Home | History | Annotate | Download | only in dex
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "dex_to_dex_compiler.h"
     18 
     19 #include "art_field-inl.h"
     20 #include "art_method-inl.h"
     21 #include "base/logging.h"
     22 #include "base/mutex.h"
     23 #include "compiled_method.h"
     24 #include "dex_file-inl.h"
     25 #include "dex_instruction-inl.h"
     26 #include "driver/compiler_driver.h"
     27 #include "driver/dex_compilation_unit.h"
     28 #include "mirror/class-inl.h"
     29 #include "mirror/dex_cache.h"
     30 #include "thread-inl.h"
     31 
     32 namespace art {
     33 namespace optimizer {
     34 
     35 // Controls quickening activation.
     36 const bool kEnableQuickening = true;
     37 // Control check-cast elision.
     38 const bool kEnableCheckCastEllision = true;
     39 
     40 struct QuickenedInfo {
     41   QuickenedInfo(uint32_t pc, uint16_t index) : dex_pc(pc), dex_member_index(index) {}
     42 
     43   uint32_t dex_pc;
     44   uint16_t dex_member_index;
     45 };
     46 
     47 class DexCompiler {
     48  public:
     49   DexCompiler(art::CompilerDriver& compiler,
     50               const DexCompilationUnit& unit,
     51               DexToDexCompilationLevel dex_to_dex_compilation_level)
     52     : driver_(compiler),
     53       unit_(unit),
     54       dex_to_dex_compilation_level_(dex_to_dex_compilation_level) {}
     55 
     56   ~DexCompiler() {}
     57 
     58   void Compile();
     59 
     60   const std::vector<QuickenedInfo>& GetQuickenedInfo() const {
     61     return quickened_info_;
     62   }
     63 
     64  private:
     65   const DexFile& GetDexFile() const {
     66     return *unit_.GetDexFile();
     67   }
     68 
     69   bool PerformOptimizations() const {
     70     return dex_to_dex_compilation_level_ >= DexToDexCompilationLevel::kOptimize;
     71   }
     72 
     73   // Compiles a RETURN-VOID into a RETURN-VOID-BARRIER within a constructor where
     74   // a barrier is required.
     75   void CompileReturnVoid(Instruction* inst, uint32_t dex_pc);
     76 
     77   // Compiles a CHECK-CAST into 2 NOP instructions if it is known to be safe. In
     78   // this case, returns the second NOP instruction pointer. Otherwise, returns
     79   // the given "inst".
     80   Instruction* CompileCheckCast(Instruction* inst, uint32_t dex_pc);
     81 
     82   // Compiles a field access into a quick field access.
     83   // The field index is replaced by an offset within an Object where we can read
     84   // from / write to this field. Therefore, this does not involve any resolution
     85   // at runtime.
     86   // Since the field index is encoded with 16 bits, we can replace it only if the
     87   // field offset can be encoded with 16 bits too.
     88   void CompileInstanceFieldAccess(Instruction* inst, uint32_t dex_pc,
     89                                   Instruction::Code new_opcode, bool is_put);
     90 
     91   // Compiles a virtual method invocation into a quick virtual method invocation.
     92   // The method index is replaced by the vtable index where the corresponding
     93   // AbstractMethod can be found. Therefore, this does not involve any resolution
     94   // at runtime.
     95   // Since the method index is encoded with 16 bits, we can replace it only if the
     96   // vtable index can be encoded with 16 bits too.
     97   void CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
     98                             Instruction::Code new_opcode, bool is_range);
     99 
    100   CompilerDriver& driver_;
    101   const DexCompilationUnit& unit_;
    102   const DexToDexCompilationLevel dex_to_dex_compilation_level_;
    103 
    104   // Filled by the compiler when quickening, in order to encode that information
    105   // in the .oat file. The runtime will use that information to get to the original
    106   // opcodes.
