Home | History | Annotate | Download | only in runtime
      1 /*
      2  * Copyright (C) 2008 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "monitor.h"
     18 
     19 #include <vector>
     20 
     21 #include "art_method-inl.h"
     22 #include "base/mutex.h"
     23 #include "base/stl_util.h"
     24 #include "base/systrace.h"
     25 #include "base/time_utils.h"
     26 #include "class_linker.h"
     27 #include "dex_file-inl.h"
     28 #include "dex_instruction-inl.h"
     29 #include "lock_word-inl.h"
     30 #include "mirror/class-inl.h"
     31 #include "mirror/object-inl.h"
     32 #include "mirror/object_array-inl.h"
     33 #include "scoped_thread_state_change.h"
     34 #include "thread.h"
     35 #include "thread_list.h"
     36 #include "verifier/method_verifier.h"
     37 #include "well_known_classes.h"
     38 
     39 namespace art {
     40 
     41 static constexpr uint64_t kLongWaitMs = 100;
     42 
     43 /*
     44  * Every Object has a monitor associated with it, but not every Object is actually locked.  Even
     45  * the ones that are locked do not need a full-fledged monitor until a) there is actual contention
     46  * or b) wait() is called on the Object.
     47  *
     48  * For Android, we have implemented a scheme similar to the one described in Bacon et al.'s
     49  * "Thin locks: featherweight synchronization for Java" (ACM 1998).  Things are even easier for us,
     50  * though, because we have a full 32 bits to work with.
     51  *
     52  * The two states of an Object's lock are referred to as "thin" and "fat".  A lock may transition
     53  * from the "thin" state to the "fat" state and this transition is referred to as inflation. Once
     54  * a lock has been inflated it remains in the "fat" state indefinitely.
     55  *
     56  * The lock value itself is stored in mirror::Object::monitor_ and the representation is described
     57  * in the LockWord value type.
     58  *
     59  * Monitors provide:
     60  *  - mutually exclusive access to resources
     61  *  - a way for multiple threads to wait for notification
     62  *
     63  * In effect, they fill the role of both mutexes and condition variables.
     64  *
     65  * Only one thread can own the monitor at any time.  There may be several threads waiting on it
     66  * (the wait call unlocks it).  One or more waiting threads may be getting interrupted or notified
     67  * at any given time.
     68  */
     69 
     70 uint32_t Monitor::lock_profiling_threshold_ = 0;
     71 
     72 void Monitor::Init(uint32_t lock_profiling_threshold) {
     73   lock_profiling_threshold_ = lock_profiling_threshold;
     74 }
     75 
     76 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code)
     77     : monitor_lock_("a monitor lock", kMonitorLock),
     78       monitor_contenders_("monitor contenders", monitor_lock_),
     79       num_waiters_(0),
     80       owner_(owner),
     81       lock_count_(0),
     82       obj_(GcRoot<mirror::Object>(obj)),
     83       wait_set_(nullptr),
     84       hash_code_(hash_code),
     85       locking_method_(nullptr),
     86       locking_dex_pc_(0),
     87       monitor_id_(MonitorPool::ComputeMonitorId(this, self)) {
     88 #ifdef __LP64__
     89   DCHECK(false) << "Should not be reached in 64b";
     90   next_free_ = nullptr;
     91 #endif
     92   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
     93   // with the owner unlocking the thin-lock.
     94   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
     95   // The identity hash code is set for the life time of the monitor.
     96 }
     97 
     98 Monitor::Monitor(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code,
     99                  MonitorId id)
    100     : monitor_lock_("a monitor lock", kMonitorLock),
    101       monitor_contenders_("monitor contenders", monitor_lock_),
    102       num_waiters_(0),
    103       owner_(owner),
    104       lock_count_(0),
    105       obj_(GcRoot<mirror::Object>(obj)),
    106       wait_set_(nullptr),
    107       hash_code_(hash_code),
    108       locking_method_(nullptr),
    109       locking_dex_pc_(0),
    110       monitor_id_(id) {
    111 #ifdef __LP64__
    112   next_free_ = nullptr;
    113 #endif
    114   // We should only inflate a lock if the owner is ourselves or suspended. This avoids a race
    115   // with the owner unlocking the thin-lock.
    116   CHECK(owner == nullptr || owner == self || owner->IsSuspended());
    117   // The identity hash code is set for the life time of the monitor.
    118 }
    119 
    120 int32_t Monitor::GetHashCode() {
    121   while (!HasHashCode()) {
    122     if (hash_code_.CompareExchangeWeakRelaxed(0, mirror::Object::GenerateIdentityHashCode())) {
    123       break;
    124     }
    125   }
    126   DCHECK(HasHashCode());
    127   return hash_code_.LoadRelaxed();
    128 }
    129 
    130 bool Monitor::Install(Thread* self) {
    131   MutexLock mu(self, monitor_lock_);  // Uncontended mutex acquisition as monitor isn't yet public.
    132   CHECK(owner_ == nullptr || owner_ == self || owner_->IsSuspended());
    133   // Propagate the lock state.
    134   LockWord lw(GetObject()->GetLockWord(false));
    135   switch (lw.GetState()) {
    136     case LockWord::kThinLocked: {
    137       CHECK_EQ(owner_->GetThreadId(), lw.ThinLockOwner());
    138       lock_count_ = lw.ThinLockCount();
    139       break;
    140     }
    141     case LockWord::kHashCode: {
    142       CHECK_EQ(hash_code_.LoadRelaxed(), static_cast<int32_t>(lw.GetHashCode()));
    143       break;
    144     }
    145     case LockWord::kFatLocked: {
    146       // The owner_ is suspended but another thread beat us to install a monitor.
    147       return false;
    148     }
    149     case LockWord::kUnlocked: {
    150       LOG(FATAL) << "Inflating unlocked lock word";
    151       break;
    152     }
    153     default: {
    154       LOG(FATAL) << "Invalid monitor state " << lw.GetState();
    155       return false;
    156     }
    157   }
    158   LockWord fat(this, lw.ReadBarrierState());
    159   // Publish the updated lock word, which may race with other threads.
    160   bool success = GetObject()->CasLockWordWeakSequentiallyConsistent(lw, fat);
    161   // Lock profiling.
    162   if (success && owner_ != nullptr && lock_profiling_threshold_ != 0) {
    163     // Do not abort on dex pc errors. This can easily happen when we want to dump a stack trace on
    164     // abort.
    165     locking_method_ = owner_->GetCurrentMethod(&locking_dex_pc_, false);
    166   }
    167   return success;
    168 }
    169 
    170 Monitor::~Monitor() {
    171   // Deflated monitors have a null object.
    172 }
    173 
    174 void Monitor::AppendToWaitSet(Thread* thread) {
    175   DCHECK(owner_ == Thread::Current());
    176   DCHECK(thread != nullptr);
    177   DCHECK(thread->GetWaitNext() == nullptr) << thread->GetWaitNext();
    178   if (wait_set_ == nullptr) {
    179     wait_set_ = thread;
    180     return;
    181   }
    182 
    183   // push_back.
