Home | History | Annotate | Download | only in src

Lines Matching refs:CvMat

88     const CvMat* _train_data, const CvMat* _responses,
89 const CvMat* _var_idx, const CvMat* _sample_idx )
107 bool CvNormalBayesClassifier::train( const CvMat* _train_data, const CvMat* _responses,
108 const CvMat* _var_idx, const CvMat* _sample_idx, bool update )
112 CvMat* responses = 0;
114 CvMat* __cls_labels = 0;
115 CvMat* __var_idx = 0;
116 CvMat* cov = 0;
134 const size_t mat_size = sizeof(CvMat*);
148 CV_CALL( count = (CvMat**)cvAlloc( data_size ));
219 CvMat* w = inv_eigen_values[cls];
281 float CvNormalBayesClassifier::predict( const CvMat* samples, CvMat* results ) const
293 CvMat diff;
334 diff = cvMat( 1, var_count, CV_64FC1, buffer );
343 CvMat* u = cov_rotate_mats[i];
344 CvMat* w = inv_eigen_values[i];
471 CV_CALL( var_idx = (CvMat*)cvReadByName( fs, root_node, "var_idx" ));
472 CV_CALL( cls_labels = (CvMat*)cvReadByName( fs, root_node, "cls_labels" ));
482 data_size = nclasses*6*sizeof(CvMat*);
483 CV_CALL( count = (CvMat**)cvAlloc( data_size ));
499 CV_CALL( count[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
510 CV_CALL( sum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
521 CV_CALL( productsum[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
532 CV_CALL( avg[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
543 CV_CALL( inv_eigen_values[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
554 CV_CALL( cov_rotate_mats[i] = (CvMat*)cvRead( fs, (CvFileNode*)reader.ptr ));
558 CV_CALL( c = (CvMat*)cvReadByName( fs, root_node, "c" ));