    107   std::vector<QuickenedInfo> quickened_info_;
    108 
    109   DISALLOW_COPY_AND_ASSIGN(DexCompiler);
    110 };
    111 
    112 void DexCompiler::Compile() {
    113   DCHECK_GE(dex_to_dex_compilation_level_, DexToDexCompilationLevel::kRequired);
    114   const DexFile::CodeItem* code_item = unit_.GetCodeItem();
    115   const uint16_t* insns = code_item->insns_;
    116   const uint32_t insns_size = code_item->insns_size_in_code_units_;
    117   Instruction* inst = const_cast<Instruction*>(Instruction::At(insns));
    118 
    119   for (uint32_t dex_pc = 0; dex_pc < insns_size;
    120        inst = const_cast<Instruction*>(inst->Next()), dex_pc = inst->GetDexPc(insns)) {
    121     switch (inst->Opcode()) {
    122       case Instruction::RETURN_VOID:
    123         CompileReturnVoid(inst, dex_pc);
    124         break;
    125 
    126       case Instruction::CHECK_CAST:
    127         inst = CompileCheckCast(inst, dex_pc);
    128         break;
    129 
    130       case Instruction::IGET:
    131         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_QUICK, false);
    132         break;
    133 
    134       case Instruction::IGET_WIDE:
    135         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_WIDE_QUICK, false);
    136         break;
    137 
    138       case Instruction::IGET_OBJECT:
    139         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_OBJECT_QUICK, false);
    140         break;
    141 
    142       case Instruction::IGET_BOOLEAN:
    143         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BOOLEAN_QUICK, false);
    144         break;
    145 
    146       case Instruction::IGET_BYTE:
    147         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_BYTE_QUICK, false);
    148         break;
    149 
    150       case Instruction::IGET_CHAR:
    151         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_CHAR_QUICK, false);
    152         break;
    153 
    154       case Instruction::IGET_SHORT:
    155         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IGET_SHORT_QUICK, false);
    156         break;
    157 
    158       case Instruction::IPUT:
    159         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_QUICK, true);
    160         break;
    161 
    162       case Instruction::IPUT_BOOLEAN:
    163         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BOOLEAN_QUICK, true);
    164         break;
    165 
    166       case Instruction::IPUT_BYTE:
    167         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_BYTE_QUICK, true);
    168         break;
    169 
    170       case Instruction::IPUT_CHAR:
    171         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_CHAR_QUICK, true);
    172         break;
    173 
    174       case Instruction::IPUT_SHORT:
    175         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_SHORT_QUICK, true);
    176         break;
    177 
    178       case Instruction::IPUT_WIDE:
    179         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_WIDE_QUICK, true);
    180         break;
    181 
    182       case Instruction::IPUT_OBJECT:
    183         CompileInstanceFieldAccess(inst, dex_pc, Instruction::IPUT_OBJECT_QUICK, true);
    184         break;
    185 
    186       case Instruction::INVOKE_VIRTUAL:
    187         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_QUICK, false);
    188         break;
    189 
    190       case Instruction::INVOKE_VIRTUAL_RANGE:
    191         CompileInvokeVirtual(inst, dex_pc, Instruction::INVOKE_VIRTUAL_RANGE_QUICK, true);
    192         break;
    193 
    194       default:
    195         // Nothing to do.
    196         break;
    197     }
    198   }
    199 }
    200 
    201 void DexCompiler::CompileReturnVoid(Instruction* inst, uint32_t dex_pc) {
    202   DCHECK_EQ(inst->Opcode(), Instruction::RETURN_VOID);
    203   if (unit_.IsConstructor()) {
    204     // Are we compiling a non clinit constructor which needs a barrier ?
    205     if (!unit_.IsStatic() &&
    206         driver_.RequiresConstructorBarrier(Thread::Current(), unit_.GetDexFile(),
    207                                            unit_.GetClassDefIndex())) {
    208       return;
    209     }
    210   }
    211   // Replace RETURN_VOID by RETURN_VOID_NO_BARRIER.