    184   Thread* t = wait_set_;
    185   while (t->GetWaitNext() != nullptr) {
    186     t = t->GetWaitNext();
    187   }
    188   t->SetWaitNext(thread);
    189 }
    190 
    191 void Monitor::RemoveFromWaitSet(Thread *thread) {
    192   DCHECK(owner_ == Thread::Current());
    193   DCHECK(thread != nullptr);
    194   if (wait_set_ == nullptr) {
    195     return;
    196   }
    197   if (wait_set_ == thread) {
    198     wait_set_ = thread->GetWaitNext();
    199     thread->SetWaitNext(nullptr);
    200     return;
    201   }
    202 
    203   Thread* t = wait_set_;
    204   while (t->GetWaitNext() != nullptr) {
    205     if (t->GetWaitNext() == thread) {
    206       t->SetWaitNext(thread->GetWaitNext());
    207       thread->SetWaitNext(nullptr);
    208       return;
    209     }
    210     t = t->GetWaitNext();
    211   }
    212 }
    213 
    214 void Monitor::SetObject(mirror::Object* object) {
    215   obj_ = GcRoot<mirror::Object>(object);
    216 }
    217 
    218 // Note: Adapted from CurrentMethodVisitor in thread.cc. We must not resolve here.
    219 
    220 struct NthCallerWithDexPcVisitor FINAL : public StackVisitor {
    221   explicit NthCallerWithDexPcVisitor(Thread* thread, size_t frame)
    222       SHARED_REQUIRES(Locks::mutator_lock_)
    223       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFramesNoResolve),
    224         method_(nullptr),
    225         dex_pc_(0),
    226         current_frame_number_(0),
    227         wanted_frame_number_(frame) {}
    228   bool VisitFrame() OVERRIDE SHARED_REQUIRES(Locks::mutator_lock_) {
    229     ArtMethod* m = GetMethod();
    230     if (m == nullptr || m->IsRuntimeMethod()) {
    231       // Runtime method, upcall, or resolution issue. Skip.
    232       return true;
    233     }
    234 
    235     // Is this the requested frame?
    236     if (current_frame_number_ == wanted_frame_number_) {
    237       method_ = m;
    238       dex_pc_ = GetDexPc(false /* abort_on_error*/);
    239       return false;
    240     }
    241 
    242     // Look for more.
    243     current_frame_number_++;
    244     return true;
    245   }
    246 
    247   ArtMethod* method_;
    248   uint32_t dex_pc_;
    249 
    250  private:
    251   size_t current_frame_number_;
    252   const size_t wanted_frame_number_;
    253 };
    254 
    255 // This function is inlined and just helps to not have the VLOG and ATRACE check at all the
    256 // potential tracing points.
    257 void Monitor::AtraceMonitorLock(Thread* self, mirror::Object* obj, bool is_wait) {
    258   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging) && ATRACE_ENABLED())) {
    259     AtraceMonitorLockImpl(self, obj, is_wait);
    260   }
    261 }
    262 
    263 void Monitor::AtraceMonitorLockImpl(Thread* self, mirror::Object* obj, bool is_wait) {
    264   // Wait() requires a deeper call stack to be useful. Otherwise you'll see "Waiting at
    265   // Object.java". Assume that we'll wait a nontrivial amount, so it's OK to do a longer
    266   // stack walk than if !is_wait.
    267   NthCallerWithDexPcVisitor visitor(self, is_wait ? 1U : 0U);
    268   visitor.WalkStack(false);
    269   const char* prefix = is_wait ? "Waiting on " : "Locking ";
    270 
    271   const char* filename;
    272   int32_t line_number;
    273   TranslateLocation(visitor.method_, visitor.dex_pc_, &filename, &line_number);
    274 
    275   // It would be nice to have a stable "ID" for the object here. However, the only stable thing
    276   // would be the identity hashcode. But we cannot use IdentityHashcode here: For one, there are
    277   // times when it is unsafe to make that call (see stack dumping for an explanation). More
    278   // importantly, we would have to give up on thin-locking when adding systrace locks, as the
    279   // identity hashcode is stored in the lockword normally (so can't be used with thin-locks).
    280   //
    281   // Because of thin-locks we also cannot use the monitor id (as there is no monitor). Monitor ids
    282   // also do not have to be stable, as the monitor may be deflated.
    283   std::string tmp = StringPrintf("%s %d at %s:%d",
    284       prefix,
    285       (obj == nullptr ? -1 : static_cast<int32_t>(reinterpret_cast<uintptr_t>(obj))),
    286       (filename != nullptr ? filename : "null"),
    287       line_number);
    288   ATRACE_BEGIN(tmp.c_str());
    289 }
    290 
    291 void Monitor::AtraceMonitorUnlock() {
    292   if (UNLIKELY(VLOG_IS_ON(systrace_lock_logging))) {
    293     ATRACE_END();
    294   }
    295 }
    296 
    297 std::string Monitor::PrettyContentionInfo(const std::string& owner_name,
    298                                           pid_t owner_tid,
    299                                           ArtMethod* owners_method,
    300                                           uint32_t owners_dex_pc,
    301                                           size_t num_waiters) {
    302   const char* owners_filename;
    303   int32_t owners_line_number;
    304   if (owners_method != nullptr) {
    305     TranslateLocation(owners_method, owners_dex_pc, &owners_filename, &owners_line_number);
    306   }
    307   std::ostringstream oss;
    308   oss << "monitor contention with owner " << owner_name << " (" << owner_tid << ")";
    309   if (owners_method != nullptr) {
    310     oss << " at " << PrettyMethod(owners_method);
    311     oss << "(" << owners_filename << ":" << owners_line_number << ")";
    312   }
    313   oss << " waiters=" << num_waiters;
    314   return oss.str();
    315 }
    316 
    317 void Monitor::Lock(Thread* self) {
    318   MutexLock mu(self, monitor_lock_);
    319   while (true) {
    320     if (owner_ == nullptr) {  // Unowned.
    321       owner_ = self;
    322       CHECK_EQ(lock_count_, 0);
    323       // When debugging, save the current monitor holder for future
    324       // acquisition failures to use in sampled logging.
    325       if (lock_profiling_threshold_ != 0) {
    326         locking_method_ = self->GetCurrentMethod(&locking_dex_pc_);
    327       }
    328       break;
    329     } else if (owner_ == self) {  // Recursive.
    330       lock_count_++;
    331       break;
    332     }
    333     // Contended.
    334     const bool log_contention = (lock_profiling_threshold_ != 0);
    335     uint64_t wait_start_ms = log_contention ? MilliTime() : 0;
    336     ArtMethod* owners_method = locking_method_;
    337     uint32_t owners_dex_pc = locking_dex_pc_;
    338     // Do this before releasing the lock so that we don't get deflated.
    339     size_t num_waiters = num_waiters_;
    340     ++num_waiters_;
    341     monitor_lock_.Unlock(self);  // Let go of locks in order.
    342     self->SetMonitorEnterObject(GetObject());
    343     {
    344       uint32_t original_owner_thread_id = 0u;
    345       ScopedThreadStateChange tsc(self, kBlocked);  // Change to blocked and give up mutator_lock_.
    346       {
    347         // Reacquire monitor_lock_ without mutator_lock_ for Wait.
    348         MutexLock mu2(self, monitor_lock_);
    349         if (owner_ != nullptr) {  // Did the owner_ give the lock up?
    350           original_owner_thread_id = owner_->GetThreadId();
    351           if (ATRACE_ENABLED()) {
    352             std::ostringstream oss;
    353             std::string name;
    354             owner_->GetThreadName(name);
    355             oss << PrettyContentionInfo(name,
    356                                         owner_->GetTid(),
    357                                         owners_method,
    358                                         owners_dex_pc,
    359                                         num_waiters);
    360             // Add info for contending thread.
    361             uint32_t pc;
    362             ArtMethod* m = self->GetCurrentMethod(&pc);
    363             const char* filename;
    364             int32_t line_number;
    365             TranslateLocation(m, pc, &filename, &line_number);
    366             oss << " blocking from "
    367                 << PrettyMethod(m) << "(" << (filename != nullptr ? filename : "null") << ":"
    368                 << line_number << ")";
    369             ATRACE_BEGIN(oss.str().c_str());
    370           }
    371           monitor_contenders_.Wait(self);  // Still contended so wait.
