1 /* 2 ******************************************************************************* 3 * 4 * Copyright (C) 2009-2014, International Business Machines 5 * Corporation and others. All Rights Reserved. 6 * 7 ******************************************************************************* 8 * file name: normalizer2impl.cpp 9 * encoding: US-ASCII 10 * tab size: 8 (not used) 11 * indentation:4 12 * 13 * created on: 2009nov22 14 * created by: Markus W. Scherer 15 */ 16 17 #include "unicode/utypes.h" 18 19 #if !UCONFIG_NO_NORMALIZATION 20 21 #include "unicode/normalizer2.h" 22 #include "unicode/udata.h" 23 #include "unicode/ustring.h" 24 #include "unicode/utf16.h" 25 #include "cmemory.h" 26 #include "mutex.h" 27 #include "normalizer2impl.h" 28 #include "putilimp.h" 29 #include "uassert.h" 30 #include "uset_imp.h" 31 #include "utrie2.h" 32 #include "uvector.h" 33 34 U_NAMESPACE_BEGIN 35 36 // ReorderingBuffer -------------------------------------------------------- *** 37 38 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { 39 int32_t length=str.length(); 40 start=str.getBuffer(destCapacity); 41 if(start==NULL) { 42 // getBuffer() already did str.setToBogus() 43 errorCode=U_MEMORY_ALLOCATION_ERROR; 44 return FALSE; 45 } 46 limit=start+length; 47 remainingCapacity=str.getCapacity()-length; 48 reorderStart=start; 49 if(start==limit) { 50 lastCC=0; 51 } else { 52 setIterator(); 53 lastCC=previousCC(); 54 // Set reorderStart after the last code point with cc<=1 if there is one. 55 if(lastCC>1) { 56 while(previousCC()>1) {} 57 } 58 reorderStart=codePointLimit; 59 } 60 return TRUE; 61 } 62 63 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { 64 int32_t length=(int32_t)(limit-start); 65 return 66 length==(int32_t)(otherLimit-otherStart) && 67 0==u_memcmp(start, otherStart, length); 68 } 69 70 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { 71 if(remainingCapacity<2 && !resize(2, errorCode)) { 72 return FALSE; 73 } 74 if(lastCC<=cc || cc==0) { 75 limit[0]=U16_LEAD(c); 76 limit[1]=U16_TRAIL(c); 77 limit+=2; 78 lastCC=cc; 79 if(cc<=1) { 80 reorderStart=limit; 81 } 82 } else { 83 insert(c, cc); 84 } 85 remainingCapacity-=2; 86 return TRUE; 87 } 88 89 UBool ReorderingBuffer::append(const UChar *s, int32_t length, 90 uint8_t leadCC, uint8_t trailCC, 91 UErrorCode &errorCode) { 92 if(length==0) { 93 return TRUE; 94 } 95 if(remainingCapacity<length && !resize(length, errorCode)) { 96 return FALSE; 97 } 98 remainingCapacity-=length; 99 if(lastCC<=leadCC || leadCC==0) { 100 if(trailCC<=1) { 101 reorderStart=limit+length; 102 } else if(leadCC<=1) { 103 reorderStart=limit+1; // Ok if not a code point boundary. 104 } 105 const UChar *sLimit=s+length; 106 do { *limit++=*s++; } while(s!=sLimit); 107 lastCC=trailCC; 108 } else { 109 int32_t i=0; 110 UChar32 c; 111 U16_NEXT(s, i, length, c); 112 insert(c, leadCC); // insert first code point 113 while(i<length) { 114 U16_NEXT(s, i, length, c); 115 if(i<length) { 116 // s must be in NFD, otherwise we need to use getCC(). 117 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); 118 } else { 119 leadCC=trailCC; 120 } 121 append(c, leadCC, errorCode); 122 } 123 } 124 return TRUE; 125 } 126 127 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { 128 int32_t cpLength=U16_LENGTH(c); 129 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { 130 return FALSE; 131 } 132 remainingCapacity-=cpLength; 133 if(cpLength==1) { 134 *limit++=(UChar)c; 135 } else { 136 limit[0]=U16_LEAD(c); 137 limit[1]=U16_TRAIL(c); 138 limit+=2; 139 } 140 lastCC=0; 141 reorderStart=limit; 142 return TRUE; 143 } 144 145 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { 146 if(s==sLimit) { 147 return TRUE; 148 } 149 int32_t length=(int32_t)(sLimit-s); 150 if(remainingCapacity<length && !resize(length, errorCode)) { 151 return FALSE; 152 } 153 u_memcpy(limit, s, length); 154 limit+=length; 155 remainingCapacity-=length; 156 lastCC=0; 157 reorderStart=limit; 158 return TRUE; 159 } 160 161 void ReorderingBuffer::remove() { 162 reorderStart=limit=start; 163 remainingCapacity=str.getCapacity(); 164 lastCC=0; 165 } 166 167 void ReorderingBuffer::removeSuffix(int32_t suffixLength) { 168 if(suffixLength<(limit-start)) { 169 limit-=suffixLength; 170 remainingCapacity+=suffixLength; 171 } else { 172 limit=start; 173 remainingCapacity=str.getCapacity(); 174 } 175 lastCC=0; 176 reorderStart=limit; 177 } 178 179 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { 180 int32_t reorderStartIndex=(int32_t)(reorderStart-start); 181 int32_t length=(int32_t)(limit-start); 182 str.releaseBuffer(length); 183 int32_t newCapacity=length+appendLength; 184 int32_t doubleCapacity=2*str.getCapacity(); 185 if(newCapacity<doubleCapacity) { 186 newCapacity=doubleCapacity; 187 } 188 if(newCapacity<256) { 189 newCapacity=256; 190 } 191 start=str.getBuffer(newCapacity); 192 if(start==NULL) { 193 // getBuffer() already did str.setToBogus() 194 errorCode=U_MEMORY_ALLOCATION_ERROR; 195 return FALSE; 196 } 197 reorderStart=start+reorderStartIndex; 198 limit=start+length; 199 remainingCapacity=str.getCapacity()-length; 200 return TRUE; 201 } 202 203 void ReorderingBuffer::skipPrevious() { 204 codePointLimit=codePointStart; 205 UChar c=*--codePointStart; 206 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { 207 --codePointStart; 208 } 209 } 210 211 uint8_t ReorderingBuffer::previousCC() { 212 codePointLimit=codePointStart; 213 if(reorderStart>=codePointStart) { 214 return 0; 215 } 216 UChar32 c=*--codePointStart; 217 if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { 218 return 0; 219 } 220 221 UChar c2; 222 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { 223 --codePointStart; 224 c=U16_GET_SUPPLEMENTARY(c2, c); 225 } 226 return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); 227 } 228 229 // Inserts c somewhere before the last character. 230 // Requires 0<cc<lastCC which implies reorderStart<limit. 231 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { 232 for(setIterator(), skipPrevious(); previousCC()>cc;) {} 233 // insert c at codePointLimit, after the character with prevCC<=cc 234 UChar *q=limit; 235 UChar *r=limit+=U16_LENGTH(c); 236 do { 237 *--r=*--q; 238 } while(codePointLimit!=q); 239 writeCodePoint(q, c); 240 if(cc<=1) { 241 reorderStart=r; 242 } 243 } 244 245 // Normalizer2Impl --------------------------------------------------------- *** 246 247 struct CanonIterData : public UMemory { 248 CanonIterData(UErrorCode &errorCode); 249 ~CanonIterData(); 250 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); 251 UTrie2 *trie; 252 UVector canonStartSets; // contains UnicodeSet * 253 }; 254 255 Normalizer2Impl::~Normalizer2Impl() { 256 delete fCanonIterData; 257 } 258 259 void 260 Normalizer2Impl::init(const int32_t *inIndexes, const UTrie2 *inTrie, 261 const uint16_t *inExtraData, const uint8_t *inSmallFCD) { 262 minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; 263 minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; 264 265 minYesNo=inIndexes[IX_MIN_YES_NO]; 266 minYesNoMappingsOnly=inIndexes[IX_MIN_YES_NO_MAPPINGS_ONLY]; 267 minNoNo=inIndexes[IX_MIN_NO_NO]; 268 limitNoNo=inIndexes[IX_LIMIT_NO_NO]; 269 minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; 270 271 normTrie=inTrie; 272 273 maybeYesCompositions=inExtraData; 274 extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); 275 276 smallFCD=inSmallFCD; 277 278 // Build tccc180[]. 279 // gennorm2 enforces lccc=0 for c<MIN_CCC_LCCC_CP=U+0300. 280 uint8_t bits=0; 281 for(UChar c=0; c<0x180; bits>>=1) { 282 if((c&0xff)==0) { 283 bits=smallFCD[c>>8]; // one byte per 0x100 code points 284 } 285 if(bits&1) { 286 for(int i=0; i<0x20; ++i, ++c) { 287 tccc180[c]=(uint8_t)getFCD16FromNormData(c); 288 } 289 } else { 290 uprv_memset(tccc180+c, 0, 0x20); 291 c+=0x20; 292 } 293 } 294 } 295 296 uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { 297 UChar32 c; 298 if(cpStart==(cpLimit-1)) { 299 c=*cpStart; 300 } else { 301 c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); 302 } 303 uint16_t prevNorm16=getNorm16(c); 304 if(prevNorm16<=minYesNo) { 305 return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 306 } else { 307 return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo 308 } 309 } 310 311 namespace { 312 313 class LcccContext { 314 public: 315 LcccContext(const Normalizer2Impl &ni, UnicodeSet &s) : impl(ni), set(s) {} 316 317 void handleRange(UChar32 start, UChar32 end, uint16_t norm16) { 318 if(impl.isAlgorithmicNoNo(norm16)) { 319 // Range of code points with same-norm16-value algorithmic decompositions. 