Home | History | Annotate | Download | only in protobuf
      1 // Protocol Buffers - Google's data interchange format
      2 // Copyright 2008 Google Inc.  All rights reserved.
      3 // https://developers.google.com/protocol-buffers/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are
      7 // met:
      8 //
      9 //     * Redistributions of source code must retain the above copyright
     10 // notice, this list of conditions and the following disclaimer.
     11 //     * Redistributions in binary form must reproduce the above
     12 // copyright notice, this list of conditions and the following disclaimer
     13 // in the documentation and/or other materials provided with the
     14 // distribution.
     15 //     * Neither the name of Google Inc. nor the names of its
     16 // contributors may be used to endorse or promote products derived from
     17 // this software without specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
     24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
     25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
     29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // Author: kenton (at) google.com (Kenton Varda)
     32 //  Based on original Protocol Buffers design by
     33 //  Sanjay Ghemawat, Jeff Dean, and others.
     34 //
     35 // DynamicMessage is implemented by constructing a data structure which
     36 // has roughly the same memory layout as a generated message would have.
     37 // Then, we use GeneratedMessageReflection to implement our reflection
     38 // interface.  All the other operations we need to implement (e.g.
     39 // parsing, copying, etc.) are already implemented in terms of
     40 // Reflection, so the rest is easy.
     41 //
     42 // The up side of this strategy is that it's very efficient.  We don't
     43 // need to use hash_maps or generic representations of fields.  The
     44 // down side is that this is a low-level memory management hack which
     45 // can be tricky to get right.
     46 //
     47 // As mentioned in the header, we only expose a DynamicMessageFactory
     48 // publicly, not the DynamicMessage class itself.  This is because
     49 // GenericMessageReflection wants to have a pointer to a "default"
     50 // copy of the class, with all fields initialized to their default
     51 // values.  We only want to construct one of these per message type,
     52 // so DynamicMessageFactory stores a cache of default messages for
     53 // each type it sees (each unique Descriptor pointer).  The code
     54 // refers to the "default" copy of the class as the "prototype".
     55 //
     56 // Note on memory allocation:  This module often calls "operator new()"
     57 // to allocate untyped memory, rather than calling something like
     58 // "new uint8[]".  This is because "operator new()" means "Give me some
     59 // space which I can use as I please." while "new uint8[]" means "Give
     60 // me an array of 8-bit integers.".  In practice, the later may return
     61 // a pointer that is not aligned correctly for general use.  I believe
     62 // Item 8 of "More Effective C++" discusses this in more detail, though
     63 // I don't have the book on me right now so I'm not sure.
     64 
     65 #include <algorithm>
     66 #include <google/protobuf/stubs/hash.h>
     67 
     68 #include <google/protobuf/stubs/common.h>
     69 
     70 #include <google/protobuf/dynamic_message.h>
     71 #include <google/protobuf/descriptor.h>
     72 #include <google/protobuf/descriptor.pb.h>
     73 #include <google/protobuf/generated_message_util.h>
     74 #include <google/protobuf/generated_message_reflection.h>
     75 #include <google/protobuf/reflection_ops.h>
     76 #include <google/protobuf/repeated_field.h>
     77 #include <google/protobuf/extension_set.h>
     78 #include <google/protobuf/wire_format.h>
     79 
     80 namespace google {
     81 namespace protobuf {
     82 
     83 using internal::WireFormat;
     84 using internal::ExtensionSet;
     85 using internal::GeneratedMessageReflection;
     86 
     87 
     88 // ===================================================================
     89 // Some helper tables and functions...
     90 
     91 namespace {
     92 
     93 // Compute the byte size of the in-memory representation of the field.
