Home | History | Annotate | Download | only in arm
      1 // Copyright 2012 the V8 project authors. All rights reserved.
      2 // Use of this source code is governed by a BSD-style license that can be
      3 // found in the LICENSE file.
      4 
      5 
      6 // Declares a Simulator for ARM instructions if we are not generating a native
      7 // ARM binary. This Simulator allows us to run and debug ARM code generation on
      8 // regular desktop machines.
      9 // V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
     10 // which will start execution in the Simulator or forwards to the real entry
     11 // on a ARM HW platform.
     12 
     13 #ifndef V8_ARM_SIMULATOR_ARM_H_
     14 #define V8_ARM_SIMULATOR_ARM_H_
     15 
     16 #include "src/allocation.h"
     17 
     18 #if !defined(USE_SIMULATOR)
     19 // Running without a simulator on a native arm platform.
     20 
     21 namespace v8 {
     22 namespace internal {
     23 
     24 // When running without a simulator we call the entry directly.
     25 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
     26   (entry(p0, p1, p2, p3, p4))
     27 
     28 typedef int (*arm_regexp_matcher)(String*, int, const byte*, const byte*,
     29                                   void*, int*, int, Address, int, Isolate*);
     30 
     31 
     32 // Call the generated regexp code directly. The code at the entry address
     33 // should act as a function matching the type arm_regexp_matcher.
     34 // The fifth argument is a dummy that reserves the space used for
     35 // the return address added by the ExitFrame in native calls.
     36 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
     37                                    p7, p8)                                     \
     38   (FUNCTION_CAST<arm_regexp_matcher>(entry)(p0, p1, p2, p3, NULL, p4, p5, p6,  \
     39                                             p7, p8))
     40 
     41 // The stack limit beyond which we will throw stack overflow errors in
     42 // generated code. Because generated code on arm uses the C stack, we
     43 // just use the C stack limit.
     44 class SimulatorStack : public v8::internal::AllStatic {
     45  public:
     46   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
     47                                             uintptr_t c_limit) {
     48     USE(isolate);
     49     return c_limit;
     50   }
     51 
     52   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
     53                                             uintptr_t try_catch_address) {
     54     USE(isolate);
     55     return try_catch_address;
     56   }
     57 
     58   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
     59     USE(isolate);
     60   }
     61 };
     62 
     63 }  // namespace internal
     64 }  // namespace v8
     65 
     66 #else  // !defined(USE_SIMULATOR)
     67 // Running with a simulator.
     68 
     69 #include "src/arm/constants-arm.h"
     70 #include "src/assembler.h"
     71 #include "src/hashmap.h"
     72 
     73 namespace v8 {
     74 namespace internal {
     75 
     76 class CachePage {
     77  public:
     78   static const int LINE_VALID = 0;
     79   static const int LINE_INVALID = 1;
     80 
     81   static const int kPageShift = 12;
     82   static const int kPageSize = 1 << kPageShift;
     83   static const int kPageMask = kPageSize - 1;
     84   static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
     85   static const int kLineLength = 1 << kLineShift;
     86   static const int kLineMask = kLineLength - 1;
     87 
     88   CachePage() {
     89     memset(&validity_map_, LINE_INVALID, sizeof(validity_map_));
     90   }
     91 
     92   char* ValidityByte(int offset) {
     93     return &validity_map_[offset >> kLineShift];
     94   }
     95 
     96   char* CachedData(int offset) {
     97     return &data_[offset];
     98   }
     99 
    100  private:
    101   char data_[kPageSize];   // The cached data.
    102   static const int kValidityMapSize = kPageSize >> kLineShift;
    103   char validity_map_[kValidityMapSize];  // One byte per line.
    104 };
    105 
    106 
    107 class Simulator {
    108  public:
    109   friend class ArmDebugger;
    110   enum Register {
    111     no_reg = -1,
    112     r0 = 0, r1, r2, r3, r4, r5, r6, r7,
    113     r8, r9, r10, r11, r12, r13, r14, r15,
    114     num_registers,
    115     sp = 13,
    116     lr = 14,
    117     pc = 15,
    118     s0 = 0, s1, s2, s3, s4, s5, s6, s7,
    119     s8, s9, s10, s11, s12, s13, s14, s15,
    120     s16, s17, s18, s19, s20, s21, s22, s23,
    121     s24, s25, s26, s27, s28, s29, s30, s31,
    122     num_s_registers = 32,
    123     d0 = 0, d1, d2, d3, d4, d5, d6, d7,
    124     d8, d9, d10, d11, d12, d13, d14, d15,
    125     d16, d17, d18, d19, d20, d21, d22, d23,
    126     d24, d25, d26, d27, d28, d29, d30, d31,
    127     num_d_registers = 32,
    128     q0 = 0, q1, q2, q3, q4, q5, q6, q7,
    129     q8, q9, q10, q11, q12, q13, q14, q15,
    130     num_q_registers = 16
    131   };
    132 
    133   explicit Simulator(Isolate* isolate);
    134   ~Simulator();
    135 
    136   // The currently executing Simulator instance. Potentially there can be one
    137   // for each native thread.