320 // They might have different non-zero FCD16 values. 321 do { 322 uint16_t fcd16=impl.getFCD16(start); 323 if(fcd16>0xff) { set.add(start); } 324 } while(++start<=end); 325 } else { 326 uint16_t fcd16=impl.getFCD16(start); 327 if(fcd16>0xff) { set.add(start, end); } 328 } 329 } 330 331 private: 332 const Normalizer2Impl &impl; 333 UnicodeSet &set; 334 }; 335 336 struct PropertyStartsContext { 337 PropertyStartsContext(const Normalizer2Impl &ni, const USetAdder *adder) 338 : impl(ni), sa(adder) {} 339 340 const Normalizer2Impl &impl; 341 const USetAdder *sa; 342 }; 343 344 } // namespace 345 346 U_CDECL_BEGIN 347 348 static UBool U_CALLCONV 349 enumLcccRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { 350 ((LcccContext *)context)->handleRange(start, end, (uint16_t)value); 351 return TRUE; 352 } 353 354 static UBool U_CALLCONV 355 enumNorm16PropertyStartsRange(const void *context, UChar32 start, UChar32 end, uint32_t value) { 356 /* add the start code point to the USet */ 357 const PropertyStartsContext *ctx=(const PropertyStartsContext *)context; 358 const USetAdder *sa=ctx->sa; 359 sa->add(sa->set, start); 360 if(start!=end && ctx->impl.isAlgorithmicNoNo((uint16_t)value)) { 361 // Range of code points with same-norm16-value algorithmic decompositions. 362 // They might have different non-zero FCD16 values. 363 uint16_t prevFCD16=ctx->impl.getFCD16(start); 364 while(++start<=end) { 365 uint16_t fcd16=ctx->impl.getFCD16(start); 366 if(fcd16!=prevFCD16) { 367 sa->add(sa->set, start); 368 prevFCD16=fcd16; 369 } 370 } 371 } 372 return TRUE; 373 } 374 375 static UBool U_CALLCONV 376 enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { 377 /* add the start code point to the USet */ 378 const USetAdder *sa=(const USetAdder *)context; 379 sa->add(sa->set, start); 380 return TRUE; 381 } 382 383 static uint32_t U_CALLCONV 384 segmentStarterMapper(const void * /*context*/, uint32_t value) { 385 return value&CANON_NOT_SEGMENT_STARTER; 386 } 387 388 U_CDECL_END 389 390 void 391 Normalizer2Impl::addLcccChars(UnicodeSet &set) const { 392 /* add the start code point of each same-value range of each trie */ 393 LcccContext context(*this, set); 394 utrie2_enum(normTrie, NULL, enumLcccRange, &context); 395 } 396 397 void 398 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { 399 /* add the start code point of each same-value range of each trie */ 400 PropertyStartsContext context(*this, sa); 401 utrie2_enum(normTrie, NULL, enumNorm16PropertyStartsRange, &context); 402 403 /* add Hangul LV syllables and LV+1 because of skippables */ 404 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { 405 sa->add(sa->set, c); 406 sa->add(sa->set, c+1); 407 } 408 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ 409 } 410 411 void 412 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { 413 /* add the start code point of each same-value range of the canonical iterator data trie */ 414 if(ensureCanonIterData(errorCode)) { 415 // currently only used for the SEGMENT_STARTER property 416 utrie2_enum(fCanonIterData->trie, segmentStarterMapper, enumPropertyStartsRange, sa); 417 } 418 } 419 420 const UChar * 421 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, 422 UChar32 minNeedDataCP, 423 ReorderingBuffer *buffer, 424 UErrorCode &errorCode) const { 425 // Make some effort to support NUL-terminated strings reasonably. 426 // Take the part of the fast quick check loop that does not look up 427 // data and check the first part of the string. 428 // After this prefix, determine the string length to simplify the rest 429 // of the code. 430 const UChar *prevSrc=src; 431 UChar c; 432 while((c=*src++)<minNeedDataCP && c!=0) {} 433 // Back out the last character for full processing. 434 // Copy this prefix. 435 if(--src!=prevSrc) { 436 if(buffer!=NULL) { 437 buffer->appendZeroCC(prevSrc, src, errorCode); 438 } 439 } 440 return src; 441 } 442 443 UnicodeString & 444 Normalizer2Impl::decompose(const UnicodeString &src, UnicodeString &dest, 445 UErrorCode &errorCode) const { 446 if(U_FAILURE(errorCode)) { 447 dest.setToBogus(); 448 return dest; 449 } 450 const UChar *sArray=src.getBuffer(); 451 if(&dest==&src || sArray==NULL) { 452 errorCode=U_ILLEGAL_ARGUMENT_ERROR; 453 dest.setToBogus(); 454 return dest; 455 } 456 decompose(sArray, sArray+src.length(), dest, src.length(), errorCode); 457 return dest; 458 } 459 460 void 461 Normalizer2Impl::decompose(const UChar *src, const UChar *limit, 462 UnicodeString &dest, 463 int32_t destLengthEstimate, 464 UErrorCode &errorCode) const { 465 if(destLengthEstimate<0 && limit!=NULL) { 466 destLengthEstimate=(int32_t)(limit-src); 467 } 468 dest.remove(); 469 ReorderingBuffer buffer(*this, dest); 470 if(buffer.init(destLengthEstimate, errorCode)) { 471 decompose(src, limit, &buffer, errorCode); 472 } 473 } 474 475 // Dual functionality: 476 // buffer!=NULL: normalize 477 // buffer==NULL: isNormalized/spanQuickCheckYes 478 const UChar * 479 Normalizer2Impl::decompose(const UChar *src, const UChar *limit, 480 ReorderingBuffer *buffer, 481 UErrorCode &errorCode) const { 482 UChar32 minNoCP=minDecompNoCP; 483 if(limit==NULL) { 484 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); 485 if(U_FAILURE(errorCode)) { 486 return src; 487 } 488 limit=u_strchr(src, 0); 489 } 490 491 const UChar *prevSrc; 492 UChar32 c=0; 493 uint16_t norm16=0; 494 495 // only for quick check 496 const UChar *prevBoundary=src; 497 uint8_t prevCC=0; 498 499 for(;;) { 500 // count code units below the minimum or with irrelevant data for the quick check 501 for(prevSrc=src; src!=limit;) { 502 if( (c=*src)<minNoCP || 503 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 504 ) { 505 ++src; 506 } else if(!U16_IS_SURROGATE(c)) { 507 break; 508 } else { 509 UChar c2; 510 if(U16_IS_SURROGATE_LEAD(c)) { 511 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 512 c=U16_GET_SUPPLEMENTARY(c, c2); 513 } 514 } else /* trail surrogate */ { 515 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 516 --src; 517 c=U16_GET_SUPPLEMENTARY(c2, c); 518 } 519 } 520 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { 521 src+=U16_LENGTH(c); 522 } else { 523 break; 524 } 525 } 526 } 527 // copy these code units all at once 528 if(src!=prevSrc) { 529 if(buffer!=NULL) { 530 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { 531 break; 532 } 533 } else { 534 prevCC=0; 535 prevBoundary=src; 536 } 537 } 538 if(src==limit) { 539 break; 540 } 541 542 // Check one above-minimum, relevant code point. 543 src+=U16_LENGTH(c); 544 if(buffer!=NULL) { 545 if(!decompose(c, norm16, *buffer, errorCode)) { 546 break; 547 } 548 } else { 549 if(isDecompYes(norm16)) { 550 uint8_t cc=getCCFromYesOrMaybe(norm16); 551 if(prevCC<=cc || cc==0) { 552 prevCC=cc; 553 if(cc<=1) { 554 prevBoundary=src; 555 } 556 continue; 557 } 558 } 559 return prevBoundary; // "no" or cc out of order 560 } 561 } 562 return src; 563 } 564 565 // Decompose a short piece of text which is likely to contain characters that 566 // fail the quick check loop and/or where the quick check loop's overhead 567 // is unlikely to be amortized. 568 // Called by the compose() and makeFCD() implementations. 569 UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, 570 ReorderingBuffer &buffer, 571 UErrorCode &errorCode) const { 572 while(src<limit) { 573 UChar32 c; 574 uint16_t norm16; 575 UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); 576 if(!decompose(c, norm16, buffer, errorCode)) { 577 return FALSE; 578 } 579 } 580 return TRUE; 581 } 582 583 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, 584 ReorderingBuffer &buffer, 585 UErrorCode &errorCode) const { 586 // Only loops for 1:1 algorithmic mappings. 