1 /* 2 * Copyright (c) 2012 The WebM project authors. All Rights Reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #include <limits.h> 12 13 #include "denoising.h" 14 15 #include "vp8/common/reconinter.h" 16 #include "vpx/vpx_integer.h" 17 #include "vpx_mem/vpx_mem.h" 18 #include "vp8_rtcd.h" 19 20 static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25; 21 /* SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming 22 * var(noise) ~= 100. 23 */ 24 static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20; 25 static const unsigned int SSE_THRESHOLD = 16 * 16 * 40; 26 static const unsigned int SSE_THRESHOLD_HIGH = 16 * 16 * 60; 27 28 /* 29 * The filter function was modified to reduce the computational complexity. 30 * Step 1: 31 * Instead of applying tap coefficients for each pixel, we calculated the 32 * pixel adjustments vs. pixel diff value ahead of time. 33 * adjustment = filtered_value - current_raw 34 * = (filter_coefficient * diff + 128) >> 8 35 * where 36 * filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3)); 37 * filter_coefficient += filter_coefficient / 38 * (3 + motion_magnitude_adjustment); 39 * filter_coefficient is clamped to 0 ~ 255. 40 * 41 * Step 2: 42 * The adjustment vs. diff curve becomes flat very quick when diff increases. 43 * This allowed us to use only several levels to approximate the curve without 44 * changing the filtering algorithm too much. 45 * The adjustments were further corrected by checking the motion magnitude. 46 * The levels used are: 47 * diff adjustment w/o motion correction adjustment w/ motion correction 48 * [-255, -16] -6 -7 49 * [-15, -8] -4 -5 50 * [-7, -4] -3 -4 51 * [-3, 3] diff diff 52 * [4, 7] 3 4 53 * [8, 15] 4 5 54 * [16, 255] 6 7 55 */ 56 57 int vp8_denoiser_filter_c(unsigned char *mc_running_avg_y, int mc_avg_y_stride, 58 unsigned char *running_avg_y, int avg_y_stride, 59 unsigned char *sig, int sig_stride, 60 unsigned int motion_magnitude, 61 int increase_denoising) 62 { 63 unsigned char *running_avg_y_start = running_avg_y; 64 unsigned char *sig_start = sig; 65 int sum_diff_thresh; 66 int r, c; 67 int sum_diff = 0; 68 int adj_val[3] = {3, 4, 6}; 69 int shift_inc1 = 0; 70 int shift_inc2 = 1; 71 int col_sum[16] = {0, 0, 0, 0, 72 0, 0, 0, 0, 73 0, 0, 0, 0, 74 0, 0, 0, 0}; 75 /* If motion_magnitude is small, making the denoiser more aggressive by 76 * increasing the adjustment for each level. Add another increment for 77 * blocks that are labeled for increase denoising. */ 78 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD) 79 { 80 if (increase_denoising) { 81 shift_inc1 = 1; 82 shift_inc2 = 2; 83 } 84 adj_val[0] += shift_inc2; 85 adj_val[1] += shift_inc2; 86 adj_val[2] += shift_inc2; 87 } 88 89 for (r = 0; r < 16; ++r) 90 { 91 for (c = 0; c < 16; ++c) 92 { 93 int diff = 0; 94 int adjustment = 0; 95 int absdiff = 0; 96 97 diff = mc_running_avg_y[c] - sig[c]; 98 absdiff = abs(diff); 99 100 // When |diff| <= |3 + shift_inc1|, use pixel value from 101 // last denoised raw. 102 if (absdiff <= 3 + shift_inc1) 103 { 104 running_avg_y[c] = mc_running_avg_y[c]; 105 col_sum[c] += diff; 106 } 107 else 108 { 109 if (absdiff >= 4 + shift_inc1 && absdiff <= 7) 110 adjustment = adj_val[0]; 111 else if (absdiff >= 8 && absdiff <= 15) 112 adjustment = adj_val[1]; 113 else 114 adjustment = adj_val[2]; 115 116 if (diff > 0) 117 { 118 if ((sig[c] + adjustment) > 255) 119 running_avg_y[c] = 255; 120 else 121 running_avg_y[c] = sig[c] + adjustment; 122 123 col_sum[c] += adjustment; 124 } 125 else 126 { 127 if ((sig[c] - adjustment) < 0) 128 running_avg_y[c] = 0; 129 else 130 running_avg_y[c] = sig[c] - adjustment; 131 132 col_sum[c] -= adjustment; 133 } 134 } 135 } 136 137 /* Update pointers for next iteration. */ 138 sig += sig_stride; 139 mc_running_avg_y += mc_avg_y_stride; 140 running_avg_y += avg_y_stride; 141 } 142 143 for (c = 0; c < 16; ++c) { 144 // Below we clip the value in the same way which SSE code use. 145 // When adopting aggressive denoiser, the adj_val for each pixel 146 // could be at most 8 (this is current max adjustment of the map). 