1 /****************************************************************************** 2 * 3 * Copyright (C) 2015 The Android Open Source Project 4 * 5 * Licensed under the Apache License, Version 2.0 (the "License"); 6 * you may not use this file except in compliance with the License. 7 * You may obtain a copy of the License at: 8 * 9 * http://www.apache.org/licenses/LICENSE-2.0 10 * 11 * Unless required by applicable law or agreed to in writing, software 12 * distributed under the License is distributed on an "AS IS" BASIS, 13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 * See the License for the specific language governing permissions and 15 * limitations under the License. 16 * 17 ***************************************************************************** 18 * Originally developed and contributed by Ittiam Systems Pvt. Ltd, Bangalore 19 */ 20 #include <string.h> 21 22 #include "iv_datatypedef.h" 23 #include "iv.h" 24 25 #include "impeg2_buf_mgr.h" 26 #include "impeg2_disp_mgr.h" 27 #include "impeg2_defs.h" 28 #include "impeg2_platform_macros.h" 29 #include "impeg2_inter_pred.h" 30 #include "impeg2_idct.h" 31 #include "impeg2_globals.h" 32 #include "impeg2_mem_func.h" 33 #include "impeg2_format_conv.h" 34 #include "impeg2_macros.h" 35 36 #include "ivd.h" 37 #include "impeg2d.h" 38 #include "impeg2d_bitstream.h" 39 #include "impeg2d_structs.h" 40 #include "impeg2d_vld_tables.h" 41 #include "impeg2d_vld.h" 42 #include "impeg2d_pic_proc.h" 43 #include "impeg2d_debug.h" 44 45 46 /******************************************************************************* 47 * Function name : impeg2d_dec_vld_symbol 48 * 49 * Description : Performs decoding of VLD symbol. It performs decoding by 50 * processing 1 bit at a time 51 * 52 * Arguments : 53 * stream : Bitstream 54 * ai2_code_table : Table used for decoding 55 * maxLen : Maximum Length of the decoded symbol in bits 56 * 57 * Value Returned: Decoded symbol 58 *******************************************************************************/ 59 WORD16 impeg2d_dec_vld_symbol(stream_t *ps_stream,const WORD16 ai2_code_table[][2], UWORD16 u2_max_len) 60 { 61 UWORD16 u2_data; 62 WORD16 u2_end = 0; 63 UWORD16 u2_org_max_len = u2_max_len; 64 UWORD16 u2_i_bit; 65 66 /* Get the maximum number of bits needed to decode a symbol */ 67 u2_data = impeg2d_bit_stream_nxt(ps_stream,u2_max_len); 68 do 69 { 70 u2_max_len--; 71 /* Read one bit at a time from the variable to decode the huffman code */ 72 u2_i_bit = (UWORD8)((u2_data >> u2_max_len) & 0x1); 73 74 /* Get the next node pointer or the symbol from the tree */ 75 u2_end = ai2_code_table[u2_end][u2_i_bit]; 76 }while(u2_end > 0); 77 78 /* Flush the appropriate number of bits from the ps_stream */ 79 impeg2d_bit_stream_flush(ps_stream,(UWORD8)(u2_org_max_len - u2_max_len)); 80 return(u2_end); 81 } 82 /******************************************************************************* 83 * Function name : impeg2d_fast_dec_vld_symbol 84 * 85 * Description : Performs decoding of VLD symbol. It performs decoding by 86 * processing n bits at a time 87 * 88 * Arguments : 89 * stream : Bitstream 90 * ai2_code_table : Code table containing huffman value 91 * indexTable : Index table containing index 92 * maxLen : Maximum Length of the decoded symbol in bits 93 * 94 * Value Returned: Decoded symbol 95 *******************************************************************************/ 96 WORD16 impeg2d_fast_dec_vld_symbol(stream_t *ps_stream, 97 const WORD16 ai2_code_table[][2], 98 const UWORD16 au2_indexTable[][2], 99 UWORD16 u2_max_len) 100 { 101 UWORD16 u2_cur_code; 102 UWORD16 u2_num_bits; 103 UWORD16 u2_vld_offset; 104 UWORD16 u2_start_len; 105 WORD16 u2_value; 106 UWORD16 u2_len; 107 UWORD16 u2_huffCode; 108 109 u2_start_len = au2_indexTable[0][0]; 110 u2_vld_offset = 0; 111 u2_huffCode = impeg2d_bit_stream_nxt(ps_stream,u2_max_len); 112 do 113 { 114 u2_cur_code = u2_huffCode >> (u2_max_len - u2_start_len); 115 u2_num_bits = ai2_code_table[u2_cur_code + u2_vld_offset][0]; 116 if(u2_num_bits == 0) 117 { 118 u2_huffCode &= ((1 << (u2_max_len - u2_start_len)) - 1); 119 u2_max_len -= u2_start_len; 120 u2_start_len = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][0]; 121 u2_vld_offset = au2_indexTable[ai2_code_table[u2_cur_code + u2_vld_offset][1]][1]; 122 } 123 else 124 { 125 u2_value = ai2_code_table[u2_cur_code + u2_vld_offset][1]; 126 u2_len = u2_num_bits; 127 } 128 }while(u2_num_bits == 0); 129 impeg2d_bit_stream_flush(ps_stream,u2_len); 130 return(u2_value); 131 } 132 /****************************************************************************** 133 * 134 * Function