587 for(;;) { 588 // get the decomposition and the lead and trail cc's 589 if(isDecompYes(norm16)) { 590 // c does not decompose 591 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); 592 } else if(isHangul(norm16)) { 593 // Hangul syllable: decompose algorithmically 594 UChar jamos[3]; 595 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); 596 } else if(isDecompNoAlgorithmic(norm16)) { 597 c=mapAlgorithmic(c, norm16); 598 norm16=getNorm16(c); 599 } else { 600 // c decomposes, get everything from the variable-length extra data 601 const uint16_t *mapping=getMapping(norm16); 602 uint16_t firstUnit=*mapping; 603 int32_t length=firstUnit&MAPPING_LENGTH_MASK; 604 uint8_t leadCC, trailCC; 605 trailCC=(uint8_t)(firstUnit>>8); 606 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { 607 leadCC=(uint8_t)(*(mapping-1)>>8); 608 } else { 609 leadCC=0; 610 } 611 return buffer.append((const UChar *)mapping+1, length, leadCC, trailCC, errorCode); 612 } 613 } 614 } 615 616 const UChar * 617 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { 618 const UChar *decomp=NULL; 619 uint16_t norm16; 620 for(;;) { 621 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { 622 // c does not decompose 623 return decomp; 624 } else if(isHangul(norm16)) { 625 // Hangul syllable: decompose algorithmically 626 length=Hangul::decompose(c, buffer); 627 return buffer; 628 } else if(isDecompNoAlgorithmic(norm16)) { 629 c=mapAlgorithmic(c, norm16); 630 decomp=buffer; 631 length=0; 632 U16_APPEND_UNSAFE(buffer, length, c); 633 } else { 634 // c decomposes, get everything from the variable-length extra data 635 const uint16_t *mapping=getMapping(norm16); 636 length=*mapping&MAPPING_LENGTH_MASK; 637 return (const UChar *)mapping+1; 638 } 639 } 640 } 641 642 // The capacity of the buffer must be 30=MAPPING_LENGTH_MASK-1 643 // so that a raw mapping fits that consists of one unit ("rm0") 644 // plus all but the first two code units of the normal mapping. 645 // The maximum length of a normal mapping is 31=MAPPING_LENGTH_MASK. 646 const UChar * 647 Normalizer2Impl::getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const { 648 // We do not loop in this method because an algorithmic mapping itself 649 // becomes a final result rather than having to be decomposed recursively. 650 uint16_t norm16; 651 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { 652 // c does not decompose 653 return NULL; 654 } else if(isHangul(norm16)) { 655 // Hangul syllable: decompose algorithmically 656 Hangul::getRawDecomposition(c, buffer); 657 length=2; 658 return buffer; 659 } else if(isDecompNoAlgorithmic(norm16)) { 660 c=mapAlgorithmic(c, norm16); 661 length=0; 662 U16_APPEND_UNSAFE(buffer, length, c); 663 return buffer; 664 } else { 665 // c decomposes, get everything from the variable-length extra data 666 const uint16_t *mapping=getMapping(norm16); 667 uint16_t firstUnit=*mapping; 668 int32_t mLength=firstUnit&MAPPING_LENGTH_MASK; // length of normal mapping 669 if(firstUnit&MAPPING_HAS_RAW_MAPPING) { 670 // Read the raw mapping from before the firstUnit and before the optional ccc/lccc word. 671 // Bit 7=MAPPING_HAS_CCC_LCCC_WORD 672 const uint16_t *rawMapping=mapping-((firstUnit>>7)&1)-1; 673 uint16_t rm0=*rawMapping; 674 if(rm0<=MAPPING_LENGTH_MASK) { 675 length=rm0; 676 return (const UChar *)rawMapping-rm0; 677 } else { 678 // Copy the normal mapping and replace its first two code units with rm0. 679 buffer[0]=(UChar)rm0; 680 u_memcpy(buffer+1, (const UChar *)mapping+1+2, mLength-2); 681 length=mLength-1; 682 return buffer; 683 } 684 } else { 685 length=mLength; 686 return (const UChar *)mapping+1; 687 } 688 } 689 } 690 691 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, 692 UBool doDecompose, 693 UnicodeString &safeMiddle, 694 ReorderingBuffer &buffer, 695 UErrorCode &errorCode) const { 696 buffer.copyReorderableSuffixTo(safeMiddle); 697 if(doDecompose) { 698 decompose(src, limit, &buffer, errorCode); 699 return; 700 } 701 // Just merge the strings at the boundary. 702 ForwardUTrie2StringIterator iter(normTrie, src, limit); 703 uint8_t firstCC, prevCC, cc; 704 firstCC=prevCC=cc=getCC(iter.next16()); 705 while(cc!=0) { 706 prevCC=cc; 707 cc=getCC(iter.next16()); 708 }; 709 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 710 limit=u_strchr(iter.codePointStart, 0); 711 } 712 713 if (buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode)) { 714 buffer.appendZeroCC(iter.codePointStart, limit, errorCode); 715 } 716 } 717 718 // Note: hasDecompBoundary() could be implemented as aliases to 719 // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() 720 // at the cost of building the FCD trie for a decomposition normalizer. 721 UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { 722 for(;;) { 723 if(c<minDecompNoCP) { 724 return TRUE; 725 } 726 uint16_t norm16=getNorm16(c); 727 if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { 728 return TRUE; 729 } else if(norm16>MIN_NORMAL_MAYBE_YES) { 730 return FALSE; // ccc!=0 731 } else if(isDecompNoAlgorithmic(norm16)) { 732 c=mapAlgorithmic(c, norm16); 733 } else { 734 // c decomposes, get everything from the variable-length extra data 735 const uint16_t *mapping=getMapping(norm16); 736 uint16_t firstUnit=*mapping; 737 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 738 return FALSE; 739 } 740 if(!before) { 741 // decomp after-boundary: same as hasFCDBoundaryAfter(), 742 // fcd16<=1 || trailCC==0 743 if(firstUnit>0x1ff) { 744 return FALSE; // trailCC>1 745 } 746 if(firstUnit<=0xff) { 747 return TRUE; // trailCC==0 748 } 749 // if(trailCC==1) test leadCC==0, same as checking for before-boundary 750 } 751 // TRUE if leadCC==0 (hasFCDBoundaryBefore()) 752 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*(mapping-1)&0xff00)==0; 753 } 754 } 755 } 756 757 /* 758 * Finds the recomposition result for 759 * a forward-combining "lead" character, 760 * specified with a pointer to its compositions list, 761 * and a backward-combining "trail" character. 762 * 763 * If the lead and trail characters combine, then this function returns 764 * the following "compositeAndFwd" value: 765 * Bits 21..1 composite character 766 * Bit 0 set if the composite is a forward-combining starter 767 * otherwise it returns -1. 768 * 769 * The compositions list has (trail, compositeAndFwd) pair entries, 770 * encoded as either pairs or triples of 16-bit units. 771 * The last entry has the high bit of its first unit set. 772 * 773 * The list is sorted by ascending trail characters (there are no duplicates). 774 * A linear search is used. 775 * 776 * See normalizer2impl.h for a more detailed description 777 * of the compositions list format. 778 */ 779 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { 780 uint16_t key1, firstUnit; 781 if(trail<COMP_1_TRAIL_LIMIT) { 782 // trail character is 0..33FF 783 // result entry may have 2 or 3 units 784 key1=(uint16_t)(trail<<1); 785 while(key1>(firstUnit=*list)) { 786 list+=2+(firstUnit&COMP_1_TRIPLE); 787 } 788 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { 789 if(firstUnit&COMP_1_TRIPLE) { 790 return ((int32_t)list[1]<<16)|list[2]; 791 } else { 792 return list[1]; 793 } 794 } 795 } else { 796 // trail character is 3400..10FFFF 797 // result entry has 3 units 798 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ 799 (((trail>>COMP_1_TRAIL_SHIFT))& 800 ~COMP_1_TRIPLE)); 801 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); 802 uint16_t secondUnit; 803 for(;;) { 804 if(key1>(firstUnit=*list)) { 805 list+=2+(firstUnit&COMP_1_TRIPLE); 806 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { 807 if(key2>(secondUnit=list[1])) { 808 if(firstUnit&COMP_1_LAST_TUPLE) { 809 break; 810 } else { 811 list+=3; 812 } 813 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { 814 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; 815 } else { 816 break; 817 } 818 } else { 819 break; 820 } 821 } 822 } 823 return -1; 824 } 825 826 /** 827 * @param list some character's compositions list 828 * @param set recursively receives the composites from these compositions 829 */ 830 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { 831 uint16_t firstUnit; 832 int32_t compositeAndFwd; 833 do { 834 firstUnit=*list; 835 if((firstUnit&COMP_1_TRIPLE)==0) { 836 compositeAndFwd=list[1]; 837 list+=2; 838 } else { 839 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; 840 list+=3; 841 } 842 UChar32 composite=compositeAndFwd>>1; 843 if((compositeAndFwd&1)!