1 //===--- VTableBuilder.cpp - C++ vtable layout builder --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with generation of the layout of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/AST/VTableBuilder.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/ASTDiagnostic.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/TargetInfo.h" 20 #include "llvm/ADT/SetOperations.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include <algorithm> 25 #include <cstdio> 26 27 using namespace clang; 28 29 #define DUMP_OVERRIDERS 0 30 31 namespace { 32 33 /// BaseOffset - Represents an offset from a derived class to a direct or 34 /// indirect base class. 35 struct BaseOffset { 36 /// DerivedClass - The derived class. 37 const CXXRecordDecl *DerivedClass; 38 39 /// VirtualBase - If the path from the derived class to the base class 40 /// involves virtual base classes, this holds the declaration of the last 41 /// virtual base in this path (i.e. closest to the base class). 42 const CXXRecordDecl *VirtualBase; 43 44 /// NonVirtualOffset - The offset from the derived class to the base class. 45 /// (Or the offset from the virtual base class to the base class, if the 46 /// path from the derived class to the base class involves a virtual base 47 /// class. 48 CharUnits NonVirtualOffset; 49 50 BaseOffset() : DerivedClass(nullptr), VirtualBase(nullptr), 51 NonVirtualOffset(CharUnits::Zero()) { } 52 BaseOffset(const CXXRecordDecl *DerivedClass, 53 const CXXRecordDecl *VirtualBase, CharUnits NonVirtualOffset) 54 : DerivedClass(DerivedClass), VirtualBase(VirtualBase), 55 NonVirtualOffset(NonVirtualOffset) { } 56 57 bool isEmpty() const { return NonVirtualOffset.isZero() && !VirtualBase; } 58 }; 59 60 /// FinalOverriders - Contains the final overrider member functions for all 61 /// member functions in the base subobjects of a class. 62 class FinalOverriders { 63 public: 64 /// OverriderInfo - Information about a final overrider. 65 struct OverriderInfo { 66 /// Method - The method decl of the overrider. 67 const CXXMethodDecl *Method; 68 69 /// VirtualBase - The virtual base class subobject of this overrider. 70 /// Note that this records the closest derived virtual base class subobject. 71 const CXXRecordDecl *VirtualBase; 72 73 /// Offset - the base offset of the overrider's parent in the layout class. 74 CharUnits Offset; 75 76 OverriderInfo() : Method(nullptr), VirtualBase(nullptr), 77 Offset(CharUnits::Zero()) { } 78 }; 79 80 private: 81 /// MostDerivedClass - The most derived class for which the final overriders 82 /// are stored. 83 const CXXRecordDecl *MostDerivedClass; 84 85 /// MostDerivedClassOffset - If we're building final overriders for a 86 /// construction vtable, this holds the offset from the layout class to the 87 /// most derived class. 88 const CharUnits MostDerivedClassOffset; 89 90 /// LayoutClass - The class we're using for layout information. Will be 91 /// different than the most derived class if the final overriders are for a 92 /// construction vtable. 93 const CXXRecordDecl *LayoutClass; 94 95 ASTContext &Context; 96 97 /// MostDerivedClassLayout - the AST record layout of the most derived class. 98 const ASTRecordLayout &MostDerivedClassLayout; 99 100 /// MethodBaseOffsetPairTy - Uniquely identifies a member function 101 /// in a base subobject. 102 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodBaseOffsetPairTy; 103 104 typedef llvm::DenseMap<MethodBaseOffsetPairTy, 105 OverriderInfo> OverridersMapTy; 106 107 /// OverridersMap - The final overriders for all virtual member functions of 108 /// all the base subobjects of the most derived class. 