Name : impeg2d_dec_ac_coeff_zero 135 * 136 * Description : Decodes using Table B.14 137 * 138 * Arguments : Pointer to VideoObjectLayerStructure 139 * 140 * Values Returned : Decoded value 141 * 142 * Revision History: 143 * 144 * 28 02 2002 AR Creation 145 *******************************************************************************/ 146 UWORD16 impeg2d_dec_ac_coeff_zero(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val) 147 { 148 UWORD16 u2_offset,u2_decoded_value; 149 UWORD8 u1_shift; 150 UWORD32 u4_bits_read; 151 152 u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN); 153 154 if ((UWORD16)u4_bits_read >= 0x0800) 155 { 156 u2_offset = (UWORD16)u4_bits_read >> 11; 157 } 158 else if ((UWORD16)u4_bits_read >= 0x40) 159 { 160 u2_offset = 31 + ((UWORD16)u4_bits_read >> 6); 161 } 162 else if ((UWORD16)u4_bits_read >= 0x20) 163 { 164 u2_offset = 64; 165 } 166 else 167 { 168 u2_offset = 63; 169 u4_bits_read = (UWORD16)u4_bits_read - 0x10; 170 } 171 /*----------------------------------------------------------------------- 172 * The table gOffset contains both the offset for the group to which the 173 * Vld code belongs in the Ac Coeff Table and the no of bits with which 174 * the BitsRead should be shifted 175 *-----------------------------------------------------------------------*/ 176 u2_offset = gau2_impeg2d_offset_zero[u2_offset]; 177 u1_shift = u2_offset & 0xF; 178 179 /*----------------------------------------------------------------------- 180 * Depending upon the vld code, we index exactly to that particular 181 * Vld codes value in the Ac Coeff Table. 182 * (Offset >> 4) gives the offset for the group in the AcCoeffTable. 183 * (BitsRead >> shift) gives the offset within its group 184 *-----------------------------------------------------------------------*/ 185 u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift); 186 /*----------------------------------------------------------------------- 187 * DecodedValue has the Run, Level and the number of bits used by Vld code 188 *-----------------------------------------------------------------------*/ 189 u2_decoded_value = gau2_impeg2d_dct_coeff_zero[u2_offset]; 190 if(u2_decoded_value == END_OF_BLOCK) 191 { 192 *pu2_sym_len = 2; 193 *pu2_sym_val = EOB_CODE_VALUE; 194 } 195 else if(u2_decoded_value == ESCAPE_CODE) 196 { 197 *pu2_sym_len = u2_decoded_value & 0x1F; 198 *pu2_sym_val = ESC_CODE_VALUE; 199 } 200 else 201 { 202 *pu2_sym_len = u2_decoded_value & 0x1F; 203 *pu2_sym_val = u2_decoded_value >> 5; 204 } 205 return(u2_decoded_value); 206 } 207 208 /****************************************************************************** 209 * 210 * Function Name : impeg2d_dec_ac_coeff_one 211 * 212 * Description : Decodes using Table B.15 213 * 214 * Arguments : Pointer to VideoObjectLayerStructure 215 * 216 * Values Returned : Decoded value 217 * 218 * Revision History: 219 * 220 * 28 02 2002 AR Creation 221 *******************************************************************************/ 222 UWORD16 impeg2d_dec_ac_coeff_one(stream_t *ps_stream, UWORD16* pu2_sym_len, UWORD16* pu2_sym_val) 223 { 224 UWORD16 u2_offset, u2_decoded_value; 225 UWORD8 u1_shift; 226 UWORD32 u4_bits_read; 227 228 229 u4_bits_read = (UWORD16)impeg2d_bit_stream_nxt(ps_stream,MPEG2_AC_COEFF_MAX_LEN); 230 231 if ((UWORD16)u4_bits_read >= 0x8000) 232 { 233 /* If the MSB of the vld code is 1 */ 234 if (((UWORD16)u4_bits_read >> 12) == 0xF) 235 u2_offset = ((UWORD16)u4_bits_read >> 8) & 0xF; 236 else 237 u2_offset = (UWORD16)u4_bits_read >> 11; 238 u2_offset += gau2_impeg2d_offset_one[0]; 239 } 240 else if ((UWORD16)u4_bits_read >= 0x400) 241 { 242 u2_offset =(UWORD16) u4_bits_read >> 10; 243 u2_offset = gau2_impeg2d_offset_one[u2_offset]; 244 u1_shift = u2_offset & 0xF; 245 u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift); 246 } 247 else if ((UWORD16)u4_bits_read >= 0x20) 248 { 249 u2_offset = ((UWORD16)u4_bits_read >> 5) + 31; 250 u2_offset = gau2_impeg2d_offset_one[u2_offset]; 251 u1_shift = u2_offset & 0xF; 252 u2_offset = (u2_offset >> 4) + ((UWORD16)u4_bits_read >> u1_shift); 253 } 254 else 255 { 256 u2_offset = gau2_impeg2d_offset_one[63] + ((UWORD16)u4_bits_read & 0xF); 257 } 258 /*----------------------------------------------------------------------- 259 * DecodedValue has the Run, Level and the number of bits used by Vld code 260 *-----------------------------------------------------------------------*/ 261 u2_decoded_value = gau2_impeg2d_dct_coeff_one[u2_offset]; 262 263 if(u2_decoded_value == END_OF_BLOCK) 264 { 265 *pu2_sym_len = 4; 266 *pu2_sym_val = EOB_CODE_VALUE; 267 } 268 else