=0) { 844 addComposites(getCompositionsListForComposite(getNorm16(composite)), set); 845 } 846 set.add(composite); 847 } while((firstUnit&COMP_1_LAST_TUPLE)==0); 848 } 849 850 /* 851 * Recomposes the buffer text starting at recomposeStartIndex 852 * (which is in NFD - decomposed and canonically ordered), 853 * and truncates the buffer contents. 854 * 855 * Note that recomposition never lengthens the text: 856 * Any character consists of either one or two code units; 857 * a composition may contain at most one more code unit than the original starter, 858 * while the combining mark that is removed has at least one code unit. 859 */ 860 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, 861 UBool onlyContiguous) const { 862 UChar *p=buffer.getStart()+recomposeStartIndex; 863 UChar *limit=buffer.getLimit(); 864 if(p==limit) { 865 return; 866 } 867 868 UChar *starter, *pRemove, *q, *r; 869 const uint16_t *compositionsList; 870 UChar32 c, compositeAndFwd; 871 uint16_t norm16; 872 uint8_t cc, prevCC; 873 UBool starterIsSupplementary; 874 875 // Some of the following variables are not used until we have a forward-combining starter 876 // and are only initialized now to avoid compiler warnings. 877 compositionsList=NULL; // used as indicator for whether we have a forward-combining starter 878 starter=NULL; 879 starterIsSupplementary=FALSE; 880 prevCC=0; 881 882 for(;;) { 883 UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); 884 cc=getCCFromYesOrMaybe(norm16); 885 if( // this character combines backward and 886 isMaybe(norm16) && 887 // we have seen a starter that combines forward and 888 compositionsList!=NULL && 889 // the backward-combining character is not blocked 890 (prevCC<cc || prevCC==0) 891 ) { 892 if(isJamoVT(norm16)) { 893 // c is a Jamo V/T, see if we can compose it with the previous character. 894 if(c<Hangul::JAMO_T_BASE) { 895 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. 896 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); 897 if(prev<Hangul::JAMO_L_COUNT) { 898 pRemove=p-1; 899 UChar syllable=(UChar) 900 (Hangul::HANGUL_BASE+ 901 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* 902 Hangul::JAMO_T_COUNT); 903 UChar t; 904 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { 905 ++p; 906 syllable+=t; // The next character was a Jamo T. 907 } 908 *starter=syllable; 909 // remove the Jamo V/T 910 q=pRemove; 911 r=p; 912 while(r<limit) { 913 *q++=*r++; 914 } 915 limit=q; 916 p=pRemove; 917 } 918 } 919 /* 920 * No "else" for Jamo T: 921 * Since the input is in NFD, there are no Hangul LV syllables that 922 * a Jamo T could combine with. 923 * All Jamo Ts are combined above when handling Jamo Vs. 924 */ 925 if(p==limit) { 926 break; 927 } 928 compositionsList=NULL; 929 continue; 930 } else if((compositeAndFwd=combine(compositionsList, c))>=0) { 931 // The starter and the combining mark (c) do combine. 932 UChar32 composite=compositeAndFwd>>1; 933 934 // Replace the starter with the composite, remove the combining mark. 935 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark 936 if(starterIsSupplementary) { 937 if(U_IS_SUPPLEMENTARY(composite)) { 938 // both are supplementary 939 starter[0]=U16_LEAD(composite); 940 starter[1]=U16_TRAIL(composite); 941 } else { 942 *starter=(UChar)composite; 943 // The composite is shorter than the starter, 944 // move the intermediate characters forward one. 945 starterIsSupplementary=FALSE; 946 q=starter+1; 947 r=q+1; 948 while(r<pRemove) { 949 *q++=*r++; 950 } 951 --pRemove; 952 } 953 } else if(U_IS_SUPPLEMENTARY(composite)) { 954 // The composite is longer than the starter, 955 // move the intermediate characters back one. 956 starterIsSupplementary=TRUE; 957 ++starter; // temporarily increment for the loop boundary 958 q=pRemove; 959 r=++pRemove; 960 while(starter<q) { 961 *--r=*--q; 962 } 963 *starter=U16_TRAIL(composite); 964 *--starter=U16_LEAD(composite); // undo the temporary increment 965 } else { 966 // both are on the BMP 967 *starter=(UChar)composite; 968 } 969 970 /* remove the combining mark by moving the following text over it */ 971 if(pRemove<p) { 972 q=pRemove; 973 r=p; 974 while(r<limit) { 975 *q++=*r++; 976 } 977 limit=q; 978 p=pRemove; 979 } 980 // Keep prevCC because we removed the combining mark. 981 982 if(p==limit) { 983 break; 984 } 985 // Is the composite a starter that combines forward? 986 if(compositeAndFwd&1) { 987 compositionsList= 988 getCompositionsListForComposite(getNorm16(composite)); 989 } else { 990 compositionsList=NULL; 991 } 992 993 // We combined; continue with looking for compositions. 994 continue; 995 } 996 } 997 998 // no combination this time 999 prevCC=cc; 1000 if(p==limit) { 1001 break; 1002 } 1003 1004 // If c did not combine, then check if it is a starter. 1005 if(cc==0) { 1006 // Found a new starter. 1007 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { 1008 // It may combine with something, prepare for it. 1009 if(U_IS_BMP(c)) { 1010 starterIsSupplementary=FALSE; 1011 starter=p-1; 1012 } else { 1013 starterIsSupplementary=TRUE; 1014 starter=p-2; 1015 } 1016 } 1017 } else if(onlyContiguous) { 1018 // FCC: no discontiguous compositions; any intervening character blocks. 1019 compositionsList=NULL; 1020 } 1021 } 1022 buffer.setReorderingLimit(limit); 1023 } 1024 1025 UChar32 1026 Normalizer2Impl::composePair(UChar32 a, UChar32 b) const { 1027 uint16_t norm16=getNorm16(a); // maps an out-of-range 'a' to inert norm16=0 1028 const uint16_t *list; 1029 if(isInert(norm16)) { 1030 return U_SENTINEL; 1031 } else if(norm16<minYesNoMappingsOnly) { 1032 if(isJamoL(norm16)) { 1033 b-=Hangul::JAMO_V_BASE; 1034 if(0<=b && b<Hangul::JAMO_V_COUNT) { 1035 return 1036 (Hangul::HANGUL_BASE+ 1037 ((a-Hangul::JAMO_L_BASE)*Hangul::JAMO_V_COUNT+b)* 1038 Hangul::JAMO_T_COUNT); 1039 } else { 1040 return U_SENTINEL; 1041 } 1042 } else if(isHangul(norm16)) { 1043 b-=Hangul::JAMO_T_BASE; 1044 if(Hangul::isHangulWithoutJamoT(a) && 0<b && b<Hangul::JAMO_T_COUNT) { // not b==0! 1045 return a+b; 1046 } else { 1047 return U_SENTINEL; 1048 } 1049 } else { 1050 // 'a' has a compositions list in extraData 1051 list=extraData+norm16; 1052 if(norm16>minYesNo) { // composite 'a' has both mapping & compositions list 1053 list+= // mapping pointer 1054 1+ // +1 to skip the first unit with the mapping lenth 1055 (*list&MAPPING_LENGTH_MASK); // + mapping length 1056 } 1057 } 1058 } else if(norm16<minMaybeYes || MIN_NORMAL_MAYBE_YES<=norm16) { 1059 return U_SENTINEL; 1060 } else { 1061 list=maybeYesCompositions+norm16-minMaybeYes; 1062 } 1063 if(b<0 || 0x10ffff<b) { // combine(list, b) requires a valid code point b 1064 return U_SENTINEL; 1065 } 1066 #if U_SIGNED_RIGHT_SHIFT_IS_ARITHMETIC 1067 return combine(list, b)>>1; 1068 #else 1069 int32_t compositeAndFwd=combine(list, b); 1070 return compositeAndFwd>=0 ? compositeAndFwd>>1 : U_SENTINEL; 1071 #endif 1072 } 1073 1074 // Very similar to composeQuickCheck(): Make the same changes in both places if relevant. 1075 // doCompose: normalize 1076 // !doCompose: isNormalized (buffer must be empty and initialized) 1077 UBool 1078 Normalizer2Impl::compose(const UChar *src, const UChar *limit, 1079 UBool onlyContiguous, 1080 UBool doCompose, 1081 ReorderingBuffer &buffer, 1082 UErrorCode &errorCode) const { 1083 /* 1084 * prevBoundary points to the last character before the current one 1085 * that has a composition boundary before it with ccc==0 and quick check "yes". 1086 * Keeping track of prevBoundary saves us looking for a composition boundary 1087 * when we find a "no" or "maybe". 1088 * 1089 * When we back out from prevSrc back to prevBoundary, 1090 * then we also remove those same characters (which had been simply copied 1091 * or canonically-order-inserted) from the ReorderingBuffer. 