Home | History | Annotate | Download | only in x86
      1 /*
      2  *  Copyright (c) 2014 The WebM project authors. All Rights Reserved.
      3  *
      4  *  Use of this source code is governed by a BSD-style license
      5  *  that can be found in the LICENSE file in the root of the source
      6  *  tree. An additional intellectual property rights grant can be found
      7  *  in the file PATENTS.  All contributing project authors may
      8  *  be found in the AUTHORS file in the root of the source tree.
      9  */
     10 
     11 #include <assert.h>
     12 #if defined(_MSC_VER) && _MSC_VER <= 1500
     13 // Need to include math.h before calling tmmintrin.h/intrin.h
     14 // in certain versions of MSVS.
     15 #include <math.h>
     16 #endif
     17 #include <tmmintrin.h>  // SSSE3
     18 
     19 #include "./vp9_rtcd.h"
     20 #include "vpx_dsp/x86/inv_txfm_sse2.h"
     21 #include "vpx_dsp/x86/txfm_common_sse2.h"
     22 
     23 void vp9_fdct8x8_quant_ssse3(const int16_t *input, int stride,
     24                              int16_t* coeff_ptr, intptr_t n_coeffs,
     25                              int skip_block, const int16_t* zbin_ptr,
     26                              const int16_t* round_ptr, const int16_t* quant_ptr,
     27                              const int16_t* quant_shift_ptr,
     28                              int16_t* qcoeff_ptr,
     29                              int16_t* dqcoeff_ptr, const int16_t* dequant_ptr,
     30                              uint16_t* eob_ptr,
     31                              const int16_t* scan_ptr,
     32                              const int16_t* iscan_ptr) {
     33   __m128i zero;
     34   int pass;
     35   // Constants
     36   //    When we use them, in one case, they are all the same. In all others
     37   //    it's a pair of them that we need to repeat four times. This is done
     38   //    by constructing the 32 bit constant corresponding to that pair.
     39   const __m128i k__dual_p16_p16 = dual_set_epi16(23170, 23170);
     40   const __m128i k__cospi_p16_p16 = _mm_set1_epi16((int16_t)cospi_16_64);
     41   const __m128i k__cospi_p16_m16 = pair_set_epi16(cospi_16_64, -cospi_16_64);
     42   const __m128i k__cospi_p24_p08 = pair_set_epi16(cospi_24_64, cospi_8_64);
     43   const __m128i k__cospi_m08_p24 = pair_set_epi16(-cospi_8_64, cospi_24_64);
     44   const __m128i k__cospi_p28_p04 = pair_set_epi16(cospi_28_64, cospi_4_64);
     45   const __m128i k__cospi_m04_p28 = pair_set_epi16(-cospi_4_64, cospi_28_64);
     46   const __m128i k__cospi_p12_p20 = pair_set_epi16(cospi_12_64, cospi_20_64);
     47   const __m128i k__cospi_m20_p12 = pair_set_epi16(-cospi_20_64, cospi_12_64);
     48   const __m128i k__DCT_CONST_ROUNDING = _mm_set1_epi32(DCT_CONST_ROUNDING);
     49   // Load input
     50   __m128i in0  = _mm_load_si128((const __m128i *)(input + 0 * stride));
     51   __m128i in1  = _mm_load_si128((const __m128i *)(input + 1 * stride));
     52   __m128i in2  = _mm_load_si128((const __m128i *)(input + 2 * stride));
     53   __m128i in3  = _mm_load_si128((const __m128i *)(input + 3 * stride));
     54   __m128i in4  = _mm_load_si128((const __m128i *)(input + 4 * stride));
     55   __m128i in5  = _mm_load_si128((const __m128i *)(input + 5 * stride));
     56   __m128i in6  = _mm_load_si128((const __m128i *)(input + 6 * stride));
     57   __m128i in7  = _mm_load_si128((const __m128i *)(input + 7 * stride));
     58   __m128i *in[8];
     59   int index = 0;
     60 
     61   (void)scan_ptr;
     62   (void)zbin_ptr;
     63   (void)quant_shift_ptr;
     64   (void)coeff_ptr;
     65 
     66   // Pre-condition input (shift by two)
     67   in0 = _mm_slli_epi16(in0, 2);
     68   in1 = _mm_slli_epi16(in1, 2);
     69   in2 = _mm_slli_epi16(in2, 2);
     70   in3 = _mm_slli_epi16(in3, 2);
     71   in4 = _mm_slli_epi16(in4, 2);
     72   in5 = _mm_slli_epi16(in5, 2);
     73   in6 = _mm_slli_epi16(in6, 2);
     74   in7 = _mm_slli_epi16(in7, 2);
     75 
     76   in[0] = &in0;
     77   in[1] = &in1;
     78   in[2] = &in2;
     79   in[3] = &in3;
     80   in[4] = &in4;
     81   in[5] = &in5;
     82   in[6] = &in6;
     83   in[7] = &in7;
     84 
     85   // We do two passes, first the columns, then the rows. The results of the
     86   // first pass are transposed so that the same column code can be reused. The
     87   // results of the second pass are also transposed so that the rows (processed
     88   // as columns) are put back in row positions.
