1 //===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file exposes the class definitions of all of the subclasses of the 11 // Instruction class. This is meant to be an easy way to get access to all 12 // instruction subclasses. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #ifndef LLVM_IR_INSTRUCTIONS_H 17 #define LLVM_IR_INSTRUCTIONS_H 18 19 #include "llvm/ADT/ArrayRef.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/STLExtras.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/IR/Attributes.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include <iterator> 30 31 namespace llvm { 32 33 class APInt; 34 class ConstantInt; 35 class ConstantRange; 36 class DataLayout; 37 class LLVMContext; 38 39 enum AtomicOrdering { 40 NotAtomic = 0, 41 Unordered = 1, 42 Monotonic = 2, 43 // Consume = 3, // Not specified yet. 44 Acquire = 4, 45 Release = 5, 46 AcquireRelease = 6, 47 SequentiallyConsistent = 7 48 }; 49 50 enum SynchronizationScope { 51 SingleThread = 0, 52 CrossThread = 1 53 }; 54 55 /// Returns true if the ordering is at least as strong as acquire 56 /// (i.e. acquire, acq_rel or seq_cst) 57 inline bool isAtLeastAcquire(AtomicOrdering Ord) { 58 return (Ord == Acquire || 59 Ord == AcquireRelease || 60 Ord == SequentiallyConsistent); 61 } 62 63 /// Returns true if the ordering is at least as strong as release 64 /// (i.e. release, acq_rel or seq_cst) 65 inline bool isAtLeastRelease(AtomicOrdering Ord) { 66 return (Ord == Release || 67 Ord == AcquireRelease || 68 Ord == SequentiallyConsistent); 69 } 70 71 //===----------------------------------------------------------------------===// 72 // AllocaInst Class 73 //===----------------------------------------------------------------------===// 74 75 /// AllocaInst - an instruction to allocate memory on the stack 76 /// 77 class AllocaInst : public UnaryInstruction { 78 Type *AllocatedType; 79 80 protected: 81 // Note: Instruction needs to be a friend here to call cloneImpl. 82 friend class Instruction; 83 AllocaInst *cloneImpl() const; 84 85 public: 86 explicit AllocaInst(Type *Ty, Value *ArraySize = nullptr, 87 const Twine &Name = "", 88 Instruction *InsertBefore = nullptr); 89 AllocaInst(Type *Ty, Value *ArraySize, 90 const Twine &Name, BasicBlock *InsertAtEnd); 91 92 AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = nullptr); 93 AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd); 94 95 AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 96 const Twine &Name = "", Instruction *InsertBefore = nullptr); 97 AllocaInst(Type *Ty, Value *ArraySize, unsigned Align, 98 const Twine &Name, BasicBlock *InsertAtEnd); 99 100 // Out of line virtual method, so the vtable, etc. has a home. 101 ~AllocaInst() override; 102 103 /// isArrayAllocation - Return true if there is an allocation size parameter 104 /// to the allocation instruction that is not 1. 105 /// 106 bool isArrayAllocation() const; 107 108 /// getArraySize - Get the number of elements allocated. For a simple 109 /// allocation of a single element, this will return a constant 1 value. 110 /// 111 const Value *getArraySize() const { return getOperand(0); } 112 Value *getArraySize() { return getOperand(0); } 113 114 /// getType - Overload to return most specific pointer type 115 /// 116 PointerType *getType() const { 117 return cast<PointerType>(Instruction::getType()); 118 } 119 120 /// getAllocatedType - Return the type that is being allocated by the 121 /// instruction. 122 /// 123 Type *getAllocatedType() const { return AllocatedType; } 124 /// \brief for use only in special circumstances that need to generically 125 /// transform a whole instruction (eg: IR linking and vectorization). 126 void setAllocatedType(Type *Ty) { AllocatedType = Ty; } 127 128 /// getAlignment - Return the alignment of the memory that is being allocated 129 /// by the instruction. 130 /// 131 unsigned getAlignment() const { 132 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1; 133 } 134 void setAlignment(unsigned Align); 135 136 /// isStaticAlloca - Return true if this alloca is in the entry block of the 137 /// function and is a constant size. If so, the code generator will fold it 138 /// into the prolog/epilog code, so it is basically free. 139 bool isStaticAlloca() const; 140 141 /// \brief Return true if this alloca is used as an inalloca argument to a 142 /// call. Such allocas are never considered static even if they are in the 143 /// entry block. 144 bool isUsedWithInAlloca() const { 145 return getSubclassDataFromInstruction() & 32; 146 } 147 148 /// \brief Specify whether this alloca is used to represent the arguments to 149 /// a call. 150 void setUsedWithInAlloca(bool V) { 151 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) | 152 (V ? 32 : 0)); 153 } 154 155 // Methods for support type inquiry through isa, cast, and dyn_cast: 156 static inline bool classof(const Instruction *I) { 157 return (I->getOpcode() == Instruction::Alloca); 158 } 159 static inline bool classof(const Value *V) { 160 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 161 } 162 163 private: 164 // Shadow Instruction::setInstructionSubclassData with a private forwarding 165 // method so that subclasses cannot accidentally use it. 166 void setInstructionSubclassData(unsigned short D) { 167 Instruction::setInstructionSubclassData(D); 168 } 169 }; 170 171 //===----------------------------------------------------------------------===// 172 // LoadInst Class 173 //===----------------------------------------------------------------------===// 174 175 /// LoadInst - an instruction for reading from memory. This uses the 176 /// SubclassData field in Value to store whether or not the load is volatile. 177 /// 178 class LoadInst : public UnaryInstruction { 179 void AssertOK(); 180 181 protected: 182 // Note: Instruction needs to be a friend here to call cloneImpl. 183 friend class Instruction; 184 LoadInst *cloneImpl() const; 185 186 public: 187 LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore); 188 LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd); 189 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile = false, 190 Instruction *InsertBefore = nullptr); 191 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false, 192 Instruction *InsertBefore = nullptr) 193 : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr, 194 NameStr, isVolatile, InsertBefore) {} 195 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, 196 BasicBlock *InsertAtEnd); 197 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, 198 Instruction *InsertBefore = nullptr) 199 : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr, 200 NameStr, isVolatile, Align, InsertBefore) {} 201 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 202 unsigned Align, Instruction *InsertBefore = nullptr); 203 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, 204 unsigned Align, BasicBlock *InsertAtEnd); 205 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, unsigned Align, 206 AtomicOrdering Order, SynchronizationScope SynchScope = CrossThread, 207 Instruction *InsertBefore = nullptr) 208 : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr, 209 NameStr, isVolatile, Align, Order, SynchScope, InsertBefore) {} 210 LoadInst(Type *Ty, Value *Ptr, const Twine &NameStr, bool isVolatile, 211 unsigned Align, AtomicOrdering Order, 212 SynchronizationScope SynchScope = CrossThread, 213 Instruction *InsertBefore = nullptr); 214 LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile, 215 unsigned Align, AtomicOrdering Order, 216 SynchronizationScope SynchScope, 217 BasicBlock *InsertAtEnd); 218 219 LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore); 220 LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd); 221 LoadInst(Type *Ty, Value *Ptr, const char *NameStr = nullptr, 222 bool isVolatile = false, Instruction *InsertBefore = nullptr); 223 explicit LoadInst(Value *Ptr, const char *NameStr = nullptr, 224 bool isVolatile = false, 225 Instruction *InsertBefore = nullptr) 226 : LoadInst(cast<PointerType>(Ptr->getType())->getElementType(), Ptr, 227 NameStr, isVolatile, InsertBefore) {} 228 LoadInst(Value *Ptr, const char *NameStr, bool isVolatile, 229 BasicBlock *InsertAtEnd); 230 231 /// isVolatile - Return true if this is a load from a volatile memory 232 /// location. 233 /// 234 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } 235 236 /// setVolatile - Specify whether this is a volatile load or not. 237 /// 238 void setVolatile(bool V) { 239 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 240 (V ? 1 : 0)); 241 } 242 243 /// getAlignment - Return the alignment of the access that is being performed 244 /// 245 unsigned getAlignment() const { 246 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; 247 } 248 249 void setAlignment(unsigned Align); 250 251 /// Returns the ordering effect of this fence. 252 AtomicOrdering getOrdering() const { 253 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); 254 } 255 256 /// Set the ordering constraint on this load. May not be Release or 257 /// AcquireRelease. 258 void setOrdering(AtomicOrdering Ordering) { 259 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | 260 (Ordering << 7)); 261 } 262 263 SynchronizationScope getSynchScope() const { 264 return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); 265 } 266 267 /// Specify whether this load is ordered with respect to all 268 /// concurrently executing threads, or only with respect to signal handlers 269 /// executing in the same thread. 270 void setSynchScope(SynchronizationScope xthread) { 271 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | 272 (xthread << 6)); 273 } 274 275 void setAtomic(AtomicOrdering Ordering, 276 SynchronizationScope SynchScope = CrossThread) { 277 setOrdering(Ordering); 278 setSynchScope(SynchScope); 279 } 280 281 bool isSimple() const { return !isAtomic() && !isVolatile(); } 282 bool isUnordered() const { 283 return getOrdering() <= Unordered && !isVolatile(); 284 } 285 286 Value *getPointerOperand() { return getOperand(0); } 287 const Value *getPointerOperand() const { return getOperand(0); } 288 static unsigned getPointerOperandIndex() { return 0U; } 289 290 /// \brief Returns the address space of the pointer operand. 291 unsigned getPointerAddressSpace() const { 292 return getPointerOperand()->getType()->getPointerAddressSpace(); 293 } 294 295 // Methods for support type inquiry through isa, cast, and dyn_cast: 296 static inline bool classof(const Instruction *I) { 297 return I->getOpcode() == Instruction::Load; 298 } 299 static inline bool classof(const Value *V) { 300 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 301 } 302 303 private: 304 // Shadow Instruction::setInstructionSubclassData with a private forwarding 305 // method so that subclasses cannot accidentally use it. 306 void setInstructionSubclassData(unsigned short D) { 307 Instruction::setInstructionSubclassData(D); 308 } 309 }; 310 311 //===----------------------------------------------------------------------===// 312 // StoreInst Class 313 //===----------------------------------------------------------------------===// 314 315 /// StoreInst - an instruction for storing to memory 316 /// 317 class StoreInst : public Instruction { 318 void *operator new(size_t, unsigned) = delete; 319 void AssertOK(); 320 321 protected: 322 // Note: Instruction needs to be a friend here to call cloneImpl. 323 friend class Instruction; 324 StoreInst *cloneImpl() const; 325 326 public: 327 // allocate space for exactly two operands 328 void *operator new(size_t s) { 329 return User::operator new(s, 2); 330 } 331 StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore); 332 StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd); 333 StoreInst(Value *Val, Value *Ptr, bool isVolatile = false, 334 Instruction *InsertBefore = nullptr); 335 StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd); 336 StoreInst(Value *Val, Value *Ptr, bool isVolatile, 337 unsigned Align, Instruction *InsertBefore = nullptr); 338 StoreInst(Value *Val, Value *Ptr, bool isVolatile, 339 unsigned Align, BasicBlock *InsertAtEnd); 340 StoreInst(Value *Val, Value *Ptr, bool isVolatile, 341 unsigned Align, AtomicOrdering Order, 342 SynchronizationScope SynchScope = CrossThread, 343 Instruction *InsertBefore = nullptr); 344 StoreInst(Value *Val, Value *Ptr, bool isVolatile, 345 unsigned Align, AtomicOrdering Order, 346 SynchronizationScope SynchScope, 347 BasicBlock *InsertAtEnd); 348 349 /// isVolatile - Return true if this is a store to a volatile memory 350 /// location. 351 /// 352 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; } 353 354 /// setVolatile - Specify whether this is a volatile store or not. 355 /// 356 void setVolatile(bool V) { 357 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 358 (V ? 1 : 0)); 359 } 360 361 /// Transparently provide more efficient getOperand methods. 362 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 363 364 /// getAlignment - Return the alignment of the access that is being performed 365 /// 366 unsigned getAlignment() const { 367 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1; 368 } 369 370 void setAlignment(unsigned Align); 371 372 /// Returns the ordering effect of this store. 373 AtomicOrdering getOrdering() const { 374 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7); 375 } 376 377 /// Set the ordering constraint on this store. May not be Acquire or 378 /// AcquireRelease. 379 void setOrdering(AtomicOrdering Ordering) { 380 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) | 381 (Ordering << 7)); 382 } 383 384 SynchronizationScope getSynchScope() const { 385 return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1); 386 } 387 388 /// Specify whether this store instruction is ordered with respect to all 389 /// concurrently executing threads, or only with respect to signal handlers 390 /// executing in the same thread. 391 void setSynchScope(SynchronizationScope xthread) { 392 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) | 393 (xthread << 6)); 394 } 395 396 void setAtomic(AtomicOrdering Ordering, 397 SynchronizationScope SynchScope = CrossThread) { 398 setOrdering(Ordering); 399 setSynchScope(SynchScope); 400 } 401 402 bool isSimple() const { return !isAtomic() && !isVolatile(); } 403 bool isUnordered() const { 404 return getOrdering() <= Unordered && !isVolatile(); 405 } 406 407 Value *getValueOperand() { return getOperand(0); } 408 const Value *getValueOperand() const { return getOperand(0); } 409 410 Value *getPointerOperand() { return getOperand(1); } 411 const Value *getPointerOperand() const { return getOperand(1); } 412 static unsigned getPointerOperandIndex() { return 1U; } 413 414 /// \brief Returns the address space of the pointer operand. 415 unsigned getPointerAddressSpace() const { 416 return getPointerOperand()->getType()->getPointerAddressSpace(); 417 } 418 419 // Methods for support type inquiry through isa, cast, and dyn_cast: 420 static inline bool classof(const Instruction *I) { 421 return I->getOpcode() == Instruction::Store; 422 } 423 static inline bool classof(const Value *V) { 424 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 425 } 426 427 private: 428 // Shadow Instruction::setInstructionSubclassData with a private forwarding 429 // method so that subclasses cannot accidentally use it. 430 void setInstructionSubclassData(unsigned short D) { 431 Instruction::setInstructionSubclassData(D); 432 } 433 }; 434 435 template <> 436 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> { 437 }; 438 439 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value) 440 441 //===----------------------------------------------------------------------===// 442 // FenceInst Class 443 //===----------------------------------------------------------------------===// 444 445 /// FenceInst - an instruction for ordering other memory operations 446 /// 447 class FenceInst : public Instruction { 448 void *operator new(size_t, unsigned) = delete; 449 void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope); 450 451 protected: 452 // Note: Instruction needs to be a friend here to call cloneImpl. 453 friend class Instruction; 454 FenceInst *cloneImpl() const; 455 456 public: 457 // allocate space for exactly zero operands 458 void *operator new(size_t s) { 459 return User::operator new(s, 0); 460 } 461 462 // Ordering may only be Acquire, Release, AcquireRelease, or 463 // SequentiallyConsistent. 464 FenceInst(LLVMContext &C, AtomicOrdering Ordering, 465 SynchronizationScope SynchScope = CrossThread, 466 Instruction *InsertBefore = nullptr); 467 FenceInst(LLVMContext &C, AtomicOrdering Ordering, 468 SynchronizationScope SynchScope, 469 BasicBlock *InsertAtEnd); 470 471 /// Returns the ordering effect of this fence. 472 AtomicOrdering getOrdering() const { 473 return AtomicOrdering(getSubclassDataFromInstruction() >> 1); 474 } 475 476 /// Set the ordering constraint on this fence. May only be Acquire, Release, 477 /// AcquireRelease, or SequentiallyConsistent. 478 void setOrdering(AtomicOrdering Ordering) { 479 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) | 480 (Ordering << 1)); 481 } 482 483 SynchronizationScope getSynchScope() const { 484 return SynchronizationScope(getSubclassDataFromInstruction() & 1); 485 } 486 487 /// Specify whether this fence orders other operations with respect to all 488 /// concurrently executing threads, or only with respect to signal handlers 489 /// executing in the same thread. 490 void setSynchScope(SynchronizationScope xthread) { 491 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 492 xthread); 493 } 494 495 // Methods for support type inquiry through isa, cast, and dyn_cast: 496 static inline bool classof(const Instruction *I) { 497 return I->getOpcode() == Instruction::Fence; 498 } 499 static inline bool classof(const Value *V) { 500 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 501 } 502 503 private: 504 // Shadow Instruction::setInstructionSubclassData with a private forwarding 505 // method so that subclasses cannot accidentally use it. 506 void setInstructionSubclassData(unsigned short D) { 507 Instruction::setInstructionSubclassData(D); 508 } 509 }; 510 511 //===----------------------------------------------------------------------===// 512 // AtomicCmpXchgInst Class 513 //===----------------------------------------------------------------------===// 514 515 /// AtomicCmpXchgInst - an instruction that atomically checks whether a 516 /// specified value is in a memory location, and, if it is, stores a new value 517 /// there. Returns the value that was loaded. 518 /// 519 class AtomicCmpXchgInst : public Instruction { 520 void *operator new(size_t, unsigned) = delete; 521 void Init(Value *Ptr, Value *Cmp, Value *NewVal, 522 AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering, 523 SynchronizationScope SynchScope); 524 525 protected: 526 // Note: Instruction needs to be a friend here to call cloneImpl. 527 friend class Instruction; 528 AtomicCmpXchgInst *cloneImpl() const; 529 530 public: 531 // allocate space for exactly three operands 532 void *operator new(size_t s) { 533 return User::operator new(s, 3); 534 } 535 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 536 AtomicOrdering SuccessOrdering, 537 AtomicOrdering FailureOrdering, 538 SynchronizationScope SynchScope, 539 Instruction *InsertBefore = nullptr); 540 AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal, 541 AtomicOrdering SuccessOrdering, 542 AtomicOrdering FailureOrdering, 543 SynchronizationScope SynchScope, 544 BasicBlock *InsertAtEnd); 545 546 /// isVolatile - Return true if this is a cmpxchg from a volatile memory 547 /// location. 548 /// 549 bool isVolatile() const { 550 return getSubclassDataFromInstruction() & 1; 551 } 552 553 /// setVolatile - Specify whether this is a volatile cmpxchg. 554 /// 555 void setVolatile(bool V) { 556 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 557 (unsigned)V); 558 } 559 560 /// Return true if this cmpxchg may spuriously fail. 561 bool isWeak() const { 562 return getSubclassDataFromInstruction() & 0x100; 563 } 564 565 void setWeak(bool IsWeak) { 566 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) | 567 (IsWeak << 8)); 568 } 569 570 /// Transparently provide more efficient getOperand methods. 571 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 572 573 /// Set the ordering constraint on this cmpxchg. 574 void setSuccessOrdering(AtomicOrdering Ordering) { 575 assert(Ordering != NotAtomic && 576 "CmpXchg instructions can only be atomic."); 577 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) | 578 (Ordering << 2)); 579 } 580 581 void setFailureOrdering(AtomicOrdering Ordering) { 582 assert(Ordering != NotAtomic && 583 "CmpXchg instructions can only be atomic."); 584 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) | 585 (Ordering << 5)); 586 } 587 588 /// Specify whether this cmpxchg is atomic and orders other operations with 589 /// respect to all concurrently executing threads, or only with respect to 590 /// signal handlers executing in the same thread. 591 void setSynchScope(SynchronizationScope SynchScope) { 592 setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | 593 (SynchScope << 1)); 594 } 595 596 /// Returns the ordering constraint on this cmpxchg. 597 AtomicOrdering getSuccessOrdering() const { 598 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); 599 } 600 601 /// Returns the ordering constraint on this cmpxchg. 602 AtomicOrdering getFailureOrdering() const { 603 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7); 604 } 605 606 /// Returns whether this cmpxchg is atomic between threads or only within a 607 /// single thread. 608 SynchronizationScope getSynchScope() const { 609 return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); 610 } 611 612 Value *getPointerOperand() { return getOperand(0); } 613 const Value *getPointerOperand() const { return getOperand(0); } 614 static unsigned getPointerOperandIndex() { return 0U; } 615 616 Value *getCompareOperand() { return getOperand(1); } 617 const Value *getCompareOperand() const { return getOperand(1); } 618 619 Value *getNewValOperand() { return getOperand(2); } 620 const Value *getNewValOperand() const { return getOperand(2); } 621 622 /// \brief Returns the address space of the pointer operand. 623 unsigned getPointerAddressSpace() const { 624 return getPointerOperand()->getType()->getPointerAddressSpace(); 625 } 626 627 /// \brief Returns the strongest permitted ordering on failure, given the 628 /// desired ordering on success. 629 /// 630 /// If the comparison in a cmpxchg operation fails, there is no atomic store 631 /// so release semantics cannot be provided. So this function drops explicit 632 /// Release requests from the AtomicOrdering. A SequentiallyConsistent 633 /// operation would remain SequentiallyConsistent. 