1092 * Therefore, at all times, the [prevBoundary..prevSrc[ source units 1093 * must correspond 1:1 to destination units at the end of the destination buffer. 1094 */ 1095 const UChar *prevBoundary=src; 1096 UChar32 minNoMaybeCP=minCompNoMaybeCP; 1097 if(limit==NULL) { 1098 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, 1099 doCompose ? &buffer : NULL, 1100 errorCode); 1101 if(U_FAILURE(errorCode)) { 1102 return FALSE; 1103 } 1104 if(prevBoundary<src) { 1105 // Set prevBoundary to the last character in the prefix. 1106 prevBoundary=src-1; 1107 } 1108 limit=u_strchr(src, 0); 1109 } 1110 1111 const UChar *prevSrc; 1112 UChar32 c=0; 1113 uint16_t norm16=0; 1114 1115 // only for isNormalized 1116 uint8_t prevCC=0; 1117 1118 for(;;) { 1119 // count code units below the minimum or with irrelevant data for the quick check 1120 for(prevSrc=src; src!=limit;) { 1121 if( (c=*src)<minNoMaybeCP || 1122 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 1123 ) { 1124 ++src; 1125 } else if(!U16_IS_SURROGATE(c)) { 1126 break; 1127 } else { 1128 UChar c2; 1129 if(U16_IS_SURROGATE_LEAD(c)) { 1130 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1131 c=U16_GET_SUPPLEMENTARY(c, c2); 1132 } 1133 } else /* trail surrogate */ { 1134 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1135 --src; 1136 c=U16_GET_SUPPLEMENTARY(c2, c); 1137 } 1138 } 1139 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { 1140 src+=U16_LENGTH(c); 1141 } else { 1142 break; 1143 } 1144 } 1145 } 1146 // copy these code units all at once 1147 if(src!=prevSrc) { 1148 if(doCompose) { 1149 if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { 1150 break; 1151 } 1152 } else { 1153 prevCC=0; 1154 } 1155 if(src==limit) { 1156 break; 1157 } 1158 // Set prevBoundary to the last character in the quick check loop. 1159 prevBoundary=src-1; 1160 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && 1161 U16_IS_LEAD(*(prevBoundary-1)) 1162 ) { 1163 --prevBoundary; 1164 } 1165 // The start of the current character (c). 1166 prevSrc=src; 1167 } else if(src==limit) { 1168 break; 1169 } 1170 1171 src+=U16_LENGTH(c); 1172 /* 1173 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. 1174 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) 1175 * or has ccc!=0. 1176 * Check for Jamo V/T, then for regular characters. 1177 * c is not a Hangul syllable or Jamo L because those have "yes" properties. 1178 */ 1179 if(isJamoVT(norm16) && prevBoundary!=prevSrc) { 1180 UChar prev=*(prevSrc-1); 1181 UBool needToDecompose=FALSE; 1182 if(c<Hangul::JAMO_T_BASE) { 1183 // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. 1184 prev=(UChar)(prev-Hangul::JAMO_L_BASE); 1185 if(prev<Hangul::JAMO_L_COUNT) { 1186 if(!doCompose) { 1187 return FALSE; 1188 } 1189 UChar syllable=(UChar) 1190 (Hangul::HANGUL_BASE+ 1191 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* 1192 Hangul::JAMO_T_COUNT); 1193 UChar t; 1194 if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { 1195 ++src; 1196 syllable+=t; // The next character was a Jamo T. 1197 prevBoundary=src; 1198 buffer.setLastChar(syllable); 1199 continue; 1200 } 1201 // If we see L+V+x where x!=T then we drop to the slow path, 1202 // decompose and recompose. 1203 // This is to deal with NFKC finding normal L and V but a 1204 // compatibility variant of a T. We need to either fully compose that 1205 // combination here (which would complicate the code and may not work 1206 // with strange custom data) or use the slow path -- or else our replacing 1207 // two input characters (L+V) with one output character (LV syllable) 1208 // would violate the invariant that [prevBoundary..prevSrc[ has the same 1209 // length as what we appended to the buffer since prevBoundary. 1210 needToDecompose=TRUE; 1211 } 1212 } else if(Hangul::isHangulWithoutJamoT(prev)) { 1213 // c is a Jamo Trailing consonant, 1214 // compose with previous Hangul LV that does not contain a Jamo T. 1215 if(!doCompose) { 1216 return FALSE; 1217 } 1218 buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); 1219 prevBoundary=src; 1220 continue; 1221 } 1222 if(!needToDecompose) { 1223 // The Jamo V/T did not compose into a Hangul syllable. 1224 if(doCompose) { 1225 if(!buffer.appendBMP((UChar)c, 0, errorCode)) { 1226 break; 1227 } 1228 } else { 1229 prevCC=0; 1230 } 1231 continue; 1232 } 1233 } 1234 /* 1235 * Source buffer pointers: 1236 * 1237 * all done quick check current char not yet 1238 * "yes" but (c) processed 1239 * may combine 1240 * forward 1241 * [-------------[-------------[-------------[-------------[ 1242 * | | | | | 1243 * orig. src prevBoundary prevSrc src limit 1244 * 1245 * 1246 * Destination buffer pointers inside the ReorderingBuffer: 1247 * 1248 * all done might take not filled yet 1249 * characters for 1250 * reordering 1251 * [-------------[-------------[-------------[ 1252 * | | | | 1253 * start reorderStart limit | 1254 * +remainingCap.+ 1255 */ 1256 if(norm16>=MIN_YES_YES_WITH_CC) { 1257 uint8_t cc=(uint8_t)norm16; // cc!=0 1258 if( onlyContiguous && // FCC 1259 (doCompose ? buffer.getLastCC() : prevCC)==0 && 1260 prevBoundary<prevSrc && 1261 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that 1262 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) 1263 // passed the quick check "yes && ccc==0" test. 1264 // Check whether the last character was a "yesYes" or a "yesNo". 1265 // If a "yesNo", then we get its trailing ccc from its 1266 // mapping and check for canonical order. 1267 // All other cases are ok. 1268 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc 1269 ) { 1270 // Fails FCD test, need to decompose and contiguously recompose. 1271 if(!doCompose) { 1272 return FALSE; 1273 } 1274 } else if(doCompose) { 1275 if(!buffer.append(c, cc, errorCode)) { 1276 break; 1277 } 1278 continue; 1279 } else if(prevCC<=cc) { 1280 prevCC=cc; 1281 continue; 1282 } else { 1283 return FALSE; 1284 } 1285 } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { 1286 return FALSE; 1287 } 1288 1289 /* 1290 * Find appropriate boundaries around this character, 1291 * decompose the source text from between the boundaries, 1292 * and recompose it. 1293 * 1294 * We may need to remove the last few characters from the ReorderingBuffer 1295 * to account for source text that was copied or appended 1296 * but needs to take part in the recomposition. 1297 */ 1298 1299 /* 1300 * Find the last composition boundary in [prevBoundary..src[. 1301 * It is either the decomposition of the current character (at prevSrc), 1302 * or prevBoundary. 1303 */ 1304 if(hasCompBoundaryBefore(c, norm16)) { 1305 prevBoundary=prevSrc; 1306 } else if(doCompose) { 1307 buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); 1308 } 1309 1310 // Find the next composition boundary in [src..limit[ - 1311 // modifies src to point to the next starter. 1312 src=(UChar *)findNextCompBoundary(src, limit); 1313 1314 // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. 1315 int32_t recomposeStartIndex=buffer.length(); 1316 if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { 1317 break; 1318 } 1319 recompose(buffer, recomposeStartIndex, onlyContiguous); 1320 if(!doCompose) { 1321 if(!buffer.equals(prevBoundary, src)) { 1322 return FALSE; 1323 } 1324 buffer.remove(); 1325 prevCC=0; 1326 } 1327 1328 // Move to the next starter. We never need to look back before this point again. 1329 prevBoundary=src; 1330 } 1331 return TRUE; 1332 } 1333 1334 // Very similar to compose(): Make the same changes in both places if relevant. 1335 // pQCResult==NULL: spanQuickCheckYes 1336 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) 1337 const UChar * 1338 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, 1339 UBool onlyContiguous, 1340 UNormalizationCheckResult *pQCResult) const { 1341 /* 1342 * prevBoundary points to the last character before the current one 1343 * that has a composition boundary before it with ccc==0 and quick check "yes". 1344 */ 1345 const UChar *prevBoundary=src; 1346 UChar32 minNoMaybeCP=minCompNoMaybeCP; 1347 if(limit==NULL) { 1348 UErrorCode errorCode=U_ZERO_ERROR; 1349 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); 1350 if(prevBoundary<src) { 1351 // Set prevBoundary to the last character in the prefix. 