     89   for (pass = 0; pass < 2; pass++) {
     90     // To store results of each pass before the transpose.
     91     __m128i res0, res1, res2, res3, res4, res5, res6, res7;
     92     // Add/subtract
     93     const __m128i q0 = _mm_add_epi16(in0, in7);
     94     const __m128i q1 = _mm_add_epi16(in1, in6);
     95     const __m128i q2 = _mm_add_epi16(in2, in5);
     96     const __m128i q3 = _mm_add_epi16(in3, in4);
     97     const __m128i q4 = _mm_sub_epi16(in3, in4);
     98     const __m128i q5 = _mm_sub_epi16(in2, in5);
     99     const __m128i q6 = _mm_sub_epi16(in1, in6);
    100     const __m128i q7 = _mm_sub_epi16(in0, in7);
    101     // Work on first four results
    102     {
    103       // Add/subtract
    104       const __m128i r0 = _mm_add_epi16(q0, q3);
    105       const __m128i r1 = _mm_add_epi16(q1, q2);
    106       const __m128i r2 = _mm_sub_epi16(q1, q2);
    107       const __m128i r3 = _mm_sub_epi16(q0, q3);
    108       // Interleave to do the multiply by constants which gets us into 32bits
    109       const __m128i t0 = _mm_unpacklo_epi16(r0, r1);
    110       const __m128i t1 = _mm_unpackhi_epi16(r0, r1);
    111       const __m128i t2 = _mm_unpacklo_epi16(r2, r3);
    112       const __m128i t3 = _mm_unpackhi_epi16(r2, r3);
    113 
    114       const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p16_p16);
    115       const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p16_p16);
    116       const __m128i u2 = _mm_madd_epi16(t0, k__cospi_p16_m16);
    117       const __m128i u3 = _mm_madd_epi16(t1, k__cospi_p16_m16);
    118 
    119       const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p24_p08);
    120       const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p24_p08);
    121       const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m08_p24);
    122       const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m08_p24);
    123       // dct_const_round_shift
    124 
    125       const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
    126       const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
    127       const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
    128       const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
    129 
    130       const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
    131       const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
    132       const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
    133       const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
    134 
    135       const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
    136       const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
    137       const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
    138       const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
    139 
    140       const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
    141       const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
    142       const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
    143       const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
    144       // Combine
