1 /* 2 * Copyright (C) 2005 The Android Open Source Project 3 * 4 * Licensed under the Apache License, Version 2.0 (the "License"); 5 * you may not use this file except in compliance with the License. 6 * You may obtain a copy of the License at 7 * 8 * http://www.apache.org/licenses/LICENSE-2.0 9 * 10 * Unless required by applicable law or agreed to in writing, software 11 * distributed under the License is distributed on an "AS IS" BASIS, 12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 * See the License for the specific language governing permissions and 14 * limitations under the License. 15 */ 16 17 #ifndef ANDROID_SORTED_VECTOR_H 18 #define ANDROID_SORTED_VECTOR_H 19 20 #include <assert.h> 21 #include <stdint.h> 22 #include <sys/types.h> 23 24 #include <cutils/log.h> 25 26 #include <utils/Vector.h> 27 #include <utils/VectorImpl.h> 28 #include <utils/TypeHelpers.h> 29 30 // --------------------------------------------------------------------------- 31 32 namespace android { 33 34 template <class TYPE> 35 class SortedVector : private SortedVectorImpl 36 { 37 friend class Vector<TYPE>; 38 39 public: 40 typedef TYPE value_type; 41 42 /*! 43 * Constructors and destructors 44 */ 45 46 SortedVector(); 47 SortedVector(const SortedVector<TYPE>& rhs); 48 virtual ~SortedVector(); 49 50 /*! copy operator */ 51 const SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs) const; 52 SortedVector<TYPE>& operator = (const SortedVector<TYPE>& rhs); 53 54 /* 55 * empty the vector 56 */ 57 58 inline void clear() { VectorImpl::clear(); } 59 60 /*! 61 * vector stats 62 */ 63 64 //! returns number of items in the vector 65 inline size_t size() const { return VectorImpl::size(); } 66 //! returns whether or not the vector is empty 67 inline bool isEmpty() const { return VectorImpl::isEmpty(); } 68 //! returns how many items can be stored without reallocating the backing store 69 inline size_t capacity() const { return VectorImpl::capacity(); } 70 //! sets the capacity. capacity can never be reduced less than size() 71 inline ssize_t setCapacity(size_t size) { return VectorImpl::setCapacity(size); } 72 73 /*! 74 * C-style array access 75 */ 76 77 //! read-only C-style access 78 inline const TYPE* array() const; 79 80 //! read-write C-style access. BE VERY CAREFUL when modifying the array 81 //! you must keep it sorted! You usually don't use this function. 82 TYPE* editArray(); 83 84 //! finds the index of an item 85 ssize_t indexOf(const TYPE& item) const; 86 87 //! finds where this item should be inserted 88 size_t orderOf(const TYPE& item) const; 89 90 91 /*! 92 * accessors 93 */ 94 95 //! read-only access to an item at a given index 96 inline const TYPE& operator [] (size_t index) const; 97 //! alternate name for operator [] 98 inline const TYPE& itemAt(size_t index) const; 99 //! stack-usage of the vector. returns the top of the stack (last element) 100 const TYPE& top() const; 101 102 /*! 103 * modifying the array 104 */ 105 106 //! add an item in the right place (and replace the one that is there) 107 ssize_t add(const TYPE& item); 108 109 //! editItemAt() MUST NOT change the order of this item 110 TYPE& editItemAt(size_t index) { 111 return *( static_cast<TYPE *>(VectorImpl::editItemLocation(index)) ); 112 } 113 114 //! merges a vector into this one 115 ssize_t merge(const Vector<TYPE>& vector); 116 ssize_t merge(const SortedVector<TYPE>& vector); 117 118 //! removes an item 119 ssize_t remove(const TYPE&); 120 121 //! remove several items 122 inline ssize_t removeItemsAt(size_t index, size_t count = 1); 123 //! remove one item 124 inline ssize_t removeAt(size_t index) { return removeItemsAt(index); } 125 126 protected: 127 virtual void do_construct(void* storage, size_t num) const; 128 virtual void do_destroy(void* storage, size_t num) const; 129 virtual void do_copy(void* dest, const void* from, size_t num) const; 130 virtual void do_splat(void* dest, const void* item, size_t num) const; 131 virtual void do_move_forward(void* dest, const void* from, size_t num) const; 132 virtual void do_move_backward(void* dest, const void* from, size_t num) const; 133 virtual int do_compare(const void* lhs, const void* rhs) const; 134 }; 135 136 // SortedVector<T> can be trivially moved using memcpy() because moving does not 137 // require any change to the underlying SharedBuffer contents or reference count. 