     94 int FieldSpaceUsed(const FieldDescriptor* field) {
     95   typedef FieldDescriptor FD;  // avoid line wrapping
     96   if (field->label() == FD::LABEL_REPEATED) {
     97     switch (field->cpp_type()) {
     98       case FD::CPPTYPE_INT32  : return sizeof(RepeatedField<int32   >);
     99       case FD::CPPTYPE_INT64  : return sizeof(RepeatedField<int64   >);
    100       case FD::CPPTYPE_UINT32 : return sizeof(RepeatedField<uint32  >);
    101       case FD::CPPTYPE_UINT64 : return sizeof(RepeatedField<uint64  >);
    102       case FD::CPPTYPE_DOUBLE : return sizeof(RepeatedField<double  >);
    103       case FD::CPPTYPE_FLOAT  : return sizeof(RepeatedField<float   >);
    104       case FD::CPPTYPE_BOOL   : return sizeof(RepeatedField<bool    >);
    105       case FD::CPPTYPE_ENUM   : return sizeof(RepeatedField<int     >);
    106       case FD::CPPTYPE_MESSAGE: return sizeof(RepeatedPtrField<Message>);
    107 
    108       case FD::CPPTYPE_STRING:
    109         switch (field->options().ctype()) {
    110           default:  // TODO(kenton):  Support other string reps.
    111           case FieldOptions::STRING:
    112             return sizeof(RepeatedPtrField<string>);
    113         }
    114         break;
    115     }
    116   } else {
    117     switch (field->cpp_type()) {
    118       case FD::CPPTYPE_INT32  : return sizeof(int32   );
    119       case FD::CPPTYPE_INT64  : return sizeof(int64   );
    120       case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
    121       case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
    122       case FD::CPPTYPE_DOUBLE : return sizeof(double  );
    123       case FD::CPPTYPE_FLOAT  : return sizeof(float   );
    124       case FD::CPPTYPE_BOOL   : return sizeof(bool    );
    125       case FD::CPPTYPE_ENUM   : return sizeof(int     );
    126 
    127       case FD::CPPTYPE_MESSAGE:
    128         return sizeof(Message*);
    129 
    130       case FD::CPPTYPE_STRING:
    131         switch (field->options().ctype()) {
    132           default:  // TODO(kenton):  Support other string reps.
    133           case FieldOptions::STRING:
    134             return sizeof(string*);
    135         }
    136         break;
    137     }
    138   }
    139 
    140   GOOGLE_LOG(DFATAL) << "Can't get here.";
    141   return 0;
    142 }
    143 
    144 // Compute the byte size of in-memory representation of the oneof fields
    145 // in default oneof instance.
    146 int OneofFieldSpaceUsed(const FieldDescriptor* field) {
    147   typedef FieldDescriptor FD;  // avoid line wrapping
    148   switch (field->cpp_type()) {
    149     case FD::CPPTYPE_INT32  : return sizeof(int32   );
    150     case FD::CPPTYPE_INT64  : return sizeof(int64   );
    151     case FD::CPPTYPE_UINT32 : return sizeof(uint32  );
    152     case FD::CPPTYPE_UINT64 : return sizeof(uint64  );
    153     case FD::CPPTYPE_DOUBLE : return sizeof(double  );
    154     case FD::CPPTYPE_FLOAT  : return sizeof(float   );
    155     case FD::CPPTYPE_BOOL   : return sizeof(bool    );
    156     case FD::CPPTYPE_ENUM   : return sizeof(int     );
    157 
    158     case FD::CPPTYPE_MESSAGE:
    159       return sizeof(Message*);
    160 
    161     case FD::CPPTYPE_STRING:
    162       switch (field->options().ctype()) {
    163         default:
    164         case FieldOptions::STRING:
    165           return sizeof(string*);
    166       }
    167       break;
    168   }
    169 
    170   GOOGLE_LOG(DFATAL) << "Can't get here.";
    171   return 0;
    172 }
    173 
    174 inline int DivideRoundingUp(int i, int j) {
    175   return (i + (j - 1)) / j;
    176 }
    177 
    178 static const int kSafeAlignment = sizeof(uint64);
    179 static const int kMaxOneofUnionSize = sizeof(uint64);
    180 
    181 inline int AlignTo(int offset, int alignment) {
    182   return DivideRoundingUp(offset, alignment) * alignment;
    183 }
    184 
    185 // Rounds the given byte offset up to the next offset aligned such that any
    186 // type may be stored at it.