147 // In SSE code, we calculate the sum of adj_val for 148 // the columns, so the sum could be upto 128(16 rows). However, 149 // the range of the value is -128 ~ 127 in SSE code, that's why 150 // we do this change in C code. 151 // We don't do this for UV denoiser, since there are only 8 rows, 152 // and max adjustments <= 8, so the sum of the columns will not 153 // exceed 64. 154 if (col_sum[c] >= 128) { 155 col_sum[c] = 127; 156 } 157 sum_diff += col_sum[c]; 158 } 159 160 sum_diff_thresh= SUM_DIFF_THRESHOLD; 161 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH; 162 if (abs(sum_diff) > sum_diff_thresh) { 163 // Before returning to copy the block (i.e., apply no denoising), check 164 // if we can still apply some (weaker) temporal filtering to this block, 165 // that would otherwise not be denoised at all. Simplest is to apply 166 // an additional adjustment to running_avg_y to bring it closer to sig. 167 // The adjustment is capped by a maximum delta, and chosen such that 168 // in most cases the resulting sum_diff will be within the 169 // accceptable range given by sum_diff_thresh. 170 171 // The delta is set by the excess of absolute pixel diff over threshold. 172 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; 173 // Only apply the adjustment for max delta up to 3. 174 if (delta < 4) { 175 sig -= sig_stride * 16; 176 mc_running_avg_y -= mc_avg_y_stride * 16; 177 running_avg_y -= avg_y_stride * 16; 178 for (r = 0; r < 16; ++r) { 179 for (c = 0; c < 16; ++c) { 180 int diff = mc_running_avg_y[c] - sig[c]; 181 int adjustment = abs(diff); 182 if (adjustment > delta) 183 adjustment = delta; 184 if (diff > 0) { 185 // Bring denoised signal down. 186 if (running_avg_y[c] - adjustment < 0) 187 running_avg_y[c] = 0; 188 else 189 running_avg_y[c] = running_avg_y[c] - adjustment; 190 col_sum[c] -= adjustment; 191 } else if (diff < 0) { 192 // Bring denoised signal up. 193 if (running_avg_y[c] + adjustment > 255) 194 running_avg_y[c] = 255; 195 else 196 running_avg_y[c] = running_avg_y[c] + adjustment; 197 col_sum[c] += adjustment; 198 } 199 } 200 // TODO(marpan): Check here if abs(sum_diff) has gone below the 201 // threshold sum_diff_thresh, and if so, we can exit the row loop. 202 sig += sig_stride; 203 mc_running_avg_y += mc_avg_y_stride; 204 running_avg_y += avg_y_stride; 205 } 206 207 sum_diff = 0; 208 for (c = 0; c < 16; ++c) { 209 if (col_sum[c] >= 128) { 210 col_sum[c] = 127; 211 } 212 sum_diff += col_sum[c]; 213 } 214 215 if (abs(sum_diff) > sum_diff_thresh) 216 return COPY_BLOCK; 217 } else { 218 return COPY_BLOCK; 219 } 220 } 221 222 vp8_copy_mem16x16(running_avg_y_start, avg_y_stride, sig_start, sig_stride); 223 return FILTER_BLOCK; 224 } 225 226 int vp8_denoiser_filter_uv_c(unsigned char *mc_running_avg_uv, 227 int mc_avg_uv_stride, 228 unsigned char *running_avg_uv, 229 int avg_uv_stride, 230 unsigned char *sig, 231 int sig_stride, 232 unsigned int motion_magnitude, 233 int increase_denoising) { 234 unsigned char *running_avg_uv_start = running_avg_uv; 235 unsigned char *sig_start = sig; 236 int sum_diff_thresh; 237 