    372         }
    373       }
    374       if (original_owner_thread_id != 0u) {
    375         // Woken from contention.
    376         if (log_contention) {
    377           uint32_t original_owner_tid = 0;
    378           std::string original_owner_name;
    379           {
    380             MutexLock mu2(Thread::Current(), *Locks::thread_list_lock_);
    381             // Re-find the owner in case the thread got killed.
    382             Thread* original_owner = Runtime::Current()->GetThreadList()->FindThreadByThreadId(
    383                 original_owner_thread_id);
    384             // Do not do any work that requires the mutator lock.
    385             if (original_owner != nullptr) {
    386               original_owner_tid = original_owner->GetTid();
    387               original_owner->GetThreadName(original_owner_name);
    388             }
    389           }
    390 
    391           if (original_owner_tid != 0u) {
    392             uint64_t wait_ms = MilliTime() - wait_start_ms;
    393             uint32_t sample_percent;
    394             if (wait_ms >= lock_profiling_threshold_) {
    395               sample_percent = 100;
    396             } else {
    397               sample_percent = 100 * wait_ms / lock_profiling_threshold_;
    398             }
    399             if (sample_percent != 0 && (static_cast<uint32_t>(rand() % 100) < sample_percent)) {
    400               if (wait_ms > kLongWaitMs && owners_method != nullptr) {
    401                 uint32_t pc;
    402                 ArtMethod* m = self->GetCurrentMethod(&pc);
    403                 // TODO: We should maybe check that original_owner is still a live thread.
    404                 LOG(WARNING) << "Long "
    405                     << PrettyContentionInfo(original_owner_name,
    406                                             original_owner_tid,
    407                                             owners_method,
    408                                             owners_dex_pc,
    409                                             num_waiters)
    410                     << " in " << PrettyMethod(m) << " for " << PrettyDuration(MsToNs(wait_ms));
    411               }
    412               const char* owners_filename;
    413               int32_t owners_line_number;
    414               TranslateLocation(owners_method,
    415                                 owners_dex_pc,
    416                                 &owners_filename,
    417                                 &owners_line_number);
    418               LogContentionEvent(self,
    419                                  wait_ms,
    420                                  sample_percent,
    421                                  owners_filename,
    422                                  owners_line_number);
    423             }
    424           }
    425         }
    426         ATRACE_END();
    427       }
    428     }
    429     self->SetMonitorEnterObject(nullptr);
    430     monitor_lock_.Lock(self);  // Reacquire locks in order.
    431     --num_waiters_;
    432   }
    433 
    434   AtraceMonitorLock(self, GetObject(), false /* is_wait */);
    435 }
    436 
    437 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
    438                                               __attribute__((format(printf, 1, 2)));
    439 
    440 static void ThrowIllegalMonitorStateExceptionF(const char* fmt, ...)
    441     SHARED_REQUIRES(Locks::mutator_lock_) {
    442   va_list args;
    443   va_start(args, fmt);
    444   Thread* self = Thread::Current();
    445   self->ThrowNewExceptionV("Ljava/lang/IllegalMonitorStateException;", fmt, args);
    446   if (!Runtime::Current()->IsStarted() || VLOG_IS_ON(monitor)) {
    447     std::ostringstream ss;
    448     self->Dump(ss);
    449     LOG(Runtime::Current()->IsStarted() ? INFO : ERROR)
    450         << self->GetException()->Dump() << "\n" << ss.str();
    451   }
    452   va_end(args);
    453 }
    454 
    455 static std::string ThreadToString(Thread* thread) {
    456   if (thread == nullptr) {
    457     return "nullptr";
    458   }
    459   std::ostringstream oss;
    460   // TODO: alternatively, we could just return the thread's name.
    461   oss << *thread;
    462   return oss.str();
    463 }
    464 
    465 void Monitor::FailedUnlock(mirror::Object* o,
    466                            uint32_t expected_owner_thread_id,
    467                            uint32_t found_owner_thread_id,
    468                            Monitor* monitor) {
    469   // Acquire thread list lock so threads won't disappear from under us.
    470   std::string current_owner_string;
    471   std::string expected_owner_string;
    472   std::string found_owner_string;
    473   uint32_t current_owner_thread_id = 0u;
    474   {
    475     MutexLock mu(Thread::Current(), *Locks::thread_list_lock_);
    476     ThreadList* const thread_list = Runtime::Current()->GetThreadList();
    477     Thread* expected_owner = thread_list->FindThreadByThreadId(expected_owner_thread_id);
    478     Thread* found_owner = thread_list->FindThreadByThreadId(found_owner_thread_id);
    479 
    480     // Re-read owner now that we hold lock.
    481     Thread* current_owner = (monitor != nullptr) ? monitor->GetOwner() : nullptr;
    482     if (current_owner != nullptr) {
    483       current_owner_thread_id = current_owner->GetThreadId();
    484     }
    485     // Get short descriptions of the threads involved.
    486     current_owner_string = ThreadToString(current_owner);
    487     expected_owner_string = expected_owner != nullptr ? ThreadToString(expected_owner) : "unnamed";
    488     found_owner_string = found_owner != nullptr ? ThreadToString(found_owner) : "unnamed";
    489   }
    490 
    491   if (current_owner_thread_id == 0u) {
    492     if (found_owner_thread_id == 0u) {
    493       ThrowIllegalMonitorStateExceptionF("unlock of unowned monitor on object of type '%s'"
    494                                          " on thread '%s'",
    495                                          PrettyTypeOf(o).c_str(),
    496                                          expected_owner_string.c_str());
    497     } else {
    498       // Race: the original read found an owner but now there is none
    499       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
    500                                          " (where now the monitor appears unowned) on thread '%s'",
    501                                          found_owner_string.c_str(),
    502                                          PrettyTypeOf(o).c_str(),
    503                                          expected_owner_string.c_str());
    504     }
    505   } else {
    506     if (found_owner_thread_id == 0u) {
    507       // Race: originally there was no owner, there is now
    508       ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
    509                                          " (originally believed to be unowned) on thread '%s'",
    510                                          current_owner_string.c_str(),
    511                                          PrettyTypeOf(o).c_str(),
    512                                          expected_owner_string.c_str());
    513     } else {
    514       if (found_owner_thread_id != current_owner_thread_id) {
    515         // Race: originally found and current owner have changed
    516         ThrowIllegalMonitorStateExceptionF("unlock of monitor originally owned by '%s' (now"
    517                                            " owned by '%s') on object of type '%s' on thread '%s'",
    518                                            found_owner_string.c_str(),
    519                                            current_owner_string.c_str(),
    520                                            PrettyTypeOf(o).c_str(),
    521                                            expected_owner_string.c_str());
    522       } else {
    523         ThrowIllegalMonitorStateExceptionF("unlock of monitor owned by '%s' on object of type '%s'"
    524                                            " on thread '%s",
    525                                            current_owner_string.c_str(),
    526                                            PrettyTypeOf(o).c_str(),
    527                                            expected_owner_string.c_str());
    528       }
    529     }
    530   }
    531 }
    532 
    533 bool Monitor::Unlock(Thread* self) {
    534   DCHECK(self != nullptr);
    535   uint32_t owner_thread_id = 0u;
    536   {
    537     MutexLock mu(self, monitor_lock_);
    538     Thread* owner = owner_;
    539     if (owner != nullptr) {
    540       owner_thread_id = owner->GetThreadId();
    541     }
    542     if (owner == self) {
    543       // We own the monitor, so nobody else can be in here.