    212   VLOG(compiler) << "Replacing " << Instruction::Name(inst->Opcode())
    213                  << " by " << Instruction::Name(Instruction::RETURN_VOID_NO_BARRIER)
    214                  << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    215                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    216   inst->SetOpcode(Instruction::RETURN_VOID_NO_BARRIER);
    217 }
    218 
    219 Instruction* DexCompiler::CompileCheckCast(Instruction* inst, uint32_t dex_pc) {
    220   if (!kEnableCheckCastEllision || !PerformOptimizations()) {
    221     return inst;
    222   }
    223   if (!driver_.IsSafeCast(&unit_, dex_pc)) {
    224     return inst;
    225   }
    226   // Ok, this is a safe cast. Since the "check-cast" instruction size is 2 code
    227   // units and a "nop" instruction size is 1 code unit, we need to replace it by
    228   // 2 consecutive NOP instructions.
    229   // Because the caller loops over instructions by calling Instruction::Next onto
    230   // the current instruction, we need to return the 2nd NOP instruction. Indeed,
    231   // its next instruction is the former check-cast's next instruction.
    232   VLOG(compiler) << "Removing " << Instruction::Name(inst->Opcode())
    233                  << " by replacing it with 2 NOPs at dex pc "
    234                  << StringPrintf("0x%x", dex_pc) << " in method "
    235                  << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    236   // We are modifying 4 consecutive bytes.
    237   inst->SetOpcode(Instruction::NOP);
    238   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    239   // Get to next instruction which is the second half of check-cast and replace
    240   // it by a NOP.
    241   inst = const_cast<Instruction*>(inst->Next());
    242   inst->SetOpcode(Instruction::NOP);
    243   inst->SetVRegA_10x(0u);  // keep compliant with verifier.
    244   return inst;
    245 }
    246 
    247 void DexCompiler::CompileInstanceFieldAccess(Instruction* inst,
    248                                              uint32_t dex_pc,
    249                                              Instruction::Code new_opcode,
    250                                              bool is_put) {
    251   if (!kEnableQuickening || !PerformOptimizations()) {
    252     return;
    253   }
    254   uint32_t field_idx = inst->VRegC_22c();
    255   MemberOffset field_offset(0u);
    256   bool is_volatile;
    257   bool fast_path = driver_.ComputeInstanceFieldInfo(field_idx, &unit_, is_put,
    258                                                     &field_offset, &is_volatile);
    259   if (fast_path && !is_volatile && IsUint<16>(field_offset.Int32Value())) {
    260     VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    261                    << " to " << Instruction::Name(new_opcode)
    262                    << " by replacing field index " << field_idx
    263                    << " by field offset " << field_offset.Int32Value()
    264                    << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    265                    << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    266     // We are modifying 4 consecutive bytes.
    267     inst->SetOpcode(new_opcode);
    268     // Replace field index by field offset.
    269     inst->SetVRegC_22c(static_cast<uint16_t>(field_offset.Int32Value()));
    270     quickened_info_.push_back(QuickenedInfo(dex_pc, field_idx));
    271   }
    272 }
    273 
    274 void DexCompiler::CompileInvokeVirtual(Instruction* inst, uint32_t dex_pc,
    275                                        Instruction::Code new_opcode, bool is_range) {
    276   if (!kEnableQuickening || !PerformOptimizations()) {
    277     return;
    278   }
    279   uint32_t method_idx = is_range ? inst->VRegB_3rc() : inst->VRegB_35c();
    280   MethodReference target_method(&GetDexFile(), method_idx);
    281   InvokeType invoke_type = kVirtual;
    282   InvokeType original_invoke_type = invoke_type;
    283   int vtable_idx;
    284   uintptr_t direct_code;
    285   uintptr_t direct_method;
    286   // TODO: support devirtualization.