int r, c; 238 int sum_diff = 0; 239 int sum_block = 0; 240 int adj_val[3] = {3, 4, 6}; 241 int shift_inc1 = 0; 242 int shift_inc2 = 1; 243 /* If motion_magnitude is small, making the denoiser more aggressive by 244 * increasing the adjustment for each level. Add another increment for 245 * blocks that are labeled for increase denoising. */ 246 if (motion_magnitude <= MOTION_MAGNITUDE_THRESHOLD_UV) { 247 if (increase_denoising) { 248 shift_inc1 = 1; 249 shift_inc2 = 2; 250 } 251 adj_val[0] += shift_inc2; 252 adj_val[1] += shift_inc2; 253 adj_val[2] += shift_inc2; 254 } 255 256 // Avoid denoising color signal if its close to average level. 257 for (r = 0; r < 8; ++r) { 258 for (c = 0; c < 8; ++c) { 259 sum_block += sig[c]; 260 } 261 sig += sig_stride; 262 } 263 if (abs(sum_block - (128 * 8 * 8)) < SUM_DIFF_FROM_AVG_THRESH_UV) { 264 return COPY_BLOCK; 265 } 266 267 sig -= sig_stride * 8; 268 for (r = 0; r < 8; ++r) { 269 for (c = 0; c < 8; ++c) { 270 int diff = 0; 271 int adjustment = 0; 272 int absdiff = 0; 273 274 diff = mc_running_avg_uv[c] - sig[c]; 275 absdiff = abs(diff); 276 277 // When |diff| <= |3 + shift_inc1|, use pixel value from 278 // last denoised raw. 279 if (absdiff <= 3 + shift_inc1) { 280 running_avg_uv[c] = mc_running_avg_uv[c]; 281 sum_diff += diff; 282 } else { 283 if (absdiff >= 4 && absdiff <= 7) 284 adjustment = adj_val[0]; 285 else if (absdiff >= 8 && absdiff <= 15) 286 adjustment = adj_val[1]; 287 else 288 adjustment = adj_val[2]; 289 if (diff > 0) { 290 if ((sig[c] + adjustment) > 255) 291 running_avg_uv[c] = 255; 292 else 293 running_avg_uv[c] = sig[c] + adjustment; 294 sum_diff += adjustment; 295 } else { 296 if ((sig[c] - adjustment) < 0) 297 running_avg_uv[c] = 0; 298 else 299 running_avg_uv[c] = sig[c] - adjustment; 300 sum_diff -= adjustment; 301 } 302 } 303 } 304 /* Update pointers for next iteration. */ 305 sig += sig_stride; 306 mc_running_avg_uv += mc_avg_uv_stride; 307 running_avg_uv += avg_uv_stride; 308 } 309 310 sum_diff_thresh= SUM_DIFF_THRESHOLD_UV; 311 if (increase_denoising) sum_diff_thresh = SUM_DIFF_THRESHOLD_HIGH_UV; 312 if (abs(sum_diff) > sum_diff_thresh) { 313 // Before returning to copy the block (i.e., apply no denoising), check 314 // if we can still apply some (weaker) temporal filtering to this block, 315 // that would otherwise not be denoised at all. Simplest is to apply 316 // an additional adjustment to running_avg_y to bring it closer to sig. 317 // The adjustment is capped by a maximum delta, and chosen such that 318 // in most cases the resulting sum_diff will be within the 319 // accceptable range given by sum_diff_thresh. 320 321 // The delta is set by the excess of absolute pixel diff over threshold. 322 int delta = ((abs(sum_diff) - sum_diff_thresh) >> 8) + 1; 323 // Only apply the adjustment for max delta up to 3. 324 if (delta < 4) { 325 sig -= sig_stride * 8; 326 mc_running_avg_uv -= mc_avg_uv_stride * 8; 327 running_avg_uv -= avg_uv_stride * 8; 328 for (r = 0; r < 8; ++r) { 329 for (c = 0; c < 8; ++c) { 330 int diff = mc_running_avg_uv[c] - sig[c]; 331 int adjustment = abs(diff); 332 if (adjustment > delta) 333 adjustment = delta; 334 if (diff > 0) { 335 // Bring denoised signal down. 336 if (running_avg_uv[c] - adjustment < 0) 337 running_avg_uv[c] = 0; 338 else 339 running_avg_uv[c] = running_avg_uv[c] - adjustment; 340 sum_diff -= adjustment; 341 } else if (diff < 0) { 342 // Bring denoised signal up. 343 if (running_avg_uv[c] + adjustment > 255) 344 running_avg_uv[c] = 255; 345 else 346 running_avg_uv[c] = running_avg_uv[c] + adjustment; 347 sum_diff += adjustment; 348 } 349 } 350 // TODO(marpan): Check here if abs(sum_diff) has gone below the 351 // threshold sum_diff_thresh, and if so, we can exit the row loop. 352 sig += sig_stride; 353 mc_running_avg_uv += mc_avg_uv_stride; 354 running_avg_uv += avg_uv_stride; 355 } 356 if (abs(sum_diff) > sum_diff_thresh) 357 return COPY_BLOCK; 358 } else { 359 return COPY_BLOCK; 360 } 361 } 362 363 vp8_copy_mem8x8(running_avg_uv_start, avg_uv_stride, sig_start, 364 sig_stride); 365 return FILTER_BLOCK; 366 } 367 368 void vp8_denoiser_set_parameters(VP8_DENOISER *denoiser, int mode) { 369 assert(mode > 0); // Denoiser is allocated only if mode > 0. 370 if (mode == 1) { 371 denoiser->denoiser_mode = kDenoiserOnYOnly; 372 } else if (mode == 2) { 373 denoiser->denoiser_mode = kDenoiserOnYUV; 374 } else if (mode == 3) { 375 denoiser->denoiser_mode = kDenoiserOnYUVAggressive; 376 } else { 377 denoiser->denoiser_mode = kDenoiserOnYUV; 378 } 379 if (denoiser->denoiser_mode != kDenoiserOnYUVAggressive) { 380 denoiser->denoise_pars.scale_sse_thresh = 1; 381 denoiser->denoise_pars.scale_motion_thresh = 8; 382 denoiser->denoise_pars.scale_increase_filter = 0; 383 denoiser->denoise_pars.denoise_mv_bias = 95; 384 denoiser->denoise_pars.pickmode_mv_bias = 100; 385 denoiser->denoise_pars.qp_thresh = 0; 386 denoiser->denoise_pars.consec_zerolast = UINT_MAX; 387 denoiser->denoise_pars.spatial_blur = 0; 388 } else { 389 denoiser->denoise_pars.scale_sse_thresh = 2; 390 denoiser->denoise_pars.scale_motion_thresh = 16; 391 denoiser->denoise_pars.scale_increase_filter = 1; 392 denoiser->denoise_pars.denoise_mv_bias = 60; 393 denoiser->denoise_pars.pickmode_mv_bias = 75; 394 denoiser->denoise_pars.qp_thresh = 80; 395 denoiser->denoise_pars.consec_zerolast = 15; 396 denoiser->denoise_pars.spatial_blur = 0; 397 } 398 } 399 400 int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height, 401 int num_mb_rows, int num_mb_cols, int mode) 402 { 403 int i; 404 assert(denoiser); 405 denoiser->num_mb_cols = num_mb_cols; 406 407 for (i = 0; i < MAX_REF_FRAMES; i++) 408 { 409 denoiser->yv12_running_avg[i].flags = 0; 410 411 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width, 412 height, VP8BORDERINPIXELS) 413 < 0) 414 { 415 vp8_denoiser_free(denoiser); 416 return 1; 417 } 418 memset(denoiser->yv12_running_avg[i].buffer_alloc, 0, 419 denoiser->yv12_running_avg[i].frame_size); 420 421 } 422 denoiser->yv12_mc_running_avg.flags = 0; 423 424 if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width, 425 height, VP8BORDERINPIXELS) < 0) 426 { 427 vp8_denoiser_free(denoiser); 428 return 1; 429 } 430 431 memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0, 432 denoiser->yv12_mc_running_avg.frame_size); 433 434 if (vp8_yv12_alloc_frame_buffer(&denoiser->yv12_last_source, width, 435 height, VP8BORDERINPIXELS) < 0) { 436 vp8_denoiser_free(denoiser); 437 return 1; 438 } 439 memset(denoiser->yv12_last_source.buffer_alloc, 0, 440 denoiser->yv12_last_source.frame_size); 441 442 denoiser->denoise_state = vpx_calloc((num_mb_rows * num_mb_cols), 1); 443 memset(denoiser->denoise_state, 0, (num_mb_rows * num_mb_cols)); 444 vp8_denoiser_set_parameters(denoiser, mode); 445 denoiser->nmse_source_diff = 0; 446 denoiser->nmse_source_diff_count = 0; 447 denoiser->qp_avg = 0; 448 // QP threshold below which we can go up to aggressive mode. 449 denoiser->qp_threshold_up = 80; 450 // QP threshold above which we can go back down to normal mode. 451 // For now keep this second threshold high, so not used currently. 