    145 
    146       res0 = _mm_packs_epi32(w0, w1);
    147       res4 = _mm_packs_epi32(w2, w3);
    148       res2 = _mm_packs_epi32(w4, w5);
    149       res6 = _mm_packs_epi32(w6, w7);
    150     }
    151     // Work on next four results
    152     {
    153       // Interleave to do the multiply by constants which gets us into 32bits
    154       const __m128i d0 = _mm_sub_epi16(q6, q5);
    155       const __m128i d1 = _mm_add_epi16(q6, q5);
    156       const __m128i r0 = _mm_mulhrs_epi16(d0, k__dual_p16_p16);
    157       const __m128i r1 = _mm_mulhrs_epi16(d1, k__dual_p16_p16);
    158 
    159       // Add/subtract
    160       const __m128i x0 = _mm_add_epi16(q4, r0);
    161       const __m128i x1 = _mm_sub_epi16(q4, r0);
    162       const __m128i x2 = _mm_sub_epi16(q7, r1);
    163       const __m128i x3 = _mm_add_epi16(q7, r1);
    164       // Interleave to do the multiply by constants which gets us into 32bits
    165       const __m128i t0 = _mm_unpacklo_epi16(x0, x3);
    166       const __m128i t1 = _mm_unpackhi_epi16(x0, x3);
    167       const __m128i t2 = _mm_unpacklo_epi16(x1, x2);
    168       const __m128i t3 = _mm_unpackhi_epi16(x1, x2);
    169       const __m128i u0 = _mm_madd_epi16(t0, k__cospi_p28_p04);
    170       const __m128i u1 = _mm_madd_epi16(t1, k__cospi_p28_p04);
    171       const __m128i u2 = _mm_madd_epi16(t0, k__cospi_m04_p28);
    172       const __m128i u3 = _mm_madd_epi16(t1, k__cospi_m04_p28);
    173       const __m128i u4 = _mm_madd_epi16(t2, k__cospi_p12_p20);
    174       const __m128i u5 = _mm_madd_epi16(t3, k__cospi_p12_p20);
    175       const __m128i u6 = _mm_madd_epi16(t2, k__cospi_m20_p12);
    176       const __m128i u7 = _mm_madd_epi16(t3, k__cospi_m20_p12);
    177       // dct_const_round_shift
    178       const __m128i v0 = _mm_add_epi32(u0, k__DCT_CONST_ROUNDING);
    179       const __m128i v1 = _mm_add_epi32(u1, k__DCT_CONST_ROUNDING);
    180       const __m128i v2 = _mm_add_epi32(u2, k__DCT_CONST_ROUNDING);
    181       const __m128i v3 = _mm_add_epi32(u3, k__DCT_CONST_ROUNDING);
    182       const __m128i v4 = _mm_add_epi32(u4, k__DCT_CONST_ROUNDING);
    183       const __m128i v5 = _mm_add_epi32(u5, k__DCT_CONST_ROUNDING);
    184       const __m128i v6 = _mm_add_epi32(u6, k__DCT_CONST_ROUNDING);
    185       const __m128i v7 = _mm_add_epi32(u7, k__DCT_CONST_ROUNDING);
    186       const __m128i w0 = _mm_srai_epi32(v0, DCT_CONST_BITS);
    187       const __m128i w1 = _mm_srai_epi32(v1, DCT_CONST_BITS);
    188       const __m128i w2 = _mm_srai_epi32(v2, DCT_CONST_BITS);
    189       const __m128i w3 = _mm_srai_epi32(v3, DCT_CONST_BITS);
    190       const __m128i w4 = _mm_srai_epi32(v4, DCT_CONST_BITS);
    191       const __m128i w5 = _mm_srai_epi32(v5, DCT_CONST_BITS);
    192       const __m128i w6 = _mm_srai_epi32(v6, DCT_CONST_BITS);
    193       const __m128i w7 = _mm_srai_epi32(v7, DCT_CONST_BITS);
    194       // Combine
    195       res1 = _mm_packs_epi32(w0, w1);
    196       res7 = _mm_packs_epi32(w2, w3);
    197       res5 = _mm_packs_epi32(w4, w5);
    198       res3 = _mm_packs_epi32(w6, w7);
    199     }
    200     // Transpose the 8x8.