    187 inline int AlignOffset(int offset) {
    188   return AlignTo(offset, kSafeAlignment);
    189 }
    190 
    191 #define bitsizeof(T) (sizeof(T) * 8)
    192 
    193 }  // namespace
    194 
    195 // ===================================================================
    196 
    197 class DynamicMessage : public Message {
    198  public:
    199   struct TypeInfo {
    200     int size;
    201     int has_bits_offset;
    202     int oneof_case_offset;
    203     int unknown_fields_offset;
    204     int extensions_offset;
    205 
    206     // Not owned by the TypeInfo.
    207     DynamicMessageFactory* factory;  // The factory that created this object.
    208     const DescriptorPool* pool;      // The factory's DescriptorPool.
    209     const Descriptor* type;          // Type of this DynamicMessage.
    210 
    211     // Warning:  The order in which the following pointers are defined is
    212     //   important (the prototype must be deleted *before* the offsets).
    213     scoped_array<int> offsets;
    214     scoped_ptr<const GeneratedMessageReflection> reflection;
    215     // Don't use a scoped_ptr to hold the prototype: the destructor for
    216     // DynamicMessage needs to know whether it is the prototype, and does so by
    217     // looking back at this field. This would assume details about the
    218     // implementation of scoped_ptr.
    219     const DynamicMessage* prototype;
    220     void* default_oneof_instance;
    221 
    222     TypeInfo() : prototype(NULL), default_oneof_instance(NULL) {}
    223 
    224     ~TypeInfo() {
    225       delete prototype;
    226       operator delete(default_oneof_instance);
    227     }
    228   };
    229 
    230   DynamicMessage(const TypeInfo* type_info);
    231   ~DynamicMessage();
    232 
    233   // Called on the prototype after construction to initialize message fields.
    234   void CrossLinkPrototypes();
    235 
    236   // implements Message ----------------------------------------------
    237 
    238   Message* New() const;
    239 
    240   int GetCachedSize() const;
    241   void SetCachedSize(int size) const;
    242 
    243   Metadata GetMetadata() const;
    244 
    245 
    246  private:
    247   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(DynamicMessage);
    248 
    249   inline bool is_prototype() const {
    250     return type_info_->prototype == this ||
    251            // If type_info_->prototype is NULL, then we must be constructing
    252            // the prototype now, which means we must be the prototype.
    253            type_info_->prototype == NULL;
    254   }
    255 
    256   inline void* OffsetToPointer(int offset) {
    257     return reinterpret_cast<uint8*>(this) + offset;
    258   }
    259   inline const void* OffsetToPointer(int offset) const {
    260     return reinterpret_cast<const uint8*>(this) + offset;
    261   }
    262 
    263   const TypeInfo* type_info_;
    264 
    265   // TODO(kenton):  Make this an atomic<int> when C++ supports it.
    266   mutable int cached_byte_size_;
    267 };
    268 
    269 DynamicMessage::DynamicMessage(const TypeInfo* type_info)
    270   : type_info_(type_info),
    271     cached_byte_size_(0) {
    272   // We need to call constructors for various fields manually and set
    273   // default values where appropriate.  We use placement new to call
    274   // constructors.  If you haven't heard of placement new, I suggest Googling
    275   // it now.  We use placement new even for primitive types that don't have
    276   // constructors for consistency.  (In theory, placement new should be used
    277   // any time you are trying to convert untyped memory to typed memory, though
    278   // in practice that's not strictly necessary for types that don't have a
    279   // constructor.)