634 static AtomicOrdering 635 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) { 636 switch (SuccessOrdering) { 637 default: llvm_unreachable("invalid cmpxchg success ordering"); 638 case Release: 639 case Monotonic: 640 return Monotonic; 641 case AcquireRelease: 642 case Acquire: 643 return Acquire; 644 case SequentiallyConsistent: 645 return SequentiallyConsistent; 646 } 647 } 648 649 // Methods for support type inquiry through isa, cast, and dyn_cast: 650 static inline bool classof(const Instruction *I) { 651 return I->getOpcode() == Instruction::AtomicCmpXchg; 652 } 653 static inline bool classof(const Value *V) { 654 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 655 } 656 657 private: 658 // Shadow Instruction::setInstructionSubclassData with a private forwarding 659 // method so that subclasses cannot accidentally use it. 660 void setInstructionSubclassData(unsigned short D) { 661 Instruction::setInstructionSubclassData(D); 662 } 663 }; 664 665 template <> 666 struct OperandTraits<AtomicCmpXchgInst> : 667 public FixedNumOperandTraits<AtomicCmpXchgInst, 3> { 668 }; 669 670 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value) 671 672 //===----------------------------------------------------------------------===// 673 // AtomicRMWInst Class 674 //===----------------------------------------------------------------------===// 675 676 /// AtomicRMWInst - an instruction that atomically reads a memory location, 677 /// combines it with another value, and then stores the result back. Returns 678 /// the old value. 679 /// 680 class AtomicRMWInst : public Instruction { 681 void *operator new(size_t, unsigned) = delete; 682 683 protected: 684 // Note: Instruction needs to be a friend here to call cloneImpl. 685 friend class Instruction; 686 AtomicRMWInst *cloneImpl() const; 687 688 public: 689 /// This enumeration lists the possible modifications atomicrmw can make. In 690 /// the descriptions, 'p' is the pointer to the instruction's memory location, 691 /// 'old' is the initial value of *p, and 'v' is the other value passed to the 692 /// instruction. These instructions always return 'old'. 693 enum BinOp { 694 /// *p = v 695 Xchg, 696 /// *p = old + v 697 Add, 698 /// *p = old - v 699 Sub, 700 /// *p = old & v 701 And, 702 /// *p = ~(old & v) 703 Nand, 704 /// *p = old | v 705 Or, 706 /// *p = old ^ v 707 Xor, 708 /// *p = old >signed v ? old : v 709 Max, 710 /// *p = old <signed v ? old : v 711 Min, 712 /// *p = old >unsigned v ? old : v 713 UMax, 714 /// *p = old <unsigned v ? old : v 715 UMin, 716 717 FIRST_BINOP = Xchg, 718 LAST_BINOP = UMin, 719 BAD_BINOP 720 }; 721 722 // allocate space for exactly two operands 723 void *operator new(size_t s) { 724 return User::operator new(s, 2); 725 } 726 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 727 AtomicOrdering Ordering, SynchronizationScope SynchScope, 728 Instruction *InsertBefore = nullptr); 729 AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val, 730 AtomicOrdering Ordering, SynchronizationScope SynchScope, 731 BasicBlock *InsertAtEnd); 732 733 BinOp getOperation() const { 734 return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5); 735 } 736 737 void setOperation(BinOp Operation) { 738 unsigned short SubclassData = getSubclassDataFromInstruction(); 739 setInstructionSubclassData((SubclassData & 31) | 740 (Operation << 5)); 741 } 742 743 /// isVolatile - Return true if this is a RMW on a volatile memory location. 744 /// 745 bool isVolatile() const { 746 return getSubclassDataFromInstruction() & 1; 747 } 748 749 /// setVolatile - Specify whether this is a volatile RMW or not. 750 /// 751 void setVolatile(bool V) { 752 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 753 (unsigned)V); 754 } 755 756 /// Transparently provide more efficient getOperand methods. 757 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 758 759 /// Set the ordering constraint on this RMW. 760 void setOrdering(AtomicOrdering Ordering) { 761 assert(Ordering != NotAtomic && 762 "atomicrmw instructions can only be atomic."); 763 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) | 764 (Ordering << 2)); 765 } 766 767 /// Specify whether this RMW orders other operations with respect to all 768 /// concurrently executing threads, or only with respect to signal handlers 769 /// executing in the same thread. 770 void setSynchScope(SynchronizationScope SynchScope) { 771 setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) | 772 (SynchScope << 1)); 773 } 774 775 /// Returns the ordering constraint on this RMW. 776 AtomicOrdering getOrdering() const { 777 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7); 778 } 779 780 /// Returns whether this RMW is atomic between threads or only within a 781 /// single thread. 782 SynchronizationScope getSynchScope() const { 783 return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1); 784 } 785 786 Value *getPointerOperand() { return getOperand(0); } 787 const Value *getPointerOperand() const { return getOperand(0); } 788 static unsigned getPointerOperandIndex() { return 0U; } 789 790 Value *getValOperand() { return getOperand(1); } 791 const Value *getValOperand() const { return getOperand(1); } 792 793 /// \brief Returns the address space of the pointer operand. 794 unsigned getPointerAddressSpace() const { 795 return getPointerOperand()->getType()->getPointerAddressSpace(); 796 } 797 798 // Methods for support type inquiry through isa, cast, and dyn_cast: 799 static inline bool classof(const Instruction *I) { 800 return I->getOpcode() == Instruction::AtomicRMW; 801 } 802 static inline bool classof(const Value *V) { 803 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 804 } 805 806 private: 807 void Init(BinOp Operation, Value *Ptr, Value *Val, 808 AtomicOrdering Ordering, SynchronizationScope SynchScope); 809 // Shadow Instruction::setInstructionSubclassData with a private forwarding 810 // method so that subclasses cannot accidentally use it. 811 void setInstructionSubclassData(unsigned short D) { 812 Instruction::setInstructionSubclassData(D); 813 } 814 }; 815 816 template <> 817 struct OperandTraits<AtomicRMWInst> 818 : public FixedNumOperandTraits<AtomicRMWInst,2> { 819 }; 820 821 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value) 822 823 //===----------------------------------------------------------------------===// 824 // GetElementPtrInst Class 825 //===----------------------------------------------------------------------===// 826 827 // checkGEPType - Simple wrapper function to give a better assertion failure 828 // message on bad indexes for a gep instruction. 829 // 830 inline Type *checkGEPType(Type *Ty) { 831 assert(Ty && "Invalid GetElementPtrInst indices for type!"); 832 return Ty; 833 } 834 835 /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to 836 /// access elements of arrays and structs 837 /// 838 class GetElementPtrInst : public Instruction { 839 Type *SourceElementType; 840 Type *ResultElementType; 841 842 void anchor() override; 843 844 GetElementPtrInst(const GetElementPtrInst &GEPI); 845 void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr); 846 847 /// Constructors - Create a getelementptr instruction with a base pointer an 848 /// list of indices. The first ctor can optionally insert before an existing 849 /// instruction, the second appends the new instruction to the specified 850 /// BasicBlock. 851 inline GetElementPtrInst(Type *PointeeType, Value *Ptr, 852 ArrayRef<Value *> IdxList, unsigned Values, 853 const Twine &NameStr, Instruction *InsertBefore); 854 inline GetElementPtrInst(Type *PointeeType, Value *Ptr, 855 ArrayRef<Value *> IdxList, unsigned Values, 856 const Twine &NameStr, BasicBlock *InsertAtEnd); 857 858 protected: 859 // Note: Instruction needs to be a friend here to call cloneImpl. 860 friend class Instruction; 861 GetElementPtrInst *cloneImpl() const; 862 863 public: 864 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, 865 ArrayRef<Value *> IdxList, 866 const Twine &NameStr = "", 867 Instruction *InsertBefore = nullptr) { 868 unsigned Values = 1 + unsigned(IdxList.size()); 869 if (!PointeeType) 870 PointeeType = 871 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); 872 else 873 assert( 874 PointeeType == 875 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()); 876 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, 877 NameStr, InsertBefore); 878 } 879 static GetElementPtrInst *Create(Type *PointeeType, Value *Ptr, 880 ArrayRef<Value *> IdxList, 881 const Twine &NameStr, 882 BasicBlock *InsertAtEnd) { 883 unsigned Values = 1 + unsigned(IdxList.size()); 884 if (!PointeeType) 885 PointeeType = 886 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(); 887 else 888 assert( 889 PointeeType == 890 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType()); 891 return new (Values) GetElementPtrInst(PointeeType, Ptr, IdxList, Values, 892 NameStr, InsertAtEnd); 893 } 894 895 /// Create an "inbounds" getelementptr. See the documentation for the 896 /// "inbounds" flag in LangRef.html for details. 897 static GetElementPtrInst *CreateInBounds(Value *Ptr, 898 ArrayRef<Value *> IdxList, 899 const Twine &NameStr = "", 900 Instruction *InsertBefore = nullptr){ 901 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertBefore); 902 } 903 static GetElementPtrInst * 904 CreateInBounds(Type *PointeeType, Value *Ptr, ArrayRef<Value *> IdxList, 905 const Twine &NameStr = "", 906 Instruction *InsertBefore = nullptr) { 907 GetElementPtrInst *GEP = 908 Create(PointeeType, Ptr, IdxList, NameStr, InsertBefore); 909 GEP->setIsInBounds(true); 910 return GEP; 911 } 912 static GetElementPtrInst *CreateInBounds(Value *Ptr, 913 ArrayRef<Value *> IdxList, 914 const Twine &NameStr, 915 BasicBlock *InsertAtEnd) { 916 return CreateInBounds(nullptr, Ptr, IdxList, NameStr, InsertAtEnd); 917 } 918 static GetElementPtrInst *CreateInBounds(Type *PointeeType, Value *Ptr, 919 ArrayRef<Value *> IdxList, 920 const Twine &NameStr, 921 BasicBlock *InsertAtEnd) { 922 GetElementPtrInst *GEP = 923 Create(PointeeType, Ptr, IdxList, NameStr, InsertAtEnd); 924 GEP->setIsInBounds(true); 925 return GEP; 926 } 927 928 /// Transparently provide more efficient getOperand methods. 929 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 930 931 // getType - Overload to return most specific sequential type. 932 SequentialType *getType() const { 933 return cast<SequentialType>(Instruction::getType()); 934 } 935 936 Type *getSourceElementType() const { return SourceElementType; } 937 938 void setSourceElementType(Type *Ty) { SourceElementType = Ty; } 939 void setResultElementType(Type *Ty) { ResultElementType = Ty; } 940 941 Type *getResultElementType() const { 942 assert(ResultElementType == 943 cast<PointerType>(getType()->getScalarType())->getElementType()); 944 return ResultElementType; 945 } 946 947 /// \brief Returns the address space of this instruction's pointer type. 948 unsigned getAddressSpace() const { 949 // Note that this is always the same as the pointer operand's address space 950 // and that is cheaper to compute, so cheat here. 951 return getPointerAddressSpace(); 952 } 953 954 /// getIndexedType - Returns the type of the element that would be loaded with 955 /// a load instruction with the specified parameters. 956 /// 957 /// Null is returned if the indices are invalid for the specified 958 /// pointer type. 959 /// 960 static Type *getIndexedType(Type *Ty, ArrayRef<Value *> IdxList); 961 static Type *getIndexedType(Type *Ty, ArrayRef<Constant *> IdxList); 962 static Type *getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList); 963 964 inline op_iterator idx_begin() { return op_begin()+1; } 965 inline const_op_iterator idx_begin() const { return op_begin()+1; } 966 inline op_iterator idx_end() { return op_end(); } 967 inline const_op_iterator idx_end() const { return op_end(); } 968 969 Value *getPointerOperand() { 970 return getOperand(0); 971 } 972 const Value *getPointerOperand() const { 973 return getOperand(0); 974 } 975 static unsigned getPointerOperandIndex() { 976 return 0U; // get index for modifying correct operand. 977 } 978 979 /// getPointerOperandType - Method to return the pointer operand as a 980 /// PointerType. 981 Type *getPointerOperandType() const { 982 return getPointerOperand()->getType(); 983 } 984 985 /// \brief Returns the address space of the pointer operand. 986 unsigned getPointerAddressSpace() const { 987 return getPointerOperandType()->getPointerAddressSpace(); 988 } 989 990 /// GetGEPReturnType - Returns the pointer type returned by the GEP 991 /// instruction, which may be a vector of pointers. 992 static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) { 993 return getGEPReturnType( 994 cast<PointerType>(Ptr->getType()->getScalarType())->getElementType(), 995 Ptr, IdxList); 996 } 997 static Type *getGEPReturnType(Type *ElTy, Value *Ptr, 998 ArrayRef<Value *> IdxList) { 999 Type *PtrTy = PointerType::get(checkGEPType(getIndexedType(ElTy, IdxList)), 1000 Ptr->getType()->getPointerAddressSpace()); 1001 // Vector GEP 1002 if (Ptr->getType()->isVectorTy()) { 1003 unsigned NumElem = Ptr->getType()->getVectorNumElements(); 1004 return VectorType::get(PtrTy, NumElem); 1005 } 1006 for (Value *Index : IdxList) 1007 if (Index->getType()->isVectorTy()) { 1008 unsigned NumElem = Index->getType()->getVectorNumElements(); 1009 return VectorType::get(PtrTy, NumElem); 1010 } 1011 // Scalar GEP 1012 return PtrTy; 1013 } 1014 1015 unsigned getNumIndices() const { // Note: always non-negative 1016 return getNumOperands() - 1; 1017 } 1018 1019 bool hasIndices() const { 1020 return getNumOperands() > 1; 1021 } 1022 1023 /// hasAllZeroIndices - Return true if all of the indices of this GEP are 1024 /// zeros. If so, the result pointer and the first operand have the same 1025 /// value, just potentially different types. 1026 bool hasAllZeroIndices() const; 1027 1028 /// hasAllConstantIndices - Return true if all of the indices of this GEP are 1029 /// constant integers. If so, the result pointer and the first operand have 1030 /// a constant offset between them. 1031 bool hasAllConstantIndices() const; 1032 1033 /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction. 1034 /// See LangRef.html for the meaning of inbounds on a getelementptr. 1035 void setIsInBounds(bool b = true); 1036 1037 /// isInBounds - Determine whether the GEP has the inbounds flag. 1038 bool isInBounds() const; 1039 1040 /// \brief Accumulate the constant address offset of this GEP if possible. 1041 /// 1042 /// This routine accepts an APInt into which it will accumulate the constant 1043 /// offset of this GEP if the GEP is in fact constant. If the GEP is not 1044 /// all-constant, it returns false and the value of the offset APInt is 1045 /// undefined (it is *not* preserved!). The APInt passed into this routine 1046 /// must be at least as wide as the IntPtr type for the address space of 1047 /// the base GEP pointer. 1048 bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const; 1049 1050 // Methods for support type inquiry through isa, cast, and dyn_cast: 1051 static inline bool classof(const Instruction *I) { 1052 return (I->getOpcode() == Instruction::GetElementPtr); 1053 } 1054 static inline bool classof(const Value *V) { 1055 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1056 } 1057 }; 1058 1059 template <> 1060 struct OperandTraits<GetElementPtrInst> : 1061 public VariadicOperandTraits<GetElementPtrInst, 1> { 1062 }; 1063 1064 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, 1065 ArrayRef<Value *> IdxList, unsigned Values, 1066 const Twine &NameStr, 1067 Instruction *InsertBefore) 1068 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, 1069 OperandTraits<GetElementPtrInst>::op_end(this) - Values, 1070 Values, InsertBefore), 1071 SourceElementType(PointeeType), 1072 ResultElementType(getIndexedType(PointeeType, IdxList)) { 1073 assert(ResultElementType == 1074 cast<PointerType>(getType()->getScalarType())->getElementType()); 1075 init(Ptr, IdxList, NameStr); 1076 } 1077 GetElementPtrInst::GetElementPtrInst(Type *PointeeType, Value *Ptr, 1078 ArrayRef<Value *> IdxList, unsigned Values, 1079 const Twine &NameStr, 1080 BasicBlock *InsertAtEnd) 1081 : Instruction(getGEPReturnType(PointeeType, Ptr, IdxList), GetElementPtr, 1082 OperandTraits<GetElementPtrInst>::op_end(this) - Values, 1083 Values, InsertAtEnd), 1084 SourceElementType(PointeeType), 1085 ResultElementType(getIndexedType(PointeeType, IdxList)) { 1086 assert(ResultElementType == 1087 cast<PointerType>(getType()->getScalarType())->getElementType()); 1088 init(Ptr, IdxList, NameStr); 1089 } 1090 1091 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value) 1092 1093 //===----------------------------------------------------------------------===// 1094 // ICmpInst Class 1095 //===----------------------------------------------------------------------===// 1096 1097 /// This instruction compares its operands according to the predicate given 1098 /// to the constructor. It only operates on integers or pointers. The operands 1099 /// must be identical types. 1100 /// \brief Represent an integer comparison operator. 1101 class ICmpInst: public CmpInst { 1102 void anchor() override; 1103 1104 void AssertOK() { 1105 assert(getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE && 1106 getPredicate() <= CmpInst::LAST_ICMP_PREDICATE && 1107 "Invalid ICmp predicate value"); 1108 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1109 "Both operands to ICmp instruction are not of the same type!"); 1110 // Check that the operands are the right type 1111 assert((getOperand(0)->getType()->isIntOrIntVectorTy() || 1112 getOperand(0)->getType()->isPtrOrPtrVectorTy()) && 1113 "Invalid operand types for ICmp instruction"); 1114 } 1115 1116 protected: 1117 // Note: Instruction needs to be a friend here to call cloneImpl. 1118 friend class Instruction; 1119 /// \brief Clone an identical ICmpInst 1120 ICmpInst *cloneImpl() const; 1121 1122 public: 1123 /// \brief Constructor with insert-before-instruction semantics. 1124 ICmpInst( 1125 Instruction *InsertBefore, ///< Where to insert 1126 Predicate pred, ///< The predicate to use for the comparison 1127 Value *LHS, ///< The left-hand-side of the expression 1128 Value *RHS, ///< The right-hand-side of the expression 1129 const Twine &NameStr = "" ///< Name of the instruction 1130 ) : CmpInst(makeCmpResultType(LHS->getType()), 1131 Instruction::ICmp, pred, LHS, RHS, NameStr, 1132 InsertBefore) { 1133 #ifndef NDEBUG 1134 AssertOK(); 1135 #endif 1136 } 1137 1138 /// \brief Constructor with insert-at-end semantics. 1139 ICmpInst( 1140 BasicBlock &InsertAtEnd, ///< Block to insert into. 1141 Predicate pred, ///< The predicate to use for the comparison 1142 Value *LHS, ///< The left-hand-side of the expression 1143 Value *RHS, ///< The right-hand-side of the expression 1144 const Twine &NameStr = "" ///< Name of the instruction 1145 ) : CmpInst(makeCmpResultType(LHS->getType()), 1146 Instruction::ICmp, pred, LHS, RHS, NameStr, 1147 &InsertAtEnd) { 1148 #ifndef NDEBUG 1149 AssertOK(); 1150 #endif 1151 } 1152 1153 /// \brief Constructor with no-insertion semantics 1154 ICmpInst( 1155 Predicate pred, ///< The predicate to use for the comparison 1156 Value *LHS, ///< The left-hand-side of the expression 1157 Value *RHS, ///< The right-hand-side of the expression 1158 const Twine &NameStr = "" ///< Name of the instruction 1159 ) : CmpInst(makeCmpResultType(LHS->getType()), 1160 Instruction::ICmp, pred, LHS, RHS, NameStr) { 1161 #ifndef NDEBUG 1162 AssertOK(); 1163 #endif 1164 } 1165 1166 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc. 1167 /// @returns the predicate that would be the result if the operand were 1168 /// regarded as signed. 1169 /// \brief Return the signed version of the predicate 1170 Predicate getSignedPredicate() const { 1171 return getSignedPredicate(getPredicate()); 1172 } 1173 1174 /// This is a static version that you can use without an instruction. 1175 /// \brief Return the signed version of the predicate. 1176 static Predicate getSignedPredicate(Predicate pred); 1177 1178 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc. 1179 /// @returns the predicate that would be the result if the operand were 1180 /// regarded as unsigned. 1181 /// \brief Return the unsigned version of the predicate 1182 Predicate getUnsignedPredicate() const { 1183 return getUnsignedPredicate(getPredicate()); 1184 } 1185 1186 /// This is a static version that you can use without an instruction. 1187 /// \brief Return the unsigned version of the predicate. 1188 static Predicate getUnsignedPredicate(Predicate pred); 1189 1190 /// isEquality - Return true if this predicate is either EQ or NE. This also 1191 /// tests for commutativity. 1192 static bool isEquality(Predicate P) { 1193 return P == ICMP_EQ || P == ICMP_NE; 1194 } 1195 1196 /// isEquality - Return true if this predicate is either EQ or NE. This also 1197 /// tests for commutativity. 1198 bool isEquality() const { 1199 return isEquality(getPredicate()); 1200 } 1201 1202 /// @returns true if the predicate of this ICmpInst is commutative 1203 /// \brief Determine if this relation is commutative. 1204 bool isCommutative() const { return isEquality(); } 1205 1206 /// isRelational - Return true if the predicate is relational (not EQ or NE). 1207 /// 1208 bool isRelational() const { 1209 return !isEquality(); 1210 } 1211 1212 /// isRelational - Return true if the predicate is relational (not EQ or NE). 1213 /// 1214 static bool isRelational(Predicate P) { 1215 return !isEquality(P); 1216 } 1217 1218 /// Initialize a set of values that all satisfy the predicate with C. 1219 /// \brief Make a ConstantRange for a relation with a constant value. 1220 static ConstantRange makeConstantRange(Predicate pred, const APInt &C); 1221 1222 /// Exchange the two operands to this instruction in such a way that it does 1223 /// not modify the semantics of the instruction. The predicate value may be 1224 /// changed to retain the same result if the predicate is order dependent 1225 /// (e.g. ult). 1226 /// \brief Swap operands and adjust predicate. 1227 void swapOperands() { 1228 setPredicate(getSwappedPredicate()); 1229 Op<0>().swap(Op<1>()); 1230 } 1231 1232 // Methods for support type inquiry through isa, cast, and dyn_cast: 1233 static inline bool classof(const Instruction *I) { 1234 return I->getOpcode() == Instruction::ICmp; 1235 } 1236 static inline bool classof(const Value *V) { 1237 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1238 } 1239 }; 1240 1241 //===----------------------------------------------------------------------===// 1242 // FCmpInst Class 1243 //===----------------------------------------------------------------------===// 1244 1245 /// This instruction compares its operands according to the predicate given 1246 /// to the constructor. It only operates on floating point values or packed 1247 /// vectors of floating point values. The operands must be identical types. 