    201     {
    202       // 00 01 02 03 04 05 06 07
    203       // 10 11 12 13 14 15 16 17
    204       // 20 21 22 23 24 25 26 27
    205       // 30 31 32 33 34 35 36 37
    206       // 40 41 42 43 44 45 46 47
    207       // 50 51 52 53 54 55 56 57
    208       // 60 61 62 63 64 65 66 67
    209       // 70 71 72 73 74 75 76 77
    210       const __m128i tr0_0 = _mm_unpacklo_epi16(res0, res1);
    211       const __m128i tr0_1 = _mm_unpacklo_epi16(res2, res3);
    212       const __m128i tr0_2 = _mm_unpackhi_epi16(res0, res1);
    213       const __m128i tr0_3 = _mm_unpackhi_epi16(res2, res3);
    214       const __m128i tr0_4 = _mm_unpacklo_epi16(res4, res5);
    215       const __m128i tr0_5 = _mm_unpacklo_epi16(res6, res7);
    216       const __m128i tr0_6 = _mm_unpackhi_epi16(res4, res5);
    217       const __m128i tr0_7 = _mm_unpackhi_epi16(res6, res7);
    218       // 00 10 01 11 02 12 03 13
    219       // 20 30 21 31 22 32 23 33
    220       // 04 14 05 15 06 16 07 17
    221       // 24 34 25 35 26 36 27 37
    222       // 40 50 41 51 42 52 43 53
    223       // 60 70 61 71 62 72 63 73
    224       // 54 54 55 55 56 56 57 57
    225       // 64 74 65 75 66 76 67 77
    226       const __m128i tr1_0 = _mm_unpacklo_epi32(tr0_0, tr0_1);
    227       const __m128i tr1_1 = _mm_unpacklo_epi32(tr0_2, tr0_3);
    228       const __m128i tr1_2 = _mm_unpackhi_epi32(tr0_0, tr0_1);
    229       const __m128i tr1_3 = _mm_unpackhi_epi32(tr0_2, tr0_3);
    230       const __m128i tr1_4 = _mm_unpacklo_epi32(tr0_4, tr0_5);
    231       const __m128i tr1_5 = _mm_unpacklo_epi32(tr0_6, tr0_7);
    232       const __m128i tr1_6 = _mm_unpackhi_epi32(tr0_4, tr0_5);
    233       const __m128i tr1_7 = _mm_unpackhi_epi32(tr0_6, tr0_7);
    234       // 00 10 20 30 01 11 21 31
    235       // 40 50 60 70 41 51 61 71
    236       // 02 12 22 32 03 13 23 33
    237       // 42 52 62 72 43 53 63 73
    238       // 04 14 24 34 05 15 21 36
    239       // 44 54 64 74 45 55 61 76
    240       // 06 16 26 36 07 17 27 37
    241       // 46 56 66 76 47 57 67 77
    242       in0 = _mm_unpacklo_epi64(tr1_0, tr1_4);
    243       in1 = _mm_unpackhi_epi64(tr1_0, tr1_4);
    244       in2 = _mm_unpacklo_epi64(tr1_2, tr1_6);
    245       in3 = _mm_unpackhi_epi64(tr1_2, tr1_6);
    246       in4 = _mm_unpacklo_epi64(tr1_1, tr1_5);
    247       in5 = _mm_unpackhi_epi64(tr1_1, tr1_5);
    248       in6 = _mm_unpacklo_epi64(tr1_3, tr1_7);
    249       in7 = _mm_unpackhi_epi64(tr1_3, tr1_7);
    250       // 00 10 20 30 40 50 60 70
    251       // 01 11 21 31 41 51 61 71
    252       // 02 12 22 32 42 52 62 72
    253       // 03 13 23 33 43 53 63 73
    254       // 04 14 24 34 44 54 64 74
    255       // 05 15 25 35 45 55 65 75
    256       // 06 16 26 36 46 56 66 76
    257       // 07 17 27 37 47 57 67 77
    258     }
    259   }
    260   // Post-condition output and store it
    261   {
    262     // Post-condition (division by two)
    263     //    division of two 16 bits signed numbers using shifts
    264     //    n / 2 = (n - (n >> 15)) >> 1
    265     const __m128i sign_in0 = _mm_srai_epi16(in0, 15);
    266     const __m128i sign_in1 = _mm_srai_epi16(in1, 15);
    267     const __m128i sign_in2 = _mm_srai_epi16(in2, 15);
    268     const __m128i sign_in3 = _mm_srai_epi16(in3, 15);
    269     const __m128i sign_in4 = _mm_srai_epi16(in4, 15);
    270     const __m128i sign_in5 = _mm_srai_epi16(in5, 15);
    271     const __m128i sign_in6 = _mm_srai_epi16(in6, 15);
    272     const __m128i sign_in7 = _mm_srai_epi16(in7, 15);
    273     in0 = _mm_sub_epi16(in0, sign_in0);
    274     in1 = _mm_sub_epi16(in1, sign_in1);
    275     in2 = _mm_sub_epi16(in2, sign_in2);
    276     in3 = _mm_sub_epi16(in3, sign_in3);
    277     in4 = _mm_sub_epi16(in4, sign_in4);
    278     in5 = _mm_sub_epi16(in5, sign_in5);
    279     in6 = _mm_sub_epi16(in6, sign_in6);
    280     in7 = _mm_sub_epi16(in7, sign_in7);
    281     in0 = _mm_srai_epi16(in0, 1);
    282     in1 = _mm_srai_epi16(in1, 1);
    283     in2 = _mm_srai_epi16(in2, 1);
    284     in3 = _mm_srai_epi16(in3, 1);
    285     in4 = _mm_srai_epi16(in4, 1);
    286     in5 = _mm_srai_epi16(in5, 1);