138 template<typename T> struct trait_trivial_move<SortedVector<T> > { enum { value = true }; }; 139 140 // --------------------------------------------------------------------------- 141 // No user serviceable parts from here... 142 // --------------------------------------------------------------------------- 143 144 template<class TYPE> inline 145 SortedVector<TYPE>::SortedVector() 146 : SortedVectorImpl(sizeof(TYPE), 147 ((traits<TYPE>::has_trivial_ctor ? HAS_TRIVIAL_CTOR : 0) 148 |(traits<TYPE>::has_trivial_dtor ? HAS_TRIVIAL_DTOR : 0) 149 |(traits<TYPE>::has_trivial_copy ? HAS_TRIVIAL_COPY : 0)) 150 ) 151 { 152 } 153 154 template<class TYPE> inline 155 SortedVector<TYPE>::SortedVector(const SortedVector<TYPE>& rhs) 156 : SortedVectorImpl(rhs) { 157 } 158 159 template<class TYPE> inline 160 SortedVector<TYPE>::~SortedVector() { 161 finish_vector(); 162 } 163 164 template<class TYPE> inline 165 SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) { 166 SortedVectorImpl::operator = (rhs); 167 return *this; 168 } 169 170 template<class TYPE> inline 171 const SortedVector<TYPE>& SortedVector<TYPE>::operator = (const SortedVector<TYPE>& rhs) const { 172 SortedVectorImpl::operator = (rhs); 173 return *this; 174 } 175 176 template<class TYPE> inline 177 const TYPE* SortedVector<TYPE>::array() const { 178 return static_cast<const TYPE *>(arrayImpl()); 179 } 180 181 template<class TYPE> inline 182 TYPE* SortedVector<TYPE>::editArray() { 183 return static_cast<TYPE *>(editArrayImpl()); 184 } 185 186 187 template<class TYPE> inline 188 const TYPE& SortedVector<TYPE>::operator[](size_t index) const { 189 LOG_FATAL_IF(index>=size(), 190 "%s: index=%u out of range (%u)", __PRETTY_FUNCTION__, 191 int(index), int(size())); 192 return *(array() + index); 193 } 194 195 template<class TYPE> inline 196 const TYPE& SortedVector<TYPE>::itemAt(size_t index) const { 197 return operator[](index); 198 } 199 200 template<class TYPE> inline 201 const TYPE& SortedVector<TYPE>::top() const { 202 return *(array() + size() - 1); 203 } 204 205 template<class TYPE> inline 206 ssize_t SortedVector<TYPE>::add(const TYPE& item) { 207 return SortedVectorImpl::add(&item); 208 } 209 210 template<class TYPE> inline 211 ssize_t SortedVector<TYPE>::indexOf(const TYPE& item) const { 212 return SortedVectorImpl::indexOf(&item); 213 } 214 215 template<class TYPE> inline 216 size_t SortedVector<TYPE>::orderOf(const TYPE& item) const { 217 return SortedVectorImpl::orderOf(&item); 218 } 219 220 template<class TYPE> inline 221 ssize_t SortedVector<TYPE>::merge(const Vector<TYPE>& vector) { 222 return SortedVectorImpl::merge(reinterpret_cast<const VectorImpl&>(vector)); 223 } 224 225 template<class TYPE> inline 226 ssize_t SortedVector<TYPE>::merge(const SortedVector<TYPE>& vector) { 227 return SortedVectorImpl::merge(reinterpret_cast<const SortedVectorImpl&>(vector)); 228 } 229 230 template<class TYPE> inline 231 ssize_t SortedVector<TYPE>::remove(const TYPE& item) { 232 return SortedVectorImpl::remove(&item); 233 } 234 235 template<class TYPE> inline 236 ssize_t SortedVector<TYPE>::removeItemsAt(size_t index, size_t count) { 237 return VectorImpl::removeItemsAt(index, count); 238 } 239 240 // --------------------------------------------------------------------------- 241 242 template<class TYPE> 243 void SortedVector<TYPE>::do_construct(void* storage, size_t num) const { 244 construct_type( reinterpret_cast<TYPE*>(storage), num ); 245 } 246 247 template<class TYPE> 248 void SortedVector<TYPE>::do_destroy(void* storage, size_t num) const { 249 destroy_type( reinterpret_cast<TYPE*>(storage), num ); 250 } 251 252 template<class TYPE> 253 void SortedVector<TYPE>::do_copy(void* dest, const void* from, size_t num) const { 254 copy_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 255 } 256 257 template<class TYPE> 258 void SortedVector<TYPE>::do_splat(void* dest, const void* item, size_t num) const { 259 splat_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(item), num ); 260 } 261 262 template<class TYPE> 263 void SortedVector<TYPE>::do_move_forward(void* dest, const void* from, size_t num) const { 264 move_forward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 265 } 266 267 template<class TYPE> 268 void SortedVector<TYPE>::do_move_backward(void* dest, const void* from, size_t num) const { 269 move_backward_type( reinterpret_cast<TYPE*>(dest), reinterpret_cast<const TYPE*>(from), num ); 270 } 271 272 template<class TYPE> 273 int SortedVector<TYPE>::do_compare(const void* lhs, const void* rhs) const { 274 return compare_type( *reinterpret_cast<const TYPE*>(lhs), *reinterpret_cast<const TYPE*>(rhs) ); 275 } 276 277 }; // namespace android 278 279 280 // --------------------------------------------------------------------------- 281 282 #endif // ANDROID_SORTED_VECTOR_H 283