    287   const bool kEnableDevirtualization = false;
    288   bool fast_path = driver_.ComputeInvokeInfo(&unit_, dex_pc,
    289                                              false, kEnableDevirtualization,
    290                                              &invoke_type,
    291                                              &target_method, &vtable_idx,
    292                                              &direct_code, &direct_method);
    293   if (fast_path && original_invoke_type == invoke_type) {
    294     if (vtable_idx >= 0 && IsUint<16>(vtable_idx)) {
    295       VLOG(compiler) << "Quickening " << Instruction::Name(inst->Opcode())
    296                      << "(" << PrettyMethod(method_idx, GetDexFile(), true) << ")"
    297                      << " to " << Instruction::Name(new_opcode)
    298                      << " by replacing method index " << method_idx
    299                      << " by vtable index " << vtable_idx
    300                      << " at dex pc " << StringPrintf("0x%x", dex_pc) << " in method "
    301                      << PrettyMethod(unit_.GetDexMethodIndex(), GetDexFile(), true);
    302       // We are modifying 4 consecutive bytes.
    303       inst->SetOpcode(new_opcode);
    304       // Replace method index by vtable index.
    305       if (is_range) {
    306         inst->SetVRegB_3rc(static_cast<uint16_t>(vtable_idx));
    307       } else {
    308         inst->SetVRegB_35c(static_cast<uint16_t>(vtable_idx));
    309       }
    310       quickened_info_.push_back(QuickenedInfo(dex_pc, method_idx));
    311     }
    312   }
    313 }
    314 
    315 CompiledMethod* ArtCompileDEX(
    316     CompilerDriver* driver,
    317     const DexFile::CodeItem* code_item,
    318     uint32_t access_flags,
    319     InvokeType invoke_type ATTRIBUTE_UNUSED,
    320     uint16_t class_def_idx,
    321     uint32_t method_idx,
    322     jobject class_loader,
    323     const DexFile& dex_file,
    324     DexToDexCompilationLevel dex_to_dex_compilation_level) {
    325   DCHECK(driver != nullptr);
    326   if (dex_to_dex_compilation_level != DexToDexCompilationLevel::kDontDexToDexCompile) {
    327     ScopedObjectAccess soa(Thread::Current());
    328     StackHandleScope<1> hs(soa.Self());
    329     ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
    330     art::DexCompilationUnit unit(
    331         class_loader,
    332         class_linker,
    333         dex_file,
    334         code_item,
    335         class_def_idx,
    336         method_idx,
    337         access_flags,
    338         driver->GetVerifiedMethod(&dex_file, method_idx),
    339         hs.NewHandle(class_linker->FindDexCache(soa.Self(), dex_file)));
    340     art::optimizer::DexCompiler dex_compiler(*driver, unit, dex_to_dex_compilation_level);
    341     dex_compiler.Compile();
    342     if (dex_compiler.GetQuickenedInfo().empty()) {
    343       // No need to create a CompiledMethod if there are no quickened opcodes.
    344       return nullptr;
    345     }
    346 
    347     // Create a `CompiledMethod`, with the quickened information in the vmap table.
    348     Leb128EncodingVector<> builder;
    349     for (QuickenedInfo info : dex_compiler.GetQuickenedInfo()) {
    350       builder.PushBackUnsigned(info.dex_pc);
    351       builder.PushBackUnsigned(info.dex_member_index);
    352     }
    353     InstructionSet instruction_set = driver->GetInstructionSet();
    354     if (instruction_set == kThumb2) {
    355       // Don't use the thumb2 instruction set to avoid the one off code delta.
    356       instruction_set = kArm;
    357     }
    358     return CompiledMethod::SwapAllocCompiledMethod(
    359         driver,
    360         instruction_set,
    361         ArrayRef<const uint8_t>(),                   // no code
    362         0,
    363         0,
    364         0,
    365         ArrayRef<const SrcMapElem>(),                // src_mapping_table
    366         ArrayRef<const uint8_t>(builder.GetData()),  // vmap_table
    367         ArrayRef<const uint8_t>(),                   // cfi data
    368         ArrayRef<const LinkerPatch>());
    369   }
    370   return nullptr;
    371 }
    372 
    373 }  // namespace optimizer
    374 
    375 }  // namespace art
    376