Home | History | Annotate | Download | only in src
      1 /*
      2  ** Copyright 2003-2010, VisualOn, Inc.
      3  **
      4  ** Licensed under the Apache License, Version 2.0 (the "License");
      5  ** you may not use this file except in compliance with the License.
      6  ** You may obtain a copy of the License at
      7  **
      8  **     http://www.apache.org/licenses/LICENSE-2.0
      9  **
     10  ** Unless required by applicable law or agreed to in writing, software
     11  ** distributed under the License is distributed on an "AS IS" BASIS,
     12  ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  ** See the License for the specific language governing permissions and
     14  ** limitations under the License.
     15  */
     16 
     17 /***********************************************************************
     18 *  File: az_isp.c
     19 *
     20 *  Description:
     21 *-----------------------------------------------------------------------*
     22 * Compute the ISPs from  the LPC coefficients  (order=M)                *
     23 *-----------------------------------------------------------------------*
     24 *                                                                       *
     25 * The ISPs are the roots of the two polynomials F1(z) and F2(z)         *
     26 * defined as                                                            *
     27 *               F1(z) = A(z) + z^-m A(z^-1)                             *
     28 *  and          F2(z) = A(z) - z^-m A(z^-1)                             *
     29 *                                                                       *
     30 * For a even order m=2n, F1(z) has M/2 conjugate roots on the unit      *
     31 * circle and F2(z) has M/2-1 conjugate roots on the unit circle in      *
     32 * addition to two roots at 0 and pi.                                    *
     33 *                                                                       *
     34 * For a 16th order LP analysis, F1(z) and F2(z) can be written as       *
     35 *                                                                       *
     36 *   F1(z) = (1 + a[M])   PRODUCT  (1 - 2 cos(w_i) z^-1 + z^-2 )         *
     37 *                        i=0,2,4,6,8,10,12,14                           *
     38 *                                                                       *
     39 *   F2(z) = (1 - a[M]) (1 - z^-2) PRODUCT (1 - 2 cos(w_i) z^-1 + z^-2 ) *
     40 *                                 i=1,3,5,7,9,11,13                     *
     41 *                                                                       *
     42 * The ISPs are the M-1 frequencies w_i, i=0...M-2 plus the last         *
     43 * predictor coefficient a[M].                                           *
     44 *-----------------------------------------------------------------------*
     45 
     46 ************************************************************************/
     47 
     48 #include "typedef.h"
     49 #include "basic_op.h"
     50 #include "oper_32b.h"
     51 #include "stdio.h"
     52 #include "grid100.tab"
     53 
     54 #define M   16
     55 #define NC  (M/2)
     56 
     57 /* local function */
     58 static __inline Word16 Chebps2(Word16 x, Word16 f[], Word32 n);
     59 
     60 void Az_isp(
     61         Word16 a[],                           /* (i) Q12 : predictor coefficients                 */
     62         Word16 isp[],                         /* (o) Q15 : Immittance spectral pairs              */
     63         Word16 old_isp[]                      /* (i)     : old isp[] (in case not found M roots)  */
     64        )
     65 {
     66     Word32 i, j, nf, ip, order;
     67     Word16 xlow, ylow, xhigh, yhigh, xmid, ymid, xint;
     68     Word16 x, y, sign, exp;
     69     Word16 *coef;
     70     Word16 f1[NC + 1], f2[NC];
     71     Word32 t0;
     72     /*-------------------------------------------------------------*
     73      * find the sum and diff polynomials F1(z) and F2(z)           *
     74      *      F1(z) = [A(z) + z^M A(z^-1)]                           *
     75      *      F2(z) = [A(z) - z^M A(z^-1)]/(1-z^-2)                  *
     76      *                                                             *
     77      * for (i=0; i<NC; i++)                                        *