109 OverridersMapTy OverridersMap; 110 111 /// SubobjectsToOffsetsMapTy - A mapping from a base subobject (represented 112 /// as a record decl and a subobject number) and its offsets in the most 113 /// derived class as well as the layout class. 114 typedef llvm::DenseMap<std::pair<const CXXRecordDecl *, unsigned>, 115 CharUnits> SubobjectOffsetMapTy; 116 117 typedef llvm::DenseMap<const CXXRecordDecl *, unsigned> SubobjectCountMapTy; 118 119 /// ComputeBaseOffsets - Compute the offsets for all base subobjects of the 120 /// given base. 121 void ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 122 CharUnits OffsetInLayoutClass, 123 SubobjectOffsetMapTy &SubobjectOffsets, 124 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 125 SubobjectCountMapTy &SubobjectCounts); 126 127 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 128 129 /// dump - dump the final overriders for a base subobject, and all its direct 130 /// and indirect base subobjects. 131 void dump(raw_ostream &Out, BaseSubobject Base, 132 VisitedVirtualBasesSetTy& VisitedVirtualBases); 133 134 public: 135 FinalOverriders(const CXXRecordDecl *MostDerivedClass, 136 CharUnits MostDerivedClassOffset, 137 const CXXRecordDecl *LayoutClass); 138 139 /// getOverrider - Get the final overrider for the given method declaration in 140 /// the subobject with the given base offset. 141 OverriderInfo getOverrider(const CXXMethodDecl *MD, 142 CharUnits BaseOffset) const { 143 assert(OverridersMap.count(std::make_pair(MD, BaseOffset)) && 144 "Did not find overrider!"); 145 146 return OverridersMap.lookup(std::make_pair(MD, BaseOffset)); 147 } 148 149 /// dump - dump the final overriders. 150 void dump() { 151 VisitedVirtualBasesSetTy VisitedVirtualBases; 152 dump(llvm::errs(), BaseSubobject(MostDerivedClass, CharUnits::Zero()), 153 VisitedVirtualBases); 154 } 155 156 }; 157 158 FinalOverriders::FinalOverriders(const CXXRecordDecl *MostDerivedClass, 159 CharUnits MostDerivedClassOffset, 160 const CXXRecordDecl *LayoutClass) 161 : MostDerivedClass(MostDerivedClass), 162 MostDerivedClassOffset(MostDerivedClassOffset), LayoutClass(LayoutClass), 163 Context(MostDerivedClass->getASTContext()), 164 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)) { 165 166 // Compute base offsets. 167 SubobjectOffsetMapTy SubobjectOffsets; 168 SubobjectOffsetMapTy SubobjectLayoutClassOffsets; 169 SubobjectCountMapTy SubobjectCounts; 170 ComputeBaseOffsets(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 171 /*IsVirtual=*/false, 172 MostDerivedClassOffset, 173 SubobjectOffsets, SubobjectLayoutClassOffsets, 174 SubobjectCounts); 175 176 // Get the final overriders. 177 CXXFinalOverriderMap FinalOverriders; 178 MostDerivedClass->getFinalOverriders(FinalOverriders); 179 180 for (const auto &Overrider : FinalOverriders) { 181 const CXXMethodDecl *MD = Overrider.first; 182 const OverridingMethods &Methods = Overrider.second; 183 184 for (const auto &M : Methods) { 185 unsigned SubobjectNumber = M.first; 186 assert(SubobjectOffsets.count(std::make_pair(MD->getParent(), 187 SubobjectNumber)) && 188 "Did not find subobject offset!"); 189 190 CharUnits BaseOffset = SubobjectOffsets[std::make_pair(MD->getParent(), 191 SubobjectNumber)]; 192 193 assert(M.second.size() == 1 && "Final overrider is not unique!"); 194 const UniqueVirtualMethod &Method = M.second.front(); 195 196 const CXXRecordDecl *OverriderRD = Method.Method->getParent(); 197 