    138   static Simulator* current(v8::internal::Isolate* isolate);
    139 
    140   // Accessors for register state. Reading the pc value adheres to the ARM
    141   // architecture specification and is off by a 8 from the currently executing
    142   // instruction.
    143   void set_register(int reg, int32_t value);
    144   int32_t get_register(int reg) const;
    145   double get_double_from_register_pair(int reg);
    146   void set_register_pair_from_double(int reg, double* value);
    147   void set_dw_register(int dreg, const int* dbl);
    148 
    149   // Support for VFP.
    150   void get_d_register(int dreg, uint64_t* value);
    151   void set_d_register(int dreg, const uint64_t* value);
    152   void get_d_register(int dreg, uint32_t* value);
    153   void set_d_register(int dreg, const uint32_t* value);
    154   void get_q_register(int qreg, uint64_t* value);
    155   void set_q_register(int qreg, const uint64_t* value);
    156   void get_q_register(int qreg, uint32_t* value);
    157   void set_q_register(int qreg, const uint32_t* value);
    158 
    159   void set_s_register(int reg, unsigned int value);
    160   unsigned int get_s_register(int reg) const;
    161 
    162   void set_d_register_from_double(int dreg, const double& dbl) {
    163     SetVFPRegister<double, 2>(dreg, dbl);
    164   }
    165 
    166   double get_double_from_d_register(int dreg) {
    167     return GetFromVFPRegister<double, 2>(dreg);
    168   }
    169 
    170   void set_s_register_from_float(int sreg, const float flt) {
    171     SetVFPRegister<float, 1>(sreg, flt);
    172   }
    173 
    174   float get_float_from_s_register(int sreg) {
    175     return GetFromVFPRegister<float, 1>(sreg);
    176   }
    177 
    178   void set_s_register_from_sinteger(int sreg, const int sint) {
    179     SetVFPRegister<int, 1>(sreg, sint);
    180   }
    181 
    182   int get_sinteger_from_s_register(int sreg) {
    183     return GetFromVFPRegister<int, 1>(sreg);
    184   }
    185 
    186   // Special case of set_register and get_register to access the raw PC value.
    187   void set_pc(int32_t value);
    188   int32_t get_pc() const;
    189 
    190   Address get_sp() const {
    191     return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
    192   }
    193 
    194   // Accessor to the internal simulator stack area.
    195   uintptr_t StackLimit(uintptr_t c_limit) const;
    196 
    197   // Executes ARM instructions until the PC reaches end_sim_pc.
    198   void Execute();
    199 
    200   // Call on program start.
    201   static void Initialize(Isolate* isolate);
    202 
    203   static void TearDown(HashMap* i_cache, Redirection* first);
    204 
    205   // V8 generally calls into generated JS code with 5 parameters and into
    206   // generated RegExp code with 7 parameters. This is a convenience function,
    207   // which sets up the simulator state and grabs the result on return.
    208   int32_t Call(byte* entry, int argument_count, ...);
    209   // Alternative: call a 2-argument double function.
    210   void CallFP(byte* entry, double d0, double d1);
    211   int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
    212   double CallFPReturnsDouble(byte* entry, double d0, double d1);
    213 
    214   // Push an address onto the JS stack.
    215   uintptr_t PushAddress(uintptr_t address);
    216 
    217   // Pop an address from the JS stack.
    218   uintptr_t PopAddress();
    219 
    220   // Debugger input.
    221   void set_last_debugger_input(char* input);
    222   char* last_debugger_input() { return last_debugger_input_; }
    223 
    224   // ICache checking.
    225   static void FlushICache(v8::internal::HashMap* i_cache, void* start,
    226                           size_t size);
    227 
    228   // Returns true if pc register contains one of the 'special_values' defined
    229   // below (bad_lr, end_sim_pc).
    230   bool has_bad_pc() const;
    231 
    232   // EABI variant for double arguments in use.
    233   bool use_eabi_hardfloat() {
    234 #if USE_EABI_HARDFLOAT
    235     return true;
    236 #else
    237     return false;
    238 #endif
    239   }
    240 
    241  private:
    242   enum special_values {
    243     // Known bad pc value to ensure that the simulator does not execute
    244     // without being properly setup.
    245     bad_lr = -1,
    246     // A pc value used to signal the simulator to stop execution.  Generally
    247     // the lr is set to this value on transition from native C code to
    248     // simulated execution, so that the simulator can "return" to the native
    249     // C code.
