Lines Matching full:diagonal
44 * main diagonal and the first diagonal below and above it. The Hessenberg
87 typename internal::add_const_on_value_type<typename Diagonal<const MatrixType>::RealReturnType>::type,
88 const Diagonal<const MatrixType>
92 typename internal::add_const_on_value_type<typename Diagonal<
94 const Diagonal<
197 * - the diagonal and lower sub-diagonal represent the real tridiagonal
257 * returned by diagonal() and subDiagonal() instead of creating a new
261 * matrixQ(), packedMatrix(), diagonal(), subDiagonal()
269 /** \brief Returns the diagonal of the tridiagonal matrix T in the decomposition.
271 * \returns expression representing the diagonal of T
282 DiagonalReturnType diagonal() const;
292 * \sa diagonal() for an example, matrixT()
305 Tridiagonalization<MatrixType>::diagonal() const
308 return m_matrix.diagonal();
317 return Block<const MatrixType,SizeMinusOne,SizeMinusOne>(m_matrix, 1, 0, n-1,n-1).diagonal();
330 * On output, the tridiagonal selfadjoint matrix T is stored in the diagonal
331 * and lower sub-diagonal of the matrix \a matA.
392 * \param[out] diag The diagonal of the tridiagonal matrix T in the
447 diag = mat.diagonal().real();
448 subdiag = mat.template diagonal<-1>().real();
541 result.template diagonal<1>() = m_matrix.template diagonal<-1>().conjugate();
542 result.diagonal() = m_matrix.diagonal();
543 result.template diagonal<-1>() = m_matrix.template diagonal<-1>();