if(u2_decoded_value == ESCAPE_CODE) 269 { 270 *pu2_sym_len = u2_decoded_value & 0x1F; 271 *pu2_sym_val = ESC_CODE_VALUE; 272 } 273 else 274 { 275 *pu2_sym_len = u2_decoded_value & 0x1F; 276 *pu2_sym_val = u2_decoded_value >> 5; 277 } 278 279 return(u2_decoded_value); 280 } 281 282 /****************************************************************************** 283 * 284 * Function Name : impeg2d_vld_inv_quant_mpeg1 285 * 286 * Description : Performs VLD operation for MPEG1/2 287 * 288 * Arguments : 289 * state : VLCD state parameter 290 * regs : Registers of VLCD 291 * 292 * Values Returned : None 293 ******************************************************************************/ 294 IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg1( 295 void *pv_dec, /* Decoder State */ 296 WORD16 *pi2_out_addr, /*!< Address where decoded symbols will be stored */ 297 const UWORD8 *pu1_scan, /*!< Scan table to be used */ 298 UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */ 299 UWORD16 u2_colr_comp, /*!< 0 - Luma,1 - U comp, 2 - V comp */ 300 UWORD16 u2_d_picture /*!< D Picture or not */ 301 ) 302 { 303 UWORD8 *pu1_weighting_matrix; 304 dec_state_t *ps_dec = (dec_state_t *) pv_dec; 305 IMPEG2D_ERROR_CODES_T e_error = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE; 306 307 WORD16 pi2_coeffs[NUM_COEFFS]; 308 UWORD8 pu1_pos[NUM_COEFFS]; 309 WORD32 i4_num_coeffs; 310 311 /* Perform VLD on the stream to get the coefficients and their positions */ 312 e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pu1_pos, u2_intra_flag, 313 u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format, 314 ps_dec->u2_is_mpeg2, &i4_num_coeffs); 315 if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error) 316 { 317 return e_error; 318 } 319 320 /* For YUV420 format,Select the weighting matrix according to Table 7.5 */ 321 pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix: 322 ps_dec->au1_inter_quant_matrix; 323 324 IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows); 325 /* Inverse Quantize the Output of VLD */ 326 PROFILE_DISABLE_INVQUANT_IF0 327 328 { 329 /* Clear output matrix */ 330 PROFILE_DISABLE_MEMSET_RESBUF_IF0 331 if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows)) 332 { 333 ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr); 334 } 335 336 impeg2d_inv_quant_mpeg1(pi2_out_addr, pu1_weighting_matrix, 337 ps_dec->u1_quant_scale, u2_intra_flag, 338 i4_num_coeffs, pi2_coeffs, pu1_pos, 339 pu1_scan, &ps_dec->u2_def_dc_pred[u2_colr_comp], 340 ps_dec->u2_intra_dc_precision); 341 342 if (0 != pi2_out_addr[0]) 343 { 344 /* The first coeff might've become non-zero due to intra_dc_decision 345 * value. So, check here after inverse quantization. 346 */ 347 ps_dec->u4_non_zero_cols |= 0x1; 348 ps_dec->u4_non_zero_rows |= 0x1; 349 } 350 } 351 352 return e_error; 353 } 354 355 /****************************************************************************** 356 * 357 * Function Name : impeg2d_vld_inv_quant_mpeg2 358 * 359 * Description : Performs VLD operation for MPEG1/2 360 * 361 * Arguments : 362 * state : VLCD state parameter 363 * regs : Registers of VLCD 364 * 365 * Values Returned : None 366 ******************************************************************************/ 367 IMPEG2D_ERROR_CODES_T impeg2d_vld_inv_quant_mpeg2( 368 void *pv_dec, /* Decoder State */ 369 WORD16 *pi2_out_addr, /*!< Address where decoded symbols will be stored */ 370 const UWORD8 *pu1_scan, /*!< Scan table to be used */ 371 UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */ 372 UWORD16 u2_colr_comp, /*!< 0 - Luma,1 - U comp, 2 - V comp */ 373 UWORD16 u2_d_picture /*!< D Picture or not */ 374 ) 375 { 376 UWORD8 *pu1_weighting_matrix; 377 WORD32 u4_sum_is_even; 378 dec_state_t *ps_dec = (dec_state_t *)pv_dec; 379 IMPEG2D_ERROR_CODES_T e_error = (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE; 380 381 WORD16 pi2_coeffs[NUM_COEFFS]; 382 UWORD8 pi4_pos[NUM_COEFFS]; 383 WORD32 i4_num_coeffs; 384 385 /* Perform VLD on the stream to get the coefficients and their positions */ 386 e_error = impeg2d_vld_decode(ps_dec, pi2_coeffs, pu1_scan, pi4_pos, u2_intra_flag, 387 u2_colr_comp, u2_d_picture, ps_dec->u2_intra_vlc_format, 388 ps_dec->u2_is_mpeg2, &i4_num_coeffs); 389 if ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE != e_error) 390 { 391 return e_error; 392 } 393 394 /* For YUV420 format,Select the weighting matrix according to Table 7.5 */ 395 pu1_weighting_matrix = (u2_intra_flag == 1) ? ps_dec->au1_intra_quant_matrix: 396 ps_dec->au1_inter_quant_matrix; 397 398 /*mismatch control for mpeg2*/ 399 /* Check if the block has only one non-zero