452 denoiser->qp_threshold_down = 128; 453 // Bitrate thresholds and noise metric (nmse) thresholds for switching to 454 // aggressive mode. 455 // TODO(marpan): Adjust thresholds, including effect on resolution. 456 denoiser->bitrate_threshold = 400000; // (bits/sec). 457 denoiser->threshold_aggressive_mode = 80; 458 if (width * height > 1280 * 720) { 459 denoiser->bitrate_threshold = 3000000; 460 denoiser->threshold_aggressive_mode = 200; 461 } else if (width * height > 960 * 540) { 462 denoiser->bitrate_threshold = 1200000; 463 denoiser->threshold_aggressive_mode = 120; 464 } else if (width * height > 640 * 480) { 465 denoiser->bitrate_threshold = 600000; 466 denoiser->threshold_aggressive_mode = 100; 467 } 468 return 0; 469 } 470 471 472 void vp8_denoiser_free(VP8_DENOISER *denoiser) 473 { 474 int i; 475 assert(denoiser); 476 477 for (i = 0; i < MAX_REF_FRAMES ; i++) 478 { 479 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]); 480 } 481 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg); 482 vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_last_source); 483 vpx_free(denoiser->denoise_state); 484 } 485 486 void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser, 487 MACROBLOCK *x, 488 unsigned int best_sse, 489 unsigned int zero_mv_sse, 490 int recon_yoffset, 491 int recon_uvoffset, 492 loop_filter_info_n *lfi_n, 493 int mb_row, 494 int mb_col, 495 int block_index) 496 497 { 498 int mv_row; 499 int mv_col; 500 unsigned int motion_threshold; 501 unsigned int motion_magnitude2; 502 unsigned int sse_thresh; 503 int sse_diff_thresh = 0; 504 // Spatial loop filter: only applied selectively based on 505 // temporal filter state of block relative to top/left neighbors. 506 int apply_spatial_loop_filter = 1; 507 MV_REFERENCE_FRAME frame = x->best_reference_frame; 508 MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame; 509 510 enum vp8_denoiser_decision decision = FILTER_BLOCK; 511 enum vp8_denoiser_decision decision_u = COPY_BLOCK; 512 enum vp8_denoiser_decision decision_v = COPY_BLOCK; 513 514 if (zero_frame) 515 { 516 YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame]; 517 YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg; 518 YV12_BUFFER_CONFIG saved_pre,saved_dst; 519 MB_MODE_INFO saved_mbmi; 520 MACROBLOCKD *filter_xd = &x->e_mbd; 521 MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi; 522 int sse_diff = 0; 523 // Bias on zero motion vector sse. 524 const int zero_bias = denoiser->denoise_pars.denoise_mv_bias; 525 zero_mv_sse = (unsigned int)((int64_t)zero_mv_sse * zero_bias / 100); 526 sse_diff = zero_mv_sse - best_sse; 527 528 saved_mbmi = *mbmi; 529 530 /* Use the best MV for the compensation. */ 531 mbmi->ref_frame = x->best_reference_frame; 532 mbmi->mode = x->best_sse_inter_mode; 533 mbmi->mv = x->best_sse_mv; 534 mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs; 535 mv_col = x->best_sse_mv.as_mv.col; 536 mv_row = x->best_sse_mv.as_mv.row; 537 // Bias to zero_mv if small amount of motion. 538 // Note sse_diff_thresh is intialized to zero, so this ensures 539 // we will always choose zero_mv for denoising if 540 // zero_mv_see <= best_sse (i.e., sse_diff <= 0). 541 if ((unsigned int)(mv_row * mv_row + mv_col * mv_col) 542 <= NOISE_MOTION_THRESHOLD) 543 sse_diff_thresh = (int)SSE_DIFF_THRESHOLD; 544 545 if (frame == INTRA_FRAME || 546 sse_diff <= sse_diff_thresh) 547 { 548 /* 549 * Handle intra blocks as referring to last frame with zero motion 550 * and let the absolute pixel difference affect the filter factor. 551 * Also consider small amount of motion as being random walk due 552 * to noise, if it doesn't mean that we get a much bigger error. 