assert(SubobjectLayoutClassOffsets.count( 198 std::make_pair(OverriderRD, Method.Subobject)) 199 && "Did not find subobject offset!"); 200 CharUnits OverriderOffset = 201 SubobjectLayoutClassOffsets[std::make_pair(OverriderRD, 202 Method.Subobject)]; 203 204 OverriderInfo& Overrider = OverridersMap[std::make_pair(MD, BaseOffset)]; 205 assert(!Overrider.Method && "Overrider should not exist yet!"); 206 207 Overrider.Offset = OverriderOffset; 208 Overrider.Method = Method.Method; 209 Overrider.VirtualBase = Method.InVirtualSubobject; 210 } 211 } 212 213 #if DUMP_OVERRIDERS 214 // And dump them (for now). 215 dump(); 216 #endif 217 } 218 219 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 220 const CXXRecordDecl *DerivedRD, 221 const CXXBasePath &Path) { 222 CharUnits NonVirtualOffset = CharUnits::Zero(); 223 224 unsigned NonVirtualStart = 0; 225 const CXXRecordDecl *VirtualBase = nullptr; 226 227 // First, look for the virtual base class. 228 for (int I = Path.size(), E = 0; I != E; --I) { 229 const CXXBasePathElement &Element = Path[I - 1]; 230 231 if (Element.Base->isVirtual()) { 232 NonVirtualStart = I; 233 QualType VBaseType = Element.Base->getType(); 234 VirtualBase = VBaseType->getAsCXXRecordDecl(); 235 break; 236 } 237 } 238 239 // Now compute the non-virtual offset. 240 for (unsigned I = NonVirtualStart, E = Path.size(); I != E; ++I) { 241 const CXXBasePathElement &Element = Path[I]; 242 243 // Check the base class offset. 244 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Element.Class); 245 246 const CXXRecordDecl *Base = Element.Base->getType()->getAsCXXRecordDecl(); 247 248 NonVirtualOffset += Layout.getBaseClassOffset(Base); 249 } 250 251 // FIXME: This should probably use CharUnits or something. Maybe we should 252 // even change the base offsets in ASTRecordLayout to be specified in 253 // CharUnits. 254 return BaseOffset(DerivedRD, VirtualBase, NonVirtualOffset); 255 256 } 257 258 static BaseOffset ComputeBaseOffset(const ASTContext &Context, 259 const CXXRecordDecl *BaseRD, 260 const CXXRecordDecl *DerivedRD) { 261 CXXBasePaths Paths(/*FindAmbiguities=*/false, 262 /*RecordPaths=*/true, /*DetectVirtual=*/false); 263 264 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 265 llvm_unreachable("Class must be derived from the passed in base class!"); 266 267 return ComputeBaseOffset(Context, DerivedRD, Paths.front()); 268 } 269 270 static BaseOffset 271 ComputeReturnAdjustmentBaseOffset(ASTContext &Context, 272 const CXXMethodDecl *DerivedMD, 273 const CXXMethodDecl *BaseMD) { 274 const FunctionType *BaseFT = BaseMD->getType()->getAs<FunctionType>(); 275 const FunctionType *DerivedFT = DerivedMD->getType()->getAs<FunctionType>(); 276 277 // Canonicalize the return types. 278 CanQualType CanDerivedReturnType = 279 Context.getCanonicalType(DerivedFT->getReturnType()); 280 CanQualType CanBaseReturnType = 281 Context.getCanonicalType(BaseFT->getReturnType()); 282 283 assert(CanDerivedReturnType->getTypeClass() == 284 CanBaseReturnType->getTypeClass() && 285 "Types must have same type class!"); 286 287 if (CanDerivedReturnType == CanBaseReturnType) { 288 // No adjustment needed. 