1248 /// \brief Represents a floating point comparison operator. 1249 class FCmpInst: public CmpInst { 1250 protected: 1251 // Note: Instruction needs to be a friend here to call cloneImpl. 1252 friend class Instruction; 1253 /// \brief Clone an identical FCmpInst 1254 FCmpInst *cloneImpl() const; 1255 1256 public: 1257 /// \brief Constructor with insert-before-instruction semantics. 1258 FCmpInst( 1259 Instruction *InsertBefore, ///< Where to insert 1260 Predicate pred, ///< The predicate to use for the comparison 1261 Value *LHS, ///< The left-hand-side of the expression 1262 Value *RHS, ///< The right-hand-side of the expression 1263 const Twine &NameStr = "" ///< Name of the instruction 1264 ) : CmpInst(makeCmpResultType(LHS->getType()), 1265 Instruction::FCmp, pred, LHS, RHS, NameStr, 1266 InsertBefore) { 1267 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && 1268 "Invalid FCmp predicate value"); 1269 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1270 "Both operands to FCmp instruction are not of the same type!"); 1271 // Check that the operands are the right type 1272 assert(getOperand(0)->getType()->isFPOrFPVectorTy() && 1273 "Invalid operand types for FCmp instruction"); 1274 } 1275 1276 /// \brief Constructor with insert-at-end semantics. 1277 FCmpInst( 1278 BasicBlock &InsertAtEnd, ///< Block to insert into. 1279 Predicate pred, ///< The predicate to use for the comparison 1280 Value *LHS, ///< The left-hand-side of the expression 1281 Value *RHS, ///< The right-hand-side of the expression 1282 const Twine &NameStr = "" ///< Name of the instruction 1283 ) : CmpInst(makeCmpResultType(LHS->getType()), 1284 Instruction::FCmp, pred, LHS, RHS, NameStr, 1285 &InsertAtEnd) { 1286 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && 1287 "Invalid FCmp predicate value"); 1288 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1289 "Both operands to FCmp instruction are not of the same type!"); 1290 // Check that the operands are the right type 1291 assert(getOperand(0)->getType()->isFPOrFPVectorTy() && 1292 "Invalid operand types for FCmp instruction"); 1293 } 1294 1295 /// \brief Constructor with no-insertion semantics 1296 FCmpInst( 1297 Predicate pred, ///< The predicate to use for the comparison 1298 Value *LHS, ///< The left-hand-side of the expression 1299 Value *RHS, ///< The right-hand-side of the expression 1300 const Twine &NameStr = "" ///< Name of the instruction 1301 ) : CmpInst(makeCmpResultType(LHS->getType()), 1302 Instruction::FCmp, pred, LHS, RHS, NameStr) { 1303 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && 1304 "Invalid FCmp predicate value"); 1305 assert(getOperand(0)->getType() == getOperand(1)->getType() && 1306 "Both operands to FCmp instruction are not of the same type!"); 1307 // Check that the operands are the right type 1308 assert(getOperand(0)->getType()->isFPOrFPVectorTy() && 1309 "Invalid operand types for FCmp instruction"); 1310 } 1311 1312 /// @returns true if the predicate of this instruction is EQ or NE. 1313 /// \brief Determine if this is an equality predicate. 1314 static bool isEquality(Predicate Pred) { 1315 return Pred == FCMP_OEQ || Pred == FCMP_ONE || Pred == FCMP_UEQ || 1316 Pred == FCMP_UNE; 1317 } 1318 1319 /// @returns true if the predicate of this instruction is EQ or NE. 1320 /// \brief Determine if this is an equality predicate. 1321 bool isEquality() const { return isEquality(getPredicate()); } 1322 1323 /// @returns true if the predicate of this instruction is commutative. 1324 /// \brief Determine if this is a commutative predicate. 1325 bool isCommutative() const { 1326 return isEquality() || 1327 getPredicate() == FCMP_FALSE || 1328 getPredicate() == FCMP_TRUE || 1329 getPredicate() == FCMP_ORD || 1330 getPredicate() == FCMP_UNO; 1331 } 1332 1333 /// @returns true if the predicate is relational (not EQ or NE). 1334 /// \brief Determine if this a relational predicate. 1335 bool isRelational() const { return !isEquality(); } 1336 1337 /// Exchange the two operands to this instruction in such a way that it does 1338 /// not modify the semantics of the instruction. The predicate value may be 1339 /// changed to retain the same result if the predicate is order dependent 1340 /// (e.g. ult). 1341 /// \brief Swap operands and adjust predicate. 1342 void swapOperands() { 1343 setPredicate(getSwappedPredicate()); 1344 Op<0>().swap(Op<1>()); 1345 } 1346 1347 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 1348 static inline bool classof(const Instruction *I) { 1349 return I->getOpcode() == Instruction::FCmp; 1350 } 1351 static inline bool classof(const Value *V) { 1352 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1353 } 1354 }; 1355 1356 //===----------------------------------------------------------------------===// 1357 /// CallInst - This class represents a function call, abstracting a target 1358 /// machine's calling convention. This class uses low bit of the SubClassData 1359 /// field to indicate whether or not this is a tail call. The rest of the bits 1360 /// hold the calling convention of the call. 1361 /// 1362 class CallInst : public Instruction, 1363 public OperandBundleUser<CallInst, User::op_iterator> { 1364 AttributeSet AttributeList; ///< parameter attributes for call 1365 FunctionType *FTy; 1366 CallInst(const CallInst &CI); 1367 void init(Value *Func, ArrayRef<Value *> Args, 1368 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) { 1369 init(cast<FunctionType>( 1370 cast<PointerType>(Func->getType())->getElementType()), 1371 Func, Args, Bundles, NameStr); 1372 } 1373 void init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args, 1374 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); 1375 void init(Value *Func, const Twine &NameStr); 1376 1377 /// Construct a CallInst given a range of arguments. 1378 /// \brief Construct a CallInst from a range of arguments 1379 inline CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1380 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1381 Instruction *InsertBefore); 1382 inline CallInst(Value *Func, ArrayRef<Value *> Args, 1383 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1384 Instruction *InsertBefore) 1385 : CallInst(cast<FunctionType>( 1386 cast<PointerType>(Func->getType())->getElementType()), 1387 Func, Args, Bundles, NameStr, InsertBefore) {} 1388 1389 inline CallInst(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr, 1390 Instruction *InsertBefore) 1391 : CallInst(Func, Args, None, NameStr, InsertBefore) {} 1392 1393 /// Construct a CallInst given a range of arguments. 1394 /// \brief Construct a CallInst from a range of arguments 1395 inline CallInst(Value *Func, ArrayRef<Value *> Args, 1396 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1397 BasicBlock *InsertAtEnd); 1398 1399 explicit CallInst(Value *F, const Twine &NameStr, 1400 Instruction *InsertBefore); 1401 CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd); 1402 1403 friend class OperandBundleUser<CallInst, User::op_iterator>; 1404 bool hasDescriptor() const { return HasDescriptor; } 1405 1406 protected: 1407 // Note: Instruction needs to be a friend here to call cloneImpl. 1408 friend class Instruction; 1409 CallInst *cloneImpl() const; 1410 1411 public: 1412 static CallInst *Create(Value *Func, ArrayRef<Value *> Args, 1413 ArrayRef<OperandBundleDef> Bundles = None, 1414 const Twine &NameStr = "", 1415 Instruction *InsertBefore = nullptr) { 1416 return Create(cast<FunctionType>( 1417 cast<PointerType>(Func->getType())->getElementType()), 1418 Func, Args, Bundles, NameStr, InsertBefore); 1419 } 1420 static CallInst *Create(Value *Func, ArrayRef<Value *> Args, 1421 const Twine &NameStr, 1422 Instruction *InsertBefore = nullptr) { 1423 return Create(cast<FunctionType>( 1424 cast<PointerType>(Func->getType())->getElementType()), 1425 Func, Args, None, NameStr, InsertBefore); 1426 } 1427 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1428 const Twine &NameStr, 1429 Instruction *InsertBefore = nullptr) { 1430 return new (unsigned(Args.size() + 1)) 1431 CallInst(Ty, Func, Args, None, NameStr, InsertBefore); 1432 } 1433 static CallInst *Create(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1434 ArrayRef<OperandBundleDef> Bundles = None, 1435 const Twine &NameStr = "", 1436 Instruction *InsertBefore = nullptr) { 1437 const unsigned TotalOps = 1438 unsigned(Args.size()) + CountBundleInputs(Bundles) + 1; 1439 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 1440 1441 return new (TotalOps, DescriptorBytes) 1442 CallInst(Ty, Func, Args, Bundles, NameStr, InsertBefore); 1443 } 1444 static CallInst *Create(Value *Func, ArrayRef<Value *> Args, 1445 ArrayRef<OperandBundleDef> Bundles, 1446 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1447 const unsigned TotalOps = 1448 unsigned(Args.size()) + CountBundleInputs(Bundles) + 1; 1449 const unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 1450 1451 return new (TotalOps, DescriptorBytes) 1452 CallInst(Func, Args, Bundles, NameStr, InsertAtEnd); 1453 } 1454 static CallInst *Create(Value *Func, ArrayRef<Value *> Args, 1455 const Twine &NameStr, BasicBlock *InsertAtEnd) { 1456 return new (unsigned(Args.size() + 1)) 1457 CallInst(Func, Args, None, NameStr, InsertAtEnd); 1458 } 1459 static CallInst *Create(Value *F, const Twine &NameStr = "", 1460 Instruction *InsertBefore = nullptr) { 1461 return new(1) CallInst(F, NameStr, InsertBefore); 1462 } 1463 static CallInst *Create(Value *F, const Twine &NameStr, 1464 BasicBlock *InsertAtEnd) { 1465 return new(1) CallInst(F, NameStr, InsertAtEnd); 1466 } 1467 1468 /// \brief Create a clone of \p CI with a different set of operand bundles and 1469 /// insert it before \p InsertPt. 1470 /// 1471 /// The returned call instruction is identical \p CI in every way except that 1472 /// the operand bundles for the new instruction are set to the operand bundles 1473 /// in \p Bundles. 1474 static CallInst *Create(CallInst *CI, ArrayRef<OperandBundleDef> Bundles, 1475 Instruction *InsertPt = nullptr); 1476 1477 /// CreateMalloc - Generate the IR for a call to malloc: 1478 /// 1. Compute the malloc call's argument as the specified type's size, 1479 /// possibly multiplied by the array size if the array size is not 1480 /// constant 1. 1481 /// 2. Call malloc with that argument. 1482 /// 3. Bitcast the result of the malloc call to the specified type. 1483 static Instruction *CreateMalloc(Instruction *InsertBefore, 1484 Type *IntPtrTy, Type *AllocTy, 1485 Value *AllocSize, Value *ArraySize = nullptr, 1486 Function* MallocF = nullptr, 1487 const Twine &Name = ""); 1488 static Instruction *CreateMalloc(BasicBlock *InsertAtEnd, 1489 Type *IntPtrTy, Type *AllocTy, 1490 Value *AllocSize, Value *ArraySize = nullptr, 1491 Function* MallocF = nullptr, 1492 const Twine &Name = ""); 1493 /// CreateFree - Generate the IR for a call to the builtin free function. 1494 static Instruction* CreateFree(Value* Source, Instruction *InsertBefore); 1495 static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd); 1496 1497 ~CallInst() override; 1498 1499 FunctionType *getFunctionType() const { return FTy; } 1500 1501 void mutateFunctionType(FunctionType *FTy) { 1502 mutateType(FTy->getReturnType()); 1503 this->FTy = FTy; 1504 } 1505 1506 // Note that 'musttail' implies 'tail'. 1507 enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2, 1508 TCK_NoTail = 3 }; 1509 TailCallKind getTailCallKind() const { 1510 return TailCallKind(getSubclassDataFromInstruction() & 3); 1511 } 1512 bool isTailCall() const { 1513 unsigned Kind = getSubclassDataFromInstruction() & 3; 1514 return Kind == TCK_Tail || Kind == TCK_MustTail; 1515 } 1516 bool isMustTailCall() const { 1517 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail; 1518 } 1519 bool isNoTailCall() const { 1520 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail; 1521 } 1522 void setTailCall(bool isTC = true) { 1523 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | 1524 unsigned(isTC ? TCK_Tail : TCK_None)); 1525 } 1526 void setTailCallKind(TailCallKind TCK) { 1527 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) | 1528 unsigned(TCK)); 1529 } 1530 1531 /// Provide fast operand accessors 1532 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1533 1534 /// getNumArgOperands - Return the number of call arguments. 1535 /// 1536 unsigned getNumArgOperands() const { 1537 return getNumOperands() - getNumTotalBundleOperands() - 1; 1538 } 1539 1540 /// getArgOperand/setArgOperand - Return/set the i-th call argument. 1541 /// 1542 Value *getArgOperand(unsigned i) const { 1543 assert(i < getNumArgOperands() && "Out of bounds!"); 1544 return getOperand(i); 1545 } 1546 void setArgOperand(unsigned i, Value *v) { 1547 assert(i < getNumArgOperands() && "Out of bounds!"); 1548 setOperand(i, v); 1549 } 1550 1551 /// \brief Return the iterator pointing to the beginning of the argument list. 1552 op_iterator arg_begin() { return op_begin(); } 1553 1554 /// \brief Return the iterator pointing to the end of the argument list. 1555 op_iterator arg_end() { 1556 // [ call args ], [ operand bundles ], callee 1557 return op_end() - getNumTotalBundleOperands() - 1; 1558 }; 1559 1560 /// \brief Iteration adapter for range-for loops. 1561 iterator_range<op_iterator> arg_operands() { 1562 return make_range(arg_begin(), arg_end()); 1563 } 1564 1565 /// \brief Return the iterator pointing to the beginning of the argument list. 1566 const_op_iterator arg_begin() const { return op_begin(); } 1567 1568 /// \brief Return the iterator pointing to the end of the argument list. 1569 const_op_iterator arg_end() const { 1570 // [ call args ], [ operand bundles ], callee 1571 return op_end() - getNumTotalBundleOperands() - 1; 1572 }; 1573 1574 /// \brief Iteration adapter for range-for loops. 1575 iterator_range<const_op_iterator> arg_operands() const { 1576 return make_range(arg_begin(), arg_end()); 1577 } 1578 1579 /// \brief Wrappers for getting the \c Use of a call argument. 1580 const Use &getArgOperandUse(unsigned i) const { 1581 assert(i < getNumArgOperands() && "Out of bounds!"); 1582 return getOperandUse(i); 1583 } 1584 Use &getArgOperandUse(unsigned i) { 1585 assert(i < getNumArgOperands() && "Out of bounds!"); 1586 return getOperandUse(i); 1587 } 1588 1589 /// getCallingConv/setCallingConv - Get or set the calling convention of this 1590 /// function call. 1591 CallingConv::ID getCallingConv() const { 1592 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2); 1593 } 1594 void setCallingConv(CallingConv::ID CC) { 1595 auto ID = static_cast<unsigned>(CC); 1596 assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention"); 1597 setInstructionSubclassData((getSubclassDataFromInstruction() & 3) | 1598 (ID << 2)); 1599 } 1600 1601 /// getAttributes - Return the parameter attributes for this call. 1602 /// 1603 const AttributeSet &getAttributes() const { return AttributeList; } 1604 1605 /// setAttributes - Set the parameter attributes for this call. 1606 /// 1607 void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; } 1608 1609 /// addAttribute - adds the attribute to the list of attributes. 1610 void addAttribute(unsigned i, Attribute::AttrKind attr); 1611 1612 /// addAttribute - adds the attribute to the list of attributes. 1613 void addAttribute(unsigned i, StringRef Kind, StringRef Value); 1614 1615 /// removeAttribute - removes the attribute from the list of attributes. 1616 void removeAttribute(unsigned i, Attribute attr); 1617 1618 /// \brief adds the dereferenceable attribute to the list of attributes. 1619 void addDereferenceableAttr(unsigned i, uint64_t Bytes); 1620 1621 /// \brief adds the dereferenceable_or_null attribute to the list of 1622 /// attributes. 1623 void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes); 1624 1625 /// \brief Determine whether this call has the given attribute. 1626 bool hasFnAttr(Attribute::AttrKind A) const { 1627 assert(A != Attribute::NoBuiltin && 1628 "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin"); 1629 return hasFnAttrImpl(A); 1630 } 1631 1632 /// \brief Determine whether this call has the given attribute. 1633 bool hasFnAttr(StringRef A) const { 1634 return hasFnAttrImpl(A); 1635 } 1636 1637 /// \brief Determine whether the call or the callee has the given attributes. 1638 bool paramHasAttr(unsigned i, Attribute::AttrKind A) const; 1639 1640 /// \brief Return true if the data operand at index \p i has the attribute \p 1641 /// A. 1642 /// 1643 /// Data operands include call arguments and values used in operand bundles, 1644 /// but does not include the callee operand. This routine dispatches to the 1645 /// underlying AttributeList or the OperandBundleUser as appropriate. 1646 /// 1647 /// The index \p i is interpreted as 1648 /// 1649 /// \p i == Attribute::ReturnIndex -> the return value 1650 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1) 1651 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index 1652 /// (\p i - 1) in the operand list. 1653 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind A) const; 1654 1655 /// \brief Extract the alignment for a call or parameter (0=unknown). 1656 unsigned getParamAlignment(unsigned i) const { 1657 return AttributeList.getParamAlignment(i); 1658 } 1659 1660 /// \brief Extract the number of dereferenceable bytes for a call or 1661 /// parameter (0=unknown). 1662 uint64_t getDereferenceableBytes(unsigned i) const { 1663 return AttributeList.getDereferenceableBytes(i); 1664 } 1665 1666 /// \brief Extract the number of dereferenceable_or_null bytes for a call or 1667 /// parameter (0=unknown). 1668 uint64_t getDereferenceableOrNullBytes(unsigned i) const { 1669 return AttributeList.getDereferenceableOrNullBytes(i); 1670 } 1671 1672 /// @brief Determine if the parameter or return value is marked with NoAlias 1673 /// attribute. 1674 /// @param n The parameter to check. 1 is the first parameter, 0 is the return 1675 bool doesNotAlias(unsigned n) const { 1676 return AttributeList.hasAttribute(n, Attribute::NoAlias); 1677 } 1678 1679 /// \brief Return true if the call should not be treated as a call to a 1680 /// builtin. 1681 bool isNoBuiltin() const { 1682 return hasFnAttrImpl(Attribute::NoBuiltin) && 1683 !hasFnAttrImpl(Attribute::Builtin); 1684 } 1685 1686 /// \brief Return true if the call should not be inlined. 1687 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } 1688 void setIsNoInline() { 1689 addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline); 1690 } 1691 1692 /// \brief Return true if the call can return twice 1693 bool canReturnTwice() const { 1694 return hasFnAttr(Attribute::ReturnsTwice); 1695 } 1696 void setCanReturnTwice() { 1697 addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice); 1698 } 1699 1700 /// \brief Determine if the call does not access memory. 1701 bool doesNotAccessMemory() const { 1702 return hasFnAttr(Attribute::ReadNone); 1703 } 1704 void setDoesNotAccessMemory() { 1705 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 1706 } 1707 1708 /// \brief Determine if the call does not access or only reads memory. 1709 bool onlyReadsMemory() const { 1710 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); 1711 } 1712 void setOnlyReadsMemory() { 1713 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 1714 } 1715 1716 /// @brief Determine if the call can access memmory only using pointers based 1717 /// on its arguments. 1718 bool onlyAccessesArgMemory() const { 1719 return hasFnAttr(Attribute::ArgMemOnly); 1720 } 1721 void setOnlyAccessesArgMemory() { 1722 addAttribute(AttributeSet::FunctionIndex, Attribute::ArgMemOnly); 1723 } 1724 1725 /// \brief Determine if the call cannot return. 1726 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } 1727 void setDoesNotReturn() { 1728 addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn); 1729 } 1730 1731 /// \brief Determine if the call cannot unwind. 1732 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } 1733 void setDoesNotThrow() { 1734 addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 1735 } 1736 1737 /// \brief Determine if the call cannot be duplicated. 1738 bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); } 1739 void setCannotDuplicate() { 1740 addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate); 1741 } 1742 1743 /// \brief Determine if the call is convergent 1744 bool isConvergent() const { return hasFnAttr(Attribute::Convergent); } 1745 void setConvergent() { 1746 addAttribute(AttributeSet::FunctionIndex, Attribute::Convergent); 1747 } 1748 1749 /// \brief Determine if the call returns a structure through first 1750 /// pointer argument. 1751 bool hasStructRetAttr() const { 1752 if (getNumArgOperands() == 0) 1753 return false; 1754 1755 // Be friendly and also check the callee. 1756 return paramHasAttr(1, Attribute::StructRet); 1757 } 1758 1759 /// \brief Determine if any call argument is an aggregate passed by value. 1760 bool hasByValArgument() const { 1761 return AttributeList.hasAttrSomewhere(Attribute::ByVal); 1762 } 1763 1764 /// getCalledFunction - Return the function called, or null if this is an 1765 /// indirect function invocation. 1766 /// 1767 Function *getCalledFunction() const { 1768 return dyn_cast<Function>(Op<-1>()); 1769 } 1770 1771 /// getCalledValue - Get a pointer to the function that is invoked by this 1772 /// instruction. 1773 const Value *getCalledValue() const { return Op<-1>(); } 1774 Value *getCalledValue() { return Op<-1>(); } 1775 1776 /// setCalledFunction - Set the function called. 1777 void setCalledFunction(Value* Fn) { 1778 setCalledFunction( 1779 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()), 1780 Fn); 1781 } 1782 void setCalledFunction(FunctionType *FTy, Value *Fn) { 1783 this->FTy = FTy; 1784 assert(FTy == cast<FunctionType>( 1785 cast<PointerType>(Fn->getType())->getElementType())); 1786 Op<-1>() = Fn; 1787 } 1788 1789 /// isInlineAsm - Check if this call is an inline asm statement. 1790 bool isInlineAsm() const { 1791 return isa<InlineAsm>(Op<-1>()); 1792 } 1793 1794 // Methods for support type inquiry through isa, cast, and dyn_cast: 1795 static inline bool classof(const Instruction *I) { 1796 return I->getOpcode() == Instruction::Call; 1797 } 1798 static inline bool classof(const Value *V) { 1799 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1800 } 1801 1802 private: 1803 template <typename AttrKind> bool hasFnAttrImpl(AttrKind A) const { 1804 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A)) 1805 return true; 1806 1807 // Operand bundles override attributes on the called function, but don't 1808 // override attributes directly present on the call instruction. 