HomeSort by relevance Sort by last modified time
    Searched full:lgamma (Results 1 - 25 of 531) sorted by null

1 2 3 4 5 6 7 8 91011>>

  /cts/tests/tests/renderscript/src/android/renderscript/cts/generated/
TestLgamma.rs 24 return lgamma(inV);
28 return lgamma(inV);
32 return lgamma(inV);
36 return lgamma(inV);
42 float out = lgamma(inV, &outSignOfGamma);
49 float2 out = lgamma(inV, &outSignOfGamma);
56 float3 out = lgamma(inV, &outSignOfGamma);
63 float4 out = lgamma(inV, &outSignOfGamma);
  /prebuilts/go/darwin-x86/src/math/
lgamma.go 33 // lgamma(1+s) = log(s) + lgamma(s)
35 // lgamma(7.3) = log(6.3) + lgamma(6.3)
36 // = log(6.3*5.3) + lgamma(5.3)
37 // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
38 // 2. Polynomial approximation of lgamma around its
42 // lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
47 // lgamma(x) = 0.5*s + s*P(s)/Q(s)
49 // |P/Q - (lgamma(x)-0.5s)| < 2**-61.7
    [all...]
  /prebuilts/go/linux-x86/src/math/
lgamma.go 33 // lgamma(1+s) = log(s) + lgamma(s)
35 // lgamma(7.3) = log(6.3) + lgamma(6.3)
36 // = log(6.3*5.3) + lgamma(5.3)
37 // = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
38 // 2. Polynomial approximation of lgamma around its
42 // lgamma(x) = -1.214862905358496078218 + z**2*poly(z)
47 // lgamma(x) = 0.5*s + s*P(s)/Q(s)
49 // |P/Q - (lgamma(x)-0.5s)| < 2**-61.7
    [all...]
  /prebuilts/gdb/darwin-x86/lib/python2.7/test/
math_testcases.txt 170 -- lgamma: log of absolute value of the gamma function --
174 lgam0000 lgamma 0.0 -> inf divide-by-zero
175 lgam0001 lgamma -0.0 -> inf divide-by-zero
176 lgam0002 lgamma inf -> inf
177 lgam0003 lgamma -inf -> inf
178 lgam0004 lgamma nan -> nan
181 lgam0010 lgamma -1 -> inf divide-by-zero
182 lgam0011 lgamma -2 -> inf divide-by-zero
183 lgam0012 lgamma -1e16 -> inf divide-by-zero
184 lgam0013 lgamma -1e300 -> inf divide-by-zer
    [all...]
  /prebuilts/gdb/linux-x86/lib/python2.7/test/
math_testcases.txt 170 -- lgamma: log of absolute value of the gamma function --
174 lgam0000 lgamma 0.0 -> inf divide-by-zero
175 lgam0001 lgamma -0.0 -> inf divide-by-zero
176 lgam0002 lgamma inf -> inf
177 lgam0003 lgamma -inf -> inf
178 lgam0004 lgamma nan -> nan
181 lgam0010 lgamma -1 -> inf divide-by-zero
182 lgam0011 lgamma -2 -> inf divide-by-zero
183 lgam0012 lgamma -1e16 -> inf divide-by-zero
184 lgam0013 lgamma -1e300 -> inf divide-by-zer
    [all...]
  /prebuilts/python/darwin-x86/2.7.5/lib/python2.7/test/
math_testcases.txt 170 -- lgamma: log of absolute value of the gamma function --
174 lgam0000 lgamma 0.0 -> inf divide-by-zero
175 lgam0001 lgamma -0.0 -> inf divide-by-zero
176 lgam0002 lgamma inf -> inf
177 lgam0003 lgamma -inf -> inf
178 lgam0004 lgamma nan -> nan
181 lgam0010 lgamma -1 -> inf divide-by-zero
182 lgam0011 lgamma -2 -> inf divide-by-zero
183 lgam0012 lgamma -1e16 -> inf divide-by-zero
184 lgam0013 lgamma -1e300 -> inf divide-by-zer
    [all...]
  /prebuilts/python/linux-x86/2.7.5/lib/python2.7/test/
math_testcases.txt 170 -- lgamma: log of absolute value of the gamma function --
174 lgam0000 lgamma 0.0 -> inf divide-by-zero