    280 
    281   const Descriptor* descriptor = type_info_->type;
    282 
    283   // Initialize oneof cases.
    284   for (int i = 0 ; i < descriptor->oneof_decl_count(); ++i) {
    285     new(OffsetToPointer(type_info_->oneof_case_offset + sizeof(uint32) * i))
    286         uint32(0);
    287   }
    288 
    289   new(OffsetToPointer(type_info_->unknown_fields_offset)) UnknownFieldSet;
    290 
    291   if (type_info_->extensions_offset != -1) {
    292     new(OffsetToPointer(type_info_->extensions_offset)) ExtensionSet;
    293   }
    294 
    295   for (int i = 0; i < descriptor->field_count(); i++) {
    296     const FieldDescriptor* field = descriptor->field(i);
    297     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
    298     if (field->containing_oneof()) {
    299       continue;
    300     }
    301     switch (field->cpp_type()) {
    302 #define HANDLE_TYPE(CPPTYPE, TYPE)                                           \
    303       case FieldDescriptor::CPPTYPE_##CPPTYPE:                               \
    304         if (!field->is_repeated()) {                                         \
    305           new(field_ptr) TYPE(field->default_value_##TYPE());                \
    306         } else {                                                             \
    307           new(field_ptr) RepeatedField<TYPE>();                              \
    308         }                                                                    \
    309         break;
    310 
    311       HANDLE_TYPE(INT32 , int32 );
    312       HANDLE_TYPE(INT64 , int64 );
    313       HANDLE_TYPE(UINT32, uint32);
    314       HANDLE_TYPE(UINT64, uint64);
    315       HANDLE_TYPE(DOUBLE, double);
    316       HANDLE_TYPE(FLOAT , float );
    317       HANDLE_TYPE(BOOL  , bool  );
    318 #undef HANDLE_TYPE
    319 
    320       case FieldDescriptor::CPPTYPE_ENUM:
    321         if (!field->is_repeated()) {
    322           new(field_ptr) int(field->default_value_enum()->number());
    323         } else {
    324           new(field_ptr) RepeatedField<int>();
    325         }
    326         break;
    327 
    328       case FieldDescriptor::CPPTYPE_STRING:
    329         switch (field->options().ctype()) {
    330           default:  // TODO(kenton):  Support other string reps.
    331           case FieldOptions::STRING:
    332             if (!field->is_repeated()) {
    333               if (is_prototype()) {
    334                 new(field_ptr) const string*(&field->default_value_string());
    335               } else {
    336                 string* default_value =
    337                   *reinterpret_cast<string* const*>(
    338                     type_info_->prototype->OffsetToPointer(
    339                       type_info_->offsets[i]));
    340                 new(field_ptr) string*(default_value);
    341               }
    342             } else {
    343               new(field_ptr) RepeatedPtrField<string>();
    344             }
    345             break;
    346         }
    347         break;
    348 
    349       case FieldDescriptor::CPPTYPE_MESSAGE: {
    350         if (!field->is_repeated()) {
    351           new(field_ptr) Message*(NULL);
    352         } else {
    353           new(field_ptr) RepeatedPtrField<Message>();
    354         }
    355         break;
    356       }
    357     }
    358   }
    359 }
    360 
    361 DynamicMessage::~DynamicMessage() {
    362   const Descriptor* descriptor = type_info_->type;
    363 
    364   reinterpret_cast<UnknownFieldSet*>(
    365     OffsetToPointer(type_info_->unknown_fields_offset))->~UnknownFieldSet();
    366 
    367   if (type_info_->extensions_offset != -1) {
    368     reinterpret_cast<ExtensionSet*>(
    369       OffsetToPointer(type_info_->extensions_offset))->~ExtensionSet();
    370   }
    371 
    372   // We need to manually run the destructors for repeated fields and strings,
    373   // just as we ran their constructors in the the DynamicMessage constructor.
    374   // We also need to manually delete oneof fields if it is set and is string
    375   // or message.