1809 if (isFnAttrDisallowedByOpBundle(A)) 1810 return false; 1811 1812 if (const Function *F = getCalledFunction()) 1813 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A); 1814 return false; 1815 } 1816 1817 // Shadow Instruction::setInstructionSubclassData with a private forwarding 1818 // method so that subclasses cannot accidentally use it. 1819 void setInstructionSubclassData(unsigned short D) { 1820 Instruction::setInstructionSubclassData(D); 1821 } 1822 }; 1823 1824 template <> 1825 struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> { 1826 }; 1827 1828 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args, 1829 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1830 BasicBlock *InsertAtEnd) 1831 : Instruction( 1832 cast<FunctionType>(cast<PointerType>(Func->getType()) 1833 ->getElementType())->getReturnType(), 1834 Instruction::Call, OperandTraits<CallInst>::op_end(this) - 1835 (Args.size() + CountBundleInputs(Bundles) + 1), 1836 unsigned(Args.size() + CountBundleInputs(Bundles) + 1), InsertAtEnd) { 1837 init(Func, Args, Bundles, NameStr); 1838 } 1839 1840 CallInst::CallInst(FunctionType *Ty, Value *Func, ArrayRef<Value *> Args, 1841 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr, 1842 Instruction *InsertBefore) 1843 : Instruction(Ty->getReturnType(), Instruction::Call, 1844 OperandTraits<CallInst>::op_end(this) - 1845 (Args.size() + CountBundleInputs(Bundles) + 1), 1846 unsigned(Args.size() + CountBundleInputs(Bundles) + 1), 1847 InsertBefore) { 1848 init(Ty, Func, Args, Bundles, NameStr); 1849 } 1850 1851 // Note: if you get compile errors about private methods then 1852 // please update your code to use the high-level operand 1853 // interfaces. See line 943 above. 1854 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value) 1855 1856 //===----------------------------------------------------------------------===// 1857 // SelectInst Class 1858 //===----------------------------------------------------------------------===// 1859 1860 /// SelectInst - This class represents the LLVM 'select' instruction. 1861 /// 1862 class SelectInst : public Instruction { 1863 void init(Value *C, Value *S1, Value *S2) { 1864 assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select"); 1865 Op<0>() = C; 1866 Op<1>() = S1; 1867 Op<2>() = S2; 1868 } 1869 1870 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, 1871 Instruction *InsertBefore) 1872 : Instruction(S1->getType(), Instruction::Select, 1873 &Op<0>(), 3, InsertBefore) { 1874 init(C, S1, S2); 1875 setName(NameStr); 1876 } 1877 SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr, 1878 BasicBlock *InsertAtEnd) 1879 : Instruction(S1->getType(), Instruction::Select, 1880 &Op<0>(), 3, InsertAtEnd) { 1881 init(C, S1, S2); 1882 setName(NameStr); 1883 } 1884 1885 protected: 1886 // Note: Instruction needs to be a friend here to call cloneImpl. 1887 friend class Instruction; 1888 SelectInst *cloneImpl() const; 1889 1890 public: 1891 static SelectInst *Create(Value *C, Value *S1, Value *S2, 1892 const Twine &NameStr = "", 1893 Instruction *InsertBefore = nullptr) { 1894 return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore); 1895 } 1896 static SelectInst *Create(Value *C, Value *S1, Value *S2, 1897 const Twine &NameStr, 1898 BasicBlock *InsertAtEnd) { 1899 return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd); 1900 } 1901 1902 const Value *getCondition() const { return Op<0>(); } 1903 const Value *getTrueValue() const { return Op<1>(); } 1904 const Value *getFalseValue() const { return Op<2>(); } 1905 Value *getCondition() { return Op<0>(); } 1906 Value *getTrueValue() { return Op<1>(); } 1907 Value *getFalseValue() { return Op<2>(); } 1908 1909 /// areInvalidOperands - Return a string if the specified operands are invalid 1910 /// for a select operation, otherwise return null. 1911 static const char *areInvalidOperands(Value *Cond, Value *True, Value *False); 1912 1913 /// Transparently provide more efficient getOperand methods. 1914 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 1915 1916 OtherOps getOpcode() const { 1917 return static_cast<OtherOps>(Instruction::getOpcode()); 1918 } 1919 1920 // Methods for support type inquiry through isa, cast, and dyn_cast: 1921 static inline bool classof(const Instruction *I) { 1922 return I->getOpcode() == Instruction::Select; 1923 } 1924 static inline bool classof(const Value *V) { 1925 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1926 } 1927 }; 1928 1929 template <> 1930 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> { 1931 }; 1932 1933 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value) 1934 1935 //===----------------------------------------------------------------------===// 1936 // VAArgInst Class 1937 //===----------------------------------------------------------------------===// 1938 1939 /// VAArgInst - This class represents the va_arg llvm instruction, which returns 1940 /// an argument of the specified type given a va_list and increments that list 1941 /// 1942 class VAArgInst : public UnaryInstruction { 1943 protected: 1944 // Note: Instruction needs to be a friend here to call cloneImpl. 1945 friend class Instruction; 1946 VAArgInst *cloneImpl() const; 1947 1948 public: 1949 VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "", 1950 Instruction *InsertBefore = nullptr) 1951 : UnaryInstruction(Ty, VAArg, List, InsertBefore) { 1952 setName(NameStr); 1953 } 1954 VAArgInst(Value *List, Type *Ty, const Twine &NameStr, 1955 BasicBlock *InsertAtEnd) 1956 : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) { 1957 setName(NameStr); 1958 } 1959 1960 Value *getPointerOperand() { return getOperand(0); } 1961 const Value *getPointerOperand() const { return getOperand(0); } 1962 static unsigned getPointerOperandIndex() { return 0U; } 1963 1964 // Methods for support type inquiry through isa, cast, and dyn_cast: 1965 static inline bool classof(const Instruction *I) { 1966 return I->getOpcode() == VAArg; 1967 } 1968 static inline bool classof(const Value *V) { 1969 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 1970 } 1971 }; 1972 1973 //===----------------------------------------------------------------------===// 1974 // ExtractElementInst Class 1975 //===----------------------------------------------------------------------===// 1976 1977 /// ExtractElementInst - This instruction extracts a single (scalar) 1978 /// element from a VectorType value 1979 /// 1980 class ExtractElementInst : public Instruction { 1981 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "", 1982 Instruction *InsertBefore = nullptr); 1983 ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr, 1984 BasicBlock *InsertAtEnd); 1985 1986 protected: 1987 // Note: Instruction needs to be a friend here to call cloneImpl. 1988 friend class Instruction; 1989 ExtractElementInst *cloneImpl() const; 1990 1991 public: 1992 static ExtractElementInst *Create(Value *Vec, Value *Idx, 1993 const Twine &NameStr = "", 1994 Instruction *InsertBefore = nullptr) { 1995 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore); 1996 } 1997 static ExtractElementInst *Create(Value *Vec, Value *Idx, 1998 const Twine &NameStr, 1999 BasicBlock *InsertAtEnd) { 2000 return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd); 2001 } 2002 2003 /// isValidOperands - Return true if an extractelement instruction can be 2004 /// formed with the specified operands. 2005 static bool isValidOperands(const Value *Vec, const Value *Idx); 2006 2007 Value *getVectorOperand() { return Op<0>(); } 2008 Value *getIndexOperand() { return Op<1>(); } 2009 const Value *getVectorOperand() const { return Op<0>(); } 2010 const Value *getIndexOperand() const { return Op<1>(); } 2011 2012 VectorType *getVectorOperandType() const { 2013 return cast<VectorType>(getVectorOperand()->getType()); 2014 } 2015 2016 /// Transparently provide more efficient getOperand methods. 2017 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2018 2019 // Methods for support type inquiry through isa, cast, and dyn_cast: 2020 static inline bool classof(const Instruction *I) { 2021 return I->getOpcode() == Instruction::ExtractElement; 2022 } 2023 static inline bool classof(const Value *V) { 2024 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2025 } 2026 }; 2027 2028 template <> 2029 struct OperandTraits<ExtractElementInst> : 2030 public FixedNumOperandTraits<ExtractElementInst, 2> { 2031 }; 2032 2033 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value) 2034 2035 //===----------------------------------------------------------------------===// 2036 // InsertElementInst Class 2037 //===----------------------------------------------------------------------===// 2038 2039 /// InsertElementInst - This instruction inserts a single (scalar) 2040 /// element into a VectorType value 2041 /// 2042 class InsertElementInst : public Instruction { 2043 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, 2044 const Twine &NameStr = "", 2045 Instruction *InsertBefore = nullptr); 2046 InsertElementInst(Value *Vec, Value *NewElt, Value *Idx, const Twine &NameStr, 2047 BasicBlock *InsertAtEnd); 2048 2049 protected: 2050 // Note: Instruction needs to be a friend here to call cloneImpl. 2051 friend class Instruction; 2052 InsertElementInst *cloneImpl() const; 2053 2054 public: 2055 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, 2056 const Twine &NameStr = "", 2057 Instruction *InsertBefore = nullptr) { 2058 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore); 2059 } 2060 static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx, 2061 const Twine &NameStr, 2062 BasicBlock *InsertAtEnd) { 2063 return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd); 2064 } 2065 2066 /// isValidOperands - Return true if an insertelement instruction can be 2067 /// formed with the specified operands. 2068 static bool isValidOperands(const Value *Vec, const Value *NewElt, 2069 const Value *Idx); 2070 2071 /// getType - Overload to return most specific vector type. 2072 /// 2073 VectorType *getType() const { 2074 return cast<VectorType>(Instruction::getType()); 2075 } 2076 2077 /// Transparently provide more efficient getOperand methods. 2078 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2079 2080 // Methods for support type inquiry through isa, cast, and dyn_cast: 2081 static inline bool classof(const Instruction *I) { 2082 return I->getOpcode() == Instruction::InsertElement; 2083 } 2084 static inline bool classof(const Value *V) { 2085 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2086 } 2087 }; 2088 2089 template <> 2090 struct OperandTraits<InsertElementInst> : 2091 public FixedNumOperandTraits<InsertElementInst, 3> { 2092 }; 2093 2094 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value) 2095 2096 //===----------------------------------------------------------------------===// 2097 // ShuffleVectorInst Class 2098 //===----------------------------------------------------------------------===// 2099 2100 /// ShuffleVectorInst - This instruction constructs a fixed permutation of two 2101 /// input vectors. 2102 /// 2103 class ShuffleVectorInst : public Instruction { 2104 protected: 2105 // Note: Instruction needs to be a friend here to call cloneImpl. 2106 friend class Instruction; 2107 ShuffleVectorInst *cloneImpl() const; 2108 2109 public: 2110 // allocate space for exactly three operands 2111 void *operator new(size_t s) { 2112 return User::operator new(s, 3); 2113 } 2114 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 2115 const Twine &NameStr = "", 2116 Instruction *InsertBefor = nullptr); 2117 ShuffleVectorInst(Value *V1, Value *V2, Value *Mask, 2118 const Twine &NameStr, BasicBlock *InsertAtEnd); 2119 2120 /// isValidOperands - Return true if a shufflevector instruction can be 2121 /// formed with the specified operands. 2122 static bool isValidOperands(const Value *V1, const Value *V2, 2123 const Value *Mask); 2124 2125 /// getType - Overload to return most specific vector type. 2126 /// 2127 VectorType *getType() const { 2128 return cast<VectorType>(Instruction::getType()); 2129 } 2130 2131 /// Transparently provide more efficient getOperand methods. 2132 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2133 2134 Constant *getMask() const { 2135 return cast<Constant>(getOperand(2)); 2136 } 2137 2138 /// getMaskValue - Return the index from the shuffle mask for the specified 2139 /// output result. This is either -1 if the element is undef or a number less 2140 /// than 2*numelements. 2141 static int getMaskValue(Constant *Mask, unsigned i); 2142 2143 int getMaskValue(unsigned i) const { 2144 return getMaskValue(getMask(), i); 2145 } 2146 2147 /// getShuffleMask - Return the full mask for this instruction, where each 2148 /// element is the element number and undef's are returned as -1. 2149 static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result); 2150 2151 void getShuffleMask(SmallVectorImpl<int> &Result) const { 2152 return getShuffleMask(getMask(), Result); 2153 } 2154 2155 SmallVector<int, 16> getShuffleMask() const { 2156 SmallVector<int, 16> Mask; 2157 getShuffleMask(Mask); 2158 return Mask; 2159 } 2160 2161 // Methods for support type inquiry through isa, cast, and dyn_cast: 2162 static inline bool classof(const Instruction *I) { 2163 return I->getOpcode() == Instruction::ShuffleVector; 2164 } 2165 static inline bool classof(const Value *V) { 2166 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2167 } 2168 }; 2169 2170 template <> 2171 struct OperandTraits<ShuffleVectorInst> : 2172 public FixedNumOperandTraits<ShuffleVectorInst, 3> { 2173 }; 2174 2175 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value) 2176 2177 //===----------------------------------------------------------------------===// 2178 // ExtractValueInst Class 2179 //===----------------------------------------------------------------------===// 2180 2181 /// ExtractValueInst - This instruction extracts a struct member or array 2182 /// element value from an aggregate value. 2183 /// 2184 class ExtractValueInst : public UnaryInstruction { 2185 SmallVector<unsigned, 4> Indices; 2186 2187 ExtractValueInst(const ExtractValueInst &EVI); 2188 void init(ArrayRef<unsigned> Idxs, const Twine &NameStr); 2189 2190 /// Constructors - Create a extractvalue instruction with a base aggregate 2191 /// value and a list of indices. The first ctor can optionally insert before 2192 /// an existing instruction, the second appends the new instruction to the 2193 /// specified BasicBlock. 2194 inline ExtractValueInst(Value *Agg, 2195 ArrayRef<unsigned> Idxs, 2196 const Twine &NameStr, 2197 Instruction *InsertBefore); 2198 inline ExtractValueInst(Value *Agg, 2199 ArrayRef<unsigned> Idxs, 2200 const Twine &NameStr, BasicBlock *InsertAtEnd); 2201 2202 // allocate space for exactly one operand 2203 void *operator new(size_t s) { return User::operator new(s, 1); } 2204 2205 protected: 2206 // Note: Instruction needs to be a friend here to call cloneImpl. 2207 friend class Instruction; 2208 ExtractValueInst *cloneImpl() const; 2209 2210 public: 2211 static ExtractValueInst *Create(Value *Agg, 2212 ArrayRef<unsigned> Idxs, 2213 const Twine &NameStr = "", 2214 Instruction *InsertBefore = nullptr) { 2215 return new 2216 ExtractValueInst(Agg, Idxs, NameStr, InsertBefore); 2217 } 2218 static ExtractValueInst *Create(Value *Agg, 2219 ArrayRef<unsigned> Idxs, 2220 const Twine &NameStr, 2221 BasicBlock *InsertAtEnd) { 2222 return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd); 2223 } 2224 2225 /// getIndexedType - Returns the type of the element that would be extracted 2226 /// with an extractvalue instruction with the specified parameters. 2227 /// 2228 /// Null is returned if the indices are invalid for the specified type. 2229 static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs); 2230 2231 typedef const unsigned* idx_iterator; 2232 inline idx_iterator idx_begin() const { return Indices.begin(); } 2233 inline idx_iterator idx_end() const { return Indices.end(); } 2234 inline iterator_range<idx_iterator> indices() const { 2235 return make_range(idx_begin(), idx_end()); 2236 } 2237 2238 Value *getAggregateOperand() { 2239 return getOperand(0); 2240 } 2241 const Value *getAggregateOperand() const { 2242 return getOperand(0); 2243 } 2244 static unsigned getAggregateOperandIndex() { 2245 return 0U; // get index for modifying correct operand 2246 } 2247 2248 ArrayRef<unsigned> getIndices() const { 2249 return Indices; 2250 } 2251 2252 unsigned getNumIndices() const { 2253 return (unsigned)Indices.size(); 2254 } 2255 2256 bool hasIndices() const { 2257 return true; 2258 } 2259 2260 // Methods for support type inquiry through isa, cast, and dyn_cast: 2261 static inline bool classof(const Instruction *I) { 2262 return I->getOpcode() == Instruction::ExtractValue; 2263 } 2264 static inline bool classof(const Value *V) { 2265 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2266 } 2267 }; 2268 2269 ExtractValueInst::ExtractValueInst(Value *Agg, 2270 ArrayRef<unsigned> Idxs, 2271 const Twine &NameStr, 2272 Instruction *InsertBefore) 2273 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), 2274 ExtractValue, Agg, InsertBefore) { 2275 init(Idxs, NameStr); 2276 } 2277 ExtractValueInst::ExtractValueInst(Value *Agg, 2278 ArrayRef<unsigned> Idxs, 2279 const Twine &NameStr, 2280 BasicBlock *InsertAtEnd) 2281 : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)), 2282 ExtractValue, Agg, InsertAtEnd) { 2283 init(Idxs, NameStr); 2284 } 2285 2286 //===----------------------------------------------------------------------===// 2287 // InsertValueInst Class 2288 //===----------------------------------------------------------------------===// 2289 2290 /// InsertValueInst - This instruction inserts a struct field of array element 2291 /// value into an aggregate value. 2292 /// 2293 class InsertValueInst : public Instruction { 2294 SmallVector<unsigned, 4> Indices; 2295 2296 void *operator new(size_t, unsigned) = delete; 2297 InsertValueInst(const InsertValueInst &IVI); 2298 void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs, 2299 const Twine &NameStr); 2300 2301 /// Constructors - Create a insertvalue instruction with a base aggregate 2302 /// value, a value to insert, and a list of indices. The first ctor can 2303 /// optionally insert before an existing instruction, the second appends 2304 /// the new instruction to the specified BasicBlock. 2305 inline InsertValueInst(Value *Agg, Value *Val, 2306 ArrayRef<unsigned> Idxs, 2307 const Twine &NameStr, 2308 Instruction *InsertBefore); 2309 inline InsertValueInst(Value *Agg, Value *Val, 2310 ArrayRef<unsigned> Idxs, 2311 const Twine &NameStr, BasicBlock *InsertAtEnd); 2312 2313 /// Constructors - These two constructors are convenience methods because one 2314 /// and two index insertvalue instructions are so common. 2315 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, 2316 const Twine &NameStr = "", 2317 Instruction *InsertBefore = nullptr); 2318 InsertValueInst(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr, 2319 BasicBlock *InsertAtEnd); 2320 2321 protected: 2322 // Note: Instruction needs to be a friend here to call cloneImpl. 2323 friend class Instruction; 2324 InsertValueInst *cloneImpl() const; 2325 2326 public: 2327 // allocate space for exactly two operands 2328 void *operator new(size_t s) { 2329 return User::operator new(s, 2); 2330 } 2331 2332 static InsertValueInst *Create(Value *Agg, Value *Val, 2333 ArrayRef<unsigned> Idxs, 2334 const Twine &NameStr = "", 2335 Instruction *InsertBefore = nullptr) { 2336 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore); 2337 } 2338 static InsertValueInst *Create(Value *Agg, Value *Val, 2339 ArrayRef<unsigned> Idxs, 2340 const Twine &NameStr, 2341 BasicBlock *InsertAtEnd) { 2342 return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd); 2343 } 2344 2345 /// Transparently provide more efficient getOperand methods. 2346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2347 2348 typedef const unsigned* idx_iterator; 2349 inline idx_iterator idx_begin() const { return Indices.begin(); } 2350 inline idx_iterator idx_end() const { return Indices.end(); } 2351 inline iterator_range<idx_iterator> indices() const { 2352 return make_range(idx_begin(), idx_end()); 2353 } 2354 2355 Value *getAggregateOperand() { 2356 return getOperand(0); 2357 } 2358 const Value *getAggregateOperand() const { 2359 return getOperand(0); 2360 } 2361 static unsigned getAggregateOperandIndex() { 2362 return 0U; // get index for modifying correct operand 2363 } 2364 2365 Value *getInsertedValueOperand() { 2366 return getOperand(1); 2367 } 2368 const Value *getInsertedValueOperand() const { 2369 return getOperand(1); 2370 } 2371 static unsigned getInsertedValueOperandIndex() { 2372 return 1U; // get index for modifying correct operand 2373 } 2374 2375 ArrayRef<unsigned> getIndices() const { 2376 return Indices; 2377 } 2378 2379 unsigned getNumIndices() const { 2380 return (unsigned)Indices.size(); 2381 } 2382 2383 bool hasIndices() const { 2384 return true; 2385 } 2386 2387 // Methods for support type inquiry through isa, cast, and dyn_cast: 2388 static inline bool classof(const Instruction *I) { 2389 return I->getOpcode() == Instruction::InsertValue; 2390 } 2391 static inline bool classof(const Value *V) { 2392 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2393 } 2394 }; 2395 2396 template <> 2397 struct OperandTraits<InsertValueInst> : 2398 public FixedNumOperandTraits<InsertValueInst, 2> { 2399 }; 2400 2401 InsertValueInst::InsertValueInst(Value *Agg, 2402 Value *Val, 2403 ArrayRef<unsigned> Idxs, 2404 const Twine &NameStr, 2405 Instruction *InsertBefore) 2406 : Instruction(Agg->getType(), InsertValue, 2407 OperandTraits<InsertValueInst>::op_begin(this), 2408 2, InsertBefore) { 2409 init(Agg, Val, Idxs, NameStr); 2410 } 2411 InsertValueInst::InsertValueInst(Value *Agg, 2412 Value *Val, 2413 ArrayRef<unsigned> Idxs, 2414 const Twine &NameStr, 2415 BasicBlock *InsertAtEnd) 2416 : Instruction(Agg->getType(), InsertValue, 2417 OperandTraits<InsertValueInst>::op_begin(this), 2418 2, InsertAtEnd) { 2419 init(Agg, Val, Idxs, NameStr); 2420 } 2421 2422 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value) 2423 2424 //===----------------------------------------------------------------------===// 2425 // PHINode Class 2426 //===----------------------------------------------------------------------===// 2427 2428 // PHINode - The PHINode class is used to represent the magical mystical PHI 2429 // node, that can not exist in nature, but can be synthesized in a computer 2430 // scientist's overactive imagination. 