1352 prevBoundary=src-1; 1353 } 1354 limit=u_strchr(src, 0); 1355 } 1356 1357 const UChar *prevSrc; 1358 UChar32 c=0; 1359 uint16_t norm16=0; 1360 uint8_t prevCC=0; 1361 1362 for(;;) { 1363 // count code units below the minimum or with irrelevant data for the quick check 1364 for(prevSrc=src;;) { 1365 if(src==limit) { 1366 return src; 1367 } 1368 if( (c=*src)<minNoMaybeCP || 1369 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) 1370 ) { 1371 ++src; 1372 } else if(!U16_IS_SURROGATE(c)) { 1373 break; 1374 } else { 1375 UChar c2; 1376 if(U16_IS_SURROGATE_LEAD(c)) { 1377 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1378 c=U16_GET_SUPPLEMENTARY(c, c2); 1379 } 1380 } else /* trail surrogate */ { 1381 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1382 --src; 1383 c=U16_GET_SUPPLEMENTARY(c2, c); 1384 } 1385 } 1386 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { 1387 src+=U16_LENGTH(c); 1388 } else { 1389 break; 1390 } 1391 } 1392 } 1393 if(src!=prevSrc) { 1394 // Set prevBoundary to the last character in the quick check loop. 1395 prevBoundary=src-1; 1396 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && 1397 U16_IS_LEAD(*(prevBoundary-1)) 1398 ) { 1399 --prevBoundary; 1400 } 1401 prevCC=0; 1402 // The start of the current character (c). 1403 prevSrc=src; 1404 } 1405 1406 src+=U16_LENGTH(c); 1407 /* 1408 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. 1409 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) 1410 * or has ccc!=0. 1411 */ 1412 if(isMaybeOrNonZeroCC(norm16)) { 1413 uint8_t cc=getCCFromYesOrMaybe(norm16); 1414 if( onlyContiguous && // FCC 1415 cc!=0 && 1416 prevCC==0 && 1417 prevBoundary<prevSrc && 1418 // prevCC==0 && prevBoundary<prevSrc tell us that 1419 // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) 1420 // passed the quick check "yes && ccc==0" test. 1421 // Check whether the last character was a "yesYes" or a "yesNo". 1422 // If a "yesNo", then we get its trailing ccc from its 1423 // mapping and check for canonical order. 1424 // All other cases are ok. 1425 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc 1426 ) { 1427 // Fails FCD test. 1428 } else if(prevCC<=cc || cc==0) { 1429 prevCC=cc; 1430 if(norm16<MIN_YES_YES_WITH_CC) { 1431 if(pQCResult!=NULL) { 1432 *pQCResult=UNORM_MAYBE; 1433 } else { 1434 return prevBoundary; 1435 } 1436 } 1437 continue; 1438 } 1439 } 1440 if(pQCResult!=NULL) { 1441 *pQCResult=UNORM_NO; 1442 } 1443 return prevBoundary; 1444 } 1445 } 1446 1447 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, 1448 UBool doCompose, 1449 UBool onlyContiguous, 1450 UnicodeString &safeMiddle, 1451 ReorderingBuffer &buffer, 1452 UErrorCode &errorCode) const { 1453 if(!buffer.isEmpty()) { 1454 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); 1455 if(src!=firstStarterInSrc) { 1456 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), 1457 buffer.getLimit()); 1458 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastStarterInDest); 1459 UnicodeString middle(lastStarterInDest, destSuffixLength); 1460 buffer.removeSuffix(destSuffixLength); 1461 safeMiddle=middle; 1462 middle.append(src, (int32_t)(firstStarterInSrc-src)); 1463 const UChar *middleStart=middle.getBuffer(); 1464 compose(middleStart, middleStart+middle.length(), onlyContiguous, 1465 TRUE, buffer, errorCode); 1466 if(U_FAILURE(errorCode)) { 1467 return; 1468 } 1469 src=firstStarterInSrc; 1470 } 1471 } 1472 if(doCompose) { 1473 compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); 1474 } else { 1475 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 1476 limit=u_strchr(src, 0); 1477 } 1478 buffer.appendZeroCC(src, limit, errorCode); 1479 } 1480 } 1481 1482 /** 1483 * Does c have a composition boundary before it? 1484 * True if its decomposition begins with a character that has 1485 * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). 1486 * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes 1487 * (isCompYesAndZeroCC()) so we need not decompose. 1488 */ 1489 UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { 1490 for(;;) { 1491 if(isCompYesAndZeroCC(norm16)) { 1492 return TRUE; 1493 } else if(isMaybeOrNonZeroCC(norm16)) { 1494 return FALSE; 1495 } else if(isDecompNoAlgorithmic(norm16)) { 1496 c=mapAlgorithmic(c, norm16); 1497 norm16=getNorm16(c); 1498 } else { 1499 // c decomposes, get everything from the variable-length extra data 1500 const uint16_t *mapping=getMapping(norm16); 1501 uint16_t firstUnit=*mapping; 1502 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 1503 return FALSE; 1504 } 1505 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*(mapping-1)&0xff00)) { 1506 return FALSE; // non-zero leadCC 1507 } 1508 int32_t i=1; // skip over the firstUnit 1509 UChar32 c; 1510 U16_NEXT_UNSAFE(mapping, i, c); 1511 return isCompYesAndZeroCC(getNorm16(c)); 1512 } 1513 } 1514 } 1515 1516 UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { 1517 for(;;) { 1518 uint16_t norm16=getNorm16(c); 1519 if(isInert(norm16)) { 1520 return TRUE; 1521 } else if(norm16<=minYesNo) { 1522 // Hangul: norm16==minYesNo 1523 // Hangul LVT has a boundary after it. 1524 // Hangul LV and non-inert yesYes characters combine forward. 1525 return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); 1526 } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { 1527 return FALSE; 1528 } else if(isDecompNoAlgorithmic(norm16)) { 1529 c=mapAlgorithmic(c, norm16); 1530 } else { 1531 // c decomposes, get everything from the variable-length extra data. 1532 // If testInert, then c must be a yesNo character which has lccc=0, 1533 // otherwise it could be a noNo. 1534 const uint16_t *mapping=getMapping(norm16); 1535 uint16_t firstUnit=*mapping; 1536 // TRUE if 1537 // not MAPPING_NO_COMP_BOUNDARY_AFTER 1538 // (which is set if 1539 // c is not deleted, and 1540 // it and its decomposition do not combine forward, and it has a starter) 1541 // and if FCC then trailCC<=1 1542 return 1543 (firstUnit&MAPPING_NO_COMP_BOUNDARY_AFTER)==0 && 1544 (!onlyContiguous || firstUnit<=0x1ff); 1545 } 1546 } 1547 } 1548 1549 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { 1550 BackwardUTrie2StringIterator iter(normTrie, start, p); 1551 uint16_t norm16; 1552 do { 1553 norm16=iter.previous16(); 1554 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); 1555 // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, 1556 // but that's probably not worth the extra cost. 1557 return iter.codePointStart; 1558 } 1559 1560 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { 1561 ForwardUTrie2StringIterator iter(normTrie, p, limit); 1562 uint16_t norm16; 1563 do { 1564 norm16=iter.next16(); 1565 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); 1566 return iter.codePointStart; 1567 } 1568 1569 // Note: normalizer2impl.cpp r30982 (2011-nov-27) 1570 // still had getFCDTrie() which built and cached an FCD trie. 1571 // That provided faster access to FCD data than getFCD16FromNormData() 1572 // but required synchronization and consumed some 10kB of heap memory 1573 // in any process that uses FCD (e.g., via collation). 1574 // tccc180[] and smallFCD[] are intended to help with any loss of performance, 1575 // at least for Latin & CJK. 1576 1577 // Gets the FCD value from the regular normalization data. 1578 uint16_t Normalizer2Impl::getFCD16FromNormData(UChar32 c) const { 1579 // Only loops for 1:1 algorithmic mappings. 1580 for(;;) { 1581 uint16_t norm16=getNorm16(c); 1582 if(norm16<=minYesNo) { 1583 // no decomposition or Hangul syllable, all zeros 1584 return 0; 1585 } else if(norm16>=MIN_NORMAL_MAYBE_YES) { 1586 // combining mark 1587 norm16&=0xff; 1588 return norm16|(norm16<<8); 1589 } else if(norm16>=minMaybeYes) { 1590 return 0; 1591 } else if(isDecompNoAlgorithmic(norm16)) { 1592 c=mapAlgorithmic(c, norm16); 1593 } else { 1594 // c decomposes, get everything from the variable-length extra data 1595 const uint16_t *mapping=getMapping(norm16); 1596 uint16_t firstUnit=*mapping; 1597 if((firstUnit&MAPPING_LENGTH_MASK)==0) { 1598 // A character that is deleted (maps to an empty string) must 1599 // get the worst-case lccc and tccc values because arbitrary 1600 // characters on both sides will become adjacent. 