1 /*------------------------------------------------------------------------- 2 * drawElements Quality Program Reference Renderer 3 * ----------------------------------------------- 4 * 5 * Copyright 2014 The Android Open Source Project 6 * 7 * Licensed under the Apache License, Version 2.0 (the "License"); 8 * you may not use this file except in compliance with the License. 9 * You may obtain a copy of the License at 10 * 11 * http://www.apache.org/licenses/LICENSE-2.0 12 * 13 * Unless required by applicable law or agreed to in writing, software 14 * distributed under the License is distributed on an "AS IS" BASIS, 15 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 16 * See the License for the specific language governing permissions and 17 * limitations under the License. 18 * 19 *//*! 20 * \file 21 * \brief Reference rasterizer 22 *//*--------------------------------------------------------------------*/ 23 24 #include "rrRasterizer.hpp" 25 #include "deMath.h" 26 #include "tcuVectorUtil.hpp" 27 28 namespace rr 29 { 30 31 inline deInt64 toSubpixelCoord (float v) 32 { 33 return (deInt64)(v * (1<<RASTERIZER_SUBPIXEL_BITS) + (v < 0.f ? -0.5f : 0.5f)); 34 } 35 36 inline deInt64 toSubpixelCoord (deInt32 v) 37 { 38 return v << RASTERIZER_SUBPIXEL_BITS; 39 } 40 41 inline deInt32 ceilSubpixelToPixelCoord (deInt64 coord, bool fillEdge) 42 { 43 if (coord >= 0) 44 return (deInt32)((coord + ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); 45 else 46 return (deInt32)((coord + (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); 47 } 48 49 inline deInt32 floorSubpixelToPixelCoord (deInt64 coord, bool fillEdge) 50 { 51 if (coord >= 0) 52 return (deInt32)((coord - (fillEdge ? 1 : 0)) >> RASTERIZER_SUBPIXEL_BITS); 53 else 54 return (deInt32)((coord - ((1ll<<RASTERIZER_SUBPIXEL_BITS) - (fillEdge ? 0 : 1))) >> RASTERIZER_SUBPIXEL_BITS); 55 } 56 57 static inline void initEdgeCCW (EdgeFunction& edge, const HorizontalFill horizontalFill, const VerticalFill verticalFill, const deInt64 x0, const deInt64 y0, const deInt64 x1, const deInt64 y1) 58 { 59 // \note See EdgeFunction documentation for details. 60 61 const deInt64 xd = x1-x0; 62 const deInt64 yd = y1-y0; 63 bool inclusive = false; //!< Inclusive in CCW orientation. 64 65 if (yd == 0) 66 inclusive = verticalFill == FILL_BOTTOM ? xd >= 0 : xd <= 0; 67 else 68 inclusive = horizontalFill == FILL_LEFT ? yd <= 0 : yd >= 0; 69 70 edge.a = (y0 - y1); 71 edge.b = (x1 - x0); 72 edge.c = x0*y1 - y0*x1; 73 edge.inclusive = inclusive; //!< \todo [pyry] Swap for CW triangles 74 } 75 76 static inline void reverseEdge (EdgeFunction& edge) 77 { 78 edge.a = -edge.a; 79 edge.b = -edge.b; 80 edge.c = -edge.c; 81 edge.inclusive = !edge.inclusive; 82 } 83 84 static inline deInt64 evaluateEdge (const EdgeFunction& edge, const deInt64 x, const deInt64 y) 85 { 86 return edge.a*x + edge.b*y + edge.c; 87 } 88 89 static inline bool isInsideCCW (const EdgeFunction& edge, const deInt64 edgeVal) 90 { 91 return edge.inclusive ? (edgeVal >= 0) : (edgeVal > 0); 92 } 93 94 namespace LineRasterUtil 95 { 96 97 struct SubpixelLineSegment 98 { 99 const tcu::Vector<deInt64,2> m_v0; 100 const tcu::Vector<deInt64,2> m_v1; 101 102 SubpixelLineSegment (const tcu::Vector<deInt64,2>& v0, const tcu::Vector<deInt64,2>& v1) 103 : m_v0(v0) 104 , m_v1(v1) 105 { 106 } 107 108 tcu::Vector<deInt64,2> direction (void) const 109 { 110 return m_v1 - m_v0; 111 } 112 }; 113 114 enum LINE_SIDE 115 { 116 LINE_SIDE_INTERSECT = 0, 117 LINE_SIDE_LEFT, 118 LINE_SIDE_RIGHT 119 }; 120 121 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::Vec2& v) 122 { 123 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); 124 } 125 126 static tcu::Vector<deInt64,2> toSubpixelVector (const tcu::IVec2& v) 127 { 128 return tcu::Vector<deInt64,2>(toSubpixelCoord(v.x()), toSubpixelCoord(v.y())); 129 } 130 131 #if defined(DE_DEBUG) 132 static bool isTheCenterOfTheFragment (const tcu::Vector<deInt64,2>& a) 133 { 134 const deUint64 pixelSize = 1ll << (RASTERIZER_SUBPIXEL_BITS); 135 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 136 return ((a.x() & (pixelSize-1)) == halfPixel && 137 (a.y() & (pixelSize-1)) == halfPixel); 138 } 139 140 static bool inViewport (const tcu::IVec2& p, const tcu::IVec4& viewport) 141 { 142 return p.x() >= viewport.x() && 143 p.y() >= viewport.y() && 144 p.x() < viewport.x() + viewport.z() && 145 p.y() < viewport.y() + viewport.w(); 146 } 147 #endif // DE_DEBUG 148 149 // returns true if vertex is on the left side of the line 150 static bool vertexOnLeftSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 151 { 152 const tcu::Vector<deInt64,2> u = l.direction(); 153 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 154 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 155 return crossProduct < 0; 156 } 157 158 // returns true if vertex is on the right side of the line 159 static bool vertexOnRightSideOfLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 160 { 161 const tcu::Vector<deInt64,2> u = l.direction(); 162 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 163 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 164 return crossProduct > 0; 165 } 166 167 // returns true if vertex is on the line 168 static bool vertexOnLine (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 169 { 170 const tcu::Vector<deInt64,2> u = l.direction(); 171 const tcu::Vector<deInt64,2> v = ( p - l.m_v0); 172 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 173 return crossProduct == 0; // cross product == 0 174 } 175 176 // returns true if vertex is on the line