    376   // Additionally, if any singular embedded messages have been allocated, we
    377   // need to delete them, UNLESS we are the prototype message of this type,
    378   // in which case any embedded messages are other prototypes and shouldn't
    379   // be touched.
    380   for (int i = 0; i < descriptor->field_count(); i++) {
    381     const FieldDescriptor* field = descriptor->field(i);
    382     if (field->containing_oneof()) {
    383       void* field_ptr = OffsetToPointer(
    384           type_info_->oneof_case_offset
    385           + sizeof(uint32) * field->containing_oneof()->index());
    386       if (*(reinterpret_cast<const uint32*>(field_ptr)) ==
    387           field->number()) {
    388         field_ptr = OffsetToPointer(type_info_->offsets[
    389             descriptor->field_count() + field->containing_oneof()->index()]);
    390         if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
    391           switch (field->options().ctype()) {
    392             default:
    393             case FieldOptions::STRING:
    394               delete *reinterpret_cast<string**>(field_ptr);
    395               break;
    396           }
    397         } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
    398             delete *reinterpret_cast<Message**>(field_ptr);
    399         }
    400       }
    401       continue;
    402     }
    403     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
    404 
    405     if (field->is_repeated()) {
    406       switch (field->cpp_type()) {
    407 #define HANDLE_TYPE(UPPERCASE, LOWERCASE)                                     \
    408         case FieldDescriptor::CPPTYPE_##UPPERCASE :                           \
    409           reinterpret_cast<RepeatedField<LOWERCASE>*>(field_ptr)              \
    410               ->~RepeatedField<LOWERCASE>();                                  \
    411           break
    412 
    413         HANDLE_TYPE( INT32,  int32);
    414         HANDLE_TYPE( INT64,  int64);
    415         HANDLE_TYPE(UINT32, uint32);
    416         HANDLE_TYPE(UINT64, uint64);
    417         HANDLE_TYPE(DOUBLE, double);
    418         HANDLE_TYPE( FLOAT,  float);
    419         HANDLE_TYPE(  BOOL,   bool);
    420         HANDLE_TYPE(  ENUM,    int);
    421 #undef HANDLE_TYPE
    422 
    423         case FieldDescriptor::CPPTYPE_STRING:
    424           switch (field->options().ctype()) {
    425             default:  // TODO(kenton):  Support other string reps.
    426             case FieldOptions::STRING:
    427               reinterpret_cast<RepeatedPtrField<string>*>(field_ptr)
    428                   ->~RepeatedPtrField<string>();
    429               break;
    430           }
    431           break;
    432 
    433         case FieldDescriptor::CPPTYPE_MESSAGE:
    434           reinterpret_cast<RepeatedPtrField<Message>*>(field_ptr)
    435               ->~RepeatedPtrField<Message>();
    436           break;
    437       }
    438 
    439     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
    440       switch (field->options().ctype()) {
    441         default:  // TODO(kenton):  Support other string reps.
    442         case FieldOptions::STRING: {
    443           string* ptr = *reinterpret_cast<string**>(field_ptr);
    444           if (ptr != &field->default_value_string()) {
    445             delete ptr;
    446           }
    447           break;
    448         }
    449       }
    450     } else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
    451       if (!is_prototype()) {
    452         Message* message = *reinterpret_cast<Message**>(field_ptr);
    453         if (message != NULL) {
    454           delete message;
    455         }
    456       }
    457     }
    458   }
    459 }
    460 
    461 void DynamicMessage::CrossLinkPrototypes() {
    462   // This should only be called on the prototype message.
    463   GOOGLE_CHECK(is_prototype());
    464 
    465   DynamicMessageFactory* factory = type_info_->factory;
    466   const Descriptor* descriptor = type_info_->type;
    467 
    468   // Cross-link default messages.