    544       AtraceMonitorUnlock();
    545       if (lock_count_ == 0) {
    546         owner_ = nullptr;
    547         locking_method_ = nullptr;
    548         locking_dex_pc_ = 0;
    549         // Wake a contender.
    550         monitor_contenders_.Signal(self);
    551       } else {
    552         --lock_count_;
    553       }
    554       return true;
    555     }
    556   }
    557   // We don't own this, so we're not allowed to unlock it.
    558   // The JNI spec says that we should throw IllegalMonitorStateException in this case.
    559   FailedUnlock(GetObject(), self->GetThreadId(), owner_thread_id, this);
    560   return false;
    561 }
    562 
    563 void Monitor::Wait(Thread* self, int64_t ms, int32_t ns,
    564                    bool interruptShouldThrow, ThreadState why) {
    565   DCHECK(self != nullptr);
    566   DCHECK(why == kTimedWaiting || why == kWaiting || why == kSleeping);
    567 
    568   monitor_lock_.Lock(self);
    569 
    570   // Make sure that we hold the lock.
    571   if (owner_ != self) {
    572     monitor_lock_.Unlock(self);
    573     ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
    574     return;
    575   }
    576 
    577   // We need to turn a zero-length timed wait into a regular wait because
    578   // Object.wait(0, 0) is defined as Object.wait(0), which is defined as Object.wait().
    579   if (why == kTimedWaiting && (ms == 0 && ns == 0)) {
    580     why = kWaiting;
    581   }
    582 
    583   // Enforce the timeout range.
    584   if (ms < 0 || ns < 0 || ns > 999999) {
    585     monitor_lock_.Unlock(self);
    586     self->ThrowNewExceptionF("Ljava/lang/IllegalArgumentException;",
    587                              "timeout arguments out of range: ms=%" PRId64 " ns=%d", ms, ns);
    588     return;
    589   }
    590 
    591   /*
    592    * Add ourselves to the set of threads waiting on this monitor, and
    593    * release our hold.  We need to let it go even if we're a few levels
    594    * deep in a recursive lock, and we need to restore that later.
    595    *
    596    * We append to the wait set ahead of clearing the count and owner
    597    * fields so the subroutine can check that the calling thread owns
    598    * the monitor.  Aside from that, the order of member updates is
    599    * not order sensitive as we hold the pthread mutex.
    600    */
    601   AppendToWaitSet(self);
    602   ++num_waiters_;
    603   int prev_lock_count = lock_count_;
    604   lock_count_ = 0;
    605   owner_ = nullptr;
    606   ArtMethod* saved_method = locking_method_;
    607   locking_method_ = nullptr;
    608   uintptr_t saved_dex_pc = locking_dex_pc_;
    609   locking_dex_pc_ = 0;
    610 
    611   AtraceMonitorUnlock();  // For the implict Unlock() just above. This will only end the deepest
    612                           // nesting, but that is enough for the visualization, and corresponds to
    613                           // the single Lock() we do afterwards.
    614   AtraceMonitorLock(self, GetObject(), true /* is_wait */);
    615 
    616   bool was_interrupted = false;
    617   {
    618     // Update thread state. If the GC wakes up, it'll ignore us, knowing
    619     // that we won't touch any references in this state, and we'll check
    620     // our suspend mode before we transition out.
    621     ScopedThreadSuspension sts(self, why);
    622 
    623     // Pseudo-atomically wait on self's wait_cond_ and release the monitor lock.
    624     MutexLock mu(self, *self->GetWaitMutex());
    625 
    626     // Set wait_monitor_ to the monitor object we will be waiting on. When wait_monitor_ is
    627     // non-null a notifying or interrupting thread must signal the thread's wait_cond_ to wake it
    628     // up.
    629     DCHECK(self->GetWaitMonitor() == nullptr);
    630     self->SetWaitMonitor(this);
    631 
    632     // Release the monitor lock.
    633     monitor_contenders_.Signal(self);
    634     monitor_lock_.Unlock(self);
    635 
    636     // Handle the case where the thread was interrupted before we called wait().
    637     if (self->IsInterruptedLocked()) {
    638       was_interrupted = true;
    639     } else {
    640       // Wait for a notification or a timeout to occur.
    641       if (why == kWaiting) {
    642         self->GetWaitConditionVariable()->Wait(self);
    643       } else {
    644         DCHECK(why == kTimedWaiting || why == kSleeping) << why;
    645         self->GetWaitConditionVariable()->TimedWait(self, ms, ns);
    646       }
    647       was_interrupted = self->IsInterruptedLocked();
    648     }
    649   }
    650 
    651   {
    652     // We reset the thread's wait_monitor_ field after transitioning back to runnable so
    653     // that a thread in a waiting/sleeping state has a non-null wait_monitor_ for debugging
    654     // and diagnostic purposes. (If you reset this earlier, stack dumps will claim that threads
    655     // are waiting on "null".)
    656     MutexLock mu(self, *self->GetWaitMutex());
    657     DCHECK(self->GetWaitMonitor() != nullptr);
    658     self->SetWaitMonitor(nullptr);
    659   }
    660 
    661   // Allocate the interrupted exception not holding the monitor lock since it may cause a GC.
    662   // If the GC requires acquiring the monitor for enqueuing cleared references, this would
    663   // cause a deadlock if the monitor is held.
    664   if (was_interrupted && interruptShouldThrow) {
    665     /*
    666      * We were interrupted while waiting, or somebody interrupted an
    667      * un-interruptible thread earlier and we're bailing out immediately.
    668      *
    669      * The doc sayeth: "The interrupted status of the current thread is
    670      * cleared when this exception is thrown."
    671      */
    672     {
    673       MutexLock mu(self, *self->GetWaitMutex());
    674       self->SetInterruptedLocked(false);
    675     }
    676     self->ThrowNewException("Ljava/lang/InterruptedException;", nullptr);
    677   }
    678 
    679   AtraceMonitorUnlock();  // End Wait().
    680 
    681   // Re-acquire the monitor and lock.
    682   Lock(self);
    683   monitor_lock_.Lock(self);
    684   self->GetWaitMutex()->AssertNotHeld(self);
    685 
    686   /*
    687    * We remove our thread from wait set after restoring the count
    688    * and owner fields so the subroutine can check that the calling
    689    * thread owns the monitor. Aside from that, the order of member
    690    * updates is not order sensitive as we hold the pthread mutex.
    691    */
    692   owner_ = self;
    693   lock_count_ = prev_lock_count;
    694   locking_method_ = saved_method;
    695   locking_dex_pc_ = saved_dex_pc;
    696   --num_waiters_;
    697   RemoveFromWaitSet(self);
    698 
    699   monitor_lock_.Unlock(self);
    700 }
    701 
    702 void Monitor::Notify(Thread* self) {
    703   DCHECK(self != nullptr);
    704   MutexLock mu(self, monitor_lock_);
    705   // Make sure that we hold the lock.
    706   if (owner_ != self) {
    707     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
    708     return;
    709   }
    710   // Signal the first waiting thread in the wait set.
    711   while (wait_set_ != nullptr) {
    712     Thread* thread = wait_set_;
    713     wait_set_ = thread->GetWaitNext();
    714     thread->SetWaitNext(nullptr);
    715 
    716     // Check to see if the thread is still waiting.
    717     MutexLock wait_mu(self, *thread->GetWaitMutex());
    718     if (thread->GetWaitMonitor() != nullptr) {
    719       thread->GetWaitConditionVariable()->Signal(self);
    720       return;
    721     }
    722   }
    723 }
    724 
    725 void Monitor::NotifyAll(Thread* self) {
    726   DCHECK(self != nullptr);
    727   MutexLock mu(self, monitor_lock_);
    728   // Make sure that we hold the lock.