coeff which is DC */ 400 ps_dec->i4_last_value_one = 0; 401 402 IMPEG2D_IQNT_INP_STATISTICS(pi2_out_addr, ps_dec->u4_non_zero_cols, ps_dec->u4_non_zero_rows); 403 404 /* Inverse Quantize the Output of VLD */ 405 PROFILE_DISABLE_INVQUANT_IF0 406 407 { 408 /* Clear output matrix */ 409 PROFILE_DISABLE_MEMSET_RESBUF_IF0 410 if (1 != (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows)) 411 { 412 ps_dec->pf_memset_16bit_8x8_linear_block (pi2_out_addr); 413 } 414 415 u4_sum_is_even = impeg2d_inv_quant_mpeg2(pi2_out_addr, pu1_weighting_matrix, 416 ps_dec->u1_quant_scale, u2_intra_flag, 417 i4_num_coeffs, pi2_coeffs, 418 pi4_pos, pu1_scan, 419 &ps_dec->u2_def_dc_pred[u2_colr_comp], 420 ps_dec->u2_intra_dc_precision); 421 422 if (0 != pi2_out_addr[0]) 423 { 424 /* The first coeff might've become non-zero due to intra_dc_decision 425 * value. So, check here after inverse quantization. 426 */ 427 ps_dec->u4_non_zero_cols |= 0x1; 428 ps_dec->u4_non_zero_rows |= 0x1; 429 } 430 431 if (1 == (ps_dec->u4_non_zero_cols | ps_dec->u4_non_zero_rows)) 432 { 433 ps_dec->i4_last_value_one = 1 - (pi2_out_addr[0] & 1); 434 } 435 else 436 { 437 /*toggle last bit if sum is even ,else retain it as it is*/ 438 pi2_out_addr[63] ^= (u4_sum_is_even & 1); 439 440 if (0 != pi2_out_addr[63]) 441 { 442 ps_dec->u4_non_zero_cols |= 0x80; 443 ps_dec->u4_non_zero_rows |= 0x80; 444 } 445 } 446 } 447 448 return e_error; 449 } 450 451 452 /****************************************************************************** 453 * 454 * Function Name : impeg2d_vld_decode 455 * 456 * Description : Performs VLD operation for MPEG1/2 457 * 458 * Arguments : 459 * state : VLCD state parameter 460 * regs : Registers of VLCD 461 * 462 * Values Returned : None 463 ******************************************************************************/ 464 IMPEG2D_ERROR_CODES_T impeg2d_vld_decode( 465 dec_state_t *ps_dec, 466 WORD16 *pi2_outAddr, /*!< Address where decoded symbols will be stored */ 467 const UWORD8 *pu1_scan, /*!< Scan table to be used */ 468 UWORD8 *pu1_pos, /*!< Scan table to be used */ 469 UWORD16 u2_intra_flag, /*!< Intra Macroblock or not */ 470 UWORD16 u2_chroma_flag, /*!< Chroma Block or not */ 471 UWORD16 u2_d_picture, /*!< D Picture or not */ 472 UWORD16 u2_intra_vlc_format, /*!< Intra VLC format */ 473 UWORD16 u2_mpeg2, /*!< MPEG-2 or not */ 474 WORD32 *pi4_num_coeffs /*!< Returns the number of coeffs in block */ 475 ) 476 { 477 478 UWORD32 u4_sym_len; 479 480 UWORD32 u4_decoded_value; 481 UWORD32 u4_level_first_byte; 482 WORD32 u4_level; 483 UWORD32 u4_run, u4_numCoeffs; 484 UWORD32 u4_buf; 485 UWORD32 u4_buf_nxt; 486 UWORD32 u4_offset; 487 UWORD32 *pu4_buf_aligned; 488 UWORD32 u4_bits; 489 stream_t *ps_stream = &ps_dec->s_bit_stream; 490 WORD32 u4_pos; 491 UWORD32 u4_nz_cols; 492 UWORD32 u4_nz_rows; 493 494 *pi4_num_coeffs = 0; 495 496 ps_dec->u4_non_zero_cols = 0; 497 ps_dec->u4_non_zero_rows = 0; 498 u4_nz_cols = ps_dec->u4_non_zero_cols; 499 u4_nz_rows = ps_dec->u4_non_zero_rows; 500 501 GET_TEMP_STREAM_DATA(u4_buf,u4_buf_nxt,u4_offset,pu4_buf_aligned,ps_stream) 502 /**************************************************************************/ 503 /* Decode the DC coefficient in case of Intra block */ 504 /**************************************************************************/ 505 if(u2_intra_flag) 506 { 507 WORD32 dc_size; 508 WORD32 dc_diff; 509 WORD32 maxLen; 510 WORD32 idx; 511 512 513 maxLen = MPEG2_DCT_DC_SIZE_LEN; 514 idx = 0; 515 if(u2_chroma_flag != 0) 516 { 517 maxLen += 1; 518 idx++; 519 } 520 521 522 { 523 WORD16 end = 0; 524 UWORD32 maxLen_tmp = maxLen; 525 UWORD16 m_iBit; 526 527 528 /* Get the maximum number of bits needed to decode a symbol */ 529 IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,maxLen) 530 do 531 { 532 maxLen_tmp--; 533 /* Read one bit at a time from the variable to decode the huffman code */ 534 m_iBit = (UWORD8)((u4_bits >> maxLen_tmp) & 0x1); 535 536 /* Get the next node pointer or the symbol from the tree */ 537 end = gai2_impeg2d_dct_dc_size[idx][end][m_iBit]; 538 }while(end > 0); 539 dc_size = end + MPEG2_DCT_DC_SIZE_OFFSET; 540 541 /* Flush the appropriate number of bits from the stream */ 542 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,(maxLen - maxLen_tmp),pu4_buf_aligned) 543 544 } 545 546 547 548 if (dc_size != 0) 549 { 550 UWORD32 u4_bits; 551 552 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, dc_size) 553 dc_diff = u4_bits; 554 555 if ((dc_diff & (1 << (dc_size - 1))) == 0) //v Probably the prediction algo? 556 dc_diff -= (1 << dc_size) - 1; 557 } 558 else 559 { 560 dc_diff = 0; 561 } 562 563 564 pi2_outAddr[*pi4_num_coeffs] = dc_diff; 565 /* This indicates the position of the coefficient. Since this is the DC 566 * coefficient, we put the position as 0. 