    469   for (int i = 0; i < descriptor->field_count(); i++) {
    470     const FieldDescriptor* field = descriptor->field(i);
    471     void* field_ptr = OffsetToPointer(type_info_->offsets[i]);
    472     if (field->containing_oneof()) {
    473       field_ptr = reinterpret_cast<uint8*>(
    474           type_info_->default_oneof_instance) + type_info_->offsets[i];
    475     }
    476 
    477     if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
    478         !field->is_repeated()) {
    479       // For fields with message types, we need to cross-link with the
    480       // prototype for the field's type.
    481       // For singular fields, the field is just a pointer which should
    482       // point to the prototype.
    483       *reinterpret_cast<const Message**>(field_ptr) =
    484         factory->GetPrototypeNoLock(field->message_type());
    485     }
    486   }
    487 }
    488 
    489 Message* DynamicMessage::New() const {
    490   void* new_base = operator new(type_info_->size);
    491   memset(new_base, 0, type_info_->size);
    492   return new(new_base) DynamicMessage(type_info_);
    493 }
    494 
    495 int DynamicMessage::GetCachedSize() const {
    496   return cached_byte_size_;
    497 }
    498 
    499 void DynamicMessage::SetCachedSize(int size) const {
    500   // This is theoretically not thread-compatible, but in practice it works
    501   // because if multiple threads write this simultaneously, they will be
    502   // writing the exact same value.
    503   GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN();
    504   cached_byte_size_ = size;
    505   GOOGLE_SAFE_CONCURRENT_WRITES_END();
    506 }
    507 
    508 Metadata DynamicMessage::GetMetadata() const {
    509   Metadata metadata;
    510   metadata.descriptor = type_info_->type;
    511   metadata.reflection = type_info_->reflection.get();
    512   return metadata;
    513 }
    514 
    515 // ===================================================================
    516 
    517 struct DynamicMessageFactory::PrototypeMap {
    518   typedef hash_map<const Descriptor*, const DynamicMessage::TypeInfo*> Map;
    519   Map map_;
    520 };
    521 
    522 DynamicMessageFactory::DynamicMessageFactory()
    523   : pool_(NULL), delegate_to_generated_factory_(false),
    524     prototypes_(new PrototypeMap) {
    525 }
    526 
    527 DynamicMessageFactory::DynamicMessageFactory(const DescriptorPool* pool)
    528   : pool_(pool), delegate_to_generated_factory_(false),
    529     prototypes_(new PrototypeMap) {
    530 }
    531 
    532 DynamicMessageFactory::~DynamicMessageFactory() {
    533   for (PrototypeMap::Map::iterator iter = prototypes_->map_.begin();
    534        iter != prototypes_->map_.end(); ++iter) {
    535     DeleteDefaultOneofInstance(iter->second->type,
    536                                iter->second->offsets.get(),
    537                                iter->second->default_oneof_instance);
    538     delete iter->second;
    539   }
    540 }
    541 
    542 const Message* DynamicMessageFactory::GetPrototype(const Descriptor* type) {
    543   MutexLock lock(&prototypes_mutex_);
    544   return GetPrototypeNoLock(type);
    545 }
    546 
    547 const Message* DynamicMessageFactory::GetPrototypeNoLock(
    548     const Descriptor* type) {
    549   if (delegate_to_generated_factory_ &&
    550       type->file()->pool() == DescriptorPool::generated_pool()) {
    551     return MessageFactory::generated_factory()->GetPrototype(type);
    552   }
    553 
    554   const DynamicMessage::TypeInfo** target = &prototypes_->map_[type];
    555   if (*target != NULL) {
    556     // Already exists.
    557     return (*target)->prototype;
    558   }
    559 
    560   DynamicMessage::TypeInfo* type_info = new DynamicMessage::TypeInfo;
    561   *target = type_info;
    562 
    563   type_info->type = type;
    564   type_info->pool = (pool_ == NULL) ? type->file()->pool() : pool_;
    565   type_info->factory = this;
    566 
    567   // We need to construct all the structures passed to
    568   // GeneratedMessageReflection's constructor.  This includes:
    569   // - A block of memory that contains space for all the message's fields.