    729   if (owner_ != self) {
    730     ThrowIllegalMonitorStateExceptionF("object not locked by thread before notifyAll()");
    731     return;
    732   }
    733   // Signal all threads in the wait set.
    734   while (wait_set_ != nullptr) {
    735     Thread* thread = wait_set_;
    736     wait_set_ = thread->GetWaitNext();
    737     thread->SetWaitNext(nullptr);
    738     thread->Notify();
    739   }
    740 }
    741 
    742 bool Monitor::Deflate(Thread* self, mirror::Object* obj) {
    743   DCHECK(obj != nullptr);
    744   // Don't need volatile since we only deflate with mutators suspended.
    745   LockWord lw(obj->GetLockWord(false));
    746   // If the lock isn't an inflated monitor, then we don't need to deflate anything.
    747   if (lw.GetState() == LockWord::kFatLocked) {
    748     Monitor* monitor = lw.FatLockMonitor();
    749     DCHECK(monitor != nullptr);
    750     MutexLock mu(self, monitor->monitor_lock_);
    751     // Can't deflate if we have anybody waiting on the CV.
    752     if (monitor->num_waiters_ > 0) {
    753       return false;
    754     }
    755     Thread* owner = monitor->owner_;
    756     if (owner != nullptr) {
    757       // Can't deflate if we are locked and have a hash code.
    758       if (monitor->HasHashCode()) {
    759         return false;
    760       }
    761       // Can't deflate if our lock count is too high.
    762       if (monitor->lock_count_ > LockWord::kThinLockMaxCount) {
    763         return false;
    764       }
    765       // Deflate to a thin lock.
    766       LockWord new_lw = LockWord::FromThinLockId(owner->GetThreadId(), monitor->lock_count_,
    767                                                  lw.ReadBarrierState());
    768       // Assume no concurrent read barrier state changes as mutators are suspended.
    769       obj->SetLockWord(new_lw, false);
    770       VLOG(monitor) << "Deflated " << obj << " to thin lock " << owner->GetTid() << " / "
    771           << monitor->lock_count_;
    772     } else if (monitor->HasHashCode()) {
    773       LockWord new_lw = LockWord::FromHashCode(monitor->GetHashCode(), lw.ReadBarrierState());
    774       // Assume no concurrent read barrier state changes as mutators are suspended.
    775       obj->SetLockWord(new_lw, false);
    776       VLOG(monitor) << "Deflated " << obj << " to hash monitor " << monitor->GetHashCode();
    777     } else {
    778       // No lock and no hash, just put an empty lock word inside the object.
    779       LockWord new_lw = LockWord::FromDefault(lw.ReadBarrierState());
    780       // Assume no concurrent read barrier state changes as mutators are suspended.
    781       obj->SetLockWord(new_lw, false);
    782       VLOG(monitor) << "Deflated" << obj << " to empty lock word";
    783     }
    784     // The monitor is deflated, mark the object as null so that we know to delete it during the
    785     // next GC.
    786     monitor->obj_ = GcRoot<mirror::Object>(nullptr);
    787   }
    788   return true;
    789 }
    790 
    791 void Monitor::Inflate(Thread* self, Thread* owner, mirror::Object* obj, int32_t hash_code) {
    792   DCHECK(self != nullptr);
    793   DCHECK(obj != nullptr);
    794   // Allocate and acquire a new monitor.
    795   Monitor* m = MonitorPool::CreateMonitor(self, owner, obj, hash_code);
    796   DCHECK(m != nullptr);
    797   if (m->Install(self)) {
    798     if (owner != nullptr) {
    799       VLOG(monitor) << "monitor: thread" << owner->GetThreadId()
    800           << " created monitor " << m << " for object " << obj;
    801     } else {
    802       VLOG(monitor) << "monitor: Inflate with hashcode " << hash_code
    803           << " created monitor " << m << " for object " << obj;
    804     }
    805     Runtime::Current()->GetMonitorList()->Add(m);
    806     CHECK_EQ(obj->GetLockWord(true).GetState(), LockWord::kFatLocked);
    807   } else {
    808     MonitorPool::ReleaseMonitor(self, m);
    809   }
    810 }
    811 
    812 void Monitor::InflateThinLocked(Thread* self, Handle<mirror::Object> obj, LockWord lock_word,
    813                                 uint32_t hash_code) {
    814   DCHECK_EQ(lock_word.GetState(), LockWord::kThinLocked);
    815   uint32_t owner_thread_id = lock_word.ThinLockOwner();
    816   if (owner_thread_id == self->GetThreadId()) {
    817     // We own the monitor, we can easily inflate it.
    818     Inflate(self, self, obj.Get(), hash_code);
    819   } else {
    820     ThreadList* thread_list = Runtime::Current()->GetThreadList();
    821     // Suspend the owner, inflate. First change to blocked and give up mutator_lock_.
    822     self->SetMonitorEnterObject(obj.Get());
    823     bool timed_out;
    824     Thread* owner;
    825     {
    826       ScopedThreadSuspension sts(self, kBlocked);
    827       owner = thread_list->SuspendThreadByThreadId(owner_thread_id, false, &timed_out);
    828     }
    829     if (owner != nullptr) {
    830       // We succeeded in suspending the thread, check the lock's status didn't change.
    831       lock_word = obj->GetLockWord(true);
    832       if (lock_word.GetState() == LockWord::kThinLocked &&
    833           lock_word.ThinLockOwner() == owner_thread_id) {
    834         // Go ahead and inflate the lock.
    835         Inflate(self, owner, obj.Get(), hash_code);
    836       }
    837       thread_list->Resume(owner, false);
    838     }
    839     self->SetMonitorEnterObject(nullptr);
    840   }
    841 }
    842 
    843 // Fool annotalysis into thinking that the lock on obj is acquired.
    844 static mirror::Object* FakeLock(mirror::Object* obj)
    845     EXCLUSIVE_LOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
    846   return obj;
    847 }
    848 
    849 // Fool annotalysis into thinking that the lock on obj is release.
    850 static mirror::Object* FakeUnlock(mirror::Object* obj)
    851     UNLOCK_FUNCTION(obj) NO_THREAD_SAFETY_ANALYSIS {
    852   return obj;
    853 }
    854 
    855 mirror::Object* Monitor::MonitorEnter(Thread* self, mirror::Object* obj) {
    856   DCHECK(self != nullptr);
    857   DCHECK(obj != nullptr);
    858   self->AssertThreadSuspensionIsAllowable();
    859   obj = FakeLock(obj);
    860   uint32_t thread_id = self->GetThreadId();
    861   size_t contention_count = 0;
    862   StackHandleScope<1> hs(self);
    863   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
    864   while (true) {
    865     LockWord lock_word = h_obj->GetLockWord(true);
    866     switch (lock_word.GetState()) {
    867       case LockWord::kUnlocked: {
    868         LockWord thin_locked(LockWord::FromThinLockId(thread_id, 0, lock_word.ReadBarrierState()));
    869         if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
    870           AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
    871           // CasLockWord enforces more than the acquire ordering we need here.
    872           return h_obj.Get();  // Success!
    873         }
    874         continue;  // Go again.
    875       }
    876       case LockWord::kThinLocked: {
    877         uint32_t owner_thread_id = lock_word.ThinLockOwner();
    878         if (owner_thread_id == thread_id) {
    879           // We own the lock, increase the recursion count.
    880           uint32_t new_count = lock_word.ThinLockCount() + 1;
    881           if (LIKELY(new_count <= LockWord::kThinLockMaxCount)) {
    882             LockWord thin_locked(LockWord::FromThinLockId(thread_id, new_count,
    883                                                           lock_word.ReadBarrierState()));
    884             if (!kUseReadBarrier) {
    885               h_obj->SetLockWord(thin_locked, true);
    886               AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
    887               return h_obj.Get();  // Success!