567 */ 568 pu1_pos[*pi4_num_coeffs] = pu1_scan[0]; 569 (*pi4_num_coeffs)++; 570 571 if (0 != dc_diff) 572 { 573 u4_nz_cols |= 0x01; 574 u4_nz_rows |= 0x01; 575 } 576 577 u4_numCoeffs = 1; 578 } 579 /**************************************************************************/ 580 /* Decoding of first AC coefficient in case of non Intra block */ 581 /**************************************************************************/ 582 else 583 { 584 /* First symbol can be 1s */ 585 UWORD32 u4_bits; 586 587 IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,1) 588 589 if(u4_bits == 1) 590 { 591 592 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,1, pu4_buf_aligned) 593 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned, 1) 594 if(u4_bits == 1) 595 { 596 pi2_outAddr[*pi4_num_coeffs] = -1; 597 } 598 else 599 { 600 pi2_outAddr[*pi4_num_coeffs] = 1; 601 } 602 603 /* This indicates the position of the coefficient. Since this is the DC 604 * coefficient, we put the position as 0. 605 */ 606 pu1_pos[*pi4_num_coeffs] = pu1_scan[0]; 607 (*pi4_num_coeffs)++; 608 u4_numCoeffs = 1; 609 610 u4_nz_cols |= 0x01; 611 u4_nz_rows |= 0x01; 612 } 613 else 614 { 615 u4_numCoeffs = 0; 616 } 617 } 618 if (1 == u2_d_picture) 619 { 620 PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream) 621 ps_dec->u4_non_zero_cols = u4_nz_cols; 622 ps_dec->u4_non_zero_rows = u4_nz_rows; 623 return ((IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE); 624 } 625 626 627 628 if (1 == u2_intra_vlc_format && u2_intra_flag) 629 { 630 631 while(1) 632 { 633 //Putting the impeg2d_dec_ac_coeff_one function inline. 634 635 UWORD32 lead_zeros; 636 WORD16 DecodedValue; 637 638 u4_sym_len = 17; 639 IBITS_NXT(u4_buf,u4_buf_nxt,u4_offset,u4_bits,u4_sym_len) 640 641 DecodedValue = gau2_impeg2d_tab_one_1_9[u4_bits >> 8]; 642 u4_sym_len = (DecodedValue & 0xf); 643 u4_level = DecodedValue >> 9; 644 /* One table lookup */ 645 if(0 != u4_level) 646 { 647 u4_run = ((DecodedValue >> 4) & 0x1f); 648 u4_numCoeffs += u4_run; 649 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 650 pu1_pos[*pi4_num_coeffs] = u4_pos; 651 652 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 653 pi2_outAddr[*pi4_num_coeffs] = u4_level; 654 655 (*pi4_num_coeffs)++; 656 } 657 else 658 { 659 if (DecodedValue == END_OF_BLOCK_ONE) 660 { 661 u4_sym_len = 4; 662 663 break; 664 } 665 else 666 { 667 /*Second table lookup*/ 668 lead_zeros = CLZ(u4_bits) - 20;/* -16 since we are dealing with WORD32 */ 669 if (0 != lead_zeros) 670 { 671 672 u4_bits = (u4_bits >> (6 - lead_zeros)) & 0x001F; 673 674 /* Flush the number of bits */ 675 if (1 == lead_zeros) 676 { 677 u4_sym_len = ((u4_bits & 0x18) >> 3) == 2 ? 11:10; 678 } 679 else 680 { 681 u4_sym_len = 11 + lead_zeros; 682 } 683 /* flushing */ 684 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 685 686 /* Calculate the address */ 687 u4_bits = ((lead_zeros - 1) << 5) + u4_bits; 688 689 DecodedValue = gau2_impeg2d_tab_one_10_16[u4_bits]; 690 691 u4_run = BITS(DecodedValue, 8,4); 692 u4_level = ((WORD16) DecodedValue) >> 9; 693 694 u4_numCoeffs += u4_run; 695 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 696 pu1_pos[*pi4_num_coeffs] = u4_pos; 697 pi2_outAddr[*pi4_num_coeffs] = u4_level; 698 (*pi4_num_coeffs)++; 699 } 700 /*********************************************************************/ 701 /* MPEG2 Escape Code */ 702 /*********************************************************************/ 703 else if(u2_mpeg2 == 1) 704 { 705 u4_sym_len = 6; 706 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 707 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18) 708 u4_decoded_value = u4_bits; 709 u4_run = (u4_decoded_value >> 12); 710 u4_level = (u4_decoded_value & 0x0FFF); 711 712 if (u4_level) 713 u4_level = (u4_level - ((u4_level & 0x0800) << 1)); 714 715 u4_numCoeffs += u4_run; 716 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 717 pu1_pos[*pi4_num_coeffs] = u4_pos; 718 pi2_outAddr[*pi4_num_coeffs] = u4_level; 719 (*pi4_num_coeffs)++; 720 } 721 /*********************************************************************/ 722 /* MPEG1 Escape Code */ 723 /*********************************************************************/ 724 else 725 { 726 /*----------------------------------------------------------- 727 * MPEG-1 Stream 728 * 729 * <See D.9.3 of MPEG-2> Run-level escape syntax 730 * Run-level values that cannot be coded with a VLC are coded 731 * by the escape code '0000 01' followed by 732 * either a 14-bit FLC (127 <= level <= 127), 733 * or a 22-bit FLC (255 <= level <= 255). 