289 return BaseOffset(); 290 } 291 292 if (isa<ReferenceType>(CanDerivedReturnType)) { 293 CanDerivedReturnType = 294 CanDerivedReturnType->getAs<ReferenceType>()->getPointeeType(); 295 CanBaseReturnType = 296 CanBaseReturnType->getAs<ReferenceType>()->getPointeeType(); 297 } else if (isa<PointerType>(CanDerivedReturnType)) { 298 CanDerivedReturnType = 299 CanDerivedReturnType->getAs<PointerType>()->getPointeeType(); 300 CanBaseReturnType = 301 CanBaseReturnType->getAs<PointerType>()->getPointeeType(); 302 } else { 303 llvm_unreachable("Unexpected return type!"); 304 } 305 306 // We need to compare unqualified types here; consider 307 // const T *Base::foo(); 308 // T *Derived::foo(); 309 if (CanDerivedReturnType.getUnqualifiedType() == 310 CanBaseReturnType.getUnqualifiedType()) { 311 // No adjustment needed. 312 return BaseOffset(); 313 } 314 315 const CXXRecordDecl *DerivedRD = 316 cast<CXXRecordDecl>(cast<RecordType>(CanDerivedReturnType)->getDecl()); 317 318 const CXXRecordDecl *BaseRD = 319 cast<CXXRecordDecl>(cast<RecordType>(CanBaseReturnType)->getDecl()); 320 321 return ComputeBaseOffset(Context, BaseRD, DerivedRD); 322 } 323 324 void 325 FinalOverriders::ComputeBaseOffsets(BaseSubobject Base, bool IsVirtual, 326 CharUnits OffsetInLayoutClass, 327 SubobjectOffsetMapTy &SubobjectOffsets, 328 SubobjectOffsetMapTy &SubobjectLayoutClassOffsets, 329 SubobjectCountMapTy &SubobjectCounts) { 330 const CXXRecordDecl *RD = Base.getBase(); 331 332 unsigned SubobjectNumber = 0; 333 if (!IsVirtual) 334 SubobjectNumber = ++SubobjectCounts[RD]; 335 336 // Set up the subobject to offset mapping. 337 assert(!SubobjectOffsets.count(std::make_pair(RD, SubobjectNumber)) 338 && "Subobject offset already exists!"); 339 assert(!SubobjectLayoutClassOffsets.count(std::make_pair(RD, SubobjectNumber)) 340 && "Subobject offset already exists!"); 341 342 SubobjectOffsets[std::make_pair(RD, SubobjectNumber)] = Base.getBaseOffset(); 343 SubobjectLayoutClassOffsets[std::make_pair(RD, SubobjectNumber)] = 344 OffsetInLayoutClass; 345 346 // Traverse our bases. 347 for (const auto &B : RD->bases()) { 348 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 349 350 CharUnits BaseOffset; 351 CharUnits BaseOffsetInLayoutClass; 352 if (B.isVirtual()) { 353 // Check if we've visited this virtual base before. 354 if (SubobjectOffsets.count(std::make_pair(BaseDecl, 0))) 355 continue; 356 357 const ASTRecordLayout &LayoutClassLayout = 358 Context.getASTRecordLayout(LayoutClass); 359 360 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 361 BaseOffsetInLayoutClass = 362 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 363 } else { 364 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 365 CharUnits Offset = Layout.getBaseClassOffset(BaseDecl); 366 367 BaseOffset = Base.getBaseOffset() + Offset; 368 BaseOffsetInLayoutClass = OffsetInLayoutClass + Offset; 369 } 370 371 ComputeBaseOffsets(BaseSubobject(BaseDecl, BaseOffset), 372 B.isVirtual(), BaseOffsetInLayoutClass, 373 SubobjectOffsets, SubobjectLayoutClassOffsets, 374 SubobjectCounts); 375 } 376 } 377 378 void FinalOverriders::dump(raw_ostream &Out, BaseSubobject Base, 379 VisitedVirtualBasesSetTy &VisitedVirtualBases) { 380 const CXXRecordDecl *RD = Base.getBase(); 381 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 382 383 for (const auto &B : RD->bases()) { 384 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 385 386 // Ignore bases that don't have any virtual member functions. 387 if (!BaseDecl->isPolymorphic()) 388 continue; 389 390 CharUnits BaseOffset; 391 if (B.isVirtual()) { 392 if (!VisitedVirtualBases.insert(BaseDecl).second) { 393 // We've visited this base before. 394 continue; 395 } 396 397 BaseOffset = MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 398 } else { 399 BaseOffset = Layout.getBaseClassOffset(BaseDecl) + Base.getBaseOffset(); 400 } 401 402 dump(Out, BaseSubobject(BaseDecl, BaseOffset), VisitedVirtualBases); 403 } 404 405 Out << "Final overriders for ("; 406 RD->printQualifiedName(Out); 407 Out << ", "; 408 Out << Base.getBaseOffset().getQuantity() << ")\n"; 409 410 // Now dump the overriders for this base subobject. 