1601 return 0x1ff; 1602 } else { 1603 norm16=firstUnit>>8; // tccc 1604 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { 1605 norm16|=*(mapping-1)&0xff00; // lccc 1606 } 1607 return norm16; 1608 } 1609 } 1610 } 1611 } 1612 1613 // Dual functionality: 1614 // buffer!=NULL: normalize 1615 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes 1616 const UChar * 1617 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, 1618 ReorderingBuffer *buffer, 1619 UErrorCode &errorCode) const { 1620 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. 1621 // Similar to the prevBoundary in the compose() implementation. 1622 const UChar *prevBoundary=src; 1623 int32_t prevFCD16=0; 1624 if(limit==NULL) { 1625 src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); 1626 if(U_FAILURE(errorCode)) { 1627 return src; 1628 } 1629 if(prevBoundary<src) { 1630 prevBoundary=src; 1631 // We know that the previous character's lccc==0. 1632 // Fetching the fcd16 value was deferred for this below-U+0300 code point. 1633 prevFCD16=getFCD16(*(src-1)); 1634 if(prevFCD16>1) { 1635 --prevBoundary; 1636 } 1637 } 1638 limit=u_strchr(src, 0); 1639 } 1640 1641 // Note: In this function we use buffer->appendZeroCC() because we track 1642 // the lead and trail combining classes here, rather than leaving it to 1643 // the ReorderingBuffer. 1644 // The exception is the call to decomposeShort() which uses the buffer 1645 // in the normal way. 1646 1647 const UChar *prevSrc; 1648 UChar32 c=0; 1649 uint16_t fcd16=0; 1650 1651 for(;;) { 1652 // count code units with lccc==0 1653 for(prevSrc=src; src!=limit;) { 1654 if((c=*src)<MIN_CCC_LCCC_CP) { 1655 prevFCD16=~c; 1656 ++src; 1657 } else if(!singleLeadMightHaveNonZeroFCD16(c)) { 1658 prevFCD16=0; 1659 ++src; 1660 } else { 1661 if(U16_IS_SURROGATE(c)) { 1662 UChar c2; 1663 if(U16_IS_SURROGATE_LEAD(c)) { 1664 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { 1665 c=U16_GET_SUPPLEMENTARY(c, c2); 1666 } 1667 } else /* trail surrogate */ { 1668 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { 1669 --src; 1670 c=U16_GET_SUPPLEMENTARY(c2, c); 1671 } 1672 } 1673 } 1674 if((fcd16=getFCD16FromNormData(c))<=0xff) { 1675 prevFCD16=fcd16; 1676 src+=U16_LENGTH(c); 1677 } else { 1678 break; 1679 } 1680 } 1681 } 1682 // copy these code units all at once 1683 if(src!=prevSrc) { 1684 if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { 1685 break; 1686 } 1687 if(src==limit) { 1688 break; 1689 } 1690 prevBoundary=src; 1691 // We know that the previous character's lccc==0. 1692 if(prevFCD16<0) { 1693 // Fetching the fcd16 value was deferred for this below-U+0300 code point. 1694 UChar32 prev=~prevFCD16; 1695 prevFCD16= prev<0x180 ? tccc180[prev] : getFCD16FromNormData(prev); 1696 if(prevFCD16>1) { 1697 --prevBoundary; 1698 } 1699 } else { 1700 const UChar *p=src-1; 1701 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { 1702 --p; 1703 // Need to fetch the previous character's FCD value because 1704 // prevFCD16 was just for the trail surrogate code point. 1705 prevFCD16=getFCD16FromNormData(U16_GET_SUPPLEMENTARY(p[0], p[1])); 1706 // Still known to have lccc==0 because its lead surrogate unit had lccc==0. 1707 } 1708 if(prevFCD16>1) { 1709 prevBoundary=p; 1710 } 1711 } 1712 // The start of the current character (c). 1713 prevSrc=src; 1714 } else if(src==limit) { 1715 break; 1716 } 1717 1718 src+=U16_LENGTH(c); 1719 // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. 1720 // Check for proper order, and decompose locally if necessary. 1721 if((prevFCD16&0xff)<=(fcd16>>8)) { 1722 // proper order: prev tccc <= current lccc 1723 if((fcd16&0xff)<=1) { 1724 prevBoundary=src; 1725 } 1726 if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { 1727 break; 1728 } 1729 prevFCD16=fcd16; 1730 continue; 1731 } else if(buffer==NULL) { 1732 return prevBoundary; // quick check "no" 1733 } else { 1734 /* 1735 * Back out the part of the source that we copied or appended 1736 * already but is now going to be decomposed. 1737 * prevSrc is set to after what was copied/appended. 1738 */ 1739 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); 1740 /* 1741 * Find the part of the source that needs to be decomposed, 1742 * up to the next safe boundary. 1743 */ 1744 src=findNextFCDBoundary(src, limit); 1745 /* 1746 * The source text does not fulfill the conditions for FCD. 1747 * Decompose and reorder a limited piece of the text. 1748 */ 1749 if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { 1750 break; 1751 } 1752 prevBoundary=src; 1753 prevFCD16=0; 1754 } 1755 } 1756 return src; 1757 } 1758 1759 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, 1760 UBool doMakeFCD, 1761 UnicodeString &safeMiddle, 1762 ReorderingBuffer &buffer, 1763 UErrorCode &errorCode) const { 1764 if(!buffer.isEmpty()) { 1765 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); 1766 if(src!=firstBoundaryInSrc) { 1767 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), 1768 buffer.getLimit()); 1769 int32_t destSuffixLength=(int32_t)(buffer.getLimit()-lastBoundaryInDest); 1770 UnicodeString middle(lastBoundaryInDest, destSuffixLength); 1771 buffer.removeSuffix(destSuffixLength); 1772 safeMiddle=middle; 1773 middle.append(src, (int32_t)(firstBoundaryInSrc-src)); 1774 const UChar *middleStart=middle.getBuffer(); 1775 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); 1776 if(U_FAILURE(errorCode)) { 1777 return; 1778 } 1779 src=firstBoundaryInSrc; 1780 } 1781 } 1782 if(doMakeFCD) { 1783 makeFCD(src, limit, &buffer, errorCode); 1784 } else { 1785 if(limit==NULL) { // appendZeroCC() needs limit!=NULL 1786 limit=u_strchr(src, 0); 1787 } 1788 buffer.appendZeroCC(src, limit, errorCode); 1789 } 1790 } 1791 1792 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { 1793 while(start<p && previousFCD16(start, p)>0xff) {} 1794 return p; 1795 } 1796 1797 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { 1798 while(p<limit) { 1799 const UChar *codePointStart=p; 1800 if(nextFCD16(p, limit)<=0xff) { 1801 return codePointStart; 1802 } 1803 } 1804 return p; 1805 } 1806 1807 // CanonicalIterator data -------------------------------------------------- *** 1808 1809 CanonIterData::CanonIterData(UErrorCode &errorCode) : 1810 trie(utrie2_open(0, 0, &errorCode)), 1811 canonStartSets(uprv_deleteUObject, NULL, errorCode) {} 1812 1813 CanonIterData::~CanonIterData() { 1814 utrie2_close(trie); 1815 } 1816 1817 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { 1818 uint32_t canonValue=utrie2_get32(trie, decompLead); 1819 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { 1820 // origin is the first character whose decomposition starts with 1821 // the character for which we are setting the value. 1822 utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); 1823 } else { 1824 // origin is not the first character, or it is U+0000. 1825 UnicodeSet *set; 1826 if((canonValue&CANON_HAS_SET)==0) { 1827 set=new UnicodeSet; 1828 if(set==NULL) { 1829 errorCode=U_MEMORY_ALLOCATION_ERROR; 1830 return; 1831 } 1832 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); 1833 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); 1834 utrie2_set32(trie, decompLead, canonValue, &errorCode); 1835 canonStartSets.addElement(set, errorCode); 1836 if(firstOrigin!=0) { 1837 set->add(firstOrigin); 1838 } 1839 } else { 1840 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; 1841 } 1842 set->add(origin); 1843 } 1844 } 1845 1846 U_CDECL_BEGIN 1847 1848 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. 