2431 // 2432 class PHINode : public Instruction { 2433 void anchor() override; 2434 2435 void *operator new(size_t, unsigned) = delete; 2436 /// ReservedSpace - The number of operands actually allocated. NumOperands is 2437 /// the number actually in use. 2438 unsigned ReservedSpace; 2439 PHINode(const PHINode &PN); 2440 // allocate space for exactly zero operands 2441 void *operator new(size_t s) { 2442 return User::operator new(s); 2443 } 2444 explicit PHINode(Type *Ty, unsigned NumReservedValues, 2445 const Twine &NameStr = "", 2446 Instruction *InsertBefore = nullptr) 2447 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore), 2448 ReservedSpace(NumReservedValues) { 2449 setName(NameStr); 2450 allocHungoffUses(ReservedSpace); 2451 } 2452 2453 PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr, 2454 BasicBlock *InsertAtEnd) 2455 : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd), 2456 ReservedSpace(NumReservedValues) { 2457 setName(NameStr); 2458 allocHungoffUses(ReservedSpace); 2459 } 2460 2461 protected: 2462 // allocHungoffUses - this is more complicated than the generic 2463 // User::allocHungoffUses, because we have to allocate Uses for the incoming 2464 // values and pointers to the incoming blocks, all in one allocation. 2465 void allocHungoffUses(unsigned N) { 2466 User::allocHungoffUses(N, /* IsPhi */ true); 2467 } 2468 2469 // Note: Instruction needs to be a friend here to call cloneImpl. 2470 friend class Instruction; 2471 PHINode *cloneImpl() const; 2472 2473 public: 2474 /// Constructors - NumReservedValues is a hint for the number of incoming 2475 /// edges that this phi node will have (use 0 if you really have no idea). 2476 static PHINode *Create(Type *Ty, unsigned NumReservedValues, 2477 const Twine &NameStr = "", 2478 Instruction *InsertBefore = nullptr) { 2479 return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore); 2480 } 2481 static PHINode *Create(Type *Ty, unsigned NumReservedValues, 2482 const Twine &NameStr, BasicBlock *InsertAtEnd) { 2483 return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd); 2484 } 2485 2486 /// Provide fast operand accessors 2487 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2488 2489 // Block iterator interface. This provides access to the list of incoming 2490 // basic blocks, which parallels the list of incoming values. 2491 2492 typedef BasicBlock **block_iterator; 2493 typedef BasicBlock * const *const_block_iterator; 2494 2495 block_iterator block_begin() { 2496 Use::UserRef *ref = 2497 reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace); 2498 return reinterpret_cast<block_iterator>(ref + 1); 2499 } 2500 2501 const_block_iterator block_begin() const { 2502 const Use::UserRef *ref = 2503 reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace); 2504 return reinterpret_cast<const_block_iterator>(ref + 1); 2505 } 2506 2507 block_iterator block_end() { 2508 return block_begin() + getNumOperands(); 2509 } 2510 2511 const_block_iterator block_end() const { 2512 return block_begin() + getNumOperands(); 2513 } 2514 2515 op_range incoming_values() { return operands(); } 2516 2517 const_op_range incoming_values() const { return operands(); } 2518 2519 /// getNumIncomingValues - Return the number of incoming edges 2520 /// 2521 unsigned getNumIncomingValues() const { return getNumOperands(); } 2522 2523 /// getIncomingValue - Return incoming value number x 2524 /// 2525 Value *getIncomingValue(unsigned i) const { 2526 return getOperand(i); 2527 } 2528 void setIncomingValue(unsigned i, Value *V) { 2529 assert(V && "PHI node got a null value!"); 2530 assert(getType() == V->getType() && 2531 "All operands to PHI node must be the same type as the PHI node!"); 2532 setOperand(i, V); 2533 } 2534 static unsigned getOperandNumForIncomingValue(unsigned i) { 2535 return i; 2536 } 2537 static unsigned getIncomingValueNumForOperand(unsigned i) { 2538 return i; 2539 } 2540 2541 /// getIncomingBlock - Return incoming basic block number @p i. 2542 /// 2543 BasicBlock *getIncomingBlock(unsigned i) const { 2544 return block_begin()[i]; 2545 } 2546 2547 /// getIncomingBlock - Return incoming basic block corresponding 2548 /// to an operand of the PHI. 2549 /// 2550 BasicBlock *getIncomingBlock(const Use &U) const { 2551 assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?"); 2552 return getIncomingBlock(unsigned(&U - op_begin())); 2553 } 2554 2555 /// getIncomingBlock - Return incoming basic block corresponding 2556 /// to value use iterator. 2557 /// 2558 BasicBlock *getIncomingBlock(Value::const_user_iterator I) const { 2559 return getIncomingBlock(I.getUse()); 2560 } 2561 2562 void setIncomingBlock(unsigned i, BasicBlock *BB) { 2563 assert(BB && "PHI node got a null basic block!"); 2564 block_begin()[i] = BB; 2565 } 2566 2567 /// addIncoming - Add an incoming value to the end of the PHI list 2568 /// 2569 void addIncoming(Value *V, BasicBlock *BB) { 2570 if (getNumOperands() == ReservedSpace) 2571 growOperands(); // Get more space! 2572 // Initialize some new operands. 2573 setNumHungOffUseOperands(getNumOperands() + 1); 2574 setIncomingValue(getNumOperands() - 1, V); 2575 setIncomingBlock(getNumOperands() - 1, BB); 2576 } 2577 2578 /// removeIncomingValue - Remove an incoming value. This is useful if a 2579 /// predecessor basic block is deleted. The value removed is returned. 2580 /// 2581 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty 2582 /// is true), the PHI node is destroyed and any uses of it are replaced with 2583 /// dummy values. The only time there should be zero incoming values to a PHI 2584 /// node is when the block is dead, so this strategy is sound. 2585 /// 2586 Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true); 2587 2588 Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) { 2589 int Idx = getBasicBlockIndex(BB); 2590 assert(Idx >= 0 && "Invalid basic block argument to remove!"); 2591 return removeIncomingValue(Idx, DeletePHIIfEmpty); 2592 } 2593 2594 /// getBasicBlockIndex - Return the first index of the specified basic 2595 /// block in the value list for this PHI. Returns -1 if no instance. 2596 /// 2597 int getBasicBlockIndex(const BasicBlock *BB) const { 2598 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 2599 if (block_begin()[i] == BB) 2600 return i; 2601 return -1; 2602 } 2603 2604 Value *getIncomingValueForBlock(const BasicBlock *BB) const { 2605 int Idx = getBasicBlockIndex(BB); 2606 assert(Idx >= 0 && "Invalid basic block argument!"); 2607 return getIncomingValue(Idx); 2608 } 2609 2610 /// hasConstantValue - If the specified PHI node always merges together the 2611 /// same value, return the value, otherwise return null. 2612 Value *hasConstantValue() const; 2613 2614 /// Methods for support type inquiry through isa, cast, and dyn_cast: 2615 static inline bool classof(const Instruction *I) { 2616 return I->getOpcode() == Instruction::PHI; 2617 } 2618 static inline bool classof(const Value *V) { 2619 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2620 } 2621 2622 private: 2623 void growOperands(); 2624 }; 2625 2626 template <> 2627 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> { 2628 }; 2629 2630 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value) 2631 2632 //===----------------------------------------------------------------------===// 2633 // LandingPadInst Class 2634 //===----------------------------------------------------------------------===// 2635 2636 //===--------------------------------------------------------------------------- 2637 /// LandingPadInst - The landingpad instruction holds all of the information 2638 /// necessary to generate correct exception handling. The landingpad instruction 2639 /// cannot be moved from the top of a landing pad block, which itself is 2640 /// accessible only from the 'unwind' edge of an invoke. This uses the 2641 /// SubclassData field in Value to store whether or not the landingpad is a 2642 /// cleanup. 2643 /// 2644 class LandingPadInst : public Instruction { 2645 /// ReservedSpace - The number of operands actually allocated. NumOperands is 2646 /// the number actually in use. 2647 unsigned ReservedSpace; 2648 LandingPadInst(const LandingPadInst &LP); 2649 2650 public: 2651 enum ClauseType { Catch, Filter }; 2652 2653 private: 2654 void *operator new(size_t, unsigned) = delete; 2655 // Allocate space for exactly zero operands. 2656 void *operator new(size_t s) { 2657 return User::operator new(s); 2658 } 2659 void growOperands(unsigned Size); 2660 void init(unsigned NumReservedValues, const Twine &NameStr); 2661 2662 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, 2663 const Twine &NameStr, Instruction *InsertBefore); 2664 explicit LandingPadInst(Type *RetTy, unsigned NumReservedValues, 2665 const Twine &NameStr, BasicBlock *InsertAtEnd); 2666 2667 protected: 2668 // Note: Instruction needs to be a friend here to call cloneImpl. 2669 friend class Instruction; 2670 LandingPadInst *cloneImpl() const; 2671 2672 public: 2673 /// Constructors - NumReservedClauses is a hint for the number of incoming 2674 /// clauses that this landingpad will have (use 0 if you really have no idea). 2675 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, 2676 const Twine &NameStr = "", 2677 Instruction *InsertBefore = nullptr); 2678 static LandingPadInst *Create(Type *RetTy, unsigned NumReservedClauses, 2679 const Twine &NameStr, BasicBlock *InsertAtEnd); 2680 2681 /// Provide fast operand accessors 2682 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2683 2684 /// isCleanup - Return 'true' if this landingpad instruction is a 2685 /// cleanup. I.e., it should be run when unwinding even if its landing pad 2686 /// doesn't catch the exception. 2687 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; } 2688 2689 /// setCleanup - Indicate that this landingpad instruction is a cleanup. 2690 void setCleanup(bool V) { 2691 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) | 2692 (V ? 1 : 0)); 2693 } 2694 2695 /// Add a catch or filter clause to the landing pad. 2696 void addClause(Constant *ClauseVal); 2697 2698 /// Get the value of the clause at index Idx. Use isCatch/isFilter to 2699 /// determine what type of clause this is. 2700 Constant *getClause(unsigned Idx) const { 2701 return cast<Constant>(getOperandList()[Idx]); 2702 } 2703 2704 /// isCatch - Return 'true' if the clause and index Idx is a catch clause. 2705 bool isCatch(unsigned Idx) const { 2706 return !isa<ArrayType>(getOperandList()[Idx]->getType()); 2707 } 2708 2709 /// isFilter - Return 'true' if the clause and index Idx is a filter clause. 2710 bool isFilter(unsigned Idx) const { 2711 return isa<ArrayType>(getOperandList()[Idx]->getType()); 2712 } 2713 2714 /// getNumClauses - Get the number of clauses for this landing pad. 2715 unsigned getNumClauses() const { return getNumOperands(); } 2716 2717 /// reserveClauses - Grow the size of the operand list to accommodate the new 2718 /// number of clauses. 2719 void reserveClauses(unsigned Size) { growOperands(Size); } 2720 2721 // Methods for support type inquiry through isa, cast, and dyn_cast: 2722 static inline bool classof(const Instruction *I) { 2723 return I->getOpcode() == Instruction::LandingPad; 2724 } 2725 static inline bool classof(const Value *V) { 2726 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2727 } 2728 }; 2729 2730 template <> 2731 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<1> { 2732 }; 2733 2734 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value) 2735 2736 //===----------------------------------------------------------------------===// 2737 // ReturnInst Class 2738 //===----------------------------------------------------------------------===// 2739 2740 //===--------------------------------------------------------------------------- 2741 /// ReturnInst - Return a value (possibly void), from a function. Execution 2742 /// does not continue in this function any longer. 2743 /// 2744 class ReturnInst : public TerminatorInst { 2745 ReturnInst(const ReturnInst &RI); 2746 2747 private: 2748 // ReturnInst constructors: 2749 // ReturnInst() - 'ret void' instruction 2750 // ReturnInst( null) - 'ret void' instruction 2751 // ReturnInst(Value* X) - 'ret X' instruction 2752 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I 2753 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I 2754 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B 2755 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B 2756 // 2757 // NOTE: If the Value* passed is of type void then the constructor behaves as 2758 // if it was passed NULL. 2759 explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr, 2760 Instruction *InsertBefore = nullptr); 2761 ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd); 2762 explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd); 2763 2764 protected: 2765 // Note: Instruction needs to be a friend here to call cloneImpl. 2766 friend class Instruction; 2767 ReturnInst *cloneImpl() const; 2768 2769 public: 2770 static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr, 2771 Instruction *InsertBefore = nullptr) { 2772 return new(!!retVal) ReturnInst(C, retVal, InsertBefore); 2773 } 2774 static ReturnInst* Create(LLVMContext &C, Value *retVal, 2775 BasicBlock *InsertAtEnd) { 2776 return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd); 2777 } 2778 static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) { 2779 return new(0) ReturnInst(C, InsertAtEnd); 2780 } 2781 ~ReturnInst() override; 2782 2783 /// Provide fast operand accessors 2784 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2785 2786 /// Convenience accessor. Returns null if there is no return value. 2787 Value *getReturnValue() const { 2788 return getNumOperands() != 0 ? getOperand(0) : nullptr; 2789 } 2790 2791 unsigned getNumSuccessors() const { return 0; } 2792 2793 // Methods for support type inquiry through isa, cast, and dyn_cast: 2794 static inline bool classof(const Instruction *I) { 2795 return (I->getOpcode() == Instruction::Ret); 2796 } 2797 static inline bool classof(const Value *V) { 2798 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2799 } 2800 2801 private: 2802 BasicBlock *getSuccessorV(unsigned idx) const override; 2803 unsigned getNumSuccessorsV() const override; 2804 void setSuccessorV(unsigned idx, BasicBlock *B) override; 2805 }; 2806 2807 template <> 2808 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> { 2809 }; 2810 2811 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value) 2812 2813 //===----------------------------------------------------------------------===// 2814 // BranchInst Class 2815 //===----------------------------------------------------------------------===// 2816 2817 //===--------------------------------------------------------------------------- 2818 /// BranchInst - Conditional or Unconditional Branch instruction. 2819 /// 2820 class BranchInst : public TerminatorInst { 2821 /// Ops list - Branches are strange. The operands are ordered: 2822 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because 2823 /// they don't have to check for cond/uncond branchness. These are mostly 2824 /// accessed relative from op_end(). 2825 BranchInst(const BranchInst &BI); 2826 void AssertOK(); 2827 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition): 2828 // BranchInst(BB *B) - 'br B' 2829 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F' 2830 // BranchInst(BB* B, Inst *I) - 'br B' insert before I 2831 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I 2832 // BranchInst(BB* B, BB *I) - 'br B' insert at end 2833 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end 2834 explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr); 2835 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 2836 Instruction *InsertBefore = nullptr); 2837 BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd); 2838 BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond, 2839 BasicBlock *InsertAtEnd); 2840 2841 protected: 2842 // Note: Instruction needs to be a friend here to call cloneImpl. 2843 friend class Instruction; 2844 BranchInst *cloneImpl() const; 2845 2846 public: 2847 static BranchInst *Create(BasicBlock *IfTrue, 2848 Instruction *InsertBefore = nullptr) { 2849 return new(1) BranchInst(IfTrue, InsertBefore); 2850 } 2851 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, 2852 Value *Cond, Instruction *InsertBefore = nullptr) { 2853 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore); 2854 } 2855 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) { 2856 return new(1) BranchInst(IfTrue, InsertAtEnd); 2857 } 2858 static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse, 2859 Value *Cond, BasicBlock *InsertAtEnd) { 2860 return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd); 2861 } 2862 2863 /// Transparently provide more efficient getOperand methods. 2864 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 2865 2866 bool isUnconditional() const { return getNumOperands() == 1; } 2867 bool isConditional() const { return getNumOperands() == 3; } 2868 2869 Value *getCondition() const { 2870 assert(isConditional() && "Cannot get condition of an uncond branch!"); 2871 return Op<-3>(); 2872 } 2873 2874 void setCondition(Value *V) { 2875 assert(isConditional() && "Cannot set condition of unconditional branch!"); 2876 Op<-3>() = V; 2877 } 2878 2879 unsigned getNumSuccessors() const { return 1+isConditional(); } 2880 2881 BasicBlock *getSuccessor(unsigned i) const { 2882 assert(i < getNumSuccessors() && "Successor # out of range for Branch!"); 2883 return cast_or_null<BasicBlock>((&Op<-1>() - i)->get()); 2884 } 2885 2886 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 2887 assert(idx < getNumSuccessors() && "Successor # out of range for Branch!"); 2888 *(&Op<-1>() - idx) = NewSucc; 2889 } 2890 2891 /// \brief Swap the successors of this branch instruction. 2892 /// 2893 /// Swaps the successors of the branch instruction. This also swaps any 2894 /// branch weight metadata associated with the instruction so that it 2895 /// continues to map correctly to each operand. 2896 void swapSuccessors(); 2897 2898 // Methods for support type inquiry through isa, cast, and dyn_cast: 2899 static inline bool classof(const Instruction *I) { 2900 return (I->getOpcode() == Instruction::Br); 2901 } 2902 static inline bool classof(const Value *V) { 2903 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 2904 } 2905 2906 private: 2907 BasicBlock *getSuccessorV(unsigned idx) const override; 2908 unsigned getNumSuccessorsV() const override; 2909 void setSuccessorV(unsigned idx, BasicBlock *B) override; 2910 }; 2911 2912 template <> 2913 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> { 2914 }; 2915 2916 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value) 2917 2918 //===----------------------------------------------------------------------===// 2919 // SwitchInst Class 2920 //===----------------------------------------------------------------------===// 2921 2922 //===--------------------------------------------------------------------------- 2923 /// SwitchInst - Multiway switch 2924 /// 2925 class SwitchInst : public TerminatorInst { 2926 void *operator new(size_t, unsigned) = delete; 2927 unsigned ReservedSpace; 2928 // Operand[0] = Value to switch on 2929 // Operand[1] = Default basic block destination 2930 // Operand[2n ] = Value to match 2931 // Operand[2n+1] = BasicBlock to go to on match 2932 SwitchInst(const SwitchInst &SI); 2933 void init(Value *Value, BasicBlock *Default, unsigned NumReserved); 2934 void growOperands(); 2935 // allocate space for exactly zero operands 2936 void *operator new(size_t s) { 2937 return User::operator new(s); 2938 } 2939 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 2940 /// switch on and a default destination. The number of additional cases can 2941 /// be specified here to make memory allocation more efficient. This 2942 /// constructor can also autoinsert before another instruction. 2943 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 2944 Instruction *InsertBefore); 2945 2946 /// SwitchInst ctor - Create a new switch instruction, specifying a value to 2947 /// switch on and a default destination. The number of additional cases can 2948 /// be specified here to make memory allocation more efficient. This 2949 /// constructor also autoinserts at the end of the specified BasicBlock. 2950 SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases, 2951 BasicBlock *InsertAtEnd); 2952 2953 protected: 2954 // Note: Instruction needs to be a friend here to call cloneImpl. 2955 friend class Instruction; 2956 SwitchInst *cloneImpl() const; 2957 2958 public: 2959 // -2 2960 static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1); 2961 2962 template <class SwitchInstTy, class ConstantIntTy, class BasicBlockTy> 2963 class CaseIteratorT { 2964 protected: 2965 SwitchInstTy *SI; 2966 unsigned Index; 2967 2968 public: 2969 typedef CaseIteratorT<SwitchInstTy, ConstantIntTy, BasicBlockTy> Self; 2970 2971 /// Initializes case iterator for given SwitchInst and for given 2972 /// case number. 2973 CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) { 2974 this->SI = SI; 2975 Index = CaseNum; 2976 } 2977 2978 /// Initializes case iterator for given SwitchInst and for given 2979 /// TerminatorInst's successor index. 2980 static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) { 2981 assert(SuccessorIndex < SI->getNumSuccessors() && 2982 "Successor index # out of range!"); 2983 return SuccessorIndex != 0 ? 2984 Self(SI, SuccessorIndex - 1) : 2985 Self(SI, DefaultPseudoIndex); 2986 } 2987 2988 /// Resolves case value for current case. 2989 ConstantIntTy *getCaseValue() { 2990 assert(Index < SI->getNumCases() && "Index out the number of cases."); 2991 return reinterpret_cast<ConstantIntTy*>(SI->getOperand(2 + Index*2)); 2992 } 2993 2994 /// Resolves successor for current case. 2995 BasicBlockTy *getCaseSuccessor() { 2996 assert((Index < SI->getNumCases() || 2997 Index == DefaultPseudoIndex) && 2998 "Index out the number of cases."); 2999 return SI->getSuccessor(getSuccessorIndex()); 3000 } 3001 3002 /// Returns number of current case. 3003 unsigned getCaseIndex() const { return Index; } 3004 3005 /// Returns TerminatorInst's successor index for current case successor. 3006 unsigned getSuccessorIndex() const { 3007 assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) && 3008 "Index out the number of cases."); 3009 return Index != DefaultPseudoIndex ? Index + 1 : 0; 3010 } 3011 3012 Self operator++() { 3013 // Check index correctness after increment. 3014 // Note: Index == getNumCases() means end(). 3015 assert(Index+1 <= SI->getNumCases() && "Index out the number of cases."); 3016 ++Index; 3017 return *this; 3018 } 3019 Self operator++(int) { 3020 Self tmp = *this; 3021 ++(*this); 3022 return tmp; 3023 } 3024 Self operator--() { 3025 // Check index correctness after decrement. 