411 for (const auto *MD : RD->methods()) { 412 if (!MD->isVirtual()) 413 continue; 414 MD = MD->getCanonicalDecl(); 415 416 OverriderInfo Overrider = getOverrider(MD, Base.getBaseOffset()); 417 418 Out << " "; 419 MD->printQualifiedName(Out); 420 Out << " - ("; 421 Overrider.Method->printQualifiedName(Out); 422 Out << ", " << Overrider.Offset.getQuantity() << ')'; 423 424 BaseOffset Offset; 425 if (!Overrider.Method->isPure()) 426 Offset = ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 427 428 if (!Offset.isEmpty()) { 429 Out << " [ret-adj: "; 430 if (Offset.VirtualBase) { 431 Offset.VirtualBase->printQualifiedName(Out); 432 Out << " vbase, "; 433 } 434 435 Out << Offset.NonVirtualOffset.getQuantity() << " nv]"; 436 } 437 438 Out << "\n"; 439 } 440 } 441 442 /// VCallOffsetMap - Keeps track of vcall offsets when building a vtable. 443 struct VCallOffsetMap { 444 445 typedef std::pair<const CXXMethodDecl *, CharUnits> MethodAndOffsetPairTy; 446 447 /// Offsets - Keeps track of methods and their offsets. 448 // FIXME: This should be a real map and not a vector. 449 SmallVector<MethodAndOffsetPairTy, 16> Offsets; 450 451 /// MethodsCanShareVCallOffset - Returns whether two virtual member functions 452 /// can share the same vcall offset. 453 static bool MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 454 const CXXMethodDecl *RHS); 455 456 public: 457 /// AddVCallOffset - Adds a vcall offset to the map. Returns true if the 458 /// add was successful, or false if there was already a member function with 459 /// the same signature in the map. 460 bool AddVCallOffset(const CXXMethodDecl *MD, CharUnits OffsetOffset); 461 462 /// getVCallOffsetOffset - Returns the vcall offset offset (relative to the 463 /// vtable address point) for the given virtual member function. 464 CharUnits getVCallOffsetOffset(const CXXMethodDecl *MD); 465 466 // empty - Return whether the offset map is empty or not. 467 bool empty() const { return Offsets.empty(); } 468 }; 469 470 static bool HasSameVirtualSignature(const CXXMethodDecl *LHS, 471 const CXXMethodDecl *RHS) { 472 const FunctionProtoType *LT = 473 cast<FunctionProtoType>(LHS->getType().getCanonicalType()); 474 const FunctionProtoType *RT = 475 cast<FunctionProtoType>(RHS->getType().getCanonicalType()); 476 477 // Fast-path matches in the canonical types. 478 if (LT == RT) return true; 479 480 // Force the signatures to match. We can't rely on the overrides 481 // list here because there isn't necessarily an inheritance 482 // relationship between the two methods. 483 if (LT->getTypeQuals() != RT->getTypeQuals()) 484 return false; 485 return LT->getParamTypes() == RT->getParamTypes(); 486 } 487 488 bool VCallOffsetMap::MethodsCanShareVCallOffset(const CXXMethodDecl *LHS, 489 const CXXMethodDecl *RHS) { 490 assert(LHS->isVirtual() && "LHS must be virtual!"); 491 assert(RHS->isVirtual() && "LHS must be virtual!"); 492 493 // A destructor can share a vcall offset with another destructor. 494 if (isa<CXXDestructorDecl>(LHS)) 495 return isa<CXXDestructorDecl>(RHS); 496 497 // FIXME: We need to check more things here. 498 499 // The methods must have the same name. 500 DeclarationName LHSName = LHS->getDeclName(); 501 DeclarationName RHSName = RHS->getDeclName(); 502 if (LHSName != RHSName) 503 return false; 504 505 // And the same signatures. 