/external/eigen/test/ |
array.cpp | 19 Index rows = m.rows(); local 22 ArrayType m1 = ArrayType::Random(rows, cols), 23 m2 = ArrayType::Random(rows, cols), 24 m3(rows, cols); 26 ColVectorType cv1 = ColVectorType::Random(rows); 34 VERIFY_IS_APPROX(m1 + s1, ArrayType::Constant(rows,cols,s1) + m1); 36 VERIFY_IS_APPROX(m1 - s1, m1 - ArrayType::Constant(rows,cols,s1)); 37 VERIFY_IS_APPROX(s1 - m1, ArrayType::Constant(rows,cols,s1) - m1); 38 VERIFY_IS_APPROX((m1*Scalar(2)) - s2, (m1+m1) - ArrayType::Constant(rows,cols,s2) ) 93 Index rows = m.rows(); local 162 Index rows = m.rows(); local 224 Index rows = m.rows(); local 243 Index rows = m.rows(); local [all...] |
sparse_vector.cpp | 12 template<typename Scalar,typename Index> void sparse_vector(int rows, int cols) 14 double densityMat = (std::max)(8./(rows*cols), 0.01); 15 double densityVec = (std::max)(8./float(rows), 0.1); 22 SparseMatrixType m1(rows,rows); 23 SparseVectorType v1(rows), v2(rows), v3(rows); 24 DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); [all...] |
product.h | 34 Index rows = m.rows(); local 39 MatrixType m1 = MatrixType::Random(rows, cols), 40 m2 = MatrixType::Random(rows, cols), 41 m3(rows, cols); 43 identity = RowSquareMatrixType::Identity(rows, rows), 44 square = RowSquareMatrixType::Random(rows, rows), 45 res = RowSquareMatrixType::Random(rows, rows) [all...] |
special_numbers.cpp | 15 int rows = internal::random<int>(1,300); local 22 MatType m1 = MatType::Random(rows,cols), 23 mnan = MatType::Random(rows,cols), 24 minf = MatType::Random(rows,cols), 25 mboth = MatType::Random(rows,cols); 30 mnan(internal::random<int>(0,rows-1), internal::random<int>(0,cols-1)) = nan; 31 minf(internal::random<int>(0,rows-1), internal::random<int>(0,cols-1)) = inf;
|
array_reverse.cpp | 22 Index rows = m.rows(); local 27 MatrixType m1 = MatrixType::Random(rows, cols); 28 VectorType v1 = VectorType::Random(rows); 32 for ( int i = 0; i < rows; i++ ) { 34 VERIFY_IS_APPROX(m1_r(i, j), m1(rows - 1 - i, cols - 1 - j)); 40 for ( int i = 0; i < rows; i++ ) { 42 VERIFY_IS_APPROX(m1_rd(i, j), m1(rows - 1 - i, cols - 1 - j)); 48 for ( int i = 0; i < rows; i++ ) { 50 VERIFY_IS_APPROX(m1_rb(i, j), m1(rows - 1 - i, cols - 1 - j)) [all...] |
integer_types.cpp | 27 Index rows = m.rows(); local 30 MatrixType m1(rows, cols), 31 m2 = MatrixType::Random(rows, cols), 32 mzero = MatrixType::Zero(rows, cols); 35 m1 = MatrixType::Random(rows, cols); 61 Index rows = m.rows(); local 66 MatrixType m1(rows, cols), 67 m2 = MatrixType::Random(rows, cols) [all...] |
eigensolver_complex.cpp | 17 by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */ 25 VERIFY(vec1.rows() == vec2.rows()); 26 for (int k = 1; k <= vec1.rows(); ++k) 39 Index rows = m.rows(); local 45 MatrixType a = MatrixType::Random(rows,cols); 60 ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); 64 if (rows > 2) { 75 MatrixType z = MatrixType::Zero(rows,cols) [all...] |
inverse.cpp | 21 Index rows = m.rows(); local 26 MatrixType m1(rows, cols), 27 m2(rows, cols), 28 identity = MatrixType::Identity(rows, rows); 29 createRandomPIMatrixOfRank(rows,rows,rows,m1); 64 VectorType v3 = VectorType::Random(rows); [all...] |
sparse_solvers.cpp | 17 Matrix<Scalar,Dynamic,Dynamic> aux(refMat.rows(),refMat.cols()); 27 for (int i=j ; i<sparseMat.rows(); ++i) 33 template<typename Scalar> void sparse_solvers(int rows, int cols) 35 double density = (std::max)(8./(rows*cols), 0.01); 40 DenseVector vec1 = DenseVector::Random(rows); 48 SparseMatrix<Scalar> m2(rows, cols); 49 DenseMatrix refMat2 = DenseMatrix::Zero(rows, cols); 64 //Index rows, Index cols, Index nnz, Index* outerIndexPtr, Index* innerIndexPtr, Scalar* valuePtr 65 MappedSparseMatrix<Scalar> mm2(rows, cols, cm2.nonZeros(), cm2.outerIndexPtr(), cm2.innerIndexPtr(), cm2.valuePtr()); 80 SparseMatrix<Scalar> matB(rows, rows) [all...] |