3026 // Note: Index == getNumCases() means end(). 3027 // Also allow "-1" iterator here. That will became valid after ++. 3028 assert((Index == 0 || Index-1 <= SI->getNumCases()) && 3029 "Index out the number of cases."); 3030 --Index; 3031 return *this; 3032 } 3033 Self operator--(int) { 3034 Self tmp = *this; 3035 --(*this); 3036 return tmp; 3037 } 3038 bool operator==(const Self& RHS) const { 3039 assert(RHS.SI == SI && "Incompatible operators."); 3040 return RHS.Index == Index; 3041 } 3042 bool operator!=(const Self& RHS) const { 3043 assert(RHS.SI == SI && "Incompatible operators."); 3044 return RHS.Index != Index; 3045 } 3046 Self &operator*() { 3047 return *this; 3048 } 3049 }; 3050 3051 typedef CaseIteratorT<const SwitchInst, const ConstantInt, const BasicBlock> 3052 ConstCaseIt; 3053 3054 class CaseIt : public CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> { 3055 3056 typedef CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> ParentTy; 3057 3058 public: 3059 CaseIt(const ParentTy &Src) : ParentTy(Src) {} 3060 CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {} 3061 3062 /// Sets the new value for current case. 3063 void setValue(ConstantInt *V) { 3064 assert(Index < SI->getNumCases() && "Index out the number of cases."); 3065 SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V)); 3066 } 3067 3068 /// Sets the new successor for current case. 3069 void setSuccessor(BasicBlock *S) { 3070 SI->setSuccessor(getSuccessorIndex(), S); 3071 } 3072 }; 3073 3074 static SwitchInst *Create(Value *Value, BasicBlock *Default, 3075 unsigned NumCases, 3076 Instruction *InsertBefore = nullptr) { 3077 return new SwitchInst(Value, Default, NumCases, InsertBefore); 3078 } 3079 static SwitchInst *Create(Value *Value, BasicBlock *Default, 3080 unsigned NumCases, BasicBlock *InsertAtEnd) { 3081 return new SwitchInst(Value, Default, NumCases, InsertAtEnd); 3082 } 3083 3084 /// Provide fast operand accessors 3085 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3086 3087 // Accessor Methods for Switch stmt 3088 Value *getCondition() const { return getOperand(0); } 3089 void setCondition(Value *V) { setOperand(0, V); } 3090 3091 BasicBlock *getDefaultDest() const { 3092 return cast<BasicBlock>(getOperand(1)); 3093 } 3094 3095 void setDefaultDest(BasicBlock *DefaultCase) { 3096 setOperand(1, reinterpret_cast<Value*>(DefaultCase)); 3097 } 3098 3099 /// getNumCases - return the number of 'cases' in this switch instruction, 3100 /// except the default case 3101 unsigned getNumCases() const { 3102 return getNumOperands()/2 - 1; 3103 } 3104 3105 /// Returns a read/write iterator that points to the first 3106 /// case in SwitchInst. 3107 CaseIt case_begin() { 3108 return CaseIt(this, 0); 3109 } 3110 /// Returns a read-only iterator that points to the first 3111 /// case in the SwitchInst. 3112 ConstCaseIt case_begin() const { 3113 return ConstCaseIt(this, 0); 3114 } 3115 3116 /// Returns a read/write iterator that points one past the last 3117 /// in the SwitchInst. 3118 CaseIt case_end() { 3119 return CaseIt(this, getNumCases()); 3120 } 3121 /// Returns a read-only iterator that points one past the last 3122 /// in the SwitchInst. 3123 ConstCaseIt case_end() const { 3124 return ConstCaseIt(this, getNumCases()); 3125 } 3126 3127 /// cases - iteration adapter for range-for loops. 3128 iterator_range<CaseIt> cases() { 3129 return make_range(case_begin(), case_end()); 3130 } 3131 3132 /// cases - iteration adapter for range-for loops. 3133 iterator_range<ConstCaseIt> cases() const { 3134 return make_range(case_begin(), case_end()); 3135 } 3136 3137 /// Returns an iterator that points to the default case. 3138 /// Note: this iterator allows to resolve successor only. Attempt 3139 /// to resolve case value causes an assertion. 3140 /// Also note, that increment and decrement also causes an assertion and 3141 /// makes iterator invalid. 3142 CaseIt case_default() { 3143 return CaseIt(this, DefaultPseudoIndex); 3144 } 3145 ConstCaseIt case_default() const { 3146 return ConstCaseIt(this, DefaultPseudoIndex); 3147 } 3148 3149 /// findCaseValue - Search all of the case values for the specified constant. 3150 /// If it is explicitly handled, return the case iterator of it, otherwise 3151 /// return default case iterator to indicate 3152 /// that it is handled by the default handler. 3153 CaseIt findCaseValue(const ConstantInt *C) { 3154 for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) 3155 if (i.getCaseValue() == C) 3156 return i; 3157 return case_default(); 3158 } 3159 ConstCaseIt findCaseValue(const ConstantInt *C) const { 3160 for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i) 3161 if (i.getCaseValue() == C) 3162 return i; 3163 return case_default(); 3164 } 3165 3166 /// findCaseDest - Finds the unique case value for a given successor. Returns 3167 /// null if the successor is not found, not unique, or is the default case. 3168 ConstantInt *findCaseDest(BasicBlock *BB) { 3169 if (BB == getDefaultDest()) return nullptr; 3170 3171 ConstantInt *CI = nullptr; 3172 for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) { 3173 if (i.getCaseSuccessor() == BB) { 3174 if (CI) return nullptr; // Multiple cases lead to BB. 3175 else CI = i.getCaseValue(); 3176 } 3177 } 3178 return CI; 3179 } 3180 3181 /// addCase - Add an entry to the switch instruction... 3182 /// Note: 3183 /// This action invalidates case_end(). Old case_end() iterator will 3184 /// point to the added case. 3185 void addCase(ConstantInt *OnVal, BasicBlock *Dest); 3186 3187 /// removeCase - This method removes the specified case and its successor 3188 /// from the switch instruction. Note that this operation may reorder the 3189 /// remaining cases at index idx and above. 3190 /// Note: 3191 /// This action invalidates iterators for all cases following the one removed, 3192 /// including the case_end() iterator. 3193 void removeCase(CaseIt i); 3194 3195 unsigned getNumSuccessors() const { return getNumOperands()/2; } 3196 BasicBlock *getSuccessor(unsigned idx) const { 3197 assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!"); 3198 return cast<BasicBlock>(getOperand(idx*2+1)); 3199 } 3200 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 3201 assert(idx < getNumSuccessors() && "Successor # out of range for switch!"); 3202 setOperand(idx * 2 + 1, NewSucc); 3203 } 3204 3205 // Methods for support type inquiry through isa, cast, and dyn_cast: 3206 static inline bool classof(const Instruction *I) { 3207 return I->getOpcode() == Instruction::Switch; 3208 } 3209 static inline bool classof(const Value *V) { 3210 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3211 } 3212 3213 private: 3214 BasicBlock *getSuccessorV(unsigned idx) const override; 3215 unsigned getNumSuccessorsV() const override; 3216 void setSuccessorV(unsigned idx, BasicBlock *B) override; 3217 }; 3218 3219 template <> 3220 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> { 3221 }; 3222 3223 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value) 3224 3225 //===----------------------------------------------------------------------===// 3226 // IndirectBrInst Class 3227 //===----------------------------------------------------------------------===// 3228 3229 //===--------------------------------------------------------------------------- 3230 /// IndirectBrInst - Indirect Branch Instruction. 3231 /// 3232 class IndirectBrInst : public TerminatorInst { 3233 void *operator new(size_t, unsigned) = delete; 3234 unsigned ReservedSpace; 3235 // Operand[0] = Value to switch on 3236 // Operand[1] = Default basic block destination 3237 // Operand[2n ] = Value to match 3238 // Operand[2n+1] = BasicBlock to go to on match 3239 IndirectBrInst(const IndirectBrInst &IBI); 3240 void init(Value *Address, unsigned NumDests); 3241 void growOperands(); 3242 // allocate space for exactly zero operands 3243 void *operator new(size_t s) { 3244 return User::operator new(s); 3245 } 3246 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an 3247 /// Address to jump to. The number of expected destinations can be specified 3248 /// here to make memory allocation more efficient. This constructor can also 3249 /// autoinsert before another instruction. 3250 IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore); 3251 3252 /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an 3253 /// Address to jump to. The number of expected destinations can be specified 3254 /// here to make memory allocation more efficient. This constructor also 3255 /// autoinserts at the end of the specified BasicBlock. 3256 IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd); 3257 3258 protected: 3259 // Note: Instruction needs to be a friend here to call cloneImpl. 3260 friend class Instruction; 3261 IndirectBrInst *cloneImpl() const; 3262 3263 public: 3264 static IndirectBrInst *Create(Value *Address, unsigned NumDests, 3265 Instruction *InsertBefore = nullptr) { 3266 return new IndirectBrInst(Address, NumDests, InsertBefore); 3267 } 3268 static IndirectBrInst *Create(Value *Address, unsigned NumDests, 3269 BasicBlock *InsertAtEnd) { 3270 return new IndirectBrInst(Address, NumDests, InsertAtEnd); 3271 } 3272 3273 /// Provide fast operand accessors. 3274 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3275 3276 // Accessor Methods for IndirectBrInst instruction. 3277 Value *getAddress() { return getOperand(0); } 3278 const Value *getAddress() const { return getOperand(0); } 3279 void setAddress(Value *V) { setOperand(0, V); } 3280 3281 /// getNumDestinations - return the number of possible destinations in this 3282 /// indirectbr instruction. 3283 unsigned getNumDestinations() const { return getNumOperands()-1; } 3284 3285 /// getDestination - Return the specified destination. 3286 BasicBlock *getDestination(unsigned i) { return getSuccessor(i); } 3287 const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); } 3288 3289 /// addDestination - Add a destination. 3290 /// 3291 void addDestination(BasicBlock *Dest); 3292 3293 /// removeDestination - This method removes the specified successor from the 3294 /// indirectbr instruction. 3295 void removeDestination(unsigned i); 3296 3297 unsigned getNumSuccessors() const { return getNumOperands()-1; } 3298 BasicBlock *getSuccessor(unsigned i) const { 3299 return cast<BasicBlock>(getOperand(i+1)); 3300 } 3301 void setSuccessor(unsigned i, BasicBlock *NewSucc) { 3302 setOperand(i + 1, NewSucc); 3303 } 3304 3305 // Methods for support type inquiry through isa, cast, and dyn_cast: 3306 static inline bool classof(const Instruction *I) { 3307 return I->getOpcode() == Instruction::IndirectBr; 3308 } 3309 static inline bool classof(const Value *V) { 3310 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3311 } 3312 3313 private: 3314 BasicBlock *getSuccessorV(unsigned idx) const override; 3315 unsigned getNumSuccessorsV() const override; 3316 void setSuccessorV(unsigned idx, BasicBlock *B) override; 3317 }; 3318 3319 template <> 3320 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> { 3321 }; 3322 3323 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value) 3324 3325 //===----------------------------------------------------------------------===// 3326 // InvokeInst Class 3327 //===----------------------------------------------------------------------===// 3328 3329 /// InvokeInst - Invoke instruction. The SubclassData field is used to hold the 3330 /// calling convention of the call. 3331 /// 3332 class InvokeInst : public TerminatorInst, 3333 public OperandBundleUser<InvokeInst, User::op_iterator> { 3334 AttributeSet AttributeList; 3335 FunctionType *FTy; 3336 InvokeInst(const InvokeInst &BI); 3337 void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, 3338 ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, 3339 const Twine &NameStr) { 3340 init(cast<FunctionType>( 3341 cast<PointerType>(Func->getType())->getElementType()), 3342 Func, IfNormal, IfException, Args, Bundles, NameStr); 3343 } 3344 void init(FunctionType *FTy, Value *Func, BasicBlock *IfNormal, 3345 BasicBlock *IfException, ArrayRef<Value *> Args, 3346 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr); 3347 3348 /// Construct an InvokeInst given a range of arguments. 3349 /// 3350 /// \brief Construct an InvokeInst from a range of arguments 3351 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, 3352 ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, 3353 unsigned Values, const Twine &NameStr, 3354 Instruction *InsertBefore) 3355 : InvokeInst(cast<FunctionType>( 3356 cast<PointerType>(Func->getType())->getElementType()), 3357 Func, IfNormal, IfException, Args, Bundles, Values, NameStr, 3358 InsertBefore) {} 3359 3360 inline InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3361 BasicBlock *IfException, ArrayRef<Value *> Args, 3362 ArrayRef<OperandBundleDef> Bundles, unsigned Values, 3363 const Twine &NameStr, Instruction *InsertBefore); 3364 /// Construct an InvokeInst given a range of arguments. 3365 /// 3366 /// \brief Construct an InvokeInst from a range of arguments 3367 inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException, 3368 ArrayRef<Value *> Args, ArrayRef<OperandBundleDef> Bundles, 3369 unsigned Values, const Twine &NameStr, 3370 BasicBlock *InsertAtEnd); 3371 3372 friend class OperandBundleUser<InvokeInst, User::op_iterator>; 3373 bool hasDescriptor() const { return HasDescriptor; } 3374 3375 protected: 3376 // Note: Instruction needs to be a friend here to call cloneImpl. 3377 friend class Instruction; 3378 InvokeInst *cloneImpl() const; 3379 3380 public: 3381 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, 3382 BasicBlock *IfException, ArrayRef<Value *> Args, 3383 const Twine &NameStr, 3384 Instruction *InsertBefore = nullptr) { 3385 return Create(cast<FunctionType>( 3386 cast<PointerType>(Func->getType())->getElementType()), 3387 Func, IfNormal, IfException, Args, None, NameStr, 3388 InsertBefore); 3389 } 3390 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, 3391 BasicBlock *IfException, ArrayRef<Value *> Args, 3392 ArrayRef<OperandBundleDef> Bundles = None, 3393 const Twine &NameStr = "", 3394 Instruction *InsertBefore = nullptr) { 3395 return Create(cast<FunctionType>( 3396 cast<PointerType>(Func->getType())->getElementType()), 3397 Func, IfNormal, IfException, Args, Bundles, NameStr, 3398 InsertBefore); 3399 } 3400 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3401 BasicBlock *IfException, ArrayRef<Value *> Args, 3402 const Twine &NameStr, 3403 Instruction *InsertBefore = nullptr) { 3404 unsigned Values = unsigned(Args.size()) + 3; 3405 return new (Values) InvokeInst(Ty, Func, IfNormal, IfException, Args, None, 3406 Values, NameStr, InsertBefore); 3407 } 3408 static InvokeInst *Create(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3409 BasicBlock *IfException, ArrayRef<Value *> Args, 3410 ArrayRef<OperandBundleDef> Bundles = None, 3411 const Twine &NameStr = "", 3412 Instruction *InsertBefore = nullptr) { 3413 unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3; 3414 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 3415 3416 return new (Values, DescriptorBytes) 3417 InvokeInst(Ty, Func, IfNormal, IfException, Args, Bundles, Values, 3418 NameStr, InsertBefore); 3419 } 3420 static InvokeInst *Create(Value *Func, 3421 BasicBlock *IfNormal, BasicBlock *IfException, 3422 ArrayRef<Value *> Args, const Twine &NameStr, 3423 BasicBlock *InsertAtEnd) { 3424 unsigned Values = unsigned(Args.size()) + 3; 3425 return new (Values) InvokeInst(Func, IfNormal, IfException, Args, None, 3426 Values, NameStr, InsertAtEnd); 3427 } 3428 static InvokeInst *Create(Value *Func, BasicBlock *IfNormal, 3429 BasicBlock *IfException, ArrayRef<Value *> Args, 3430 ArrayRef<OperandBundleDef> Bundles, 3431 const Twine &NameStr, BasicBlock *InsertAtEnd) { 3432 unsigned Values = unsigned(Args.size()) + CountBundleInputs(Bundles) + 3; 3433 unsigned DescriptorBytes = Bundles.size() * sizeof(BundleOpInfo); 3434 3435 return new (Values, DescriptorBytes) 3436 InvokeInst(Func, IfNormal, IfException, Args, Bundles, Values, NameStr, 3437 InsertAtEnd); 3438 } 3439 3440 /// \brief Create a clone of \p II with a different set of operand bundles and 3441 /// insert it before \p InsertPt. 3442 /// 3443 /// The returned invoke instruction is identical to \p II in every way except 3444 /// that the operand bundles for the new instruction are set to the operand 3445 /// bundles in \p Bundles. 3446 static InvokeInst *Create(InvokeInst *II, ArrayRef<OperandBundleDef> Bundles, 3447 Instruction *InsertPt = nullptr); 3448 3449 /// Provide fast operand accessors 3450 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3451 3452 FunctionType *getFunctionType() const { return FTy; } 3453 3454 void mutateFunctionType(FunctionType *FTy) { 3455 mutateType(FTy->getReturnType()); 3456 this->FTy = FTy; 3457 } 3458 3459 /// getNumArgOperands - Return the number of invoke arguments. 3460 /// 3461 unsigned getNumArgOperands() const { 3462 return getNumOperands() - getNumTotalBundleOperands() - 3; 3463 } 3464 3465 /// getArgOperand/setArgOperand - Return/set the i-th invoke argument. 3466 /// 3467 Value *getArgOperand(unsigned i) const { 3468 assert(i < getNumArgOperands() && "Out of bounds!"); 3469 return getOperand(i); 3470 } 3471 void setArgOperand(unsigned i, Value *v) { 3472 assert(i < getNumArgOperands() && "Out of bounds!"); 3473 setOperand(i, v); 3474 } 3475 3476 /// \brief Return the iterator pointing to the beginning of the argument list. 3477 op_iterator arg_begin() { return op_begin(); } 3478 3479 /// \brief Return the iterator pointing to the end of the argument list. 3480 op_iterator arg_end() { 3481 // [ invoke args ], [ operand bundles ], normal dest, unwind dest, callee 3482 return op_end() - getNumTotalBundleOperands() - 3; 3483 }; 3484 3485 /// \brief Iteration adapter for range-for loops. 3486 iterator_range<op_iterator> arg_operands() { 3487 return make_range(arg_begin(), arg_end()); 3488 } 3489 3490 /// \brief Return the iterator pointing to the beginning of the argument list. 3491 const_op_iterator arg_begin() const { return op_begin(); } 3492 3493 /// \brief Return the iterator pointing to the end of the argument list. 3494 const_op_iterator arg_end() const { 3495 // [ invoke args ], [ operand bundles ], normal dest, unwind dest, callee 3496 return op_end() - getNumTotalBundleOperands() - 3; 3497 }; 3498 3499 /// \brief Iteration adapter for range-for loops. 3500 iterator_range<const_op_iterator> arg_operands() const { 3501 return make_range(arg_begin(), arg_end()); 3502 } 3503 3504 /// \brief Wrappers for getting the \c Use of a invoke argument. 3505 const Use &getArgOperandUse(unsigned i) const { 3506 assert(i < getNumArgOperands() && "Out of bounds!"); 3507 return getOperandUse(i); 3508 } 3509 Use &getArgOperandUse(unsigned i) { 3510 assert(i < getNumArgOperands() && "Out of bounds!"); 3511 return getOperandUse(i); 3512 } 3513 3514 /// getCallingConv/setCallingConv - Get or set the calling convention of this 3515 /// function call. 3516 CallingConv::ID getCallingConv() const { 3517 return static_cast<CallingConv::ID>(getSubclassDataFromInstruction()); 3518 } 3519 void setCallingConv(CallingConv::ID CC) { 3520 auto ID = static_cast<unsigned>(CC); 3521 assert(!(ID & ~CallingConv::MaxID) && "Unsupported calling convention"); 3522 setInstructionSubclassData(ID); 3523 } 3524 3525 /// getAttributes - Return the parameter attributes for this invoke. 3526 /// 3527 const AttributeSet &getAttributes() const { return AttributeList; } 3528 3529 /// setAttributes - Set the parameter attributes for this invoke. 3530 /// 3531 void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; } 3532 3533 /// addAttribute - adds the attribute to the list of attributes. 3534 void addAttribute(unsigned i, Attribute::AttrKind attr); 3535 3536 /// removeAttribute - removes the attribute from the list of attributes. 3537 void removeAttribute(unsigned i, Attribute attr); 3538 3539 /// \brief adds the dereferenceable attribute to the list of attributes. 3540 void addDereferenceableAttr(unsigned i, uint64_t Bytes); 3541 3542 /// \brief adds the dereferenceable_or_null attribute to the list of 3543 /// attributes. 3544 void addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes); 3545 3546 /// \brief Determine whether this call has the given attribute. 3547 bool hasFnAttr(Attribute::AttrKind A) const { 3548 assert(A != Attribute::NoBuiltin && 3549 "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin"); 3550 return hasFnAttrImpl(A); 3551 } 3552 3553 /// \brief Determine whether the call or the callee has the given attributes. 3554 bool paramHasAttr(unsigned i, Attribute::AttrKind A) const; 3555 3556 /// \brief Return true if the data operand at index \p i has the attribute \p 3557 /// A. 3558 /// 3559 /// Data operands include invoke arguments and values used in operand bundles, 3560 /// but does not include the invokee operand, or the two successor blocks. 3561 /// This routine dispatches to the underlying AttributeList or the 3562 /// OperandBundleUser as appropriate. 3563 /// 3564 /// The index \p i is interpreted as 3565 /// 3566 /// \p i == Attribute::ReturnIndex -> the return value 3567 /// \p i in [1, arg_size + 1) -> argument number (\p i - 1) 3568 /// \p i in [arg_size + 1, data_operand_size + 1) -> bundle operand at index 3569 /// (\p i - 1) in the operand list. 3570 bool dataOperandHasImpliedAttr(unsigned i, Attribute::AttrKind A) const; 3571 3572 /// \brief Extract the alignment for a call or parameter (0=unknown). 3573 unsigned getParamAlignment(unsigned i) const { 3574 return AttributeList.getParamAlignment(i); 3575 } 3576 3577 /// \brief Extract the number of dereferenceable bytes for a call or 3578 /// parameter (0=unknown). 3579 uint64_t getDereferenceableBytes(unsigned i) const { 3580 return AttributeList.getDereferenceableBytes(i); 3581 } 3582 3583 /// \brief Extract the number of dereferenceable_or_null bytes for a call or 3584 /// parameter (0=unknown). 3585 uint64_t getDereferenceableOrNullBytes(unsigned i) const { 3586 return AttributeList.getDereferenceableOrNullBytes(i); 3587 } 3588 3589 /// @brief Determine if the parameter or return value is marked with NoAlias 3590 /// attribute. 3591 /// @param n The parameter to check. 1 is the first parameter, 0 is the return 3592 bool doesNotAlias(unsigned n) const { 3593 return AttributeList.hasAttribute(n, Attribute::NoAlias); 3594 } 3595 3596 /// \brief Return true if the call should not be treated as a call to a 3597 /// builtin. 3598 bool isNoBuiltin() const { 3599 // We assert in hasFnAttr if one passes in Attribute::NoBuiltin, so we have 3600 // to check it by hand. 3601 return hasFnAttrImpl(Attribute::NoBuiltin) && 3602 !hasFnAttrImpl(Attribute::Builtin); 3603 } 3604 3605 /// \brief Return true if the call should not be inlined. 