506 return HasSameVirtualSignature(LHS, RHS); 507 } 508 509 bool VCallOffsetMap::AddVCallOffset(const CXXMethodDecl *MD, 510 CharUnits OffsetOffset) { 511 // Check if we can reuse an offset. 512 for (const auto &OffsetPair : Offsets) { 513 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 514 return false; 515 } 516 517 // Add the offset. 518 Offsets.push_back(MethodAndOffsetPairTy(MD, OffsetOffset)); 519 return true; 520 } 521 522 CharUnits VCallOffsetMap::getVCallOffsetOffset(const CXXMethodDecl *MD) { 523 // Look for an offset. 524 for (const auto &OffsetPair : Offsets) { 525 if (MethodsCanShareVCallOffset(OffsetPair.first, MD)) 526 return OffsetPair.second; 527 } 528 529 llvm_unreachable("Should always find a vcall offset offset!"); 530 } 531 532 /// VCallAndVBaseOffsetBuilder - Class for building vcall and vbase offsets. 533 class VCallAndVBaseOffsetBuilder { 534 public: 535 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 536 VBaseOffsetOffsetsMapTy; 537 538 private: 539 /// MostDerivedClass - The most derived class for which we're building vcall 540 /// and vbase offsets. 541 const CXXRecordDecl *MostDerivedClass; 542 543 /// LayoutClass - The class we're using for layout information. Will be 544 /// different than the most derived class if we're building a construction 545 /// vtable. 546 const CXXRecordDecl *LayoutClass; 547 548 /// Context - The ASTContext which we will use for layout information. 549 ASTContext &Context; 550 551 /// Components - vcall and vbase offset components 552 typedef SmallVector<VTableComponent, 64> VTableComponentVectorTy; 553 VTableComponentVectorTy Components; 554 555 /// VisitedVirtualBases - Visited virtual bases. 556 llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBases; 557 558 /// VCallOffsets - Keeps track of vcall offsets. 559 VCallOffsetMap VCallOffsets; 560 561 562 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets, 563 /// relative to the address point. 564 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 565 566 /// FinalOverriders - The final overriders of the most derived class. 567 /// (Can be null when we're not building a vtable of the most derived class). 568 const FinalOverriders *Overriders; 569 570 /// AddVCallAndVBaseOffsets - Add vcall offsets and vbase offsets for the 571 /// given base subobject. 572 void AddVCallAndVBaseOffsets(BaseSubobject Base, bool BaseIsVirtual, 573 CharUnits RealBaseOffset); 574 575 /// AddVCallOffsets - Add vcall offsets for the given base subobject. 576 void AddVCallOffsets(BaseSubobject Base, CharUnits VBaseOffset); 577 578 /// AddVBaseOffsets - Add vbase offsets for the given class. 579 void AddVBaseOffsets(const CXXRecordDecl *Base, 580 CharUnits OffsetInLayoutClass); 581 582 /// getCurrentOffsetOffset - Get the current vcall or vbase offset offset in 583 /// chars, relative to the vtable address point. 584 CharUnits getCurrentOffsetOffset() const; 585 586 public: 587 VCallAndVBaseOffsetBuilder(const CXXRecordDecl *MostDerivedClass, 588 const CXXRecordDecl *LayoutClass, 589 const FinalOverriders *Overriders, 590 BaseSubobject Base, bool BaseIsVirtual, 591 CharUnits OffsetInLayoutClass) 592 : MostDerivedClass(MostDerivedClass), LayoutClass(LayoutClass), 593 Context(MostDerivedClass->getASTContext()), Overriders(Overriders) { 594 595 // Add vcall and vbase offsets. 596 AddVCallAndVBaseOffsets(Base, BaseIsVirtual, OffsetInLayoutClass); 597 } 598 599 /// Methods for iterating over the components. 