/external/eigen/bench/ |
spmv.cpp | 28 // mkl_scscmm(&n, lhs.rows(), rhs.cols(), lhs.cols(), &alpha, matdescra, 31 // // mkl_somatcopy('C', 'T', lhs.rows(), lhs.cols(), 1, 32 // // lhs._valuePtr(), lhs.rows(), DST, dst_stride); 40 int rows = size; local 51 rows = atoi(argv[i]+1); 76 std::cout << argv[0] << " r<nb rows> c<nb columns> n<non zeros per column> t<nb tries> p<nb repeats>\n"; 80 std::cout << "SpMV " << rows << " x " << cols << " with " << nnzPerCol << " non zeros per column. (" << repeats << " repeats, and " << tries << " tries)\n\n"; 82 EigenSparseMatrix sm(rows,cols); 83 DenseVector dv(cols), res(rows); 91 fillMatrix2(nnzPerCol, rows, cols, sm) [all...] |
/external/eigen/test/eigen2/ |
eigen2_array.cpp | 23 int rows = m.rows(); local 26 MatrixType m1 = MatrixType::Random(rows, cols), 27 m2 = MatrixType::Random(rows, cols), 28 m3(rows, cols); 35 VERIFY_IS_APPROX(m1.cwise() + s1, MatrixType::Constant(rows,cols,s1) + m1); 36 VERIFY_IS_APPROX((m1*Scalar(2)).cwise() - s2, (m1+m1) - MatrixType::Constant(rows,cols,s2) ); 58 int rows = m.rows(); local 61 int r = ei_random<int>(0, rows-1) [all...] |
eigen2_adjoint.cpp | 22 int rows = m.rows(); local 29 MatrixType m1 = MatrixType::Random(rows, cols), 30 m2 = MatrixType::Random(rows, cols), 31 m3(rows, cols), 32 square = SquareMatrixType::Random(rows, rows); 33 VectorType v1 = VectorType::Random(rows), 34 v2 = VectorType::Random(rows), 35 v3 = VectorType::Random(rows), [all...] |
product.h | 36 int rows = m.rows(); local 41 MatrixType m1 = MatrixType::Random(rows, cols), 42 m2 = MatrixType::Random(rows, cols), 43 m3(rows, cols); 45 identity = RowSquareMatrixType::Identity(rows, rows), 46 square = RowSquareMatrixType::Random(rows, rows), 47 res = RowSquareMatrixType::Random(rows, rows) [all...] |
/prebuilts/gdb/darwin-x86/lib/python2.7/plat-mac/lib-scriptpackages/StdSuites/ |
Table_Suite.py | 42 class rows(aetools.ComponentItem): class in inherits:aetools.ComponentItem 43 """rows - """ 46 row = rows 66 rows._superclassnames = [] 67 rows._privpropdict = { 69 rows._privelemdict = { 89 'crow' : rows,
|
/prebuilts/python/darwin-x86/2.7.5/lib/python2.7/plat-mac/lib-scriptpackages/StdSuites/ |
Table_Suite.py | 42 class rows(aetools.ComponentItem): class in inherits:aetools.ComponentItem 43 """rows - """ 46 row = rows 66 rows._superclassnames = [] 67 rows._privpropdict = { 69 rows._privelemdict = { 89 'crow' : rows,
|
/external/eigen/doc/ |
AsciiQuickReference.txt | 6 Matrix<double, 3, 3> A; // Fixed rows and cols. Same as Matrix3d. 7 Matrix<double, 3, Dynamic> B; // Fixed rows, dynamic cols. 19 C.rows() // size(C,1) // number of rows 31 7, 8, 9; // and then the rows are stacked. 36 MatrixXd::Identity(rows,cols) // eye(rows,cols) 37 C.setIdentity(rows,cols) // C = eye(rows,cols) 38 MatrixXd::Zero(rows,cols) // zeros(rows,cols [all...] |
/external/ceres-solver/internal/ceres/ |
incomplete_lq_factorization_test.cc | 48 EXPECT_EQ(expected.rows()[i], actual.rows()[i]); 84 int* rows = matrix.mutable_rows(); local 90 rows[i] = idx; 100 rows[10] = idx; 148 for (int idx = matrix.rows()[1]; idx < matrix.rows()[2]; ++idx) { 149 EXPECT_EQ(matrix.cols()[idx], idx - matrix.rows()[1]); 150 EXPECT_EQ(matrix.values()[idx], dense_vector(idx - matrix.rows()[1])); 159 EXPECT_EQ(matrix.cols()[matrix.rows()[2]], 0) [all...] |
/external/dng_sdk/source/ |
dng_reference.h | 44 uint32 rows, 53 uint32 rows, 62 uint32 rows, 73 uint32 rows, 85 uint32 rows, 97 uint32 rows, 109 uint32 rows, 121 uint32 rows, 133 uint32 rows, 145 uint32 rows, [all...] |
dng_bottlenecks.h | 55 uint32 rows, 65 uint32 rows, 75 uint32 rows, 87 uint32 rows, 100 uint32 rows, 113 uint32 rows, 126 uint32 rows, 139 uint32 rows, 152 uint32 rows, 165 uint32 rows, [all...] |
