Home | History | Annotate | Download | only in api

Lines Matching refs:chess

262 <dd> Chebyshev:[{radius}][x{scale}[!]] Chebyshev Distance (also known as Tchebychev or Chessboard distance) is a value of one to any neighbour, orthogonal or diagonal. One why of thinking of it is the number of squares a 'King' or 'Queen' in chess needs to traverse reach any other position on a chess board. It results in a 'square' like distance function, but one where diagonals are given a value that is closer than expected. </dd>
264 <dd> Manhattan:[{radius}][x{scale}[!]] Manhattan Distance (also known as Rectilinear, City Block, or the Taxi Cab distance metric), it is the distance needed when you can only travel in horizontal or vertical directions only. It is the distance a 'Rook' in chess would have to travel, and results in a diamond like distances, where diagonals are further than expected. </dd>