600 typedef VTableComponentVectorTy::const_reverse_iterator const_iterator; 601 const_iterator components_begin() const { return Components.rbegin(); } 602 const_iterator components_end() const { return Components.rend(); } 603 604 const VCallOffsetMap &getVCallOffsets() const { return VCallOffsets; } 605 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 606 return VBaseOffsetOffsets; 607 } 608 }; 609 610 void 611 VCallAndVBaseOffsetBuilder::AddVCallAndVBaseOffsets(BaseSubobject Base, 612 bool BaseIsVirtual, 613 CharUnits RealBaseOffset) { 614 const ASTRecordLayout &Layout = Context.getASTRecordLayout(Base.getBase()); 615 616 // Itanium C++ ABI 2.5.2: 617 // ..in classes sharing a virtual table with a primary base class, the vcall 618 // and vbase offsets added by the derived class all come before the vcall 619 // and vbase offsets required by the base class, so that the latter may be 620 // laid out as required by the base class without regard to additions from 621 // the derived class(es). 622 623 // (Since we're emitting the vcall and vbase offsets in reverse order, we'll 624 // emit them for the primary base first). 625 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 626 bool PrimaryBaseIsVirtual = Layout.isPrimaryBaseVirtual(); 627 628 CharUnits PrimaryBaseOffset; 629 630 // Get the base offset of the primary base. 631 if (PrimaryBaseIsVirtual) { 632 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 633 "Primary vbase should have a zero offset!"); 634 635 const ASTRecordLayout &MostDerivedClassLayout = 636 Context.getASTRecordLayout(MostDerivedClass); 637 638 PrimaryBaseOffset = 639 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 640 } else { 641 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 642 "Primary base should have a zero offset!"); 643 644 PrimaryBaseOffset = Base.getBaseOffset(); 645 } 646 647 AddVCallAndVBaseOffsets( 648 BaseSubobject(PrimaryBase,PrimaryBaseOffset), 649 PrimaryBaseIsVirtual, RealBaseOffset); 650 } 651 652 AddVBaseOffsets(Base.getBase(), RealBaseOffset); 653 654 // We only want to add vcall offsets for virtual bases. 655 if (BaseIsVirtual) 656 AddVCallOffsets(Base, RealBaseOffset); 657 } 658 659 CharUnits VCallAndVBaseOffsetBuilder::getCurrentOffsetOffset() const { 660 // OffsetIndex is the index of this vcall or vbase offset, relative to the 661 // vtable address point. (We subtract 3 to account for the information just 662 // above the address point, the RTTI info, the offset to top, and the 663 // vcall offset itself). 664 int64_t OffsetIndex = -(int64_t)(3 + Components.size()); 665 666 CharUnits PointerWidth = 667 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 668 CharUnits OffsetOffset = PointerWidth * OffsetIndex; 669 return OffsetOffset; 670 } 671 672 void VCallAndVBaseOffsetBuilder::AddVCallOffsets(BaseSubobject Base, 673 CharUnits VBaseOffset) { 674 const CXXRecordDecl *RD = Base.getBase(); 675 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 676 677 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 678 679 // Handle the primary base first. 680 // We only want to add vcall offsets if the base is non-virtual; a virtual 681 // primary base will have its vcall and vbase offsets emitted already. 682 if (PrimaryBase && !Layout.isPrimaryBaseVirtual()) { 683 // Get the base offset of the primary base. 684 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 685 "Primary base should have a zero offset!"); 686 687 AddVCallOffsets(BaseSubobject(PrimaryBase, Base.getBaseOffset()), 688 VBaseOffset); 689 } 690 691 // Add the vcall offsets. 