segment 177 static bool vertexOnLineSegment (const tcu::Vector<deInt64,2>& p, const SubpixelLineSegment& l) 178 { 179 if (!vertexOnLine(p, l)) 180 return false; 181 182 const tcu::Vector<deInt64,2> v = l.direction(); 183 const tcu::Vector<deInt64,2> u1 = ( p - l.m_v0); 184 const tcu::Vector<deInt64,2> u2 = ( p - l.m_v1); 185 186 if (v.x() == 0 && v.y() == 0) 187 return false; 188 189 return tcu::dot( v, u1) >= 0 && 190 tcu::dot(-v, u2) >= 0; // dot (A->B, A->V) >= 0 and dot (B->A, B->V) >= 0 191 } 192 193 static LINE_SIDE getVertexSide (const tcu::Vector<deInt64,2>& v, const SubpixelLineSegment& l) 194 { 195 if (vertexOnLeftSideOfLine(v, l)) 196 return LINE_SIDE_LEFT; 197 else if (vertexOnRightSideOfLine(v, l)) 198 return LINE_SIDE_RIGHT; 199 else if (vertexOnLine(v, l)) 200 return LINE_SIDE_INTERSECT; 201 else 202 { 203 DE_ASSERT(false); 204 return LINE_SIDE_INTERSECT; 205 } 206 } 207 208 // returns true if angle between line and given cornerExitNormal is in range (-45, 45) 209 bool lineInCornerAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) 210 { 211 // v0 -> v1 has angle difference to cornerExitNormal in range (-45, 45) 212 const tcu::Vector<deInt64,2> v = line.direction(); 213 const deInt64 dotProduct = dot(v, cornerExitNormal); 214 215 // dotProduct > |v1-v0|*|cornerExitNormal|/sqrt(2) 216 if (dotProduct < 0) 217 return false; 218 return 2 * dotProduct * dotProduct > tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); 219 } 220 221 // returns true if angle between line and given cornerExitNormal is in range (-135, 135) 222 bool lineInCornerOutsideAngleRange (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& cornerExitNormal) 223 { 224 // v0 -> v1 has angle difference to cornerExitNormal in range (-135, 135) 225 const tcu::Vector<deInt64,2> v = line.direction(); 226 const deInt64 dotProduct = dot(v, cornerExitNormal); 227 228 // dotProduct > -|v1-v0|*|cornerExitNormal|/sqrt(2) 229 if (dotProduct >= 0) 230 return true; 231 return 2 * (-dotProduct) * (-dotProduct) < tcu::lengthSquared(v)*tcu::lengthSquared(cornerExitNormal); 232 } 233 234 bool doesLineSegmentExitDiamond (const SubpixelLineSegment& line, const tcu::Vector<deInt64,2>& diamondCenter) 235 { 236 DE_ASSERT(isTheCenterOfTheFragment(diamondCenter)); 237 238 // Diamond Center is at diamondCenter in subpixel coords 239 240 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 241 242 // Reject distant diamonds early 243 { 244 const tcu::Vector<deInt64,2> u = line.direction(); 245 const tcu::Vector<deInt64,2> v = (diamondCenter - line.m_v0); 246 const deInt64 crossProduct = (u.x() * v.y() - u.y() * v.x()); 247 248 // crossProduct = |p| |l| sin(theta) 249 // distanceFromLine = |p| sin(theta) 250 // => distanceFromLine = crossProduct / |l| 251 // 252 // |distanceFromLine| > C 253 // => distanceFromLine^2 > C^2 254 // => crossProduct^2 / |l|^2 > C^2 255 // => crossProduct^2 > |l|^2 * C^2 256 257 const deInt64 floorSqrtMaxInt64 = 3037000499LL; //!< floor(sqrt(MAX_INT64)) 258 259 const deInt64 broadRejectDistance = 2 * halfPixel; 260 const deInt64 broadRejectDistanceSquared = broadRejectDistance * broadRejectDistance; 261 const bool crossProductOverflows = (crossProduct > floorSqrtMaxInt64 || crossProduct < -floorSqrtMaxInt64); 262 const deInt64 crossProductSquared = (crossProductOverflows) ? (0) : (crossProduct * crossProduct); // avoid overflow 263 const deInt64 lineLengthSquared = tcu::lengthSquared(u); 264 const bool limitValueCouldOverflow = ((64 - deClz64(lineLengthSquared)) + (64 - deClz64(broadRejectDistanceSquared))) > 63; 265 const deInt64 limitValue = (limitValueCouldOverflow) ? (0) : (lineLengthSquared * broadRejectDistanceSquared); // avoid overflow 266 267 // only cross overflows 268 if (crossProductOverflows && !limitValueCouldOverflow) 269 return false; 270 271 // both representable 272 if (!crossProductOverflows && !limitValueCouldOverflow) 273 { 274 if (crossProductSquared > limitValue) 275 return false; 276 } 277 } 278 279 const struct DiamondBound 280 { 281 tcu::Vector<deInt64,2> p0; 282 tcu::Vector<deInt64,2> p1; 283 bool edgeInclusive; // would a point on the bound be inside of the region 284 } bounds[] = 285 { 286 { diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), false }, 287 { diamondCenter + tcu::Vector<deInt64,2>(-halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), false }, 288 { diamondCenter + tcu::Vector<deInt64,2>(0, halfPixel), diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), true }, 289 { diamondCenter + tcu::Vector<deInt64,2>(halfPixel, 0), diamondCenter + tcu::Vector<deInt64,2>(0, -halfPixel), true }, 290 }; 291 292 const struct DiamondCorners 293 { 294 enum CORNER_EDGE_CASE_BEHAVIOR 295 { 296 CORNER_EDGE_CASE_NONE, // if the line intersects just a corner, no entering or exiting 297 CORNER_EDGE_CASE_HIT, // if the line intersects just a corner, entering and exit 298 CORNER_EDGE_CASE_HIT_FIRST_QUARTER, // if the line intersects just a corner and the line has either endpoint in (+X,-Y) direction (preturbing moves the line inside) 299 CORNER_EDGE_CASE_HIT_SECOND_QUARTER // if the line intersects just a corner and the line has either endpoint in (+X,+Y) direction (preturbing moves the line inside) 300 }; 301 enum CORNER_START_CASE_BEHAVIOR 302 { 303 CORNER_START_CASE_NONE, // the line starting point is outside, no exiting 304 CORNER_START_CASE_OUTSIDE, // exit, if line does not intersect the region (preturbing moves the start point inside) 305 CORNER_START_CASE_POSITIVE_Y_45, // exit, if line the angle of line vector and X-axis is in range (0, 45] in