    250     end_sim_pc = -2
    251   };
    252 
    253   // Unsupported instructions use Format to print an error and stop execution.
    254   void Format(Instruction* instr, const char* format);
    255 
    256   // Checks if the current instruction should be executed based on its
    257   // condition bits.
    258   inline bool ConditionallyExecute(Instruction* instr);
    259 
    260   // Helper functions to set the conditional flags in the architecture state.
    261   void SetNZFlags(int32_t val);
    262   void SetCFlag(bool val);
    263   void SetVFlag(bool val);
    264   bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
    265   bool BorrowFrom(int32_t left, int32_t right);
    266   bool OverflowFrom(int32_t alu_out,
    267                     int32_t left,
    268                     int32_t right,
    269                     bool addition);
    270 
    271   inline int GetCarry() {
    272     return c_flag_ ? 1 : 0;
    273   }
    274 
    275   // Support for VFP.
    276   void Compute_FPSCR_Flags(float val1, float val2);
    277   void Compute_FPSCR_Flags(double val1, double val2);
    278   void Copy_FPSCR_to_APSR();
    279   inline float canonicalizeNaN(float value);
    280   inline double canonicalizeNaN(double value);
    281 
    282   // Helper functions to decode common "addressing" modes
    283   int32_t GetShiftRm(Instruction* instr, bool* carry_out);
    284   int32_t GetImm(Instruction* instr, bool* carry_out);
    285   int32_t ProcessPU(Instruction* instr,
    286                     int num_regs,
    287                     int operand_size,
    288                     intptr_t* start_address,
    289                     intptr_t* end_address);
    290   void HandleRList(Instruction* instr, bool load);
    291   void HandleVList(Instruction* inst);
    292   void SoftwareInterrupt(Instruction* instr);
    293 
    294   // Stop helper functions.
    295   inline bool isStopInstruction(Instruction* instr);
    296   inline bool isWatchedStop(uint32_t bkpt_code);
    297   inline bool isEnabledStop(uint32_t bkpt_code);
    298   inline void EnableStop(uint32_t bkpt_code);
    299   inline void DisableStop(uint32_t bkpt_code);
    300   inline void IncreaseStopCounter(uint32_t bkpt_code);
    301   void PrintStopInfo(uint32_t code);
    302 
    303   // Read and write memory.
    304   inline uint8_t ReadBU(int32_t addr);
    305   inline int8_t ReadB(int32_t addr);
    306   inline void WriteB(int32_t addr, uint8_t value);
    307   inline void WriteB(int32_t addr, int8_t value);
    308 
    309   inline uint16_t ReadHU(int32_t addr, Instruction* instr);
    310   inline int16_t ReadH(int32_t addr, Instruction* instr);
    311   // Note: Overloaded on the sign of the value.
    312   inline void WriteH(int32_t addr, uint16_t value, Instruction* instr);
    313   inline void WriteH(int32_t addr, int16_t value, Instruction* instr);
    314 
    315   inline int ReadW(int32_t addr, Instruction* instr);
    316   inline void WriteW(int32_t addr, int value, Instruction* instr);
    317 
    318   int32_t* ReadDW(int32_t addr);
    319   void WriteDW(int32_t addr, int32_t value1, int32_t value2);
    320 
    321   // Executing is handled based on the instruction type.
    322   // Both type 0 and type 1 rolled into one.
    323   void DecodeType01(Instruction* instr);
    324   void DecodeType2(Instruction* instr);
    325   void DecodeType3(Instruction* instr);
    326   void DecodeType4(Instruction* instr);
    327   void DecodeType5(Instruction* instr);
    328   void DecodeType6(Instruction* instr);
    329   void DecodeType7(Instruction* instr);
    330 
    331   // Support for VFP.
    332   void DecodeTypeVFP(Instruction* instr);
    333   void DecodeType6CoprocessorIns(Instruction* instr);
    334   void DecodeSpecialCondition(Instruction* instr);
    335 
    336   void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr);
    337   void DecodeVCMP(Instruction* instr);
    338   void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr);
    339   void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr);
    340 
    341   // Executes one instruction.
    342   void InstructionDecode(Instruction* instr);
    343 
    344   // ICache.
    345   static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
    346   static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
    347                            int size);
    348   static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);
    349 
    350   // Runtime call support.
    351   static void* RedirectExternalReference(
    352       Isolate* isolate, void* external_function,
    353       v8::internal::ExternalReference::Type type);
    354 
    355   // Handle arguments and return value for runtime FP functions.
    356   void GetFpArgs(double* x, double* y, int32_t* z);
    357   void SetFpResult(const double& result);
    358   void TrashCallerSaveRegisters();
    359 
    360   template<class ReturnType, int register_size>
    361       ReturnType GetFromVFPRegister(int reg_index);
    362 
    363   template<class InputType, int register_size>
    364       void SetVFPRegister(int reg_index, const InputType& value);
    365 
    366   void CallInternal(byte* entry);
    367 
    368   // Architecture state.