3606 bool isNoInline() const { return hasFnAttr(Attribute::NoInline); } 3607 void setIsNoInline() { 3608 addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline); 3609 } 3610 3611 /// \brief Determine if the call does not access memory. 3612 bool doesNotAccessMemory() const { 3613 return hasFnAttr(Attribute::ReadNone); 3614 } 3615 void setDoesNotAccessMemory() { 3616 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone); 3617 } 3618 3619 /// \brief Determine if the call does not access or only reads memory. 3620 bool onlyReadsMemory() const { 3621 return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly); 3622 } 3623 void setOnlyReadsMemory() { 3624 addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly); 3625 } 3626 3627 /// @brief Determine if the call access memmory only using it's pointer 3628 /// arguments. 3629 bool onlyAccessesArgMemory() const { 3630 return hasFnAttr(Attribute::ArgMemOnly); 3631 } 3632 void setOnlyAccessesArgMemory() { 3633 addAttribute(AttributeSet::FunctionIndex, Attribute::ArgMemOnly); 3634 } 3635 3636 /// \brief Determine if the call cannot return. 3637 bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); } 3638 void setDoesNotReturn() { 3639 addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn); 3640 } 3641 3642 /// \brief Determine if the call cannot unwind. 3643 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); } 3644 void setDoesNotThrow() { 3645 addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind); 3646 } 3647 3648 /// \brief Determine if the invoke cannot be duplicated. 3649 bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); } 3650 void setCannotDuplicate() { 3651 addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate); 3652 } 3653 3654 /// \brief Determine if the call returns a structure through first 3655 /// pointer argument. 3656 bool hasStructRetAttr() const { 3657 if (getNumArgOperands() == 0) 3658 return false; 3659 3660 // Be friendly and also check the callee. 3661 return paramHasAttr(1, Attribute::StructRet); 3662 } 3663 3664 /// \brief Determine if any call argument is an aggregate passed by value. 3665 bool hasByValArgument() const { 3666 return AttributeList.hasAttrSomewhere(Attribute::ByVal); 3667 } 3668 3669 /// getCalledFunction - Return the function called, or null if this is an 3670 /// indirect function invocation. 3671 /// 3672 Function *getCalledFunction() const { 3673 return dyn_cast<Function>(Op<-3>()); 3674 } 3675 3676 /// getCalledValue - Get a pointer to the function that is invoked by this 3677 /// instruction 3678 const Value *getCalledValue() const { return Op<-3>(); } 3679 Value *getCalledValue() { return Op<-3>(); } 3680 3681 /// setCalledFunction - Set the function called. 3682 void setCalledFunction(Value* Fn) { 3683 setCalledFunction( 3684 cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType()), 3685 Fn); 3686 } 3687 void setCalledFunction(FunctionType *FTy, Value *Fn) { 3688 this->FTy = FTy; 3689 assert(FTy == cast<FunctionType>( 3690 cast<PointerType>(Fn->getType())->getElementType())); 3691 Op<-3>() = Fn; 3692 } 3693 3694 // get*Dest - Return the destination basic blocks... 3695 BasicBlock *getNormalDest() const { 3696 return cast<BasicBlock>(Op<-2>()); 3697 } 3698 BasicBlock *getUnwindDest() const { 3699 return cast<BasicBlock>(Op<-1>()); 3700 } 3701 void setNormalDest(BasicBlock *B) { 3702 Op<-2>() = reinterpret_cast<Value*>(B); 3703 } 3704 void setUnwindDest(BasicBlock *B) { 3705 Op<-1>() = reinterpret_cast<Value*>(B); 3706 } 3707 3708 /// getLandingPadInst - Get the landingpad instruction from the landing pad 3709 /// block (the unwind destination). 3710 LandingPadInst *getLandingPadInst() const; 3711 3712 BasicBlock *getSuccessor(unsigned i) const { 3713 assert(i < 2 && "Successor # out of range for invoke!"); 3714 return i == 0 ? getNormalDest() : getUnwindDest(); 3715 } 3716 3717 void setSuccessor(unsigned idx, BasicBlock *NewSucc) { 3718 assert(idx < 2 && "Successor # out of range for invoke!"); 3719 *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc); 3720 } 3721 3722 unsigned getNumSuccessors() const { return 2; } 3723 3724 // Methods for support type inquiry through isa, cast, and dyn_cast: 3725 static inline bool classof(const Instruction *I) { 3726 return (I->getOpcode() == Instruction::Invoke); 3727 } 3728 static inline bool classof(const Value *V) { 3729 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3730 } 3731 3732 private: 3733 BasicBlock *getSuccessorV(unsigned idx) const override; 3734 unsigned getNumSuccessorsV() const override; 3735 void setSuccessorV(unsigned idx, BasicBlock *B) override; 3736 3737 bool hasFnAttrImpl(Attribute::AttrKind A) const; 3738 3739 // Shadow Instruction::setInstructionSubclassData with a private forwarding 3740 // method so that subclasses cannot accidentally use it. 3741 void setInstructionSubclassData(unsigned short D) { 3742 Instruction::setInstructionSubclassData(D); 3743 } 3744 }; 3745 3746 template <> 3747 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> { 3748 }; 3749 3750 InvokeInst::InvokeInst(FunctionType *Ty, Value *Func, BasicBlock *IfNormal, 3751 BasicBlock *IfException, ArrayRef<Value *> Args, 3752 ArrayRef<OperandBundleDef> Bundles, unsigned Values, 3753 const Twine &NameStr, Instruction *InsertBefore) 3754 : TerminatorInst(Ty->getReturnType(), Instruction::Invoke, 3755 OperandTraits<InvokeInst>::op_end(this) - Values, Values, 3756 InsertBefore) { 3757 init(Ty, Func, IfNormal, IfException, Args, Bundles, NameStr); 3758 } 3759 InvokeInst::InvokeInst(Value *Func, BasicBlock *IfNormal, 3760 BasicBlock *IfException, ArrayRef<Value *> Args, 3761 ArrayRef<OperandBundleDef> Bundles, unsigned Values, 3762 const Twine &NameStr, BasicBlock *InsertAtEnd) 3763 : TerminatorInst( 3764 cast<FunctionType>(cast<PointerType>(Func->getType()) 3765 ->getElementType())->getReturnType(), 3766 Instruction::Invoke, OperandTraits<InvokeInst>::op_end(this) - Values, 3767 Values, InsertAtEnd) { 3768 init(Func, IfNormal, IfException, Args, Bundles, NameStr); 3769 } 3770 3771 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value) 3772 3773 //===----------------------------------------------------------------------===// 3774 // ResumeInst Class 3775 //===----------------------------------------------------------------------===// 3776 3777 //===--------------------------------------------------------------------------- 3778 /// ResumeInst - Resume the propagation of an exception. 3779 /// 3780 class ResumeInst : public TerminatorInst { 3781 ResumeInst(const ResumeInst &RI); 3782 3783 explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr); 3784 ResumeInst(Value *Exn, BasicBlock *InsertAtEnd); 3785 3786 protected: 3787 // Note: Instruction needs to be a friend here to call cloneImpl. 3788 friend class Instruction; 3789 ResumeInst *cloneImpl() const; 3790 3791 public: 3792 static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) { 3793 return new(1) ResumeInst(Exn, InsertBefore); 3794 } 3795 static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) { 3796 return new(1) ResumeInst(Exn, InsertAtEnd); 3797 } 3798 3799 /// Provide fast operand accessors 3800 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3801 3802 /// Convenience accessor. 3803 Value *getValue() const { return Op<0>(); } 3804 3805 unsigned getNumSuccessors() const { return 0; } 3806 3807 // Methods for support type inquiry through isa, cast, and dyn_cast: 3808 static inline bool classof(const Instruction *I) { 3809 return I->getOpcode() == Instruction::Resume; 3810 } 3811 static inline bool classof(const Value *V) { 3812 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3813 } 3814 3815 private: 3816 BasicBlock *getSuccessorV(unsigned idx) const override; 3817 unsigned getNumSuccessorsV() const override; 3818 void setSuccessorV(unsigned idx, BasicBlock *B) override; 3819 }; 3820 3821 template <> 3822 struct OperandTraits<ResumeInst> : 3823 public FixedNumOperandTraits<ResumeInst, 1> { 3824 }; 3825 3826 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value) 3827 3828 //===----------------------------------------------------------------------===// 3829 // CatchSwitchInst Class 3830 //===----------------------------------------------------------------------===// 3831 class CatchSwitchInst : public TerminatorInst { 3832 void *operator new(size_t, unsigned) = delete; 3833 /// ReservedSpace - The number of operands actually allocated. NumOperands is 3834 /// the number actually in use. 3835 unsigned ReservedSpace; 3836 // Operand[0] = Outer scope 3837 // Operand[1] = Unwind block destination 3838 // Operand[n] = BasicBlock to go to on match 3839 CatchSwitchInst(const CatchSwitchInst &CSI); 3840 void init(Value *ParentPad, BasicBlock *UnwindDest, unsigned NumReserved); 3841 void growOperands(unsigned Size); 3842 // allocate space for exactly zero operands 3843 void *operator new(size_t s) { return User::operator new(s); } 3844 /// CatchSwitchInst ctor - Create a new switch instruction, specifying a 3845 /// default destination. The number of additional handlers can be specified 3846 /// here to make memory allocation more efficient. 3847 /// This constructor can also autoinsert before another instruction. 3848 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 3849 unsigned NumHandlers, const Twine &NameStr, 3850 Instruction *InsertBefore); 3851 3852 /// CatchSwitchInst ctor - Create a new switch instruction, specifying a 3853 /// default destination. The number of additional handlers can be specified 3854 /// here to make memory allocation more efficient. 3855 /// This constructor also autoinserts at the end of the specified BasicBlock. 3856 CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest, 3857 unsigned NumHandlers, const Twine &NameStr, 3858 BasicBlock *InsertAtEnd); 3859 3860 protected: 3861 // Note: Instruction needs to be a friend here to call cloneImpl. 3862 friend class Instruction; 3863 CatchSwitchInst *cloneImpl() const; 3864 3865 public: 3866 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, 3867 unsigned NumHandlers, 3868 const Twine &NameStr = "", 3869 Instruction *InsertBefore = nullptr) { 3870 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, 3871 InsertBefore); 3872 } 3873 static CatchSwitchInst *Create(Value *ParentPad, BasicBlock *UnwindDest, 3874 unsigned NumHandlers, const Twine &NameStr, 3875 BasicBlock *InsertAtEnd) { 3876 return new CatchSwitchInst(ParentPad, UnwindDest, NumHandlers, NameStr, 3877 InsertAtEnd); 3878 } 3879 3880 /// Provide fast operand accessors 3881 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 3882 3883 // Accessor Methods for CatchSwitch stmt 3884 Value *getParentPad() const { return getOperand(0); } 3885 void setParentPad(Value *ParentPad) { setOperand(0, ParentPad); } 3886 3887 // Accessor Methods for CatchSwitch stmt 3888 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; } 3889 bool unwindsToCaller() const { return !hasUnwindDest(); } 3890 BasicBlock *getUnwindDest() const { 3891 if (hasUnwindDest()) 3892 return cast<BasicBlock>(getOperand(1)); 3893 return nullptr; 3894 } 3895 void setUnwindDest(BasicBlock *UnwindDest) { 3896 assert(UnwindDest); 3897 assert(hasUnwindDest()); 3898 setOperand(1, UnwindDest); 3899 } 3900 3901 /// getNumHandlers - return the number of 'handlers' in this catchswitch 3902 /// instruction, except the default handler 3903 unsigned getNumHandlers() const { 3904 if (hasUnwindDest()) 3905 return getNumOperands() - 2; 3906 return getNumOperands() - 1; 3907 } 3908 3909 private: 3910 static BasicBlock *handler_helper(Value *V) { return cast<BasicBlock>(V); } 3911 static const BasicBlock *handler_helper(const Value *V) { 3912 return cast<BasicBlock>(V); 3913 } 3914 3915 public: 3916 typedef std::pointer_to_unary_function<Value *, BasicBlock *> DerefFnTy; 3917 typedef mapped_iterator<op_iterator, DerefFnTy> handler_iterator; 3918 typedef iterator_range<handler_iterator> handler_range; 3919 3920 3921 typedef std::pointer_to_unary_function<const Value *, const BasicBlock *> 3922 ConstDerefFnTy; 3923 typedef mapped_iterator<const_op_iterator, ConstDerefFnTy> const_handler_iterator; 3924 typedef iterator_range<const_handler_iterator> const_handler_range; 3925 3926 /// Returns an iterator that points to the first handler in CatchSwitchInst. 3927 handler_iterator handler_begin() { 3928 op_iterator It = op_begin() + 1; 3929 if (hasUnwindDest()) 3930 ++It; 3931 return handler_iterator(It, DerefFnTy(handler_helper)); 3932 } 3933 /// Returns an iterator that points to the first handler in the 3934 /// CatchSwitchInst. 3935 const_handler_iterator handler_begin() const { 3936 const_op_iterator It = op_begin() + 1; 3937 if (hasUnwindDest()) 3938 ++It; 3939 return const_handler_iterator(It, ConstDerefFnTy(handler_helper)); 3940 } 3941 3942 /// Returns a read-only iterator that points one past the last 3943 /// handler in the CatchSwitchInst. 3944 handler_iterator handler_end() { 3945 return handler_iterator(op_end(), DerefFnTy(handler_helper)); 3946 } 3947 /// Returns an iterator that points one past the last handler in the 3948 /// CatchSwitchInst. 3949 const_handler_iterator handler_end() const { 3950 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper)); 3951 } 3952 3953 /// handlers - iteration adapter for range-for loops. 3954 handler_range handlers() { 3955 return make_range(handler_begin(), handler_end()); 3956 } 3957 3958 /// handlers - iteration adapter for range-for loops. 3959 const_handler_range handlers() const { 3960 return make_range(handler_begin(), handler_end()); 3961 } 3962 3963 /// addHandler - Add an entry to the switch instruction... 3964 /// Note: 3965 /// This action invalidates handler_end(). Old handler_end() iterator will 3966 /// point to the added handler. 3967 void addHandler(BasicBlock *Dest); 3968 3969 unsigned getNumSuccessors() const { return getNumOperands() - 1; } 3970 BasicBlock *getSuccessor(unsigned Idx) const { 3971 assert(Idx < getNumSuccessors() && 3972 "Successor # out of range for catchswitch!"); 3973 return cast<BasicBlock>(getOperand(Idx + 1)); 3974 } 3975 void setSuccessor(unsigned Idx, BasicBlock *NewSucc) { 3976 assert(Idx < getNumSuccessors() && 3977 "Successor # out of range for catchswitch!"); 3978 setOperand(Idx + 1, NewSucc); 3979 } 3980 3981 // Methods for support type inquiry through isa, cast, and dyn_cast: 3982 static inline bool classof(const Instruction *I) { 3983 return I->getOpcode() == Instruction::CatchSwitch; 3984 } 3985 static inline bool classof(const Value *V) { 3986 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 3987 } 3988 3989 private: 3990 BasicBlock *getSuccessorV(unsigned Idx) const override; 3991 unsigned getNumSuccessorsV() const override; 3992 void setSuccessorV(unsigned Idx, BasicBlock *B) override; 3993 }; 3994 3995 template <> 3996 struct OperandTraits<CatchSwitchInst> : public HungoffOperandTraits<2> {}; 3997 3998 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst, Value) 3999 4000 //===----------------------------------------------------------------------===// 4001 // CleanupPadInst Class 4002 //===----------------------------------------------------------------------===// 4003 class CleanupPadInst : public FuncletPadInst { 4004 private: 4005 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, 4006 unsigned Values, const Twine &NameStr, 4007 Instruction *InsertBefore) 4008 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, 4009 NameStr, InsertBefore) {} 4010 explicit CleanupPadInst(Value *ParentPad, ArrayRef<Value *> Args, 4011 unsigned Values, const Twine &NameStr, 4012 BasicBlock *InsertAtEnd) 4013 : FuncletPadInst(Instruction::CleanupPad, ParentPad, Args, Values, 4014 NameStr, InsertAtEnd) {} 4015 4016 public: 4017 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args = None, 4018 const Twine &NameStr = "", 4019 Instruction *InsertBefore = nullptr) { 4020 unsigned Values = 1 + Args.size(); 4021 return new (Values) 4022 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertBefore); 4023 } 4024 static CleanupPadInst *Create(Value *ParentPad, ArrayRef<Value *> Args, 4025 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4026 unsigned Values = 1 + Args.size(); 4027 return new (Values) 4028 CleanupPadInst(ParentPad, Args, Values, NameStr, InsertAtEnd); 4029 } 4030 4031 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4032 static inline bool classof(const Instruction *I) { 4033 return I->getOpcode() == Instruction::CleanupPad; 4034 } 4035 static inline bool classof(const Value *V) { 4036 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4037 } 4038 }; 4039 4040 //===----------------------------------------------------------------------===// 4041 // CatchPadInst Class 4042 //===----------------------------------------------------------------------===// 4043 class CatchPadInst : public FuncletPadInst { 4044 private: 4045 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, 4046 unsigned Values, const Twine &NameStr, 4047 Instruction *InsertBefore) 4048 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, 4049 NameStr, InsertBefore) {} 4050 explicit CatchPadInst(Value *CatchSwitch, ArrayRef<Value *> Args, 4051 unsigned Values, const Twine &NameStr, 4052 BasicBlock *InsertAtEnd) 4053 : FuncletPadInst(Instruction::CatchPad, CatchSwitch, Args, Values, 4054 NameStr, InsertAtEnd) {} 4055 4056 public: 4057 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, 4058 const Twine &NameStr = "", 4059 Instruction *InsertBefore = nullptr) { 4060 unsigned Values = 1 + Args.size(); 4061 return new (Values) 4062 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertBefore); 4063 } 4064 static CatchPadInst *Create(Value *CatchSwitch, ArrayRef<Value *> Args, 4065 const Twine &NameStr, BasicBlock *InsertAtEnd) { 4066 unsigned Values = 1 + Args.size(); 4067 return new (Values) 4068 CatchPadInst(CatchSwitch, Args, Values, NameStr, InsertAtEnd); 4069 } 4070 4071 /// Convenience accessors 4072 CatchSwitchInst *getCatchSwitch() const { 4073 return cast<CatchSwitchInst>(Op<-1>()); 4074 } 4075 void setCatchSwitch(Value *CatchSwitch) { 4076 assert(CatchSwitch); 4077 Op<-1>() = CatchSwitch; 4078 } 4079 4080 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4081 static inline bool classof(const Instruction *I) { 4082 return I->getOpcode() == Instruction::CatchPad; 4083 } 4084 static inline bool classof(const Value *V) { 4085 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4086 } 4087 }; 4088 4089 //===----------------------------------------------------------------------===// 4090 // CatchReturnInst Class 4091 //===----------------------------------------------------------------------===// 4092 4093 class CatchReturnInst : public TerminatorInst { 4094 CatchReturnInst(const CatchReturnInst &RI); 4095 4096 void init(Value *CatchPad, BasicBlock *BB); 4097 CatchReturnInst(Value *CatchPad, BasicBlock *BB, Instruction *InsertBefore); 4098 CatchReturnInst(Value *CatchPad, BasicBlock *BB, BasicBlock *InsertAtEnd); 4099 4100 protected: 4101 // Note: Instruction needs to be a friend here to call cloneImpl. 4102 friend class Instruction; 4103 CatchReturnInst *cloneImpl() const; 4104 4105 public: 4106 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, 4107 Instruction *InsertBefore = nullptr) { 4108 assert(CatchPad); 4109 assert(BB); 4110 return new (2) CatchReturnInst(CatchPad, BB, InsertBefore); 4111 } 4112 static CatchReturnInst *Create(Value *CatchPad, BasicBlock *BB, 4113 BasicBlock *InsertAtEnd) { 4114 assert(CatchPad); 4115 assert(BB); 4116 return new (2) CatchReturnInst(CatchPad, BB, InsertAtEnd); 4117 } 4118 4119 /// Provide fast operand accessors 4120 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4121 4122 /// Convenience accessors. 4123 CatchPadInst *getCatchPad() const { return cast<CatchPadInst>(Op<0>()); } 4124 void setCatchPad(CatchPadInst *CatchPad) { 4125 assert(CatchPad); 4126 Op<0>() = CatchPad; 4127 } 4128 4129 BasicBlock *getSuccessor() const { return cast<BasicBlock>(Op<1>()); } 4130 void setSuccessor(BasicBlock *NewSucc) { 4131 assert(NewSucc); 4132 Op<1>() = NewSucc; 4133 } 4134 unsigned getNumSuccessors() const { return 1; } 4135 4136 Value *getParentPad() const { 4137 return getCatchPad()->getCatchSwitch()->getParentPad(); 4138 } 4139 4140 // Methods for support type inquiry through isa, cast, and dyn_cast: 4141 static inline bool classof(const Instruction *I) { 4142 return (I->getOpcode() == Instruction::CatchRet); 4143 } 4144 static inline bool classof(const Value *V) { 4145 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4146 } 4147 4148 private: 4149 BasicBlock *getSuccessorV(unsigned Idx) const override; 4150 unsigned getNumSuccessorsV() const override; 4151 void setSuccessorV(unsigned Idx, BasicBlock *B) override; 4152 }; 4153 4154 template <> 4155 struct OperandTraits<CatchReturnInst> 4156 : public FixedNumOperandTraits<CatchReturnInst, 2> {}; 4157 4158 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst, Value) 4159 4160 //===----------------------------------------------------------------------===// 4161 // CleanupReturnInst Class 4162 //===----------------------------------------------------------------------===// 4163 4164 class CleanupReturnInst : public TerminatorInst { 4165 private: 4166 CleanupReturnInst(const CleanupReturnInst &RI); 4167 4168 void init(Value *CleanupPad, BasicBlock *UnwindBB); 4169 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, 4170 Instruction *InsertBefore = nullptr); 4171 CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB, unsigned Values, 4172 BasicBlock *InsertAtEnd); 4173 4174 protected: 4175 // Note: Instruction needs to be a friend here to call cloneImpl. 4176 friend class Instruction; 4177 CleanupReturnInst *cloneImpl() const; 4178 4179 public: 4180 static CleanupReturnInst *Create(Value *CleanupPad, 4181 BasicBlock *UnwindBB = nullptr, 4182 Instruction *InsertBefore = nullptr) { 4183 assert(CleanupPad); 4184 unsigned Values = 1; 4185 if (UnwindBB) 4186 ++Values; 4187 return new (Values) 4188 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertBefore); 4189 } 4190 static CleanupReturnInst *Create(Value *CleanupPad, BasicBlock *UnwindBB, 4191 BasicBlock *InsertAtEnd) { 4192 assert(CleanupPad); 4193 unsigned Values = 1; 4194 if (UnwindBB) 4195 ++Values; 4196 return new (Values) 4197 CleanupReturnInst(CleanupPad, UnwindBB, Values, InsertAtEnd); 4198 } 4199 4200 /// Provide fast operand accessors 4201 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 4202 4203 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; } 4204 bool unwindsToCaller() const { return !hasUnwindDest(); } 4205 4206 /// Convenience accessor. 