positive Y side. 306 CORNER_START_CASE_NEGATIVE_Y_45 // exit, if line the angle of line vector and X-axis is in range [0, 45] in negative Y side. 307 }; 308 enum CORNER_END_CASE_BEHAVIOR 309 { 310 CORNER_END_CASE_NONE, // end is inside, no exiting (preturbing moves the line end inside) 311 CORNER_END_CASE_DIRECTION, // exit, if line intersected the region (preturbing moves the line end outside) 312 CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER, // exit, if line intersected the region, or line originates from (+X,-Y) direction (preturbing moves the line end outside) 313 CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER // exit, if line intersected the region, or line originates from (+X,+Y) direction (preturbing moves the line end outside) 314 }; 315 316 tcu::Vector<deInt64,2> dp; 317 bool pointInclusive; // would a point in this corner intersect with the region 318 CORNER_EDGE_CASE_BEHAVIOR lineBehavior; // would a line segment going through this corner intersect with the region 319 CORNER_START_CASE_BEHAVIOR startBehavior; // how the corner behaves if the start point at the corner 320 CORNER_END_CASE_BEHAVIOR endBehavior; // how the corner behaves if the end point at the corner 321 } corners[] = 322 { 323 { tcu::Vector<deInt64,2>(0, -halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER, DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER}, 324 { tcu::Vector<deInt64,2>(-halfPixel, 0), false, DiamondCorners::CORNER_EDGE_CASE_NONE, DiamondCorners::CORNER_START_CASE_NONE, DiamondCorners::CORNER_END_CASE_DIRECTION }, 325 { tcu::Vector<deInt64,2>(0, halfPixel), false, DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER, DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45, DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER }, 326 { tcu::Vector<deInt64,2>(halfPixel, 0), true, DiamondCorners::CORNER_EDGE_CASE_HIT, DiamondCorners::CORNER_START_CASE_OUTSIDE, DiamondCorners::CORNER_END_CASE_NONE }, 327 }; 328 329 // Corner cases at the corners 330 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(corners); ++ndx) 331 { 332 const tcu::Vector<deInt64,2> p = diamondCenter + corners[ndx].dp; 333 const bool intersectsAtCorner = LineRasterUtil::vertexOnLineSegment(p, line); 334 335 if (!intersectsAtCorner) 336 continue; 337 338 // line segment body intersects with the corner 339 if (p != line.m_v0 && p != line.m_v1) 340 { 341 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT) 342 return true; 343 344 // endpoint in (+X, -Y) (X or Y may be 0) direction <==> x*y <= 0 345 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_FIRST_QUARTER && 346 (line.direction().x() * line.direction().y()) <= 0) 347 return true; 348 349 // endpoint in (+X, +Y) (Y > 0) direction <==> x*y > 0 350 if (corners[ndx].lineBehavior == DiamondCorners::CORNER_EDGE_CASE_HIT_SECOND_QUARTER && 351 (line.direction().x() * line.direction().y()) > 0) 352 return true; 353 } 354 355 // line exits the area at the corner 356 if (lineInCornerAngleRange(line, corners[ndx].dp)) 357 { 358 const bool startIsInside = corners[ndx].pointInclusive || p != line.m_v0; 359 const bool endIsOutside = !corners[ndx].pointInclusive || p != line.m_v1; 360 361 // starting point is inside the region and end endpoint is outside 362 if (startIsInside && endIsOutside) 363 return true; 364 } 365 366 // line end is at the corner 367 if (p == line.m_v1) 368 { 369 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION || 370 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER || 371 corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER) 372 { 373 // did the line intersect the region 374 if (lineInCornerAngleRange(line, corners[ndx].dp)) 375 return true; 376 } 377 378 // due to the perturbed endpoint, lines at this the angle will cause and enter-exit pair 379 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_FIRST_QUARTER && 380 line.direction().x() < 0 && 381 line.direction().y() > 0) 382 return true; 383 if (corners[ndx].endBehavior == DiamondCorners::CORNER_END_CASE_DIRECTION_AND_SECOND_QUARTER && 384 line.direction().x() > 0 && 385 line.direction().y() > 0) 386 return true; 387 } 388 389 // line start is at the corner 390 if (p == line.m_v0) 391 { 392 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_OUTSIDE) 393 { 394 // if the line is not going inside, it will exit 395 if (lineInCornerOutsideAngleRange(line, corners[ndx].dp)) 396 return true; 397 } 398 399 // exit, if line the angle between line vector and X-axis is in range (0, 45] in positive Y side. 400 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_POSITIVE_Y_45 && 401 line.direction().x() > 0 && 402 line.direction().y() > 0 && 403 line.direction().y() <= line.direction().x()) 404 return true; 405 406 // exit, if line the angle between line vector and X-axis is in range [0, 45] in negative Y side. 407 if (corners[ndx].startBehavior == DiamondCorners::CORNER_START_CASE_NEGATIVE_Y_45 && 408 line.direction().x() > 0 && 409 line.direction().y() <= 0 && 410 -line.direction().y() <= line.direction().x()) 411 return true; 412 } 413 } 414 415 // Does the line intersect boundary at the left == exits the diamond 416 for (int ndx = 0; ndx < DE_LENGTH_OF_ARRAY(bounds); ++ndx) 417 { 418 const bool startVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || 419 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v0, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); 420 const bool endVertexInside = LineRasterUtil::vertexOnLeftSideOfLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1)) || 421 (bounds[ndx].edgeInclusive && LineRasterUtil::vertexOnLine (line.m_v1, LineRasterUtil::SubpixelLineSegment(bounds[ndx].p0, bounds[ndx].p1))); 422 423 // start must be on inside this half space (left or at the inclusive boundary) 424 if (!startVertexInside) 425 continue; 426 427 // end must be outside of this half-space (right or at non-inclusive boundary) 428 if (endVertexInside) 429 continue; 430 431 // Does the line via v0 and v1 intersect the line segment p0-p1 432 // <==> p0 and p1 are the different sides (LEFT, RIGHT) of the v0-v1 line. 433 // Corners are not allowed, they are checked already 434 LineRasterUtil::LINE_SIDE sideP0 = LineRasterUtil::getVertexSide(bounds[ndx].p0, line); 435 LineRasterUtil::LINE_SIDE sideP1 = LineRasterUtil::getVertexSide(bounds[ndx].p1, line); 436 437 if (sideP0 != LineRasterUtil::LINE_SIDE_INTERSECT && 438 sideP1 != LineRasterUtil::LINE_SIDE_INTERSECT && 439 sideP0 != sideP1) 440 return true; 441 } 442 443 return false; 444 } 445 446 } // LineRasterUtil 447 448 TriangleRasterizer::TriangleRasterizer (const tcu::IVec4& viewport, const int numSamples, const RasterizationState& state) 449 : m_viewport (viewport) 450 , m_numSamples (numSamples) 451 , m_winding (state.winding) 452 , m_horizontalFill (state.horizontalFill) 453 , m_verticalFill (state.verticalFill) 454 , m_face (FACETYPE_LAST) 455 { 456 } 457 458 /*--------------------------------------------------------------------*//*! 459 * \brief Initialize triangle rasterization 460 * \param v0 Screen-space coordinates (x, y, z) and 1/w for vertex 0. 461 * \param v1 Screen-space coordinates (x, y, z) and 1/w for vertex 1. 462 * \param v2 Screen-space coordinates (x, y, z) and 1/w for vertex 2. 463 *//*--------------------------------------------------------------------*/ 464 void TriangleRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, const tcu::Vec4& v2) 465 { 466 m_v0 = v0; 467 m_v1 = v1; 468 m_v2 = v2; 469 470 // Positions in fixed-point coordinates. 471 const deInt64 x0 = toSubpixelCoord(v0.x()); 472 const deInt64 y0 = toSubpixelCoord(v0.y()); 473 const deInt64 x1 = toSubpixelCoord(v1.x()); 474 const deInt64 y1 = toSubpixelCoord(v1.y()); 475 const deInt64 x2 = toSubpixelCoord(v2.x()); 476 const deInt64 y2 = toSubpixelCoord(v2.y()); 477 478 // Initialize edge functions. 479 if (m_winding == WINDING_CCW) 480 { 481 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x0, y0, x1, y1); 482 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x1, y1, x2, y2); 483 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x2, y2, x0, y0); 484 } 485 else 486 { 487 // Reverse edges 488 initEdgeCCW(m_edge01, m_horizontalFill, m_verticalFill, x1, y1, x0, y0); 489 initEdgeCCW(m_edge12, m_horizontalFill, m_verticalFill, x2, y2, x1, y1); 490 initEdgeCCW(m_edge20, m_horizontalFill, m_verticalFill, x0, y0, x2, y2); 491 } 492 493 // Determine face. 494 const deInt64 s = evaluateEdge(m_edge01, x2, y2); 495 const bool positiveArea = (m_winding == WINDING_CCW) ? (s > 0) : (s < 0); 496 m_face = positiveArea ? FACETYPE_FRONT : FACETYPE_BACK; 497 498 if (!positiveArea) 499 { 500 // Reverse edges so that we can use CCW area tests & interpolation 501 reverseEdge(m_edge01); 502 reverseEdge(m_edge12); 503 reverseEdge(m_edge20); 504 } 505 506 // Bounding box 507 const deInt64 xMin = de::min(de::min(x0, x1), x2); 508 const deInt64 xMax = de::max(de::max(x0, x1), x2); 509 const deInt64 yMin = de::min(de::min(y0, y1), y2); 510 const deInt64 yMax = de::max(de::max(y0, y1), y2); 511 512 m_bboxMin.x() = floorSubpixelToPixelCoord (xMin, m_horizontalFill == FILL_LEFT); 513 m_bboxMin.y() = floorSubpixelToPixelCoord (yMin, m_verticalFill == FILL_BOTTOM); 514 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, m_horizontalFill == FILL_RIGHT); 515 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, m_verticalFill == FILL_TOP); 516 517 // Clamp to viewport 518 const int wX0 = m_viewport.x(); 519 const int wY0 = m_viewport.y(); 520 const int wX1 = wX0 + m_viewport.z() - 1; 521 const int wY1 = wY0 + m_viewport.w() -1; 522 523 m_bboxMin.x() = de::clamp(m_bboxMin.x(), wX0, wX1); 524 m_bboxMin.y() = de::clamp(m_bboxMin.y(), wY0, wY1); 525 m_bboxMax.x() = de::clamp(m_bboxMax.x(), wX0, wX1); 526 m_bboxMax.y() = de::clamp(m_bboxMax.y(), wY0, wY1); 527 528 m_curPos = m_bboxMin; 529 } 530 531 void TriangleRasterizer::rasterizeSingleSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 532 { 533 DE_ASSERT(maxFragmentPackets > 0); 534 535 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 536 int packetNdx = 0; 537 538 // For depth interpolation; given barycentrics A, B, C = (1 - A - B) 539 // we can reformulate the usual z = z0*A + z1*B + z2*C into more 540 // stable equation z = A*(z0 - z2) + B*(z1 - z2) + z2. 541 const float za = m_v0.z()-m_v2.z(); 542 const float zb = m_v1.z()-m_v2.z(); 543 const float zc = m_v2.z(); 544 545 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 546 { 547 const int x0 = m_curPos.x(); 548 const int y0 = m_curPos.y(); 549 550 // Subpixel coords 551 const deInt64 sx0 = toSubpixelCoord(x0) + halfPixel; 552 const deInt64 sx1 = toSubpixelCoord(x0+1) + halfPixel; 553 const deInt64 sy0 = toSubpixelCoord(y0) + halfPixel; 554 const deInt64 sy1 = toSubpixelCoord(y0+1) + halfPixel; 555 556 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; 557 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; 558 559 // Viewport test 560 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); 561 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); 562 563 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); 564 