1849 // context: the Normalizer2Impl 1850 static UBool U_CALLCONV 1851 enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { 1852 UErrorCode errorCode = U_ZERO_ERROR; 1853 if (value != 0) { 1854 Normalizer2Impl *impl = (Normalizer2Impl *)context; 1855 impl->makeCanonIterDataFromNorm16( 1856 start, end, (uint16_t)value, *impl->fCanonIterData, errorCode); 1857 } 1858 return U_SUCCESS(errorCode); 1859 } 1860 1861 1862 1863 // UInitOnce instantiation function for CanonIterData 1864 1865 static void U_CALLCONV 1866 initCanonIterData(Normalizer2Impl *impl, UErrorCode &errorCode) { 1867 U_ASSERT(impl->fCanonIterData == NULL); 1868 impl->fCanonIterData = new CanonIterData(errorCode); 1869 if (impl->fCanonIterData == NULL) { 1870 errorCode=U_MEMORY_ALLOCATION_ERROR; 1871 } 1872 if (U_SUCCESS(errorCode)) { 1873 utrie2_enum(impl->getNormTrie(), NULL, enumCIDRangeHandler, impl); 1874 utrie2_freeze(impl->fCanonIterData->trie, UTRIE2_32_VALUE_BITS, &errorCode); 1875 } 1876 if (U_FAILURE(errorCode)) { 1877 delete impl->fCanonIterData; 1878 impl->fCanonIterData = NULL; 1879 } 1880 } 1881 1882 U_CDECL_END 1883 1884 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, 1885 CanonIterData &newData, 1886 UErrorCode &errorCode) const { 1887 if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { 1888 // Inert, or 2-way mapping (including Hangul syllable). 1889 // We do not write a canonStartSet for any yesNo character. 1890 // Composites from 2-way mappings are added at runtime from the 1891 // starter's compositions list, and the other characters in 1892 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are 1893 // "maybe" characters. 1894 return; 1895 } 1896 for(UChar32 c=start; c<=end; ++c) { 1897 uint32_t oldValue=utrie2_get32(newData.trie, c); 1898 uint32_t newValue=oldValue; 1899 if(norm16>=minMaybeYes) { 1900 // not a segment starter if it occurs in a decomposition or has cc!=0 1901 newValue|=CANON_NOT_SEGMENT_STARTER; 1902 if(norm16<MIN_NORMAL_MAYBE_YES) { 1903 newValue|=CANON_HAS_COMPOSITIONS; 1904 } 1905 } else if(norm16<minYesNo) { 1906 newValue|=CANON_HAS_COMPOSITIONS; 1907 } else { 1908 // c has a one-way decomposition 1909 UChar32 c2=c; 1910 uint16_t norm16_2=norm16; 1911 while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { 1912 c2=mapAlgorithmic(c2, norm16_2); 1913 norm16_2=getNorm16(c2); 1914 } 1915 if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { 1916 // c decomposes, get everything from the variable-length extra data 1917 const uint16_t *mapping=getMapping(norm16_2); 1918 uint16_t firstUnit=*mapping; 1919 int32_t length=firstUnit&MAPPING_LENGTH_MASK; 1920 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { 1921 if(c==c2 && (*(mapping-1)&0xff)!=0) { 1922 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 1923 } 1924 } 1925 // Skip empty mappings (no characters in the decomposition). 1926 if(length!=0) { 1927 ++mapping; // skip over the firstUnit 1928 // add c to first code point's start set 1929 int32_t i=0; 1930 U16_NEXT_UNSAFE(mapping, i, c2); 1931 newData.addToStartSet(c, c2, errorCode); 1932 // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a 1933 // one-way mapping. A 2-way mapping is possible here after 1934 // intermediate algorithmic mapping. 1935 if(norm16_2>=minNoNo) { 1936 while(i<length) { 1937 U16_NEXT_UNSAFE(mapping, i, c2); 1938 uint32_t c2Value=utrie2_get32(newData.trie, c2); 1939 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { 1940 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, 1941 &errorCode); 1942 } 1943 } 1944 } 1945 } 1946 } else { 1947 // c decomposed to c2 algorithmically; c has cc==0 1948 newData.addToStartSet(c, c2, errorCode); 1949 } 1950 } 1951 if(newValue!=oldValue) { 1952 utrie2_set32(newData.trie, c, newValue, &errorCode); 1953 } 1954 } 1955 } 1956 1957 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { 1958 // Logically const: Synchronized instantiation. 1959 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); 1960 umtx_initOnce(me->fCanonIterDataInitOnce, &initCanonIterData, me, errorCode); 1961 return U_SUCCESS(errorCode); 1962 } 1963 1964 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { 1965 return (int32_t)utrie2_get32(fCanonIterData->trie, c); 1966 } 1967 1968 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { 1969 return *(const UnicodeSet *)fCanonIterData->canonStartSets[n]; 1970 } 1971 1972 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { 1973 return getCanonValue(c)>=0; 1974 } 1975 1976 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { 1977 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; 1978 if(canonValue==0) { 1979 return FALSE; 1980 } 1981 set.clear(); 1982 int32_t value=canonValue&CANON_VALUE_MASK; 1983 if((canonValue&CANON_HAS_SET)!=0) { 1984 set.addAll(getCanonStartSet(value)); 1985 } else if(value!=0) { 1986 set.add(value); 1987 } 1988 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { 1989 uint16_t norm16=getNorm16(c); 1990 if(norm16==JAMO_L) { 1991 UChar32 syllable= 1992 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); 1993 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); 1994 } else { 1995 addComposites(getCompositionsList(norm16), set); 1996 } 1997 } 1998 return TRUE; 1999 } 2000 2001 U_NAMESPACE_END 2002 2003 // Normalizer2 data swapping ----------------------------------------------- *** 2004 2005 U_NAMESPACE_USE 2006 2007 U_CAPI int32_t U_EXPORT2 2008 unorm2_swap(const UDataSwapper *ds, 2009 const void *inData, int32_t length, void *outData, 2010 UErrorCode *pErrorCode) { 2011 const UDataInfo *pInfo; 2012 int32_t headerSize; 2013 2014 const uint8_t *inBytes; 2015 uint8_t *outBytes; 2016 2017 const int32_t *inIndexes; 2018 int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; 2019 2020 int32_t i, offset, nextOffset, size; 2021 2022 /* udata_swapDataHeader checks the arguments */ 2023 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); 2024 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { 2025 return 0; 2026 } 2027 2028 /* check data format and format version */ 2029 pInfo=(const UDataInfo *)((const char *)inData+4); 2030 if(!( 2031 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ 2032 pInfo->dataFormat[1]==0x72 && 2033 pInfo->dataFormat[2]==0x6d && 2034 pInfo->dataFormat[3]==0x32 && 2035 (pInfo->formatVersion[0]==1 || pInfo->formatVersion[0]==2) 2036 )) { 2037 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", 2038 pInfo->dataFormat[0], pInfo->dataFormat[1], 2039 pInfo->dataFormat[2], pInfo->dataFormat[3], 2040 pInfo->formatVersion[0]); 2041 *pErrorCode=U_UNSUPPORTED_ERROR; 2042 return 0; 2043 } 2044 2045 inBytes=(const uint8_t *)inData+headerSize; 2046 outBytes=(uint8_t *)outData+headerSize; 2047 2048 inIndexes=(const int32_t *)inBytes; 2049 2050 if(length>=0) { 2051 length-=headerSize; 2052 if(length<(int32_t)sizeof(indexes)) { 2053 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", 2054 length); 2055 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2056 return 0; 2057 } 2058 } 2059 2060 /* read the first few indexes */ 2061 for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { 2062 indexes[i]=udata_readInt32(ds, inIndexes[i]); 2063 } 2064 2065 /* get the total length of the data */ 2066 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; 2067 2068 if(length>=0) { 2069 if(length<size) { 2070 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", 2071 length); 2072 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; 2073 return 0; 2074 } 2075 2076 /* copy the data for inaccessible bytes */ 2077 if(inBytes!=outBytes) { 2078 uprv_memcpy(outBytes, inBytes, size); 2079 } 2080 2081 offset=0; 2082 2083 /* swap the int32_t indexes[] */ 2084 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; 2085 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); 2086 offset=nextOffset; 2087 2088 /* swap the UTrie2 */ 2089 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; 2090 utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); 2091 offset=nextOffset; 2092 2093 /* swap the uint16_t extraData[] */ 2094 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET]; 2095 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); 2096 offset=nextOffset; 2097 2098 /* no need to swap the uint8_t smallFCD[] (new in formatVersion 2) */ 2099 nextOffset=indexes[Normalizer2Impl::IX_SMALL_FCD_OFFSET+1]; 2100 offset=nextOffset; 2101 2102 U_ASSERT(offset==size); 2103 } 2104 2105 return headerSize+size; 2106 } 2107 2108 #endif // !UCONFIG_NO_NORMALIZATION 2109