    888             } else {
    889               // Use CAS to preserve the read barrier state.
    890               if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, thin_locked)) {
    891                 AtraceMonitorLock(self, h_obj.Get(), false /* is_wait */);
    892                 return h_obj.Get();  // Success!
    893               }
    894             }
    895             continue;  // Go again.
    896           } else {
    897             // We'd overflow the recursion count, so inflate the monitor.
    898             InflateThinLocked(self, h_obj, lock_word, 0);
    899           }
    900         } else {
    901           // Contention.
    902           contention_count++;
    903           Runtime* runtime = Runtime::Current();
    904           if (contention_count <= runtime->GetMaxSpinsBeforeThinkLockInflation()) {
    905             // TODO: Consider switching the thread state to kBlocked when we are yielding.
    906             // Use sched_yield instead of NanoSleep since NanoSleep can wait much longer than the
    907             // parameter you pass in. This can cause thread suspension to take excessively long
    908             // and make long pauses. See b/16307460.
    909             sched_yield();
    910           } else {
    911             contention_count = 0;
    912             InflateThinLocked(self, h_obj, lock_word, 0);
    913           }
    914         }
    915         continue;  // Start from the beginning.
    916       }
    917       case LockWord::kFatLocked: {
    918         Monitor* mon = lock_word.FatLockMonitor();
    919         mon->Lock(self);
    920         return h_obj.Get();  // Success!
    921       }
    922       case LockWord::kHashCode:
    923         // Inflate with the existing hashcode.
    924         Inflate(self, nullptr, h_obj.Get(), lock_word.GetHashCode());
    925         continue;  // Start from the beginning.
    926       default: {
    927         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
    928         UNREACHABLE();
    929       }
    930     }
    931   }
    932 }
    933 
    934 bool Monitor::MonitorExit(Thread* self, mirror::Object* obj) {
    935   DCHECK(self != nullptr);
    936   DCHECK(obj != nullptr);
    937   self->AssertThreadSuspensionIsAllowable();
    938   obj = FakeUnlock(obj);
    939   StackHandleScope<1> hs(self);
    940   Handle<mirror::Object> h_obj(hs.NewHandle(obj));
    941   while (true) {
    942     LockWord lock_word = obj->GetLockWord(true);
    943     switch (lock_word.GetState()) {
    944       case LockWord::kHashCode:
    945         // Fall-through.
    946       case LockWord::kUnlocked:
    947         FailedUnlock(h_obj.Get(), self->GetThreadId(), 0u, nullptr);
    948         return false;  // Failure.
    949       case LockWord::kThinLocked: {
    950         uint32_t thread_id = self->GetThreadId();
    951         uint32_t owner_thread_id = lock_word.ThinLockOwner();
    952         if (owner_thread_id != thread_id) {
    953           FailedUnlock(h_obj.Get(), thread_id, owner_thread_id, nullptr);
    954           return false;  // Failure.
    955         } else {
    956           // We own the lock, decrease the recursion count.
    957           LockWord new_lw = LockWord::Default();
    958           if (lock_word.ThinLockCount() != 0) {
    959             uint32_t new_count = lock_word.ThinLockCount() - 1;
    960             new_lw = LockWord::FromThinLockId(thread_id, new_count, lock_word.ReadBarrierState());
    961           } else {
    962             new_lw = LockWord::FromDefault(lock_word.ReadBarrierState());
    963           }
    964           if (!kUseReadBarrier) {
    965             DCHECK_EQ(new_lw.ReadBarrierState(), 0U);
    966             h_obj->SetLockWord(new_lw, true);
    967             AtraceMonitorUnlock();
    968             // Success!
    969             return true;
    970           } else {
    971             // Use CAS to preserve the read barrier state.
    972             if (h_obj->CasLockWordWeakSequentiallyConsistent(lock_word, new_lw)) {
    973               AtraceMonitorUnlock();
    974               // Success!
    975               return true;
    976             }
    977           }
    978           continue;  // Go again.
    979         }
    980       }
    981       case LockWord::kFatLocked: {
    982         Monitor* mon = lock_word.FatLockMonitor();
    983         return mon->Unlock(self);
    984       }
    985       default: {
    986         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
    987         return false;
    988       }
    989     }
    990   }
    991 }
    992 
    993 void Monitor::Wait(Thread* self, mirror::Object *obj, int64_t ms, int32_t ns,
    994                    bool interruptShouldThrow, ThreadState why) {
    995   DCHECK(self != nullptr);
    996   DCHECK(obj != nullptr);
    997   LockWord lock_word = obj->GetLockWord(true);
    998   while (lock_word.GetState() != LockWord::kFatLocked) {
    999     switch (lock_word.GetState()) {
   1000       case LockWord::kHashCode:
   1001         // Fall-through.
   1002       case LockWord::kUnlocked:
   1003         ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
   1004         return;  // Failure.
   1005       case LockWord::kThinLocked: {
   1006         uint32_t thread_id = self->GetThreadId();
   1007         uint32_t owner_thread_id = lock_word.ThinLockOwner();
   1008         if (owner_thread_id != thread_id) {
   1009           ThrowIllegalMonitorStateExceptionF("object not locked by thread before wait()");
   1010           return;  // Failure.
   1011         } else {
   1012           // We own the lock, inflate to enqueue ourself on the Monitor. May fail spuriously so
   1013           // re-load.
   1014           Inflate(self, self, obj, 0);
   1015           lock_word = obj->GetLockWord(true);
   1016         }
   1017         break;
   1018       }
   1019       case LockWord::kFatLocked:  // Unreachable given the loop condition above. Fall-through.
   1020       default: {
   1021         LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
   1022         return;
   1023       }
   1024     }
   1025   }
   1026   Monitor* mon = lock_word.FatLockMonitor();
   1027   mon->Wait(self, ms, ns, interruptShouldThrow, why);
   1028 }
   1029 
   1030 void Monitor::DoNotify(Thread* self, mirror::Object* obj, bool notify_all) {
   1031   DCHECK(self != nullptr);
   1032   DCHECK(obj != nullptr);
   1033   LockWord lock_word = obj->GetLockWord(true);
   1034   switch (lock_word.GetState()) {
   1035     case LockWord::kHashCode:
   1036       // Fall-through.
   1037     case LockWord::kUnlocked:
   1038       ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
   1039       return;  // Failure.
   1040     case LockWord::kThinLocked: {
   1041       uint32_t thread_id = self->GetThreadId();
   1042       uint32_t owner_thread_id = lock_word.ThinLockOwner();
   1043       if (owner_thread_id != thread_id) {
   1044         ThrowIllegalMonitorStateExceptionF("object not locked by thread before notify()");
   1045         return;  // Failure.
   1046       } else {
   1047         // We own the lock but there's no Monitor and therefore no waiters.
   1048         return;  // Success.
   1049       }
   1050     }
   1051     case LockWord::kFatLocked: {
   1052       Monitor* mon = lock_word.FatLockMonitor();
   1053       if (notify_all) {
   1054         mon->NotifyAll(self);
   1055       } else {
   1056         mon->Notify(self);
   1057       }
   1058       return;  // Success.
   1059     }
   1060     default: {
   1061       LOG(FATAL) << "Invalid monitor state " << lock_word.GetState();
   1062       return;
   1063     }
   1064   }
   1065 }
   1066 
   1067 uint32_t Monitor::GetLockOwnerThreadId(mirror::Object* obj) {
   1068   DCHECK(obj != nullptr);
   1069   LockWord lock_word = obj->GetLockWord(true);
   1070   switch (lock_word.GetState()) {
   1071     case LockWord::kHashCode:
   1072       // Fall-through.