    287     in6 = _mm_srai_epi16(in6, 1);
    288     in7 = _mm_srai_epi16(in7, 1);
    289   }
    290 
    291   iscan_ptr += n_coeffs;
    292   qcoeff_ptr += n_coeffs;
    293   dqcoeff_ptr += n_coeffs;
    294   n_coeffs = -n_coeffs;
    295   zero = _mm_setzero_si128();
    296 
    297   if (!skip_block) {
    298     __m128i eob;
    299     __m128i round, quant, dequant, thr;
    300     int16_t nzflag;
    301     {
    302       __m128i coeff0, coeff1;
    303 
    304       // Setup global values
    305       {
    306         round = _mm_load_si128((const __m128i*)round_ptr);
    307         quant = _mm_load_si128((const __m128i*)quant_ptr);
    308         dequant = _mm_load_si128((const __m128i*)dequant_ptr);
    309       }
    310 
    311       {
    312         __m128i coeff0_sign, coeff1_sign;
    313         __m128i qcoeff0, qcoeff1;
    314         __m128i qtmp0, qtmp1;
    315         // Do DC and first 15 AC
    316         coeff0 = *in[0];
    317         coeff1 = *in[1];
    318 
    319         // Poor man's sign extract
    320         coeff0_sign = _mm_srai_epi16(coeff0, 15);
    321         coeff1_sign = _mm_srai_epi16(coeff1, 15);
    322         qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
    323         qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
    324         qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
    325         qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
    326 
    327         qcoeff0 = _mm_adds_epi16(qcoeff0, round);
    328         round = _mm_unpackhi_epi64(round, round);
    329         qcoeff1 = _mm_adds_epi16(qcoeff1, round);
    330         qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
    331         quant = _mm_unpackhi_epi64(quant, quant);
    332         qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
    333 
    334         // Reinsert signs
    335         qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
    336         qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
    337         qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
    338         qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
    339 
    340         _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
    341         _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
    342 
    343         coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
    344         dequant = _mm_unpackhi_epi64(dequant, dequant);
    345         coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
    346 
    347         _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
    348         _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
    349       }
    350 
    351       {
    352         // Scan for eob
    353         __m128i zero_coeff0, zero_coeff1;
    354         __m128i nzero_coeff0, nzero_coeff1;
    355         __m128i iscan0, iscan1;
    356         __m128i eob1;
    357         zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
    358         zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
    359         nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
    360         nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
    361         iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
    362         iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
    363         // Add one to convert from indices to counts
    364         iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
    365         iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
    366         eob = _mm_and_si128(iscan0, nzero_coeff0);
    367         eob1 = _mm_and_si128(iscan1, nzero_coeff1);
    368         eob = _mm_max_epi16(eob, eob1);
    369       }
    370       n_coeffs += 8 * 2;
    371     }
    372 
    373     // AC only loop
    374     index = 2;
    375     thr = _mm_srai_epi16(dequant, 1);
    376     while (n_coeffs < 0) {
    377       __m128i coeff0, coeff1;
    378       {
    379         __m128i coeff0_sign, coeff1_sign;
    380         __m128i qcoeff0, qcoeff1;
    381         __m128i qtmp0, qtmp1;
    382 
    383         assert(index < (int)(sizeof(in) / sizeof(in[0])) - 1);