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); 565 566 // Edge values 567 tcu::Vector<deInt64, 4> e01; 568 tcu::Vector<deInt64, 4> e12; 569 tcu::Vector<deInt64, 4> e20; 570 571 // Coverage 572 deUint64 coverage = 0; 573 574 // Evaluate edge values 575 for (int i = 0; i < 4; i++) 576 { 577 e01[i] = evaluateEdge(m_edge01, sx[i], sy[i]); 578 e12[i] = evaluateEdge(m_edge12, sx[i], sy[i]); 579 e20[i] = evaluateEdge(m_edge20, sx[i], sy[i]); 580 } 581 582 // Compute coverage mask 583 coverage = setCoverageValue(coverage, 1, 0, 0, 0, isInsideCCW(m_edge01, e01[0]) && isInsideCCW(m_edge12, e12[0]) && isInsideCCW(m_edge20, e20[0])); 584 coverage = setCoverageValue(coverage, 1, 1, 0, 0, !outX1 && isInsideCCW(m_edge01, e01[1]) && isInsideCCW(m_edge12, e12[1]) && isInsideCCW(m_edge20, e20[1])); 585 coverage = setCoverageValue(coverage, 1, 0, 1, 0, !outY1 && isInsideCCW(m_edge01, e01[2]) && isInsideCCW(m_edge12, e12[2]) && isInsideCCW(m_edge20, e20[2])); 586 coverage = setCoverageValue(coverage, 1, 1, 1, 0, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[3]) && isInsideCCW(m_edge12, e12[3]) && isInsideCCW(m_edge20, e20[3])); 587 588 // Advance to next location 589 m_curPos.x() += 2; 590 if (m_curPos.x() > m_bboxMax.x()) 591 { 592 m_curPos.y() += 2; 593 m_curPos.x() = m_bboxMin.x(); 594 } 595 596 if (coverage == 0) 597 continue; // Discard. 598 599 // Floating-point edge values for barycentrics etc. 600 const tcu::Vec4 e01f = e01.asFloat(); 601 const tcu::Vec4 e12f = e12.asFloat(); 602 const tcu::Vec4 e20f = e20.asFloat(); 603 604 // Compute depth values. 605 if (depthValues) 606 { 607 const tcu::Vec4 edgeSum = e01f + e12f + e20f; 608 const tcu::Vec4 z0 = e12f / edgeSum; 609 const tcu::Vec4 z1 = e20f / edgeSum; 610 611 depthValues[packetNdx*4+0] = z0[0]*za + z1[0]*zb + zc; 612 depthValues[packetNdx*4+1] = z0[1]*za + z1[1]*zb + zc; 613 depthValues[packetNdx*4+2] = z0[2]*za + z1[2]*zb + zc; 614 depthValues[packetNdx*4+3] = z0[3]*za + z1[3]*zb + zc; 615 } 616 617 // Compute barycentrics and write out fragment packet 618 { 619 FragmentPacket& packet = fragmentPackets[packetNdx]; 620 621 const tcu::Vec4 b0 = e12f * m_v0.w(); 622 const tcu::Vec4 b1 = e20f * m_v1.w(); 623 const tcu::Vec4 b2 = e01f * m_v2.w(); 624 const tcu::Vec4 bSum = b0 + b1 + b2; 625 626 packet.position = tcu::IVec2(x0, y0); 627 packet.coverage = coverage; 628 packet.barycentric[0] = b0 / bSum; 629 packet.barycentric[1] = b1 / bSum; 630 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; 631 632 packetNdx += 1; 633 } 634 } 635 636 DE_ASSERT(packetNdx <= maxFragmentPackets); 637 numPacketsRasterized = packetNdx; 638 } 639 640 // Sample positions - ordered as (x, y) list. 641 642 // \note Macros are used to eliminate function calls even in debug builds. 643 #define SAMPLE_POS_TO_SUBPIXEL_COORD(POS) \ 644 (deInt64)((POS) * (1<<RASTERIZER_SUBPIXEL_BITS) + 0.5f) 645 646 #define SAMPLE_POS(X, Y) \ 647 SAMPLE_POS_TO_SUBPIXEL_COORD(X), SAMPLE_POS_TO_SUBPIXEL_COORD(Y) 648 649 static const deInt64 s_samplePos2[] = 650 { 651 SAMPLE_POS(0.3f, 0.3f), 652 SAMPLE_POS(0.7f, 0.7f) 653 }; 654 655 static const deInt64 s_samplePos4[] = 656 { 657 SAMPLE_POS(0.25f, 0.25f), 658 SAMPLE_POS(0.75f, 0.25f), 659 SAMPLE_POS(0.25f, 0.75f), 660 SAMPLE_POS(0.75f, 0.75f) 661 }; 662 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos4) == 4*2); 663 664 static const deInt64 s_samplePos8[] = 665 { 666 SAMPLE_POS( 7.f/16.f, 9.f/16.f), 667 SAMPLE_POS( 9.f/16.f, 13.f/16.f), 668 SAMPLE_POS(11.f/16.f, 3.f/16.f), 669 SAMPLE_POS(13.f/16.f, 11.f/16.f), 670 SAMPLE_POS( 1.f/16.f, 7.f/16.f), 671 SAMPLE_POS( 5.f/16.f, 1.f/16.f), 672 SAMPLE_POS(15.f/16.f, 5.f/16.f), 673 SAMPLE_POS( 3.f/16.f, 15.f/16.f) 674 }; 675 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos8) == 8*2); 676 677 static const deInt64 s_samplePos16[] = 678 { 679 SAMPLE_POS(1.f/8.f, 1.f/8.f), 680 SAMPLE_POS(3.f/8.f, 1.f/8.f), 681 SAMPLE_POS(5.f/8.f, 1.f/8.f), 682 SAMPLE_POS(7.f/8.f, 1.f/8.f), 683 SAMPLE_POS(1.f/8.f, 3.f/8.f), 684 SAMPLE_POS(3.f/8.f, 3.f/8.f), 685 SAMPLE_POS(5.f/8.f, 3.f/8.f), 686 SAMPLE_POS(7.f/8.f, 3.f/8.f), 687 SAMPLE_POS(1.f/8.f, 5.f/8.f), 688 SAMPLE_POS(3.f/8.f, 5.f/8.f), 689 SAMPLE_POS(5.f/8.f, 5.f/8.f), 690 SAMPLE_POS(7.f/8.f, 5.f/8.f), 691 SAMPLE_POS(1.f/8.f, 7.f/8.f), 692 SAMPLE_POS(3.f/8.f, 7.f/8.f), 693 SAMPLE_POS(5.f/8.f, 7.f/8.f), 694 SAMPLE_POS(7.f/8.f, 7.f/8.f) 695 }; 696 DE_STATIC_ASSERT(DE_LENGTH_OF_ARRAY(s_samplePos16) == 16*2); 697 698 #undef SAMPLE_POS 699 #undef SAMPLE_POS_TO_SUBPIXEL_COORD 700 701 template<int NumSamples> 702 void TriangleRasterizer::rasterizeMultiSample (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 703 { 704 DE_ASSERT(maxFragmentPackets > 0); 705 706 const deInt64* samplePos = DE_NULL; 707 const deUint64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 708 int packetNdx = 0; 709 710 // For depth interpolation, see rasterizeSingleSample 711 const float za = m_v0.z()-m_v2.z(); 712 const float zb = m_v1.z()-m_v2.z(); 713 const float zc = m_v2.z(); 714 715 switch (NumSamples) 716 { 717 case 2: samplePos = s_samplePos2; break; 718 case 4: samplePos = s_samplePos4; break; 719 case 8: samplePos = s_samplePos8; break; 720 case 16: samplePos = s_samplePos16; break; 721 default: 722 DE_ASSERT(false); 723 } 724 725 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 726 { 727 const int x0 = m_curPos.x(); 728 const int y0 = m_curPos.y(); 729 730 // Base subpixel coords 731 const deInt64 sx0 = toSubpixelCoord(x0); 732 const deInt64 sx1 = toSubpixelCoord(x0+1); 733 const deInt64 sy0 = toSubpixelCoord(y0); 734 const deInt64 sy1 = toSubpixelCoord(y0+1); 