external VAD decision. 916 // 917 // In addition to |stream_has_voice()| the VAD decision is provided through the 918 // |AudioFrame| passed to |ProcessStream()|. The |vad_activity_| member will be 919 // modified to reflect the current decision. 920 class VoiceDetection { 921 public: 922 virtual int Enable(bool enable) = 0; 923 virtual bool is_enabled() const = 0; 924 925 // Returns true if voice is detected in the current frame. Should be called 926 // after |ProcessStream()|. 927 virtual bool stream_has_voice() const = 0; 928 929 // Some of the APM functionality requires a VAD decision. In the case that 930 // a decision is externally available for the current frame, it can be passed 931 // in here, before |ProcessStream()| is called. 932 // 933 // VoiceDetection does _not_ need to be enabled to use this. If it happens to 934 // be enabled, detection will be skipped for any frame in which an external 935 // VAD decision is provided. 936 virtual int set_stream_has_voice(bool has_voice) = 0; 937 938 // Specifies the likelihood that a frame will be declared to contain voice. 939 // A higher value makes it more likely that speech will not be clipped, at 940 // the expense of more noise being detected as voice. 941 enum Likelihood { 942 kVeryLowLikelihood, 943 kLowLikelihood, 944 kModerateLikelihood, 945 kHighLikelihood 946 }; 947 948 virtual int set_likelihood(Likelihood likelihood) = 0; 949 virtual Likelihood likelihood() const = 0; 950 951 // Sets the |size| of the frames in ms on which the VAD will operate. Larger 952 // frames will improve detection accuracy, but reduce the frequency of 953 // updates. 954 // 955 // This does not impact the size of frames passed to |ProcessStream()|. 956 virtual int set_frame_size_ms(int size) = 0; 957 virtual int frame_size_ms() const = 0; 958 959 protected: 960 virtual ~VoiceDetection() {} 961 }; 962 } // namespace webrtc 963 964 #endif // WEBRTC_MODULES_AUDIO_PROCESSING_INCLUDE_AUDIO_PROCESSING_H_ 965