   1073     case LockWord::kUnlocked:
   1074       return ThreadList::kInvalidThreadId;
   1075     case LockWord::kThinLocked:
   1076       return lock_word.ThinLockOwner();
   1077     case LockWord::kFatLocked: {
   1078       Monitor* mon = lock_word.FatLockMonitor();
   1079       return mon->GetOwnerThreadId();
   1080     }
   1081     default: {
   1082       LOG(FATAL) << "Unreachable";
   1083       UNREACHABLE();
   1084     }
   1085   }
   1086 }
   1087 
   1088 void Monitor::DescribeWait(std::ostream& os, const Thread* thread) {
   1089   // Determine the wait message and object we're waiting or blocked upon.
   1090   mirror::Object* pretty_object = nullptr;
   1091   const char* wait_message = nullptr;
   1092   uint32_t lock_owner = ThreadList::kInvalidThreadId;
   1093   ThreadState state = thread->GetState();
   1094   if (state == kWaiting || state == kTimedWaiting || state == kSleeping) {
   1095     wait_message = (state == kSleeping) ? "  - sleeping on " : "  - waiting on ";
   1096     Thread* self = Thread::Current();
   1097     MutexLock mu(self, *thread->GetWaitMutex());
   1098     Monitor* monitor = thread->GetWaitMonitor();
   1099     if (monitor != nullptr) {
   1100       pretty_object = monitor->GetObject();
   1101     }
   1102   } else if (state == kBlocked) {
   1103     wait_message = "  - waiting to lock ";
   1104     pretty_object = thread->GetMonitorEnterObject();
   1105     if (pretty_object != nullptr) {
   1106       lock_owner = pretty_object->GetLockOwnerThreadId();
   1107     }
   1108   }
   1109 
   1110   if (wait_message != nullptr) {
   1111     if (pretty_object == nullptr) {
   1112       os << wait_message << "an unknown object";
   1113     } else {
   1114       if ((pretty_object->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
   1115           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
   1116         // Getting the identity hashcode here would result in lock inflation and suspension of the
   1117         // current thread, which isn't safe if this is the only runnable thread.
   1118         os << wait_message << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
   1119                                            reinterpret_cast<intptr_t>(pretty_object),
   1120                                            PrettyTypeOf(pretty_object).c_str());
   1121       } else {
   1122         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
   1123         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
   1124         // suspension and move pretty_object.
   1125         const std::string pretty_type(PrettyTypeOf(pretty_object));
   1126         os << wait_message << StringPrintf("<0x%08x> (a %s)", pretty_object->IdentityHashCode(),
   1127                                            pretty_type.c_str());
   1128       }
   1129     }
   1130     // - waiting to lock <0x613f83d8> (a java.lang.Object) held by thread 5
   1131     if (lock_owner != ThreadList::kInvalidThreadId) {
   1132       os << " held by thread " << lock_owner;
   1133     }
   1134     os << "\n";
   1135   }
   1136 }
   1137 
   1138 mirror::Object* Monitor::GetContendedMonitor(Thread* thread) {
   1139   // This is used to implement JDWP's ThreadReference.CurrentContendedMonitor, and has a bizarre
   1140   // definition of contended that includes a monitor a thread is trying to enter...
   1141   mirror::Object* result = thread->GetMonitorEnterObject();
   1142   if (result == nullptr) {
   1143     // ...but also a monitor that the thread is waiting on.
   1144     MutexLock mu(Thread::Current(), *thread->GetWaitMutex());
   1145     Monitor* monitor = thread->GetWaitMonitor();
   1146     if (monitor != nullptr) {
   1147       result = monitor->GetObject();
   1148     }
   1149   }
   1150   return result;
   1151 }
   1152 
   1153 void Monitor::VisitLocks(StackVisitor* stack_visitor, void (*callback)(mirror::Object*, void*),
   1154                          void* callback_context, bool abort_on_failure) {
   1155   ArtMethod* m = stack_visitor->GetMethod();
   1156   CHECK(m != nullptr);
   1157 
   1158   // Native methods are an easy special case.
   1159   // TODO: use the JNI implementation's table of explicit MonitorEnter calls and dump those too.
   1160   if (m->IsNative()) {
   1161     if (m->IsSynchronized()) {
   1162       mirror::Object* jni_this =
   1163           stack_visitor->GetCurrentHandleScope(sizeof(void*))->GetReference(0);
   1164       callback(jni_this, callback_context);
   1165     }
   1166     return;
   1167   }
   1168 
   1169   // Proxy methods should not be synchronized.
   1170   if (m->IsProxyMethod()) {
   1171     CHECK(!m->IsSynchronized());
   1172     return;
   1173   }
   1174 
   1175   // Is there any reason to believe there's any synchronization in this method?
   1176   const DexFile::CodeItem* code_item = m->GetCodeItem();
   1177   CHECK(code_item != nullptr) << PrettyMethod(m);
   1178   if (code_item->tries_size_ == 0) {
   1179     return;  // No "tries" implies no synchronization, so no held locks to report.
   1180   }
   1181 
   1182   // Get the dex pc. If abort_on_failure is false, GetDexPc will not abort in the case it cannot
   1183   // find the dex pc, and instead return kDexNoIndex. Then bail out, as it indicates we have an
   1184   // inconsistent stack anyways.
   1185   uint32_t dex_pc = stack_visitor->GetDexPc(abort_on_failure);
   1186   if (!abort_on_failure && dex_pc == DexFile::kDexNoIndex) {
   1187     LOG(ERROR) << "Could not find dex_pc for " << PrettyMethod(m);
   1188     return;
   1189   }
   1190 
   1191   // Ask the verifier for the dex pcs of all the monitor-enter instructions corresponding to
   1192   // the locks held in this stack frame.
   1193   std::vector<uint32_t> monitor_enter_dex_pcs;
   1194   verifier::MethodVerifier::FindLocksAtDexPc(m, dex_pc, &monitor_enter_dex_pcs);
   1195   for (uint32_t monitor_dex_pc : monitor_enter_dex_pcs) {
   1196     // The verifier works in terms of the dex pcs of the monitor-enter instructions.
   1197     // We want the registers used by those instructions (so we can read the values out of them).
   1198     const Instruction* monitor_enter_instruction =
   1199         Instruction::At(&code_item->insns_[monitor_dex_pc]);
   1200 
   1201     // Quick sanity check.
   1202     CHECK_EQ(monitor_enter_instruction->Opcode(), Instruction::MONITOR_ENTER)
   1203       << "expected monitor-enter @" << monitor_dex_pc << "; was "
   1204       << reinterpret_cast<const void*>(monitor_enter_instruction);
   1205 
   1206     uint16_t monitor_register = monitor_enter_instruction->VRegA();
   1207     uint32_t value;
   1208     bool success = stack_visitor->GetVReg(m, monitor_register, kReferenceVReg, &value);
   1209     CHECK(success) << "Failed to read v" << monitor_register << " of kind "
   1210                    << kReferenceVReg << " in method " << PrettyMethod(m);
   1211     mirror::Object* o = reinterpret_cast<mirror::Object*>(value);
   1212     callback(o, callback_context);
   1213   }
   1214 }
   1215 
   1216 bool Monitor::IsValidLockWord(LockWord lock_word) {
   1217   switch (lock_word.GetState()) {
   1218     case LockWord::kUnlocked:
   1219       // Nothing to check.
   1220       return true;
   1221     case LockWord::kThinLocked:
   1222       // Basic sanity check of owner.