735 736 const deInt64 sx[4] = { sx0, sx1, sx0, sx1 }; 737 const deInt64 sy[4] = { sy0, sy0, sy1, sy1 }; 738 739 // Viewport test 740 const bool outX1 = x0+1 == m_viewport.x()+m_viewport.z(); 741 const bool outY1 = y0+1 == m_viewport.y()+m_viewport.w(); 742 743 DE_ASSERT(x0 < m_viewport.x()+m_viewport.z()); 744 DE_ASSERT(y0 < m_viewport.y()+m_viewport.w()); 745 746 // Edge values 747 tcu::Vector<deInt64, 4> e01[NumSamples]; 748 tcu::Vector<deInt64, 4> e12[NumSamples]; 749 tcu::Vector<deInt64, 4> e20[NumSamples]; 750 751 // Coverage 752 deUint64 coverage = 0; 753 754 // Evaluate edge values at sample positions 755 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 756 { 757 const deInt64 ox = samplePos[sampleNdx*2 + 0]; 758 const deInt64 oy = samplePos[sampleNdx*2 + 1]; 759 760 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 761 { 762 e01[sampleNdx][fragNdx] = evaluateEdge(m_edge01, sx[fragNdx] + ox, sy[fragNdx] + oy); 763 e12[sampleNdx][fragNdx] = evaluateEdge(m_edge12, sx[fragNdx] + ox, sy[fragNdx] + oy); 764 e20[sampleNdx][fragNdx] = evaluateEdge(m_edge20, sx[fragNdx] + ox, sy[fragNdx] + oy); 765 } 766 } 767 768 // Compute coverage mask 769 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 770 { 771 coverage = setCoverageValue(coverage, NumSamples, 0, 0, sampleNdx, isInsideCCW(m_edge01, e01[sampleNdx][0]) && isInsideCCW(m_edge12, e12[sampleNdx][0]) && isInsideCCW(m_edge20, e20[sampleNdx][0])); 772 coverage = setCoverageValue(coverage, NumSamples, 1, 0, sampleNdx, !outX1 && isInsideCCW(m_edge01, e01[sampleNdx][1]) && isInsideCCW(m_edge12, e12[sampleNdx][1]) && isInsideCCW(m_edge20, e20[sampleNdx][1])); 773 coverage = setCoverageValue(coverage, NumSamples, 0, 1, sampleNdx, !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][2]) && isInsideCCW(m_edge12, e12[sampleNdx][2]) && isInsideCCW(m_edge20, e20[sampleNdx][2])); 774 coverage = setCoverageValue(coverage, NumSamples, 1, 1, sampleNdx, !outX1 && !outY1 && isInsideCCW(m_edge01, e01[sampleNdx][3]) && isInsideCCW(m_edge12, e12[sampleNdx][3]) && isInsideCCW(m_edge20, e20[sampleNdx][3])); 775 } 776 777 // Advance to next location 778 m_curPos.x() += 2; 779 if (m_curPos.x() > m_bboxMax.x()) 780 { 781 m_curPos.y() += 2; 782 m_curPos.x() = m_bboxMin.x(); 783 } 784 785 if (coverage == 0) 786 continue; // Discard. 787 788 // Compute depth values. 789 if (depthValues) 790 { 791 for (int sampleNdx = 0; sampleNdx < NumSamples; sampleNdx++) 792 { 793 // Floating-point edge values at sample coordinates. 794 const tcu::Vec4& e01f = e01[sampleNdx].asFloat(); 795 const tcu::Vec4& e12f = e12[sampleNdx].asFloat(); 796 const tcu::Vec4& e20f = e20[sampleNdx].asFloat(); 797 798 const tcu::Vec4 edgeSum = e01f + e12f + e20f; 799 const tcu::Vec4 z0 = e12f / edgeSum; 800 const tcu::Vec4 z1 = e20f / edgeSum; 801 802 depthValues[(packetNdx*4+0)*NumSamples + sampleNdx] = z0[0]*za + z1[0]*zb + zc; 803 depthValues[(packetNdx*4+1)*NumSamples + sampleNdx] = z0[1]*za + z1[1]*zb + zc; 804 depthValues[(packetNdx*4+2)*NumSamples + sampleNdx] = z0[2]*za + z1[2]*zb + zc; 805 depthValues[(packetNdx*4+3)*NumSamples + sampleNdx] = z0[3]*za + z1[3]*zb + zc; 806 } 807 } 808 809 // Compute barycentrics and write out fragment packet 810 { 811 FragmentPacket& packet = fragmentPackets[packetNdx]; 812 813 // Floating-point edge values at pixel center. 814 tcu::Vec4 e01f; 815 tcu::Vec4 e12f; 816 tcu::Vec4 e20f; 817 818 for (int i = 0; i < 4; i++) 819 { 820 e01f[i] = float(evaluateEdge(m_edge01, sx[i] + halfPixel, sy[i] + halfPixel)); 821 e12f[i] = float(evaluateEdge(m_edge12, sx[i] + halfPixel, sy[i] + halfPixel)); 822 e20f[i] = float(evaluateEdge(m_edge20, sx[i] + halfPixel, sy[i] + halfPixel)); 823 } 824 825 // Barycentrics & scale. 826 const tcu::Vec4 b0 = e12f * m_v0.w(); 827 const tcu::Vec4 b1 = e20f * m_v1.w(); 828 const tcu::Vec4 b2 = e01f * m_v2.w(); 829 const tcu::Vec4 bSum = b0 + b1 + b2; 830 831 packet.position = tcu::IVec2(x0, y0); 832 packet.coverage = coverage; 833 packet.barycentric[0] = b0 / bSum; 834 packet.barycentric[1] = b1 / bSum; 835 packet.barycentric[2] = 1.0f - packet.barycentric[0] - packet.barycentric[1]; 836 837 packetNdx += 1; 838 } 839 } 840 841 DE_ASSERT(packetNdx <= maxFragmentPackets); 842 numPacketsRasterized = packetNdx; 843 } 844 845 void TriangleRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 846 { 847 DE_ASSERT(maxFragmentPackets > 0); 848 849 switch (m_numSamples) 850 { 851 case 1: rasterizeSingleSample (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 852 case 2: rasterizeMultiSample<2> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 853 case 4: rasterizeMultiSample<4> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 854 case 8: rasterizeMultiSample<8> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 855 case 16: rasterizeMultiSample<16> (fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); break; 856 default: 857 DE_ASSERT(DE_FALSE); 858 } 859 } 860 861 SingleSampleLineRasterizer::SingleSampleLineRasterizer (const tcu::IVec4& viewport) 862 : m_viewport (viewport) 863 , m_curRowFragment (0) 864 , m_lineWidth (0.0f) 865 { 866 } 867 868 SingleSampleLineRasterizer::~SingleSampleLineRasterizer (void) 869 { 870 } 871 872 void SingleSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) 873 { 874 const bool isXMajor = de::abs((v1 - v0).x()) >= de::abs((v1 - v0).y()); 875 876 // Bounding box \note: with wide lines, the line is actually moved as in the spec 877 const deInt32 lineWidthPixels = (lineWidth > 1.0f) ? (deInt32)floor(lineWidth + 0.5f) : 1; 878 879 const tcu::Vector<deInt64,2> widthOffset = (isXMajor ? tcu::Vector<deInt64,2>(0, -1) : tcu::Vector<deInt64,2>(-1, 0)) * (toSubpixelCoord(lineWidthPixels - 1) / 2); 880 881 const deInt64 x0 = toSubpixelCoord(v0.x()) + widthOffset.x(); 882 const deInt64 y0 = toSubpixelCoord(v0.y()) + widthOffset.y(); 883 const deInt64 x1 = toSubpixelCoord(v1.x()) + widthOffset.x(); 884 const deInt64 y1 = toSubpixelCoord(v1.y()) + widthOffset.y(); 885 886 // line endpoints might be perturbed, add some margin 887 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); 888 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); 889 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); 890 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); 891 892 // Remove invisible area 893 894 if (isXMajor) 895 { 896 // clamp to viewport in major direction 897 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); 898 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x(), m_viewport.x() + m_viewport.z() - 1); 899 900 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) 901 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); 902 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y() - lineWidthPixels, m_viewport.y() + m_viewport.w() - 1); 903 } 904 else 905 { 906 // clamp to viewport in major direction 907 m_bboxMin.y() = de::clamp(floorSubpixelToPixelCoord(yMin, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); 908 m_bboxMax.y() = de::clamp(ceilSubpixelToPixelCoord (yMax, true), m_viewport.y(), m_viewport.y() + m_viewport.w() - 1); 909 910 // clamp to padded viewport in minor direction (wide lines might bleed over viewport in minor direction) 911 m_bboxMin.x() = de::clamp(floorSubpixelToPixelCoord(xMin, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); 912 m_bboxMax.x() = de::clamp(ceilSubpixelToPixelCoord (xMax, true), m_viewport.x() - lineWidthPixels, m_viewport.x() + m_viewport.z() - 1); 913 } 914 915 m_lineWidth = lineWidth; 916 917 m_v0 = v0; 918 m_v1 = v1; 919 920 m_curPos = m_bboxMin; 921 m_curRowFragment = 0; 922 } 923 924 void SingleSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 925 { 926 DE_ASSERT(maxFragmentPackets > 0); 927 928 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 929 const deInt32 lineWidth = (m_lineWidth > 1.0f) ? deFloorFloatToInt32(m_lineWidth + 0.5f) : 1; 930 const bool isXMajor = de::abs((m_v1 - m_v0).x()) >= de::abs((m_v1 - m_v0).y()); 931 const tcu::IVec2 minorDirection = (isXMajor) ? (tcu::IVec2(0, 1)) : (tcu::IVec2(1, 0)); 932 const int minViewportLimit = (isXMajor) ? (m_viewport.y()) : (m_viewport.x()); 933 const int maxViewportLimit = (isXMajor) ? (m_viewport.y() + m_viewport.w()) : (m_viewport.x() + m_viewport.z()); 934 const tcu::Vector<deInt64,2> widthOffset = -minorDirection.cast<deInt64>() * (toSubpixelCoord(lineWidth - 1) / 2); 935 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()) + widthOffset; 936 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()) + widthOffset; 937 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); 938 939 int packetNdx = 0; 940 941 while (m_curPos.y() <= m_bboxMax.y() && packetNdx < maxFragmentPackets) 942 { 943 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); 944 945 // Should current fragment be drawn? == does the segment exit this diamond? 946 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) 947 { 948 const tcu::Vector<deInt64,2> pr = diamondPosition; 949 const float t = tcu::dot((pr - pa).asFloat(), (pb - pa).asFloat()) / tcu::lengthSquared(pb.asFloat() - pa.asFloat()); 950 951 // Rasterize on only fragments that are would end up in the viewport (i.e. visible) 952 const int fragmentLocation = (isXMajor) ? (m_curPos.y()) : (m_curPos.x()); 953 const int rowFragBegin = de::max(0, minViewportLimit - fragmentLocation); 954 const int rowFragEnd = de::min(maxViewportLimit - fragmentLocation, lineWidth); 955 956 // Wide lines require multiple fragments. 957 for (; rowFragBegin + m_curRowFragment < rowFragEnd; m_curRowFragment++) 958 { 959 const int replicationId = rowFragBegin + m_curRowFragment; 960 const tcu::IVec2 fragmentPos = m_curPos + minorDirection * replicationId; 961 962 // We only rasterize visible area 963 DE_ASSERT(LineRasterUtil::inViewport(fragmentPos, m_viewport)); 964 965 // Compute depth values. 966 if (depthValues) 967 { 968 const float za = m_v0.z(); 969 const float zb = m_v1.z(); 970 971 depthValues[packetNdx*4+0] = (1 - t) * za + t * zb; 972 depthValues[packetNdx*4+1] = 0; 973 depthValues[packetNdx*4+2] = 0; 974 depthValues[packetNdx*4+3] = 0; 975 } 976 977 { 978 // output this fragment 979 // \note In order to make consistent output with multisampled line rasterization, output "barycentric" coordinates 980 FragmentPacket& packet = fragmentPackets[packetNdx]; 981 982 const tcu::Vec4 b0 = tcu::Vec4(1 - t); 983 const tcu::Vec4 b1 = tcu::Vec4(t); 984 const tcu::Vec4 ooSum = 1.0f / (b0 + b1); 985 986 packet.position = fragmentPos; 987 packet.coverage = getCoverageBit(1, 0, 0, 0); 988 packet.barycentric[0] = b0 * ooSum; 989 packet.barycentric[1] = b1 * ooSum; 990 packet.barycentric[2] = tcu::Vec4(0.0f); 991 992 packetNdx += 1; 993 } 994 995 if (packetNdx == maxFragmentPackets) 996 { 997 m_curRowFragment++; // don't redraw this fragment again next time 998 numPacketsRasterized = packetNdx; 999 return; 1000 } 1001 } 1002 1003 m_curRowFragment = 0; 1004 } 1005 1006 ++m_curPos.x(); 1007 if (m_curPos.x() > m_bboxMax.x()) 1008 { 1009 ++m_curPos.y(); 1010 m_curPos.x() = m_bboxMin.x(); 1011 } 1012 } 1013 1014 DE_ASSERT(packetNdx <= maxFragmentPackets); 1015 numPacketsRasterized = packetNdx; 1016 } 1017 1018 