/hardware/bsp/intel/peripheral/libupm/src/gas/ |
gas.cxx | 44 int sampleIdx = 0; 56 while (sampleIdx < numberOfSamples) { 57 buffer[sampleIdx++] = getSample(); 61 return sampleIdx;
|
/hardware/bsp/intel/peripheral/libupm/src/mic/ |
mic.cxx | 59 int sampleIdx = 0; 71 while (sampleIdx < numberOfSamples) { 72 buffer[sampleIdx++] = mraa_aio_read (m_micCtx); 76 return sampleIdx;
|
/external/opencv3/apps/traincascade/ |
haarfeatures.h | 37 virtual float operator()(int featureIdx, int sampleIdx) const; 73 inline float CvHaarEvaluator::operator()(int featureIdx, int sampleIdx) const 75 float nf = normfactor.at<float>(0, sampleIdx); 76 return !nf ? 0.0f : (features[featureIdx].calc( sum, tilted, sampleIdx)/nf);
|
HOGfeatures.h | 25 virtual float operator()(int varIdx, int sampleIdx) const; 52 inline float CvHOGEvaluator::operator()(int varIdx, int sampleIdx) const 56 //return features[featureIdx].calc( hist, sampleIdx, componentIdx); 57 return features[featureIdx].calc( hist, normSum, sampleIdx, componentIdx);
|
lbpfeatures.h | 20 virtual float operator()(int featureIdx, int sampleIdx) const 21 { return (float)features[featureIdx].calc( sum, sampleIdx); }
|
old_ml.hpp | 198 const CvMat* varIdx=0, const CvMat* sampleIdx=0 ); 201 const CvMat* varIdx = 0, const CvMat* sampleIdx=0, bool update=false ); 207 const cv::Mat& varIdx=cv::Mat(), const cv::Mat& sampleIdx=cv::Mat() ); 209 const cv::Mat& varIdx = cv::Mat(), const cv::Mat& sampleIdx=cv::Mat(), 243 const CvMat* sampleIdx=0, bool isRegression=false, int max_k=32 ); 246 const CvMat* sampleIdx=0, bool is_regression=false, 253 const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, int max_k=32 ); 256 const cv::Mat& sampleIdx=cv::Mat(), bool isRegression=false, 473 const CvMat* varIdx=0, const CvMat* sampleIdx=0, 477 const CvMat* varIdx=0, const CvMat* sampleIdx=0 [all...] |
boost.h | 56 virtual CvDTreeNode* predict( int sampleIdx ) const; 70 virtual float predict( int sampleIdx, bool returnSum = false ) const;
|
cascadeclassifier.h | 100 int predict( int sampleIdx );
|
traincascade_features.h | 83 virtual float operator()(int featureIdx, int sampleIdx) const = 0;
|
boost.cpp | 954 CvDTreeNode* CvCascadeBoostTree::predict( int sampleIdx ) const [all...] |
cascadeclassifier.cpp | 288 int CvCascadeClassifier::predict( int sampleIdx ) 290 CV_DbgAssert( sampleIdx < numPos + numNeg ); 294 if ( (*it)->predict( sampleIdx ) == 0.f )
|
old_ml_precomp.hpp | 114 uchar* sidx;int sistep; - sampleIdx 215 ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
/external/opencv/ml/src/ |
mlestimate.cpp | 404 const CvMat* sampleIdx) 454 if (sampleIdx) 459 if (!CV_IS_MAT (sampleIdx)) 460 CV_ERROR (CV_StsBadArg, "Invalid sampleIdx array"); 462 if (sampleIdx->rows != 1 && sampleIdx->cols != 1) 463 CV_ERROR (CV_StsBadSize, "sampleIdx array must be 1-dimensional"); 465 s_len = sampleIdx->rows + sampleIdx->cols - 1; 466 s_step = sampleIdx->rows == 1 ? [all...] |
_ml.h | 118 uchar* sidx;int sistep; - sampleIdx 219 ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
/external/opencv3/modules/ml/src/ |
data.cpp | 131 return !sampleIdx.empty() ? (int)sampleIdx.total() : 160 Mat getTrainSampleIdx() const { return !trainSampleIdx.empty() ? trainSampleIdx : sampleIdx; } 217 sampleIdx.release(); 242 sampleIdx = _sampleIdx.getMat(); 253 if( !sampleIdx.empty() ) 255 CV_Assert( (sampleIdx.checkVector(1, CV_32S, true) > 0 && 256 checkRange(sampleIdx, true, 0, 0, nsamples-1)) || 257 sampleIdx.checkVector(1, CV_8U, true) == nsamples ); 258 if( sampleIdx.type() == CV_8U [all...] |
gbt.cpp | [all...] |
/external/webrtc/webrtc/modules/audio_device/mac/ |
audio_device_mac.cc | [all...] |
/external/opencv3/modules/ml/include/opencv2/ |
ml.hpp | 159 sampleIdx) 275 @param sampleIdx vector specifying which samples to use for training. It can be an integer 284 InputArray varIdx=noArray(), InputArray sampleIdx=noArray(), [all...] |
/external/opencv/ml/include/ |
ml.h | [all...] |