Lines Matching refs:y1
35 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
51 // Method -- y1(x):
52 // 1. screen out x<=0 cases: y1(0)=-inf, y1(x<0)=NaN
55 // y1(x) = 2/pi*(j1(x)*(ln(x/2)+Euler)-1/x-x/2+5/64*x**3-...)
56 // therefore y1(x)-2/pi*j1(x)*ln(x)-1/x is an odd function.
57 // We use the following function to approximate y1,
58 // y1(x) = x*U(z)/V(z) + (2/pi)*(j1(x)*ln(x)-1/x), z= x**2
62 // Note: For tiny x, 1/x dominate y1 and hence
63 // y1(tiny) = -2/pi/tiny, (choose tiny<2**-54)
65 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x1)+q1(x)*cos(x1))
118 // y1(x) = 1/sqrt(pi) * (P(1,x)*ss + Q(1,x)*cc) / sqrt(x)
147 // Y1 returns the order-one Bessel function of the second kind.
150 // Y1(+Inf) = 0
151 // Y1(0) = -Inf
152 // Y1(x < 0) = NaN
153 // Y1(NaN) = NaN
154 func Y1(x float64) float64 {
193 // y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x0)+q1(x)*cos(x0))