4207 CleanupPadInst *getCleanupPad() const { 4208 return cast<CleanupPadInst>(Op<0>()); 4209 } 4210 void setCleanupPad(CleanupPadInst *CleanupPad) { 4211 assert(CleanupPad); 4212 Op<0>() = CleanupPad; 4213 } 4214 4215 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; } 4216 4217 BasicBlock *getUnwindDest() const { 4218 return hasUnwindDest() ? cast<BasicBlock>(Op<1>()) : nullptr; 4219 } 4220 void setUnwindDest(BasicBlock *NewDest) { 4221 assert(NewDest); 4222 assert(hasUnwindDest()); 4223 Op<1>() = NewDest; 4224 } 4225 4226 // Methods for support type inquiry through isa, cast, and dyn_cast: 4227 static inline bool classof(const Instruction *I) { 4228 return (I->getOpcode() == Instruction::CleanupRet); 4229 } 4230 static inline bool classof(const Value *V) { 4231 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4232 } 4233 4234 private: 4235 BasicBlock *getSuccessorV(unsigned Idx) const override; 4236 unsigned getNumSuccessorsV() const override; 4237 void setSuccessorV(unsigned Idx, BasicBlock *B) override; 4238 4239 // Shadow Instruction::setInstructionSubclassData with a private forwarding 4240 // method so that subclasses cannot accidentally use it. 4241 void setInstructionSubclassData(unsigned short D) { 4242 Instruction::setInstructionSubclassData(D); 4243 } 4244 }; 4245 4246 template <> 4247 struct OperandTraits<CleanupReturnInst> 4248 : public VariadicOperandTraits<CleanupReturnInst, /*MINARITY=*/1> {}; 4249 4250 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst, Value) 4251 4252 //===----------------------------------------------------------------------===// 4253 // UnreachableInst Class 4254 //===----------------------------------------------------------------------===// 4255 4256 //===--------------------------------------------------------------------------- 4257 /// UnreachableInst - This function has undefined behavior. In particular, the 4258 /// presence of this instruction indicates some higher level knowledge that the 4259 /// end of the block cannot be reached. 4260 /// 4261 class UnreachableInst : public TerminatorInst { 4262 void *operator new(size_t, unsigned) = delete; 4263 4264 protected: 4265 // Note: Instruction needs to be a friend here to call cloneImpl. 4266 friend class Instruction; 4267 UnreachableInst *cloneImpl() const; 4268 4269 public: 4270 // allocate space for exactly zero operands 4271 void *operator new(size_t s) { 4272 return User::operator new(s, 0); 4273 } 4274 explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr); 4275 explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd); 4276 4277 unsigned getNumSuccessors() const { return 0; } 4278 4279 // Methods for support type inquiry through isa, cast, and dyn_cast: 4280 static inline bool classof(const Instruction *I) { 4281 return I->getOpcode() == Instruction::Unreachable; 4282 } 4283 static inline bool classof(const Value *V) { 4284 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4285 } 4286 4287 private: 4288 BasicBlock *getSuccessorV(unsigned idx) const override; 4289 unsigned getNumSuccessorsV() const override; 4290 void setSuccessorV(unsigned idx, BasicBlock *B) override; 4291 }; 4292 4293 //===----------------------------------------------------------------------===// 4294 // TruncInst Class 4295 //===----------------------------------------------------------------------===// 4296 4297 /// \brief This class represents a truncation of integer types. 4298 class TruncInst : public CastInst { 4299 protected: 4300 // Note: Instruction needs to be a friend here to call cloneImpl. 4301 friend class Instruction; 4302 /// \brief Clone an identical TruncInst 4303 TruncInst *cloneImpl() const; 4304 4305 public: 4306 /// \brief Constructor with insert-before-instruction semantics 4307 TruncInst( 4308 Value *S, ///< The value to be truncated 4309 Type *Ty, ///< The (smaller) type to truncate to 4310 const Twine &NameStr = "", ///< A name for the new instruction 4311 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4312 ); 4313 4314 /// \brief Constructor with insert-at-end-of-block semantics 4315 TruncInst( 4316 Value *S, ///< The value to be truncated 4317 Type *Ty, ///< The (smaller) type to truncate to 4318 const Twine &NameStr, ///< A name for the new instruction 4319 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4320 ); 4321 4322 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4323 static inline bool classof(const Instruction *I) { 4324 return I->getOpcode() == Trunc; 4325 } 4326 static inline bool classof(const Value *V) { 4327 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4328 } 4329 }; 4330 4331 //===----------------------------------------------------------------------===// 4332 // ZExtInst Class 4333 //===----------------------------------------------------------------------===// 4334 4335 /// \brief This class represents zero extension of integer types. 4336 class ZExtInst : public CastInst { 4337 protected: 4338 // Note: Instruction needs to be a friend here to call cloneImpl. 4339 friend class Instruction; 4340 /// \brief Clone an identical ZExtInst 4341 ZExtInst *cloneImpl() const; 4342 4343 public: 4344 /// \brief Constructor with insert-before-instruction semantics 4345 ZExtInst( 4346 Value *S, ///< The value to be zero extended 4347 Type *Ty, ///< The type to zero extend to 4348 const Twine &NameStr = "", ///< A name for the new instruction 4349 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4350 ); 4351 4352 /// \brief Constructor with insert-at-end semantics. 4353 ZExtInst( 4354 Value *S, ///< The value to be zero extended 4355 Type *Ty, ///< The type to zero extend to 4356 const Twine &NameStr, ///< A name for the new instruction 4357 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4358 ); 4359 4360 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4361 static inline bool classof(const Instruction *I) { 4362 return I->getOpcode() == ZExt; 4363 } 4364 static inline bool classof(const Value *V) { 4365 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4366 } 4367 }; 4368 4369 //===----------------------------------------------------------------------===// 4370 // SExtInst Class 4371 //===----------------------------------------------------------------------===// 4372 4373 /// \brief This class represents a sign extension of integer types. 4374 class SExtInst : public CastInst { 4375 protected: 4376 // Note: Instruction needs to be a friend here to call cloneImpl. 4377 friend class Instruction; 4378 /// \brief Clone an identical SExtInst 4379 SExtInst *cloneImpl() const; 4380 4381 public: 4382 /// \brief Constructor with insert-before-instruction semantics 4383 SExtInst( 4384 Value *S, ///< The value to be sign extended 4385 Type *Ty, ///< The type to sign extend to 4386 const Twine &NameStr = "", ///< A name for the new instruction 4387 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4388 ); 4389 4390 /// \brief Constructor with insert-at-end-of-block semantics 4391 SExtInst( 4392 Value *S, ///< The value to be sign extended 4393 Type *Ty, ///< The type to sign extend to 4394 const Twine &NameStr, ///< A name for the new instruction 4395 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4396 ); 4397 4398 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4399 static inline bool classof(const Instruction *I) { 4400 return I->getOpcode() == SExt; 4401 } 4402 static inline bool classof(const Value *V) { 4403 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4404 } 4405 }; 4406 4407 //===----------------------------------------------------------------------===// 4408 // FPTruncInst Class 4409 //===----------------------------------------------------------------------===// 4410 4411 /// \brief This class represents a truncation of floating point types. 4412 class FPTruncInst : public CastInst { 4413 protected: 4414 // Note: Instruction needs to be a friend here to call cloneImpl. 4415 friend class Instruction; 4416 /// \brief Clone an identical FPTruncInst 4417 FPTruncInst *cloneImpl() const; 4418 4419 public: 4420 /// \brief Constructor with insert-before-instruction semantics 4421 FPTruncInst( 4422 Value *S, ///< The value to be truncated 4423 Type *Ty, ///< The type to truncate to 4424 const Twine &NameStr = "", ///< A name for the new instruction 4425 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4426 ); 4427 4428 /// \brief Constructor with insert-before-instruction semantics 4429 FPTruncInst( 4430 Value *S, ///< The value to be truncated 4431 Type *Ty, ///< The type to truncate to 4432 const Twine &NameStr, ///< A name for the new instruction 4433 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4434 ); 4435 4436 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4437 static inline bool classof(const Instruction *I) { 4438 return I->getOpcode() == FPTrunc; 4439 } 4440 static inline bool classof(const Value *V) { 4441 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4442 } 4443 }; 4444 4445 //===----------------------------------------------------------------------===// 4446 // FPExtInst Class 4447 //===----------------------------------------------------------------------===// 4448 4449 /// \brief This class represents an extension of floating point types. 4450 class FPExtInst : public CastInst { 4451 protected: 4452 // Note: Instruction needs to be a friend here to call cloneImpl. 4453 friend class Instruction; 4454 /// \brief Clone an identical FPExtInst 4455 FPExtInst *cloneImpl() const; 4456 4457 public: 4458 /// \brief Constructor with insert-before-instruction semantics 4459 FPExtInst( 4460 Value *S, ///< The value to be extended 4461 Type *Ty, ///< The type to extend to 4462 const Twine &NameStr = "", ///< A name for the new instruction 4463 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4464 ); 4465 4466 /// \brief Constructor with insert-at-end-of-block semantics 4467 FPExtInst( 4468 Value *S, ///< The value to be extended 4469 Type *Ty, ///< The type to extend to 4470 const Twine &NameStr, ///< A name for the new instruction 4471 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4472 ); 4473 4474 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4475 static inline bool classof(const Instruction *I) { 4476 return I->getOpcode() == FPExt; 4477 } 4478 static inline bool classof(const Value *V) { 4479 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4480 } 4481 }; 4482 4483 //===----------------------------------------------------------------------===// 4484 // UIToFPInst Class 4485 //===----------------------------------------------------------------------===// 4486 4487 /// \brief This class represents a cast unsigned integer to floating point. 4488 class UIToFPInst : public CastInst { 4489 protected: 4490 // Note: Instruction needs to be a friend here to call cloneImpl. 4491 friend class Instruction; 4492 /// \brief Clone an identical UIToFPInst 4493 UIToFPInst *cloneImpl() const; 4494 4495 public: 4496 /// \brief Constructor with insert-before-instruction semantics 4497 UIToFPInst( 4498 Value *S, ///< The value to be converted 4499 Type *Ty, ///< The type to convert to 4500 const Twine &NameStr = "", ///< A name for the new instruction 4501 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4502 ); 4503 4504 /// \brief Constructor with insert-at-end-of-block semantics 4505 UIToFPInst( 4506 Value *S, ///< The value to be converted 4507 Type *Ty, ///< The type to convert to 4508 const Twine &NameStr, ///< A name for the new instruction 4509 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4510 ); 4511 4512 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4513 static inline bool classof(const Instruction *I) { 4514 return I->getOpcode() == UIToFP; 4515 } 4516 static inline bool classof(const Value *V) { 4517 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4518 } 4519 }; 4520 4521 //===----------------------------------------------------------------------===// 4522 // SIToFPInst Class 4523 //===----------------------------------------------------------------------===// 4524 4525 /// \brief This class represents a cast from signed integer to floating point. 4526 class SIToFPInst : public CastInst { 4527 protected: 4528 // Note: Instruction needs to be a friend here to call cloneImpl. 4529 friend class Instruction; 4530 /// \brief Clone an identical SIToFPInst 4531 SIToFPInst *cloneImpl() const; 4532 4533 public: 4534 /// \brief Constructor with insert-before-instruction semantics 4535 SIToFPInst( 4536 Value *S, ///< The value to be converted 4537 Type *Ty, ///< The type to convert to 4538 const Twine &NameStr = "", ///< A name for the new instruction 4539 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4540 ); 4541 4542 /// \brief Constructor with insert-at-end-of-block semantics 4543 SIToFPInst( 4544 Value *S, ///< The value to be converted 4545 Type *Ty, ///< The type to convert to 4546 const Twine &NameStr, ///< A name for the new instruction 4547 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4548 ); 4549 4550 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4551 static inline bool classof(const Instruction *I) { 4552 return I->getOpcode() == SIToFP; 4553 } 4554 static inline bool classof(const Value *V) { 4555 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4556 } 4557 }; 4558 4559 //===----------------------------------------------------------------------===// 4560 // FPToUIInst Class 4561 //===----------------------------------------------------------------------===// 4562 4563 /// \brief This class represents a cast from floating point to unsigned integer 4564 class FPToUIInst : public CastInst { 4565 protected: 4566 // Note: Instruction needs to be a friend here to call cloneImpl. 4567 friend class Instruction; 4568 /// \brief Clone an identical FPToUIInst 4569 FPToUIInst *cloneImpl() const; 4570 4571 public: 4572 /// \brief Constructor with insert-before-instruction semantics 4573 FPToUIInst( 4574 Value *S, ///< The value to be converted 4575 Type *Ty, ///< The type to convert to 4576 const Twine &NameStr = "", ///< A name for the new instruction 4577 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4578 ); 4579 4580 /// \brief Constructor with insert-at-end-of-block semantics 4581 FPToUIInst( 4582 Value *S, ///< The value to be converted 4583 Type *Ty, ///< The type to convert to 4584 const Twine &NameStr, ///< A name for the new instruction 4585 BasicBlock *InsertAtEnd ///< Where to insert the new instruction 4586 ); 4587 4588 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4589 static inline bool classof(const Instruction *I) { 4590 return I->getOpcode() == FPToUI; 4591 } 4592 static inline bool classof(const Value *V) { 4593 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4594 } 4595 }; 4596 4597 //===----------------------------------------------------------------------===// 4598 // FPToSIInst Class 4599 //===----------------------------------------------------------------------===// 4600 4601 /// \brief This class represents a cast from floating point to signed integer. 4602 class FPToSIInst : public CastInst { 4603 protected: 4604 // Note: Instruction needs to be a friend here to call cloneImpl. 4605 friend class Instruction; 4606 /// \brief Clone an identical FPToSIInst 4607 FPToSIInst *cloneImpl() const; 4608 4609 public: 4610 /// \brief Constructor with insert-before-instruction semantics 4611 FPToSIInst( 4612 Value *S, ///< The value to be converted 4613 Type *Ty, ///< The type to convert to 4614 const Twine &NameStr = "", ///< A name for the new instruction 4615 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4616 ); 4617 4618 /// \brief Constructor with insert-at-end-of-block semantics 4619 FPToSIInst( 4620 Value *S, ///< The value to be converted 4621 Type *Ty, ///< The type to convert to 4622 const Twine &NameStr, ///< A name for the new instruction 4623 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4624 ); 4625 4626 /// \brief Methods for support type inquiry through isa, cast, and dyn_cast: 4627 static inline bool classof(const Instruction *I) { 4628 return I->getOpcode() == FPToSI; 4629 } 4630 static inline bool classof(const Value *V) { 4631 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4632 } 4633 }; 4634 4635 //===----------------------------------------------------------------------===// 4636 // IntToPtrInst Class 4637 //===----------------------------------------------------------------------===// 4638 4639 /// \brief This class represents a cast from an integer to a pointer. 4640 class IntToPtrInst : public CastInst { 4641 public: 4642 /// \brief Constructor with insert-before-instruction semantics 4643 IntToPtrInst( 4644 Value *S, ///< The value to be converted 4645 Type *Ty, ///< The type to convert to 4646 const Twine &NameStr = "", ///< A name for the new instruction 4647 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4648 ); 4649 4650 /// \brief Constructor with insert-at-end-of-block semantics 4651 IntToPtrInst( 4652 Value *S, ///< The value to be converted 4653 Type *Ty, ///< The type to convert to 4654 const Twine &NameStr, ///< A name for the new instruction 4655 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4656 ); 4657 4658 // Note: Instruction needs to be a friend here to call cloneImpl. 4659 friend class Instruction; 4660 /// \brief Clone an identical IntToPtrInst 4661 IntToPtrInst *cloneImpl() const; 4662 4663 /// \brief Returns the address space of this instruction's pointer type. 4664 unsigned getAddressSpace() const { 4665 return getType()->getPointerAddressSpace(); 4666 } 4667 4668 // Methods for support type inquiry through isa, cast, and dyn_cast: 4669 static inline bool classof(const Instruction *I) { 4670 return I->getOpcode() == IntToPtr; 4671 } 4672 static inline bool classof(const Value *V) { 4673 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4674 } 4675 }; 4676 4677 //===----------------------------------------------------------------------===// 4678 // PtrToIntInst Class 4679 //===----------------------------------------------------------------------===// 4680 4681 /// \brief This class represents a cast from a pointer to an integer 4682 class PtrToIntInst : public CastInst { 4683 protected: 4684 // Note: Instruction needs to be a friend here to call cloneImpl. 4685 friend class Instruction; 4686 /// \brief Clone an identical PtrToIntInst 4687 PtrToIntInst *cloneImpl() const; 4688 4689 public: 4690 /// \brief Constructor with insert-before-instruction semantics 4691 PtrToIntInst( 4692 Value *S, ///< The value to be converted 4693 Type *Ty, ///< The type to convert to 4694 const Twine &NameStr = "", ///< A name for the new instruction 4695 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4696 ); 4697 4698 /// \brief Constructor with insert-at-end-of-block semantics 4699 PtrToIntInst( 4700 Value *S, ///< The value to be converted 4701 Type *Ty, ///< The type to convert to 4702 const Twine &NameStr, ///< A name for the new instruction 4703 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4704 ); 4705 4706 /// \brief Gets the pointer operand. 4707 Value *getPointerOperand() { return getOperand(0); } 4708 /// \brief Gets the pointer operand. 4709 const Value *getPointerOperand() const { return getOperand(0); } 4710 /// \brief Gets the operand index of the pointer operand. 4711 static unsigned getPointerOperandIndex() { return 0U; } 4712 4713 /// \brief Returns the address space of the pointer operand. 4714 unsigned getPointerAddressSpace() const { 4715 return getPointerOperand()->getType()->getPointerAddressSpace(); 4716 } 4717 4718 // Methods for support type inquiry through isa, cast, and dyn_cast: 4719 static inline bool classof(const Instruction *I) { 4720 return I->getOpcode() == PtrToInt; 4721 } 4722 static inline bool classof(const Value *V) { 4723 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4724 } 4725 }; 4726 4727 //===----------------------------------------------------------------------===// 4728 // BitCastInst Class 4729 //===----------------------------------------------------------------------===// 4730 4731 /// \brief This class represents a no-op cast from one type to another. 4732 class BitCastInst : public CastInst { 4733 protected: 4734 // Note: Instruction needs to be a friend here to call cloneImpl. 4735 friend class Instruction; 4736 /// \brief Clone an identical BitCastInst 4737 BitCastInst *cloneImpl() const; 4738 4739 public: 4740 /// \brief Constructor with insert-before-instruction semantics 4741 BitCastInst( 4742 Value *S, ///< The value to be casted 4743 Type *Ty, ///< The type to casted to 4744 const Twine &NameStr = "", ///< A name for the new instruction 4745 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4746 ); 4747 4748 /// \brief Constructor with insert-at-end-of-block semantics 4749 BitCastInst( 4750 Value *S, ///< The value to be casted 4751 Type *Ty, ///< The type to casted to 4752 const Twine &NameStr, ///< A name for the new instruction 4753 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4754 ); 4755 4756 // Methods for support type inquiry through isa, cast, and dyn_cast: 4757 static inline bool classof(const Instruction *I) { 4758 return I->getOpcode() == BitCast; 4759 } 4760 static inline bool classof(const Value *V) { 4761 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4762 } 4763 }; 4764 4765 //===----------------------------------------------------------------------===// 4766 // AddrSpaceCastInst Class 4767 //===----------------------------------------------------------------------===// 4768 4769 /// \brief This class represents a conversion between pointers from 4770 /// one address space to another. 4771 class AddrSpaceCastInst : public CastInst { 4772 protected: 4773 // Note: Instruction needs to be a friend here to call cloneImpl. 4774 friend class Instruction; 4775 /// \brief Clone an identical AddrSpaceCastInst 4776 AddrSpaceCastInst *cloneImpl() const; 4777 4778 public: 4779 /// \brief Constructor with insert-before-instruction semantics 4780 AddrSpaceCastInst( 4781 Value *S, ///< The value to be casted 4782 Type *Ty, ///< The type to casted to 4783 const Twine &NameStr = "", ///< A name for the new instruction 4784 Instruction *InsertBefore = nullptr ///< Where to insert the new instruction 4785 ); 4786 4787 /// \brief Constructor with insert-at-end-of-block semantics 4788 AddrSpaceCastInst( 4789 Value *S, ///< The value to be casted 4790 Type *Ty, ///< The type to casted to 4791 const Twine &NameStr, ///< A name for the new instruction 4792 BasicBlock *InsertAtEnd ///< The block to insert the instruction into 4793 ); 4794 4795 // Methods for support type inquiry through isa, cast, and dyn_cast: 4796 static inline bool classof(const Instruction *I) { 4797 return I->getOpcode() == AddrSpaceCast; 4798 } 4799 static inline bool classof(const Value *V) { 4800 return isa<Instruction>(V) && classof(cast<Instruction>(V)); 4801 } 4802 }; 4803 4804 } // End llvm namespace 4805 4806 #endif 4807