/external/chromium-trace/catapult/tracing/tracing/ui/tracks/ |
async_slice_group_track.html | 63 * Breaks up the list of slices into N rows, each of which is a list of 69 * subSlices recursively into rows below parent slice according to which 80 var findLevel = function(sliceToPut, rows, n) { 81 if (n >= rows.length) 82 return true; // We always can make empty rows to put the slice. 83 var subRow = rows[n]; 92 if (!findLevel(sliceToPut.subSlices[i], rows, n + 1)) 117 // Fit subSlices recursively into rows below parent. 118 var fitSubSlicesRecursively = function(subSlices, level, rows) { 121 if (level === rows.length [all...] |
/external/opencv3/modules/core/src/ |
cuda_gpu_mat.cpp | 50 flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(rows_), cols(cols_), 64 if (rows == 1) 72 dataend += step * (rows - 1) + minstep; 76 flags(Mat::MAGIC_VAL + (type_ & Mat::TYPE_MASK)), rows(size_.height), cols(size_.width), 90 if (rows == 1) 98 dataend += step * (rows - 1) + minstep; 110 rows = m.rows; 114 CV_Assert( 0 <= rowRange_.start && rowRange_.start <= rowRange_.end && rowRange_.end <= m.rows ); 116 rows = rowRange_.size() [all...] |
/external/javasqlite/src/main/java/SQLite/ |
TableResult.java | 39 * Number of rows in the result set. 57 * Rows of the result set. Each row is stored as a String array. 60 public Vector rows; field in class:TableResult 63 * Maximum number of rows to hold in the table. 69 * Flag to indicate Maximum number of rows condition. 83 * Create an empty result set with maximum number of rows. 98 rows = new Vector(); 130 rows.addElement(rowdata); 150 String row[] = (String[]) rows.elementAt(i);
|
/external/opencv3/modules/cudev/include/opencv2/cudev/grid/detail/ |
split_merge.hpp | 63 __global__ void mergeC2(const Src1Ptr src1, const Src2Ptr src2, GlobPtr<DstType> dst, const MaskPtr mask, const int rows, const int cols) 70 if (x >= cols || y >= rows || !mask(y, x)) 80 __host__ void mergeC2(const Src1Ptr& src1, const Src2Ptr& src2, const GlobPtr<DstType>& dst, const MaskPtr& mask, int rows, int cols, cudaStream_t stream) 83 const dim3 grid(divUp(cols, block.x), divUp(rows, block.y)); 85 mergeC2<<<grid, block, 0, stream>>>(src1, src2, dst, mask, rows, cols); 93 __global__ void mergeC3(const Src1Ptr src1, const Src2Ptr src2, const Src3Ptr src3, GlobPtr<DstType> dst, const MaskPtr mask, const int rows, const int cols) 100 if (x >= cols || y >= rows || !mask(y, x)) 111 __host__ void mergeC3(const Src1Ptr& src1, const Src2Ptr& src2, const Src3Ptr& src3, const GlobPtr<DstType>& dst, const MaskPtr& mask, int rows, int cols, cudaStream_t stream) 114 const dim3 grid(divUp(cols, block.x), divUp(rows, block.y)); 116 mergeC3<<<grid, block, 0, stream>>>(src1, src2, src3, dst, mask, rows, cols) 162 mergeC2<Policy>(get<0>(src), get<1>(src), dst, mask, rows, cols, stream); local 171 mergeC3<Policy>(get<0>(src), get<1>(src), get<2>(src), dst, mask, rows, cols, stream); local 180 mergeC4<Policy>(get<0>(src), get<1>(src), get<2>(src), get<3>(src), dst, mask, rows, cols, stream); local [all...] |
/external/chromium-trace/catapult/tracing/tracing/ui/analysis/ |
single_flow_event_sub_view.html | 21 var rows = this.__proto__.__proto__.getEventRows_(event); 24 rows.splice(0, 0, { 38 rows.push({ 42 rows.push({ 46 return rows;
|
/external/eigen/blas/ |
GeneralRank1Update.h | 22 static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) 29 Map<Matrix<Scalar,Dynamic,1> >(mat+stride*i,rows) += alpha * cj(v[i]) * ConjRhsType(OtherMap(u,rows)); 36 static void run(Index rows, Index cols, Scalar* mat, Index stride, const Scalar* u, const Scalar* v, Scalar alpha) 38 general_rank1_update<Scalar,Index,ColMajor,ConjRhs,ConjRhs>::run(rows,cols,mat,stride,u,v,alpha);
|