   1223       return lock_word.ThinLockOwner() != ThreadList::kInvalidThreadId;
   1224     case LockWord::kFatLocked: {
   1225       // Check the  monitor appears in the monitor list.
   1226       Monitor* mon = lock_word.FatLockMonitor();
   1227       MonitorList* list = Runtime::Current()->GetMonitorList();
   1228       MutexLock mu(Thread::Current(), list->monitor_list_lock_);
   1229       for (Monitor* list_mon : list->list_) {
   1230         if (mon == list_mon) {
   1231           return true;  // Found our monitor.
   1232         }
   1233       }
   1234       return false;  // Fail - unowned monitor in an object.
   1235     }
   1236     case LockWord::kHashCode:
   1237       return true;
   1238     default:
   1239       LOG(FATAL) << "Unreachable";
   1240       UNREACHABLE();
   1241   }
   1242 }
   1243 
   1244 bool Monitor::IsLocked() SHARED_REQUIRES(Locks::mutator_lock_) {
   1245   MutexLock mu(Thread::Current(), monitor_lock_);
   1246   return owner_ != nullptr;
   1247 }
   1248 
   1249 void Monitor::TranslateLocation(ArtMethod* method,
   1250                                 uint32_t dex_pc,
   1251                                 const char** source_file,
   1252                                 int32_t* line_number) {
   1253   // If method is null, location is unknown
   1254   if (method == nullptr) {
   1255     *source_file = "";
   1256     *line_number = 0;
   1257     return;
   1258   }
   1259   *source_file = method->GetDeclaringClassSourceFile();
   1260   if (*source_file == nullptr) {
   1261     *source_file = "";
   1262   }
   1263   *line_number = method->GetLineNumFromDexPC(dex_pc);
   1264 }
   1265 
   1266 uint32_t Monitor::GetOwnerThreadId() {
   1267   MutexLock mu(Thread::Current(), monitor_lock_);
   1268   Thread* owner = owner_;
   1269   if (owner != nullptr) {
   1270     return owner->GetThreadId();
   1271   } else {
   1272     return ThreadList::kInvalidThreadId;
   1273   }
   1274 }
   1275 
   1276 MonitorList::MonitorList()
   1277     : allow_new_monitors_(true), monitor_list_lock_("MonitorList lock", kMonitorListLock),
   1278       monitor_add_condition_("MonitorList disallow condition", monitor_list_lock_) {
   1279 }
   1280 
   1281 MonitorList::~MonitorList() {
   1282   Thread* self = Thread::Current();
   1283   MutexLock mu(self, monitor_list_lock_);
   1284   // Release all monitors to the pool.
   1285   // TODO: Is it an invariant that *all* open monitors are in the list? Then we could
   1286   // clear faster in the pool.
   1287   MonitorPool::ReleaseMonitors(self, &list_);
   1288 }
   1289 
   1290 void MonitorList::DisallowNewMonitors() {
   1291   CHECK(!kUseReadBarrier);
   1292   MutexLock mu(Thread::Current(), monitor_list_lock_);
   1293   allow_new_monitors_ = false;
   1294 }
   1295 
   1296 void MonitorList::AllowNewMonitors() {
   1297   CHECK(!kUseReadBarrier);
   1298   Thread* self = Thread::Current();
   1299   MutexLock mu(self, monitor_list_lock_);
   1300   allow_new_monitors_ = true;
   1301   monitor_add_condition_.Broadcast(self);
   1302 }
   1303 
   1304 void MonitorList::BroadcastForNewMonitors() {
   1305   CHECK(kUseReadBarrier);
   1306   Thread* self = Thread::Current();
   1307   MutexLock mu(self, monitor_list_lock_);
   1308   monitor_add_condition_.Broadcast(self);
   1309 }
   1310 
   1311 void MonitorList::Add(Monitor* m) {
   1312   Thread* self = Thread::Current();
   1313   MutexLock mu(self, monitor_list_lock_);
   1314   while (UNLIKELY((!kUseReadBarrier && !allow_new_monitors_) ||
   1315                   (kUseReadBarrier && !self->GetWeakRefAccessEnabled()))) {
   1316     monitor_add_condition_.WaitHoldingLocks(self);
   1317   }
   1318   list_.push_front(m);
   1319 }
   1320 
   1321 void MonitorList::SweepMonitorList(IsMarkedVisitor* visitor) {
   1322   Thread* self = Thread::Current();
   1323   MutexLock mu(self, monitor_list_lock_);
   1324   for (auto it = list_.begin(); it != list_.end(); ) {
   1325     Monitor* m = *it;
   1326     // Disable the read barrier in GetObject() as this is called by GC.
   1327     mirror::Object* obj = m->GetObject<kWithoutReadBarrier>();
   1328     // The object of a monitor can be null if we have deflated it.
   1329     mirror::Object* new_obj = obj != nullptr ? visitor->IsMarked(obj) : nullptr;
   1330     if (new_obj == nullptr) {
   1331       VLOG(monitor) << "freeing monitor " << m << " belonging to unmarked object "
   1332                     << obj;
   1333       MonitorPool::ReleaseMonitor(self, m);
   1334       it = list_.erase(it);
   1335     } else {
   1336       m->SetObject(new_obj);
   1337       ++it;
   1338     }
   1339   }
   1340 }
   1341 
   1342 class MonitorDeflateVisitor : public IsMarkedVisitor {
   1343  public:
   1344   MonitorDeflateVisitor() : self_(Thread::Current()), deflate_count_(0) {}
   1345 
   1346   virtual mirror::Object* IsMarked(mirror::Object* object) OVERRIDE
   1347       SHARED_REQUIRES(Locks::mutator_lock_) {
   1348     if (Monitor::Deflate(self_, object)) {
   1349       DCHECK_NE(object->GetLockWord(true).GetState(), LockWord::kFatLocked);
   1350       ++deflate_count_;
   1351       // If we deflated, return null so that the monitor gets removed from the array.
   1352       return nullptr;
   1353     }
   1354     return object;  // Monitor was not deflated.
   1355   }
   1356 
   1357   Thread* const self_;
   1358   size_t deflate_count_;
   1359 };
   1360 
   1361 size_t MonitorList::DeflateMonitors() {
   1362   MonitorDeflateVisitor visitor;
   1363   Locks::mutator_lock_->AssertExclusiveHeld(visitor.self_);
   1364   SweepMonitorList(&visitor);
   1365   return visitor.deflate_count_;
   1366 }
   1367 
   1368 MonitorInfo::MonitorInfo(mirror::Object* obj) : owner_(nullptr), entry_count_(0) {
   1369   DCHECK(obj != nullptr);
   1370   LockWord lock_word = obj->GetLockWord(true);
   1371   switch (lock_word.GetState()) {
   1372     case LockWord::kUnlocked:
   1373       // Fall-through.
   1374     case LockWord::kForwardingAddress:
   1375       // Fall-through.
   1376     case LockWord::kHashCode:
   1377       break;
   1378     case LockWord::kThinLocked:
   1379       owner_ = Runtime::Current()->GetThreadList()->FindThreadByThreadId(lock_word.ThinLockOwner());
   1380       entry_count_ = 1 + lock_word.ThinLockCount();
   1381       // Thin locks have no waiters.
   1382       break;
   1383     case LockWord::kFatLocked: {
   1384       Monitor* mon = lock_word.FatLockMonitor();
   1385       owner_ = mon->owner_;
   1386       entry_count_ = 1 + mon->lock_count_;
   1387       for (Thread* waiter = mon->wait_set_; waiter != nullptr; waiter = waiter->GetWaitNext()) {
   1388         waiters_.push_back(waiter);
   1389       }
   1390       break;
   1391     }
   1392   }
   1393 }
   1394 
   1395 }  // namespace art
   1396