     78      * {                                                           *
     79      *   f1[i] = a[i] + a[M-i];                                    *
     80      *   f2[i] = a[i] - a[M-i];                                    *
     81      * }                                                           *
     82      * f1[NC] = 2.0*a[NC];                                         *
     83      *                                                             *
     84      * for (i=2; i<NC; i++)            Divide by (1-z^-2)          *
     85      *   f2[i] += f2[i-2];                                         *
     86      *-------------------------------------------------------------*/
     87     for (i = 0; i < NC; i++)
     88     {
     89         t0 = a[i] << 15;
     90         f1[i] = vo_round(t0 + (a[M - i] << 15));        /* =(a[i]+a[M-i])/2 */
     91         f2[i] = vo_round(t0 - (a[M - i] << 15));        /* =(a[i]-a[M-i])/2 */
     92     }
     93     f1[NC] = a[NC];
     94     for (i = 2; i < NC; i++)               /* Divide by (1-z^-2) */
     95         f2[i] = add1(f2[i], f2[i - 2]);
     96 
     97     /*---------------------------------------------------------------------*
     98      * Find the ISPs (roots of F1(z) and F2(z) ) using the                 *
     99      * Chebyshev polynomial evaluation.                                    *
    100      * The roots of F1(z) and F2(z) are alternatively searched.            *
    101      * We start by finding the first root of F1(z) then we switch          *
    102      * to F2(z) then back to F1(z) and so on until all roots are found.    *
    103      *                                                                     *
    104      *  - Evaluate Chebyshev pol. at grid points and check for sign change.*
    105      *  - If sign change track the root by subdividing the interval        *
    106      *    2 times and ckecking sign change.                                *
    107      *---------------------------------------------------------------------*/
    108     nf = 0;                                  /* number of found frequencies */
    109     ip = 0;                                  /* indicator for f1 or f2      */
    110     coef = f1;
    111     order = NC;
    112     xlow = vogrid[0];
    113     ylow = Chebps2(xlow, coef, order);
    114     j = 0;
    115     while ((nf < M - 1) && (j < GRID_POINTS))
    116     {
    117         j ++;
    118         xhigh = xlow;
    119         yhigh = ylow;
    120         xlow = vogrid[j];
    121         ylow = Chebps2(xlow, coef, order);
    122         if ((ylow * yhigh) <= (Word32) 0)
    123         {
    124             /* divide 2 times the interval */
    125             for (i = 0; i < 2; i++)
    126             {
    127                 xmid = (xlow >> 1) + (xhigh >> 1);        /* xmid = (xlow + xhigh)/2 */
    128                 ymid = Chebps2(xmid, coef, order);
    129                 if ((ylow * ymid) <= (Word32) 0)
    130                 {
    131                     yhigh = ymid;
    132                     xhigh = xmid;
    133                 } else
    134                 {
    135                     ylow = ymid;
    136                     xlow = xmid;
    137                 }
    138             }
    139             /*-------------------------------------------------------------*
    140              * Linear interpolation                                        *
    141              *    xint = xlow - ylow*(xhigh-xlow)/(yhigh-ylow);            *
    142              *-------------------------------------------------------------*/
    143             x = xhigh - xlow;
    144             y = yhigh - ylow;
    145             if (y == 0)
    146             {
    147                 xint = xlow;
    148             } else
    149             {
    150                 sign = y;
    151                 y = abs_s(y);
    152                 exp = norm_s(y);
    153                 y = y << exp;
    154                 y = div_s((Word16) 16383, y);
    155                 t0 = x * y;
    156                 t0 = (t0 >> (19 - exp));
    157                 y = vo_extract_l(t0);         /* y= (xhigh-xlow)/(yhigh-ylow) in Q11 */
    158                 if (sign < 0)
    159                     y = -y;