553 * Note that any changes to the mode info only affects the 554 * denoising. 555 */ 556 x->denoise_zeromv = 1; 557 mbmi->ref_frame = 558 x->best_zeromv_reference_frame; 559 560 src = &denoiser->yv12_running_avg[zero_frame]; 561 562 mbmi->mode = ZEROMV; 563 mbmi->mv.as_int = 0; 564 x->best_sse_inter_mode = ZEROMV; 565 x->best_sse_mv.as_int = 0; 566 best_sse = zero_mv_sse; 567 } 568 569 saved_pre = filter_xd->pre; 570 saved_dst = filter_xd->dst; 571 572 /* Compensate the running average. */ 573 filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset; 574 filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset; 575 filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset; 576 /* Write the compensated running average to the destination buffer. */ 577 filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset; 578 filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset; 579 filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset; 580 581 if (!x->skip) 582 { 583 vp8_build_inter_predictors_mb(filter_xd); 584 } 585 else 586 { 587 vp8_build_inter16x16_predictors_mb(filter_xd, 588 filter_xd->dst.y_buffer, 589 filter_xd->dst.u_buffer, 590 filter_xd->dst.v_buffer, 591 filter_xd->dst.y_stride, 592 filter_xd->dst.uv_stride); 593 } 594 filter_xd->pre = saved_pre; 595 filter_xd->dst = saved_dst; 596 *mbmi = saved_mbmi; 597 598 } 599 600 mv_row = x->best_sse_mv.as_mv.row; 601 mv_col = x->best_sse_mv.as_mv.col; 602 motion_magnitude2 = mv_row * mv_row + mv_col * mv_col; 603 motion_threshold = denoiser->denoise_pars.scale_motion_thresh * 604 NOISE_MOTION_THRESHOLD; 605 606 // If block is considered to be skin area, lower the motion threshold. 607 // In current version set threshold = 1, so only denoise very low 608 // (i.e., zero) mv on skin. 609 if (x->is_skin) 610 motion_threshold = 1; 611 612 if (motion_magnitude2 < 613 denoiser->denoise_pars.scale_increase_filter * NOISE_MOTION_THRESHOLD) 614 x->increase_denoising = 1; 615 616 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD; 617 if (x->increase_denoising) 618 sse_thresh = denoiser->denoise_pars.scale_sse_thresh * SSE_THRESHOLD_HIGH; 619 620 if (best_sse > sse_thresh || motion_magnitude2 > motion_threshold) 621 decision = COPY_BLOCK; 622 623 if (decision == FILTER_BLOCK) 624 { 625 unsigned char *mc_running_avg_y = 626 denoiser->yv12_mc_running_avg.y_buffer + recon_yoffset; 627 int mc_avg_y_stride = denoiser->yv12_mc_running_avg.y_stride; 628 unsigned char *running_avg_y = 629 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset; 630 int avg_y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; 631 632 /* Filter. */ 633 decision = vp8_denoiser_filter(mc_running_avg_y, mc_avg_y_stride, 634 running_avg_y, avg_y_stride, 635 x->thismb, 16, motion_magnitude2, 636 x->increase_denoising); 637 denoiser->denoise_state[block_index] = motion_magnitude2 > 0 ? 638 kFilterNonZeroMV : kFilterZeroMV; 639 // Only denoise UV for zero motion, and if y channel was denoised. 640 if (denoiser->denoiser_mode != kDenoiserOnYOnly && 641 motion_magnitude2 == 0 && 642 decision == FILTER_BLOCK) { 643 unsigned char *mc_running_avg_u = 644 denoiser->yv12_mc_running_avg.u_buffer + recon_uvoffset; 645 unsigned char *running_avg_u = 646 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset; 647 unsigned char *mc_running_avg_v = 648 denoiser->yv12_mc_running_avg.v_buffer + recon_uvoffset; 649 unsigned char *running_avg_v = 650 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset; 651 int mc_avg_uv_stride = denoiser->yv12_mc_running_avg.uv_stride; 652 int avg_uv_stride = denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; 653 int signal_stride = x->block[16].src_stride; 654 decision_u = 655 vp8_denoiser_filter_uv(mc_running_avg_u, mc_avg_uv_stride, 656 running_avg_u, avg_uv_stride, 657 x->block[16].src + *x->block[16].base_src, 658 signal_stride, motion_magnitude2, 0); 659 decision_v = 660 vp8_denoiser_filter_uv(mc_running_avg_v, mc_avg_uv_stride, 661 running_avg_v, avg_uv_stride, 662 x->block[20].src + *x->block[20].base_src, 663 signal_stride, motion_magnitude2, 0); 664 } 665 } 666 if (decision == COPY_BLOCK) 667 { 668 /* No filtering of this block; it differs too much from the predictor, 669 * or the motion vector magnitude is considered too big. 670 */ 671 x->denoise_zeromv = 0; 672 vp8_copy_mem16x16( 673 x->thismb, 16, 674 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, 675 denoiser->yv12_running_avg[INTRA_FRAME].y_stride); 676 denoiser->denoise_state[block_index] = kNoFilter; 677 } 678 if (denoiser->denoiser_mode != kDenoiserOnYOnly) { 679 if (decision_u == COPY_BLOCK) { 680 vp8_copy_mem8x8( 681 x->block[16].src + *x->block[16].base_src, x->block[16].src_stride, 682 denoiser->yv12_running_avg[INTRA_FRAME].u_buffer + recon_uvoffset, 683 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); 684 } 685 if (decision_v == COPY_BLOCK) { 686 vp8_copy_mem8x8( 687 x->block[20].src + *x->block[20].base_src, x->block[16].src_stride, 688 denoiser->yv12_running_avg[INTRA_FRAME].v_buffer + recon_uvoffset, 689 denoiser->yv12_running_avg[INTRA_FRAME].uv_stride); 690 } 691 } 692 // Option to selectively deblock the denoised signal, for y channel only. 693 if (apply_spatial_loop_filter) { 694 loop_filter_info lfi; 695 int apply_filter_col = 0; 696 int apply_filter_row = 0; 697 int apply_filter = 0; 698 int y_stride = denoiser->yv12_running_avg[INTRA_FRAME].y_stride; 699 int uv_stride =denoiser->yv12_running_avg[INTRA_FRAME].uv_stride; 700 701 // Fix filter level to some nominal value for now. 702 int filter_level = 48; 703 704 int hev_index = lfi_n->hev_thr_lut[INTER_FRAME][filter_level]; 705 lfi.mblim = lfi_n->mblim[filter_level]; 706 lfi.blim = lfi_n->blim[filter_level]; 707 lfi.lim = lfi_n->lim[filter_level]; 708 lfi.hev_thr = lfi_n->hev_thr[hev_index]; 709 710 // Apply filter if there is a difference in the denoiser filter state 711 // between the current and left/top block, or if non-zero motion vector 712 // is used for the motion-compensated filtering. 713 if (mb_col > 0) { 714 apply_filter_col = !((denoiser->denoise_state[block_index] == 715 denoiser->denoise_state[block_index - 1]) && 716 denoiser->denoise_state[block_index] != kFilterNonZeroMV); 717 if (apply_filter_col) { 718 // Filter left vertical edge. 719 apply_filter = 1; 720 vp8_loop_filter_mbv( 721 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, 722 NULL, NULL, y_stride, uv_stride, &lfi); 723 } 724 } 725 if (mb_row > 0) { 726 apply_filter_row = !((denoiser->denoise_state[block_index] == 727 denoiser->denoise_state[block_index - denoiser->num_mb_cols]) && 728 denoiser->denoise_state[block_index] != kFilterNonZeroMV); 729 if (apply_filter_row) { 730 // Filter top horizontal edge. 731 apply_filter = 1; 732 vp8_loop_filter_mbh( 733 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, 734 NULL, NULL, y_stride, uv_stride, &lfi); 735 } 736 } 737 if (apply_filter) { 738 // Update the signal block |x|. Pixel changes are only to top and/or 739 // left boundary pixels: can we avoid full block copy here. 740 vp8_copy_mem16x16( 741 denoiser->yv12_running_avg[INTRA_FRAME].y_buffer + recon_yoffset, 742 y_stride, x->thismb, 16); 743 } 744 } 745 } 746