175 lgam0001 lgamma -0.0 -> inf divide-by-zero
176 lgam0002 lgamma inf -> inf
177 lgam0003 lgamma -inf -> inf
178 lgam0004 lgamma nan -> nan
181 lgam0010 lgamma -1 -> inf divide-by-zero
182 lgam0011 lgamma -2 -> inf divide-by-zero
183 lgam0012 lgamma -1e16 -> inf divide-by-zero
184 lgam0013 lgamma -1e300 -> inf divide-by-zer
    [all...]
  /bionic/libm/upstream-freebsd/lib/msun/src/
e_lgamma_r.c 24 * lgamma(1+s) = log(s) + lgamma(s)
26 * lgamma(7.3) = log(6.3) + lgamma(6.3)
27 * = log(6.3*5.3) + lgamma(5.3)
28 * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
29 * 2. Polynomial approximation of lgamma around its
33 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
39 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
41 * |P/Q - (lgamma(x)-0.5s)| < 2**-61.7
    [all...]
e_lgammaf_r.c 32 * |(lgamma(2 - y) + 0.5 * y) / y - a(y)| < 2**-31.4
42 * |(lgamma(x) - tf) - t(x - tc)| < 2**-30.8.
56 * |(lgamma(1 + y) + 0.5 * y) / y - u(y) / v(y)| < 2**-31.2
66 * |(lgamma(y+2) - 0.5 * y) / y - s(y)/r(y)| < 2**-35.0
78 * |lgamma(x) - (x - 0.5) * (log(x) - 1) - w(1/x)| < 2**-29.6.
160 if(ix<=0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
194 z = one; /* lgamma(1+s) = log(s) + lgamma(s) */
  /external/fdlibm/
w_lgamma.c 40 return __kernel_standard(x,x,15); /* lgamma pole */
42 return __kernel_standard(x,x,14); /* lgamma overflow */
w_lgamma_r.c 36 return __kernel_standard(x,x,15); /* lgamma pole */
38 return __kernel_standard(x,x,14); /* lgamma overflow */
e_lgamma_r.c 23 * lgamma(1+s) = ieee_log(s) + ieee_lgamma(s)
25 * lgamma(7.3) = ieee_log(6.3) + ieee_lgamma(6.3)
28 * 2. Polynomial approximation of lgamma around its
32 * lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
38 * lgamma(x) = 0.5*s + s*P(s)/Q(s)
51 * lgamma(x)~(x-0.5)log(x)-x+0.5*ieee_log(2pi)+1/(12x)-1/(360x**3)+....
68 * lgamma(x) = ieee_log(|Gamma(x)|)
74 * lgamma(2+s) ~ s*(1-Euler) for tiny s
75 * lgamma(1)=ieee_lgamma(2)=0
76 * lgamma(x) ~ -ieee_log(x) for tiny
    [all...]
  /development/ndk/platforms/android-13/arch-arm/symbols/
libm.so.functions.txt 82 lgamma
  /development/ndk/platforms/android-13/arch-mips/symbols/
libm.so.functions.txt 82 lgamma
  /development/ndk/platforms/android-3/arch-arm/symbols/
libm.so.functions.txt 82 lgamma
  /development/ndk/platforms/android-9/arch-arm/symbols/
libm.so.functions.txt 82 lgamma
  /development/ndk/platforms/android-9/arch-mips/symbols/
libm.so.functions.txt 82 lgamma
  /frameworks/compile/slang/tests/P_math_fp/
math_fp.rs 113 TEST_FUNC_1(lgamma);
114 TEST_FUNC_2PI(lgamma);
  /prebuilts/ndk/current/platforms/android-12/arch-arm/usr/lib/
libm.so 
  /prebuilts/ndk/current/platforms/android-12/arch-mips/usr/lib/
libm.so 
  /prebuilts/ndk/current/platforms/android-12/arch-mips/usr/libr2/
libm.so 
  /prebuilts/ndk/current/platforms/android-12/arch-mips/usr/libr6/
libm.so 
  /prebuilts/ndk/current/platforms/android-12/arch-x86/usr/lib/
libm.so 
  /prebuilts/ndk/current/platforms/android-13/arch-arm/usr/lib/
libm.so 
  /prebuilts/ndk/current/platforms/android-13/arch-mips/usr/lib/
libm.so 

Completed in 566 milliseconds

1 2 3 4 5 6 7 8 91011>>