Lines Matching refs:iN
16 // Redistribution and use in source and binary forms, with or without modification,
22 // * Redistribution's in binary form must reproduce the above copyright notice,
23 // this list of conditions and the following disclaimer in the documentation
32 // In no event shall the Intel Corporation or contributors be liable for any direct,
36 // and on any theory of liability, whether in contract, strict liability,
37 // or tort (including negligence or otherwise) arising in any way out of
936 int iterations, error = 0, jN, iN, kN, lN = 0;
958 for( iN = 0; iN < MN; iN += N )
961 U[iN + j] = A[iN + j];
965 Bidiagonal matrix is located in W (diagonal elements)
966 and in rv1 (upperdiagonal elements)
973 for( i = 0, iN = 0; i < N; i++, iN += N )
977 lN = iN + N;
986 for( kN = iN; kN < MN; kN += N )
992 for( kN = iN; kN < MN; kN += N )
999 f = U[iN + i];
1002 U[iN + i] = f - g;
1009 for( kN = iN; kN < MN; kN += N )
1017 for( kN = iN; kN < MN; kN += N )
1024 for( kN = iN; kN < MN; kN += N )
1037 scale += fabs( U[iN + k] );
1045 U[iN + k] /= scale;
1046 s += (U[iN + k]) * (U[iN + k]);
1049 f = U[iN + l];
1055 rv1[k] = U[iN + k] / h;
1063 s += U[jN + k] * U[iN + k];
1071 U[iN + k] *= scale;
1086 for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N )
1097 V[jN + i] = U[iN + j] / U[iN + l] / g;
1105 s += U[iN + k] * V[kN + j];
1114 V[iN + j] = 0;
1119 V[iN + i] = 1;
1122 lN = iN;
1131 for( i = N - 1, iN = NN - N; i >= 0; i--, iN -= N )
1135 lN = iN + N;
1139 U[iN + j] = 0;
1153 f = s / U[iN + i] / g;
1155 for( kN = iN; kN < MN; kN += N )
1159 for( jN = iN; jN < MN; jN += N )
1165 for( jN = iN; jN < MN; jN += N )
1169 U[iN + i] += 1;
1213 or when element in the line is finagle.
1251 /* Output in this place of program means,