    369   // Saturating instructions require a Q flag to indicate saturation.
    370   // There is currently no way to read the CPSR directly, and thus read the Q
    371   // flag, so this is left unimplemented.
    372   int32_t registers_[16];
    373   bool n_flag_;
    374   bool z_flag_;
    375   bool c_flag_;
    376   bool v_flag_;
    377 
    378   // VFP architecture state.
    379   unsigned int vfp_registers_[num_d_registers * 2];
    380   bool n_flag_FPSCR_;
    381   bool z_flag_FPSCR_;
    382   bool c_flag_FPSCR_;
    383   bool v_flag_FPSCR_;
    384 
    385   // VFP rounding mode. See ARM DDI 0406B Page A2-29.
    386   VFPRoundingMode FPSCR_rounding_mode_;
    387   bool FPSCR_default_NaN_mode_;
    388 
    389   // VFP FP exception flags architecture state.
    390   bool inv_op_vfp_flag_;
    391   bool div_zero_vfp_flag_;
    392   bool overflow_vfp_flag_;
    393   bool underflow_vfp_flag_;
    394   bool inexact_vfp_flag_;
    395 
    396   // Simulator support.
    397   char* stack_;
    398   bool pc_modified_;
    399   int icount_;
    400 
    401   // Debugger input.
    402   char* last_debugger_input_;
    403 
    404   // Icache simulation
    405   v8::internal::HashMap* i_cache_;
    406 
    407   // Registered breakpoints.
    408   Instruction* break_pc_;
    409   Instr break_instr_;
    410 
    411   v8::internal::Isolate* isolate_;
    412 
    413   // A stop is watched if its code is less than kNumOfWatchedStops.
    414   // Only watched stops support enabling/disabling and the counter feature.
    415   static const uint32_t kNumOfWatchedStops = 256;
    416 
    417   // Breakpoint is disabled if bit 31 is set.
    418   static const uint32_t kStopDisabledBit = 1 << 31;
    419 
    420   // A stop is enabled, meaning the simulator will stop when meeting the
    421   // instruction, if bit 31 of watched_stops_[code].count is unset.
    422   // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
    423   // the breakpoint was hit or gone through.
    424   struct StopCountAndDesc {
    425     uint32_t count;
    426     char* desc;
    427   };
    428   StopCountAndDesc watched_stops_[kNumOfWatchedStops];
    429 };
    430 
    431 
    432 // When running with the simulator transition into simulated execution at this
    433 // point.
    434 #define CALL_GENERATED_CODE(isolate, entry, p0, p1, p2, p3, p4) \
    435   reinterpret_cast<Object*>(Simulator::current(isolate)->Call(  \
    436       FUNCTION_ADDR(entry), 5, p0, p1, p2, p3, p4))
    437 
    438 #define CALL_GENERATED_FP_INT(isolate, entry, p0, p1) \
    439   Simulator::current(isolate)->CallFPReturnsInt(FUNCTION_ADDR(entry), p0, p1)
    440 
    441 #define CALL_GENERATED_REGEXP_CODE(isolate, entry, p0, p1, p2, p3, p4, p5, p6, \
    442                                    p7, p8)                                     \
    443   Simulator::current(isolate)                                                  \
    444       ->Call(entry, 10, p0, p1, p2, p3, NULL, p4, p5, p6, p7, p8)
    445 
    446 
    447 // The simulator has its own stack. Thus it has a different stack limit from
    448 // the C-based native code.  The JS-based limit normally points near the end of
    449 // the simulator stack.  When the C-based limit is exhausted we reflect that by
    450 // lowering the JS-based limit as well, to make stack checks trigger.
    451 class SimulatorStack : public v8::internal::AllStatic {
    452  public:
    453   static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
    454                                             uintptr_t c_limit) {
    455     return Simulator::current(isolate)->StackLimit(c_limit);
    456   }
    457 
    458   static inline uintptr_t RegisterCTryCatch(v8::internal::Isolate* isolate,
    459                                             uintptr_t try_catch_address) {
    460     Simulator* sim = Simulator::current(isolate);
    461     return sim->PushAddress(try_catch_address);
    462   }
    463 
    464   static inline void UnregisterCTryCatch(v8::internal::Isolate* isolate) {
    465     Simulator::current(isolate)->PopAddress();
    466   }
    467 };
    468 
    469 }  // namespace internal
    470 }  // namespace v8
    471 
    472 #endif  // !defined(USE_SIMULATOR)
    473 #endif  // V8_ARM_SIMULATOR_ARM_H_
    474