MultiSampleLineRasterizer::MultiSampleLineRasterizer (const int numSamples, const tcu::IVec4& viewport) 1019 : m_numSamples (numSamples) 1020 , m_triangleRasterizer0 (viewport, m_numSamples, RasterizationState()) 1021 , m_triangleRasterizer1 (viewport, m_numSamples, RasterizationState()) 1022 { 1023 } 1024 1025 MultiSampleLineRasterizer::~MultiSampleLineRasterizer () 1026 { 1027 } 1028 1029 void MultiSampleLineRasterizer::init (const tcu::Vec4& v0, const tcu::Vec4& v1, float lineWidth) 1030 { 1031 // allow creation of single sampled rasterizer objects but do not allow using them 1032 DE_ASSERT(m_numSamples > 1); 1033 1034 const tcu::Vec2 lineVec = tcu::Vec2(tcu::Vec4(v1).xy()) - tcu::Vec2(tcu::Vec4(v0).xy()); 1035 const tcu::Vec2 normal2 = tcu::normalize(tcu::Vec2(-lineVec[1], lineVec[0])); 1036 const tcu::Vec4 normal4 = tcu::Vec4(normal2.x(), normal2.y(), 0, 0); 1037 const float offset = lineWidth / 2.0f; 1038 1039 const tcu::Vec4 p0 = v0 + normal4 * offset; 1040 const tcu::Vec4 p1 = v0 - normal4 * offset; 1041 const tcu::Vec4 p2 = v1 - normal4 * offset; 1042 const tcu::Vec4 p3 = v1 + normal4 * offset; 1043 1044 // Edge 0 -> 1 is always along the line and edge 1 -> 2 is in 90 degree angle to the line 1045 m_triangleRasterizer0.init(p0, p3, p2); 1046 m_triangleRasterizer1.init(p2, p1, p0); 1047 } 1048 1049 void MultiSampleLineRasterizer::rasterize (FragmentPacket* const fragmentPackets, float* const depthValues, const int maxFragmentPackets, int& numPacketsRasterized) 1050 { 1051 DE_ASSERT(maxFragmentPackets > 0); 1052 1053 m_triangleRasterizer0.rasterize(fragmentPackets, depthValues, maxFragmentPackets, numPacketsRasterized); 1054 1055 // Remove 3rd barycentric value and rebalance. Lines do not have non-zero barycentric at index 2 1056 for (int packNdx = 0; packNdx < numPacketsRasterized; ++packNdx) 1057 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 1058 { 1059 float removedValue = fragmentPackets[packNdx].barycentric[2][fragNdx]; 1060 fragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; 1061 fragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; 1062 } 1063 1064 // rasterizer 0 filled the whole buffer? 1065 if (numPacketsRasterized == maxFragmentPackets) 1066 return; 1067 1068 { 1069 FragmentPacket* const nextFragmentPackets = fragmentPackets + numPacketsRasterized; 1070 float* nextDepthValues = (depthValues) ? (depthValues+4*numPacketsRasterized*m_numSamples) : (DE_NULL); 1071 int numPacketsRasterized2 = 0; 1072 1073 m_triangleRasterizer1.rasterize(nextFragmentPackets, nextDepthValues, maxFragmentPackets - numPacketsRasterized, numPacketsRasterized2); 1074 1075 numPacketsRasterized += numPacketsRasterized2; 1076 1077 // Fix swapped barycentrics in the second triangle 1078 for (int packNdx = 0; packNdx < numPacketsRasterized2; ++packNdx) 1079 for (int fragNdx = 0; fragNdx < 4; fragNdx++) 1080 { 1081 float removedValue = nextFragmentPackets[packNdx].barycentric[2][fragNdx]; 1082 nextFragmentPackets[packNdx].barycentric[2][fragNdx] = 0.0f; 1083 nextFragmentPackets[packNdx].barycentric[1][fragNdx] += removedValue; 1084 1085 // edge has reversed direction 1086 std::swap(nextFragmentPackets[packNdx].barycentric[0][fragNdx], nextFragmentPackets[packNdx].barycentric[1][fragNdx]); 1087 } 1088 } 1089 } 1090 1091 LineExitDiamondGenerator::LineExitDiamondGenerator (void) 1092 { 1093 } 1094 1095 LineExitDiamondGenerator::~LineExitDiamondGenerator (void) 1096 { 1097 } 1098 1099 void LineExitDiamondGenerator::init (const tcu::Vec4& v0, const tcu::Vec4& v1) 1100 { 1101 const deInt64 x0 = toSubpixelCoord(v0.x()); 1102 const deInt64 y0 = toSubpixelCoord(v0.y()); 1103 const deInt64 x1 = toSubpixelCoord(v1.x()); 1104 const deInt64 y1 = toSubpixelCoord(v1.y()); 1105 1106 // line endpoints might be perturbed, add some margin 1107 const deInt64 xMin = de::min(x0, x1) - toSubpixelCoord(1); 1108 const deInt64 xMax = de::max(x0, x1) + toSubpixelCoord(1); 1109 const deInt64 yMin = de::min(y0, y1) - toSubpixelCoord(1); 1110 const deInt64 yMax = de::max(y0, y1) + toSubpixelCoord(1); 1111 1112 m_bboxMin.x() = floorSubpixelToPixelCoord(xMin, true); 1113 m_bboxMin.y() = floorSubpixelToPixelCoord(yMin, true); 1114 m_bboxMax.x() = ceilSubpixelToPixelCoord (xMax, true); 1115 m_bboxMax.y() = ceilSubpixelToPixelCoord (yMax, true); 1116 1117 m_v0 = v0; 1118 m_v1 = v1; 1119 1120 m_curPos = m_bboxMin; 1121 } 1122 1123 void LineExitDiamondGenerator::rasterize (LineExitDiamond* const lineDiamonds, const int maxDiamonds, int& numWritten) 1124 { 1125 DE_ASSERT(maxDiamonds > 0); 1126 1127 const deInt64 halfPixel = 1ll << (RASTERIZER_SUBPIXEL_BITS-1); 1128 const tcu::Vector<deInt64,2> pa = LineRasterUtil::toSubpixelVector(m_v0.xy()); 1129 const tcu::Vector<deInt64,2> pb = LineRasterUtil::toSubpixelVector(m_v1.xy()); 1130 const LineRasterUtil::SubpixelLineSegment line = LineRasterUtil::SubpixelLineSegment(pa, pb); 1131 1132 int diamondNdx = 0; 1133 1134 while (m_curPos.y() <= m_bboxMax.y() && diamondNdx < maxDiamonds) 1135 { 1136 const tcu::Vector<deInt64,2> diamondPosition = LineRasterUtil::toSubpixelVector(m_curPos) + tcu::Vector<deInt64,2>(halfPixel,halfPixel); 1137 1138 if (LineRasterUtil::doesLineSegmentExitDiamond(line, diamondPosition)) 1139 { 1140 LineExitDiamond& packet = lineDiamonds[diamondNdx]; 1141 packet.position = m_curPos; 1142 ++diamondNdx; 1143 } 1144 1145 ++m_curPos.x(); 1146 if (m_curPos.x() > m_bboxMax.x()) 1147 { 1148 ++m_curPos.y(); 1149 m_curPos.x() = m_bboxMin.x(); 1150 } 1151 } 1152 1153 DE_ASSERT(diamondNdx <= maxDiamonds); 1154 numWritten = diamondNdx; 1155 } 1156 1157 } // rr 1158