    570   // - An array of integers indicating the byte offset of each field within
    571   //   this block.
    572   // - A big bitfield containing a bit for each field indicating whether
    573   //   or not that field is set.
    574 
    575   // Compute size and offsets.
    576   int* offsets = new int[type->field_count() + type->oneof_decl_count()];
    577   type_info->offsets.reset(offsets);
    578 
    579   // Decide all field offsets by packing in order.
    580   // We place the DynamicMessage object itself at the beginning of the allocated
    581   // space.
    582   int size = sizeof(DynamicMessage);
    583   size = AlignOffset(size);
    584 
    585   // Next the has_bits, which is an array of uint32s.
    586   type_info->has_bits_offset = size;
    587   int has_bits_array_size =
    588     DivideRoundingUp(type->field_count(), bitsizeof(uint32));
    589   size += has_bits_array_size * sizeof(uint32);
    590   size = AlignOffset(size);
    591 
    592   // The oneof_case, if any. It is an array of uint32s.
    593   if (type->oneof_decl_count() > 0) {
    594     type_info->oneof_case_offset = size;
    595     size += type->oneof_decl_count() * sizeof(uint32);
    596     size = AlignOffset(size);
    597   }
    598 
    599   // The ExtensionSet, if any.
    600   if (type->extension_range_count() > 0) {
    601     type_info->extensions_offset = size;
    602     size += sizeof(ExtensionSet);
    603     size = AlignOffset(size);
    604   } else {
    605     // No extensions.
    606     type_info->extensions_offset = -1;
    607   }
    608 
    609   // All the fields.
    610   for (int i = 0; i < type->field_count(); i++) {
    611     // Make sure field is aligned to avoid bus errors.
    612     // Oneof fields do not use any space.
    613     if (!type->field(i)->containing_oneof()) {
    614       int field_size = FieldSpaceUsed(type->field(i));
    615       size = AlignTo(size, min(kSafeAlignment, field_size));
    616       offsets[i] = size;
    617       size += field_size;
    618     }
    619   }
    620 
    621   // The oneofs.
    622   for (int i = 0; i < type->oneof_decl_count(); i++) {
    623     size = AlignTo(size, kSafeAlignment);
    624     offsets[type->field_count() + i] = size;
    625     size += kMaxOneofUnionSize;
    626   }
    627 
    628   // Add the UnknownFieldSet to the end.
    629   size = AlignOffset(size);
    630   type_info->unknown_fields_offset = size;
    631   size += sizeof(UnknownFieldSet);
    632 
    633   // Align the final size to make sure no clever allocators think that
    634   // alignment is not necessary.
    635   size = AlignOffset(size);
    636   type_info->size = size;
    637 
    638   // Allocate the prototype.
    639   void* base = operator new(size);
    640   memset(base, 0, size);
    641   DynamicMessage* prototype = new(base) DynamicMessage(type_info);
    642   type_info->prototype = prototype;
    643 
    644   // Construct the reflection object.
    645   if (type->oneof_decl_count() > 0) {
    646     // Compute the size of default oneof instance and offsets of default
    647     // oneof fields.
    648     int oneof_size = 0;
    649     for (int i = 0; i < type->oneof_decl_count(); i++) {
    650       for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
    651         const FieldDescriptor* field = type->oneof_decl(i)->field(j);
    652         int field_size = OneofFieldSpaceUsed(field);
    653         oneof_size = AlignTo(oneof_size, min(kSafeAlignment, field_size));
    654         offsets[field->index()] = oneof_size;
    655         oneof_size += field_size;
    656       }
    657     }
    658     // Construct default oneof instance.