734 * This is described in Annex B,B.5f of MPEG-1.standard 735 *-----------------------------------------------------------*/ 736 737 /*----------------------------------------------------------- 738 * First 6 bits are the value of the Run. Next is First 8 bits 739 * of Level. These bits decide whether it is 14 bit FLC or 740 * 22-bit FLC. 741 * 742 * If( first 8 bits of Level == '1000000' or '00000000') 743 * then its is 22-bit FLC. 744 * else 745 * it is 14-bit FLC. 746 *-----------------------------------------------------------*/ 747 u4_sym_len = 6; 748 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 749 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14) 750 u4_decoded_value = u4_bits; 751 u4_run = (u4_decoded_value >> 8); 752 u4_level_first_byte = (u4_decoded_value & 0x0FF); 753 if(u4_level_first_byte & 0x7F) 754 { 755 /*------------------------------------------------------- 756 * First 8 bits of level are neither 1000000 nor 00000000 757 * Hence 14-bit FLC (Last 8 bits are used to get level) 758 * 759 * Level = (msb of Level_First_Byte is 1)? 760 * Level_First_Byte - 256 : Level_First_Byte 761 *-------------------------------------------------------*/ 762 u4_level = (u4_level_first_byte - 763 ((u4_level_first_byte & 0x80) << 1)); 764 } 765 else 766 { 767 /*------------------------------------------------------- 768 * Next 8 bits are either 1000000 or 00000000 769 * Hence 22-bit FLC (Last 16 bits are used to get level) 770 * 771 * Level = (msb of Level_First_Byte is 1)? 772 * Level_Second_Byte - 256 : Level_Second_Byte 773 *-------------------------------------------------------*/ 774 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8) 775 u4_level = u4_bits; 776 u4_level = (u4_level - (u4_level_first_byte << 1)); 777 } 778 u4_numCoeffs += u4_run; 779 780 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 781 782 pu1_pos[*pi4_num_coeffs] = u4_pos; 783 pi2_outAddr[*pi4_num_coeffs] = u4_level; 784 (*pi4_num_coeffs)++; 785 } 786 } 787 } 788 789 u4_nz_cols |= 1 << (u4_pos & 0x7); 790 u4_nz_rows |= 1 << (u4_pos >> 0x3); 791 792 if (u4_numCoeffs > 64) 793 { 794 return IMPEG2D_MB_TEX_DECODE_ERR; 795 } 796 797 } 798 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len) 799 } 800 else 801 { 802 // Inline 803 while(1) 804 { 805 806 UWORD32 lead_zeros; 807 UWORD16 DecodedValue; 808 809 u4_sym_len = 17; 810 IBITS_NXT(u4_buf, u4_buf_nxt, u4_offset, u4_bits, u4_sym_len) 811 812 813 DecodedValue = gau2_impeg2d_tab_zero_1_9[u4_bits >> 8]; 814 u4_sym_len = BITS(DecodedValue, 3, 0); 815 u4_level = ((WORD16) DecodedValue) >> 9; 816 817 if (0 != u4_level) 818 { 819 u4_run = BITS(DecodedValue, 8,4); 820 821 u4_numCoeffs += u4_run; 822 823 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 824 pu1_pos[*pi4_num_coeffs] = u4_pos; 825 826 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 827 pi2_outAddr[*pi4_num_coeffs] = u4_level; 828 (*pi4_num_coeffs)++; 829 } 830 else 831 { 832 if(DecodedValue == END_OF_BLOCK_ZERO) 833 { 834 u4_sym_len = 2; 835 836 break; 837 } 838 else 839 { 840 lead_zeros = CLZ(u4_bits) - 20;/* -15 since we are dealing with WORD32 */ 841 /*Second table lookup*/ 842 if (0 != lead_zeros) 843 { 844 u4_bits = (u4_bits >> (6 - lead_zeros)) & 0x001F; 845 846 /* Flush the number of bits */ 847 u4_sym_len = 11 + lead_zeros; 848 849 /* Calculate the address */ 850 u4_bits = ((lead_zeros - 1) << 5) + u4_bits; 851 852 DecodedValue = gau2_impeg2d_tab_zero_10_16[u4_bits]; 853 854 u4_run = BITS(DecodedValue, 8,4); 855 u4_level = ((WORD16) DecodedValue) >> 9; 856 857 u4_numCoeffs += u4_run; 858 859 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 860 pu1_pos[*pi4_num_coeffs] = u4_pos; 861 if (1 == lead_zeros) 862 u4_sym_len--; 863 /* flushing */ 864 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 865 pi2_outAddr[*pi4_num_coeffs] = u4_level; 866 867 (*pi4_num_coeffs)++; 868 } 869 /*Escape Sequence*/ 870 else if(u2_mpeg2 == 1) 871 { 872 u4_sym_len = 6; 873 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 874 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,18) 875 u4_decoded_value = u4_bits; 876 u4_run = (u4_decoded_value >> 12); 877 u4_level = (u4_decoded_value & 0x0FFF); 878 879 if (u4_level) 880 u4_level = (u4_level - ((u4_level & 0x0800) << 1)); 881 882 u4_numCoeffs += u4_run; 883 884 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 885 pu1_pos[*pi4_num_coeffs] = u4_pos; 886 pi2_outAddr[*pi4_num_coeffs] = u4_level; 887 888 (*pi4_num_coeffs)++; 889 } 890 /*********************************************************************/ 891 /* MPEG1 Escape Code */ 892 /*********************************************************************/ 893 else 894 { 895 /*----------------------------------------------------------- 896 * MPEG-1 Stream 897 * 898 * <See D.9.3 of MPEG-2> Run-level escape syntax 899 * Run-level values that cannot be coded with a VLC are coded 900 * by the escape code '0000 01' followed by 901 * either a 14-bit FLC (127 <= level <= 127), 902 * or a 22-bit FLC (255 <= level <= 255). 