    160                 t0 = ylow * y;      /* result in Q26 */
    161                 t0 = (t0 >> 10);        /* result in Q15 */
    162                 xint = vo_sub(xlow, vo_extract_l(t0));        /* xint = xlow - ylow*y */
    163             }
    164             isp[nf] = xint;
    165             xlow = xint;
    166             nf++;
    167             if (ip == 0)
    168             {
    169                 ip = 1;
    170                 coef = f2;
    171                 order = NC - 1;
    172             } else
    173             {
    174                 ip = 0;
    175                 coef = f1;
    176                 order = NC;
    177             }
    178             ylow = Chebps2(xlow, coef, order);
    179         }
    180     }
    181     /* Check if M-1 roots found */
    182     if(nf < M - 1)
    183     {
    184         for (i = 0; i < M; i++)
    185         {
    186             isp[i] = old_isp[i];
    187         }
    188     } else
    189     {
    190         isp[M - 1] = a[M] << 3;                      /* From Q12 to Q15 with saturation */
    191     }
    192     return;
    193 }
    194 
    195 /*--------------------------------------------------------------*
    196 * function  Chebps2:                                           *
    197 *           ~~~~~~~                                            *
    198 *    Evaluates the Chebishev polynomial series                 *
    199 *--------------------------------------------------------------*
    200 *                                                              *
    201 *  The polynomial order is                                     *
    202 *     n = M/2   (M is the prediction order)                    *
    203 *  The polynomial is given by                                  *
    204 *    C(x) = f(0)T_n(x) + f(1)T_n-1(x) + ... +f(n-1)T_1(x) + f(n)/2 *
    205 * Arguments:                                                   *
    206 *  x:     input value of evaluation; x = cos(frequency) in Q15 *
    207 *  f[]:   coefficients of the pol.                      in Q11 *
    208 *  n:     order of the pol.                                    *
    209 *                                                              *
    210 * The value of C(x) is returned. (Satured to +-1.99 in Q14)    *
    211 *                                                              *
    212 *--------------------------------------------------------------*/
    213 
    214 static __inline Word16 Chebps2(Word16 x, Word16 f[], Word32 n)
    215 {
    216     Word32 i, cheb;
    217     Word16 b0_h, b0_l, b1_h, b1_l, b2_h, b2_l;
    218     Word32 t0;
    219 
    220     /* Note: All computation are done in Q24. */
    221 
    222     t0 = f[0] << 13;
    223     b2_h = t0 >> 16;
    224     b2_l = (t0 & 0xffff)>>1;
    225 
    226     t0 = ((b2_h * x)<<1) + (((b2_l * x)>>15)<<1);
    227     t0 <<= 1;
    228     t0 += (f[1] << 13);                     /* + f[1] in Q24        */
    229 
    230     b1_h = t0 >> 16;
    231     b1_l = (t0 & 0xffff) >> 1;
    232 
    233     for (i = 2; i < n; i++)
    234     {
    235         t0 = ((b1_h * x)<<1) + (((b1_l * x)>>15)<<1);
    236 
    237         t0 += (b2_h * (-16384))<<1;
    238         t0 += (f[i] << 12);
    239         t0 <<= 1;
    240         t0 -= (b2_l << 1);                  /* t0 = 2.0*x*b1 - b2 + f[i]; */
    241 
    242         b0_h = t0 >> 16;
    243         b0_l = (t0 & 0xffff) >> 1;
    244 
    245         b2_l = b1_l;                         /* b2 = b1; */
    246         b2_h = b1_h;
    247         b1_l = b0_l;                         /* b1 = b0; */
    248         b1_h = b0_h;
    249     }
    250 
    251     t0 = ((b1_h * x)<<1) + (((b1_l * x)>>15)<<1);
    252     t0 += (b2_h * (-32768))<<1;             /* t0 = x*b1 - b2          */
    253     t0 -= (b2_l << 1);
    254     t0 += (f[n] << 12);                     /* t0 = x*b1 - b2 + f[i]/2 */
    255 
    256     t0 = L_shl2(t0, 6);                     /* Q24 to Q30 with saturation */
    257 
    258     cheb = extract_h(t0);                  /* Result in Q14              */
    259 
    260     if (cheb == -32768)
    261     {
    262         cheb = -32767;                     /* to avoid saturation in Az_isp */
    263     }
    264     return (cheb);
    265 }
    266 
    267 
    268 
    269