    659     type_info->default_oneof_instance = ::operator new(oneof_size);
    660     ConstructDefaultOneofInstance(type_info->type,
    661                                   type_info->offsets.get(),
    662                                   type_info->default_oneof_instance);
    663     type_info->reflection.reset(
    664         new GeneratedMessageReflection(
    665             type_info->type,
    666             type_info->prototype,
    667             type_info->offsets.get(),
    668             type_info->has_bits_offset,
    669             type_info->unknown_fields_offset,
    670             type_info->extensions_offset,
    671             type_info->default_oneof_instance,
    672             type_info->oneof_case_offset,
    673             type_info->pool,
    674             this,
    675             type_info->size));
    676   } else {
    677     type_info->reflection.reset(
    678         new GeneratedMessageReflection(
    679             type_info->type,
    680             type_info->prototype,
    681             type_info->offsets.get(),
    682             type_info->has_bits_offset,
    683             type_info->unknown_fields_offset,
    684             type_info->extensions_offset,
    685             type_info->pool,
    686             this,
    687             type_info->size));
    688   }
    689   // Cross link prototypes.
    690   prototype->CrossLinkPrototypes();
    691 
    692   return prototype;
    693 }
    694 
    695 void DynamicMessageFactory::ConstructDefaultOneofInstance(
    696     const Descriptor* type,
    697     const int offsets[],
    698     void* default_oneof_instance) {
    699   for (int i = 0; i < type->oneof_decl_count(); i++) {
    700     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
    701       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
    702       void* field_ptr = reinterpret_cast<uint8*>(
    703           default_oneof_instance) + offsets[field->index()];
    704       switch (field->cpp_type()) {
    705 #define HANDLE_TYPE(CPPTYPE, TYPE)                                      \
    706         case FieldDescriptor::CPPTYPE_##CPPTYPE:                        \
    707           new(field_ptr) TYPE(field->default_value_##TYPE());           \
    708           break;
    709 
    710         HANDLE_TYPE(INT32 , int32 );
    711         HANDLE_TYPE(INT64 , int64 );
    712         HANDLE_TYPE(UINT32, uint32);
    713         HANDLE_TYPE(UINT64, uint64);
    714         HANDLE_TYPE(DOUBLE, double);
    715         HANDLE_TYPE(FLOAT , float );
    716         HANDLE_TYPE(BOOL  , bool  );
    717 #undef HANDLE_TYPE
    718 
    719         case FieldDescriptor::CPPTYPE_ENUM:
    720           new(field_ptr) int(field->default_value_enum()->number());
    721           break;
    722         case FieldDescriptor::CPPTYPE_STRING:
    723           switch (field->options().ctype()) {
    724             default:
    725             case FieldOptions::STRING:
    726               if (field->has_default_value()) {
    727                 new(field_ptr) const string*(&field->default_value_string());
    728               } else {
    729                 new(field_ptr) string*(
    730                     const_cast<string*>(&internal::GetEmptyString()));
    731               }
    732               break;
    733           }
    734           break;
    735 
    736         case FieldDescriptor::CPPTYPE_MESSAGE: {
    737           new(field_ptr) Message*(NULL);
    738           break;
    739         }
    740       }
    741     }
    742   }
    743 }
    744 
    745 void DynamicMessageFactory::DeleteDefaultOneofInstance(
    746     const Descriptor* type,
    747     const int offsets[],
    748     void* default_oneof_instance) {
    749   for (int i = 0; i < type->oneof_decl_count(); i++) {
    750     for (int j = 0; j < type->oneof_decl(i)->field_count(); j++) {
    751       const FieldDescriptor* field = type->oneof_decl(i)->field(j);
    752       if (field->cpp_type() == FieldDescriptor::CPPTYPE_STRING) {
    753         switch (field->options().ctype()) {
    754           default:
    755           case FieldOptions::STRING:
    756             break;
    757         }
    758       }
    759     }
    760   }
    761 }
    762 
    763 }  // namespace protobuf
    764 }  // namespace google
    765