903 * This is described in Annex B,B.5f of MPEG-1.standard 904 *-----------------------------------------------------------*/ 905 906 /*----------------------------------------------------------- 907 * First 6 bits are the value of the Run. Next is First 8 bits 908 * of Level. These bits decide whether it is 14 bit FLC or 909 * 22-bit FLC. 910 * 911 * If( first 8 bits of Level == '1000000' or '00000000') 912 * then its is 22-bit FLC. 913 * else 914 * it is 14-bit FLC. 915 *-----------------------------------------------------------*/ 916 u4_sym_len = 6; 917 FLUSH_BITS(u4_offset,u4_buf,u4_buf_nxt,u4_sym_len,pu4_buf_aligned) 918 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,14) 919 u4_decoded_value = u4_bits; 920 u4_run = (u4_decoded_value >> 8); 921 u4_level_first_byte = (u4_decoded_value & 0x0FF); 922 if(u4_level_first_byte & 0x7F) 923 { 924 /*------------------------------------------------------- 925 * First 8 bits of level are neither 1000000 nor 00000000 926 * Hence 14-bit FLC (Last 8 bits are used to get level) 927 * 928 * Level = (msb of Level_First_Byte is 1)? 929 * Level_First_Byte - 256 : Level_First_Byte 930 *-------------------------------------------------------*/ 931 u4_level = (u4_level_first_byte - 932 ((u4_level_first_byte & 0x80) << 1)); 933 } 934 else 935 { 936 /*------------------------------------------------------- 937 * Next 8 bits are either 1000000 or 00000000 938 * Hence 22-bit FLC (Last 16 bits are used to get level) 939 * 940 * Level = (msb of Level_First_Byte is 1)? 941 * Level_Second_Byte - 256 : Level_Second_Byte 942 *-------------------------------------------------------*/ 943 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,8) 944 u4_level = u4_bits; 945 u4_level = (u4_level - (u4_level_first_byte << 1)); 946 } 947 u4_numCoeffs += u4_run; 948 949 u4_pos = pu1_scan[u4_numCoeffs++ & 63]; 950 pu1_pos[*pi4_num_coeffs] = u4_pos; 951 pi2_outAddr[*pi4_num_coeffs] = u4_level; 952 953 (*pi4_num_coeffs)++; 954 } 955 } 956 } 957 958 u4_nz_cols |= 1 << (u4_pos & 0x7); 959 u4_nz_rows |= 1 << (u4_pos >> 0x3); 960 if (u4_numCoeffs > 64) 961 { 962 return IMPEG2D_MB_TEX_DECODE_ERR; 963 } 964 965 } 966 967 IBITS_GET(u4_buf,u4_buf_nxt,u4_offset,u4_bits,pu4_buf_aligned,u4_sym_len) 968 969 } 970 971 PUT_TEMP_STREAM_DATA(u4_buf, u4_buf_nxt, u4_offset, pu4_buf_aligned, ps_stream) 972 973 ps_dec->u4_non_zero_cols = u4_nz_cols; 974 ps_dec->u4_non_zero_rows = u4_nz_rows; 975 976 return (IMPEG2D_ERROR_CODES_T)IVD_ERROR_NONE; 977 } 978 979 980 981 /*****************************************************************************/ 982 /* */ 983 /* Function Name : impeg2d_inv_quant_mpeg1 */ 984 /* */ 985 /* Description : Inverse quantizes the output of VLD */ 986 /* */ 987 /* Inputs : */ 988 /* blk, - Block to be inverse quantized */ 989 /* weighting_matrix - Matrix to be used in inverse quant */ 990 /* intra_dc_precision- Precision reqd to scale intra DC value */ 991 /* quant_scale - Quanization scale for inverse quant */ 992 /* intra_flag - Intra or Not */ 993 /* */ 994 /* Globals : None */ 995 /* */ 996 /* Processing : Implements the inverse quantize equation */ 997 /* */ 998 /* Outputs : Inverse quantized values in the block */ 999 /* */ 1000 /* Returns : None */ 1001 /* */ 1002 /* Issues : None */ 1003 /* */ 1004 /* Revision History: */ 1005 /* */ 1006 /* DD MM YYYY Author(s) Changes */ 1007 /* 05 09 2005 Harish M First Version */ 1008 /* */ 1009 /*****************************************************************************/ 1010 UWORD8 impeg2d_inv_quant_mpeg1(WORD16 *pi2_blk, 1011 UWORD8 *pu1_weighting_matrix, 1012 UWORD8 u1_quant_scale, 1013 WORD32 u4_intra_flag, 1014 WORD32 i4_num_coeffs, 1015 WORD16 *pi2_coeffs, 1016 UWORD8 *pu1_pos, 1017 const UWORD8 *pu1_scan, 1018 UWORD16 *pu2_def_dc_pred, 1019 UWORD16 u2_intra_dc_precision) 1020 { 1021 UWORD16 i4_pos; 1022 1023 WORD32 i4_iter; 1024 1025 /* Inverse Quantize the predicted DC value for intra MB*/ 1026 if(u4_intra_flag == 1) 1027 { 1028 /**************************************************************************/ 1029 /* Decode the DC coefficient in case of Intra block and also update */ 1030 /* DC