    384         coeff0 = *in[index];
    385         coeff1 = *in[index + 1];
    386 
    387         // Poor man's sign extract
    388         coeff0_sign = _mm_srai_epi16(coeff0, 15);
    389         coeff1_sign = _mm_srai_epi16(coeff1, 15);
    390         qcoeff0 = _mm_xor_si128(coeff0, coeff0_sign);
    391         qcoeff1 = _mm_xor_si128(coeff1, coeff1_sign);
    392         qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
    393         qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
    394 
    395         nzflag = _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff0, thr)) |
    396             _mm_movemask_epi8(_mm_cmpgt_epi16(qcoeff1, thr));
    397 
    398         if (nzflag) {
    399           qcoeff0 = _mm_adds_epi16(qcoeff0, round);
    400           qcoeff1 = _mm_adds_epi16(qcoeff1, round);
    401           qtmp0 = _mm_mulhi_epi16(qcoeff0, quant);
    402           qtmp1 = _mm_mulhi_epi16(qcoeff1, quant);
    403 
    404           // Reinsert signs
    405           qcoeff0 = _mm_xor_si128(qtmp0, coeff0_sign);
    406           qcoeff1 = _mm_xor_si128(qtmp1, coeff1_sign);
    407           qcoeff0 = _mm_sub_epi16(qcoeff0, coeff0_sign);
    408           qcoeff1 = _mm_sub_epi16(qcoeff1, coeff1_sign);
    409 
    410           _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), qcoeff0);
    411           _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, qcoeff1);
    412 
    413           coeff0 = _mm_mullo_epi16(qcoeff0, dequant);
    414           coeff1 = _mm_mullo_epi16(qcoeff1, dequant);
    415 
    416           _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), coeff0);
    417           _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, coeff1);
    418         } else {
    419           _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
    420           _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
    421 
    422           _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
    423           _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
    424         }
    425       }
    426 
    427       if (nzflag) {
    428         // Scan for eob
    429         __m128i zero_coeff0, zero_coeff1;
    430         __m128i nzero_coeff0, nzero_coeff1;
    431         __m128i iscan0, iscan1;
    432         __m128i eob0, eob1;
    433         zero_coeff0 = _mm_cmpeq_epi16(coeff0, zero);
    434         zero_coeff1 = _mm_cmpeq_epi16(coeff1, zero);
    435         nzero_coeff0 = _mm_cmpeq_epi16(zero_coeff0, zero);
    436         nzero_coeff1 = _mm_cmpeq_epi16(zero_coeff1, zero);
    437         iscan0 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs));
    438         iscan1 = _mm_load_si128((const __m128i*)(iscan_ptr + n_coeffs) + 1);
    439         // Add one to convert from indices to counts
    440         iscan0 = _mm_sub_epi16(iscan0, nzero_coeff0);
    441         iscan1 = _mm_sub_epi16(iscan1, nzero_coeff1);
    442         eob0 = _mm_and_si128(iscan0, nzero_coeff0);
    443         eob1 = _mm_and_si128(iscan1, nzero_coeff1);
    444         eob0 = _mm_max_epi16(eob0, eob1);
    445         eob = _mm_max_epi16(eob, eob0);
    446       }
    447       n_coeffs += 8 * 2;
    448       index += 2;
    449     }
    450 
    451     // Accumulate EOB
    452     {
    453       __m128i eob_shuffled;
    454       eob_shuffled = _mm_shuffle_epi32(eob, 0xe);
    455       eob = _mm_max_epi16(eob, eob_shuffled);
    456       eob_shuffled = _mm_shufflelo_epi16(eob, 0xe);
    457       eob = _mm_max_epi16(eob, eob_shuffled);
    458       eob_shuffled = _mm_shufflelo_epi16(eob, 0x1);
    459       eob = _mm_max_epi16(eob, eob_shuffled);
    460       *eob_ptr = _mm_extract_epi16(eob, 1);
    461     }
    462   } else {
    463     do {
    464       _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs), zero);
    465       _mm_store_si128((__m128i*)(dqcoeff_ptr + n_coeffs) + 1, zero);
    466       _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs), zero);
    467       _mm_store_si128((__m128i*)(qcoeff_ptr + n_coeffs) + 1, zero);
    468       n_coeffs += 8 * 2;
    469     } while (n_coeffs < 0);
    470     *eob_ptr = 0;
    471   }
    472 }
    473