predictor value of the corresponding color component */ 1031 /**************************************************************************/ 1032 { 1033 pi2_coeffs[0] += *pu2_def_dc_pred; 1034 *pu2_def_dc_pred = pi2_coeffs[0]; 1035 pi2_coeffs[0] <<= (3 - u2_intra_dc_precision); 1036 pi2_coeffs[0] = CLIP_S12(pi2_coeffs[0]); 1037 } 1038 1039 pi2_blk[pu1_scan[0]] = pi2_coeffs[0]; 1040 } 1041 /************************************************************************/ 1042 /* Inverse quantization of other DCT coefficients */ 1043 /************************************************************************/ 1044 for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++) 1045 { 1046 1047 WORD16 sign; 1048 WORD32 temp, temp1; 1049 1050 /* Position is the inverse scan of the index stored */ 1051 i4_pos = pu1_pos[i4_iter]; 1052 pi2_blk[i4_pos] = pi2_coeffs[i4_iter]; 1053 1054 sign = SIGN(pi2_blk[i4_pos]); 1055 temp = ABS(pi2_blk[i4_pos] << 1); 1056 1057 /* pi2_coeffs has only non-zero elements. So no need to check 1058 * if the coeff is non-zero. 1059 */ 1060 temp = temp + (1 * !u4_intra_flag); 1061 1062 temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale; 1063 1064 temp = temp >> 5; 1065 1066 temp1 = temp | 1; 1067 1068 temp1 = (temp1 > temp) ? (temp1 - temp) : (temp - temp1); 1069 1070 temp = temp - temp1; 1071 1072 if(temp < 0) 1073 { 1074 temp = 0; 1075 } 1076 1077 temp = temp * sign; 1078 1079 temp = CLIP_S12(temp); 1080 1081 pi2_blk[i4_pos] = temp; 1082 } 1083 1084 /*return value is used in the case of mpeg2 for mismatch control*/ 1085 return (0); 1086 } /* End of inv_quant() */ 1087 1088 1089 1090 /*****************************************************************************/ 1091 /* */ 1092 /* Function Name : impeg2d_inv_quant_mpeg2 */ 1093 /* */ 1094 /* Description : Inverse quantizes the output of VLD */ 1095 /* */ 1096 /* Inputs : */ 1097 /* blk, - Block to be inverse quantized */ 1098 /* weighting_matrix - Matrix to be used in inverse quant */ 1099 /* intra_dc_precision- Precision reqd to scale intra DC value */ 1100 /* quant_scale - Quanization scale for inverse quant */ 1101 /* intra_flag - Intra or Not */ 1102 /* */ 1103 /* Globals : None */ 1104 /* */ 1105 /* Processing : Implements the inverse quantize equation */ 1106 /* */ 1107 /* Outputs : Inverse quantized values in the block */ 1108 /* */ 1109 /* Returns : None */ 1110 /* */ 1111 /* Issues : None */ 1112 /* */ 1113 /* Revision History: */ 1114 /* */ 1115 /* DD MM YYYY Author(s) Changes */ 1116 /* 05 09 2005 Harish M First Version */ 1117 /* */ 1118 /*****************************************************************************/ 1119 UWORD8 impeg2d_inv_quant_mpeg2(WORD16 *pi2_blk, 1120 UWORD8 *pu1_weighting_matrix, 1121 UWORD8 u1_quant_scale, 1122 WORD32 u4_intra_flag, 1123 WORD32 i4_num_coeffs, 1124 WORD16 *pi2_coeffs, 1125 UWORD8 *pu1_pos, 1126 const UWORD8 *pu1_scan, 1127 UWORD16 *pu2_def_dc_pred, 1128 UWORD16 u2_intra_dc_precision) 1129 { 1130 1131 WORD32 i4_pos; 1132 /* Used for Mismatch control */ 1133 UWORD32 sum; 1134 1135 WORD32 i4_iter; 1136 1137 sum = 0; 1138 1139 /* Inverse Quantize the predicted DC value for intra MB*/ 1140 if(u4_intra_flag == 1) 1141 { 1142 /**************************************************************************/ 1143 /* Decode the DC coefficient in case of Intra block and also update */ 1144 /* DC predictor value of the corresponding color component */ 1145 /**************************************************************************/ 1146 { 1147 pi2_coeffs[0] += *pu2_def_dc_pred; 1148 *pu2_def_dc_pred = pi2_coeffs[0]; 1149 pi2_coeffs[0] <<= (3 - u2_intra_dc_precision); 1150 pi2_coeffs[0] = CLIP_S12(pi2_coeffs[0]); 1151 } 1152 1153 pi2_blk[pu1_scan[0]] = pi2_coeffs[0]; 1154 sum = pi2_blk[0]; 1155 } 1156 1157 /************************************************************************/ 1158 /* Inverse quantization of other DCT coefficients */ 1159 /************************************************************************/ 1160 for(i4_iter = u4_intra_flag; i4_iter < i4_num_coeffs; i4_iter++) 1161 { 1162 WORD16 sign; 1163 WORD32 temp; 1164 /* Position is the inverse scan of the index stored */ 1165 i4_pos = pu1_pos[i4_iter]; 1166 pi2_blk[i4_pos] = pi2_coeffs[i4_iter]; 1167 1168 sign = SIGN(pi2_blk[i4_pos]); 1169 temp = ABS(pi2_blk[i4_pos] << 1); 1170 temp = temp + (1 * !u4_intra_flag); 1171 temp = temp * pu1_weighting_matrix[i4_pos] * u1_quant_scale; 1172 1173 temp = temp >> 5; 1174 1175 temp = temp * sign; 1176 1177 temp = CLIP_S12(temp); 1178 1179 pi2_blk[i4_pos] = temp; 1180 1181 sum += temp; 1182 } 1183 return (sum ^ 1); 1184 } /* End of inv_quant() */ 1185