692 for (const auto *MD : RD->methods()) { 693 if (!MD->isVirtual()) 694 continue; 695 MD = MD->getCanonicalDecl(); 696 697 CharUnits OffsetOffset = getCurrentOffsetOffset(); 698 699 // Don't add a vcall offset if we already have one for this member function 700 // signature. 701 if (!VCallOffsets.AddVCallOffset(MD, OffsetOffset)) 702 continue; 703 704 CharUnits Offset = CharUnits::Zero(); 705 706 if (Overriders) { 707 // Get the final overrider. 708 FinalOverriders::OverriderInfo Overrider = 709 Overriders->getOverrider(MD, Base.getBaseOffset()); 710 711 /// The vcall offset is the offset from the virtual base to the object 712 /// where the function was overridden. 713 Offset = Overrider.Offset - VBaseOffset; 714 } 715 716 Components.push_back( 717 VTableComponent::MakeVCallOffset(Offset)); 718 } 719 720 // And iterate over all non-virtual bases (ignoring the primary base). 721 for (const auto &B : RD->bases()) { 722 if (B.isVirtual()) 723 continue; 724 725 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 726 if (BaseDecl == PrimaryBase) 727 continue; 728 729 // Get the base offset of this base. 730 CharUnits BaseOffset = Base.getBaseOffset() + 731 Layout.getBaseClassOffset(BaseDecl); 732 733 AddVCallOffsets(BaseSubobject(BaseDecl, BaseOffset), 734 VBaseOffset); 735 } 736 } 737 738 void 739 VCallAndVBaseOffsetBuilder::AddVBaseOffsets(const CXXRecordDecl *RD, 740 CharUnits OffsetInLayoutClass) { 741 const ASTRecordLayout &LayoutClassLayout = 742 Context.getASTRecordLayout(LayoutClass); 743 744 // Add vbase offsets. 745 for (const auto &B : RD->bases()) { 746 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 747 748 // Check if this is a virtual base that we haven't visited before. 749 if (B.isVirtual() && VisitedVirtualBases.insert(BaseDecl).second) { 750 CharUnits Offset = 751 LayoutClassLayout.getVBaseClassOffset(BaseDecl) - OffsetInLayoutClass; 752 753 // Add the vbase offset offset. 754 assert(!VBaseOffsetOffsets.count(BaseDecl) && 755 "vbase offset offset already exists!"); 756 757 CharUnits VBaseOffsetOffset = getCurrentOffsetOffset(); 758 VBaseOffsetOffsets.insert( 759 std::make_pair(BaseDecl, VBaseOffsetOffset)); 760 761 Components.push_back( 762 VTableComponent::MakeVBaseOffset(Offset)); 763 } 764 765 // Check the base class looking for more vbase offsets. 766 AddVBaseOffsets(BaseDecl, OffsetInLayoutClass); 767 } 768 } 769 770 /// ItaniumVTableBuilder - Class for building vtable layout information. 771 class ItaniumVTableBuilder { 772 public: 773 /// PrimaryBasesSetVectorTy - A set vector of direct and indirect 774 /// primary bases. 775 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> 776 PrimaryBasesSetVectorTy; 777 778 typedef llvm::DenseMap<const CXXRecordDecl *, CharUnits> 779 VBaseOffsetOffsetsMapTy; 780 781 typedef llvm::DenseMap<BaseSubobject, uint64_t> 782 AddressPointsMapTy; 783 784 typedef llvm::DenseMap<GlobalDecl, int64_t> MethodVTableIndicesTy; 785 786 private: 787 /// VTables - Global vtable information. 788 ItaniumVTableContext &VTables; 789 790 /// MostDerivedClass - The most derived class for which we're building this 791 /// vtable. 792 const CXXRecordDecl *MostDerivedClass; 793 794 /// MostDerivedClassOffset - If we're building a construction vtable, this 795 /// holds the offset from the layout class to the most derived class. 796 const CharUnits MostDerivedClassOffset; 797 798 /// MostDerivedClassIsVirtual - Whether the most derived class is a virtual 799 /// base. (This only makes sense when building a construction vtable). 800 bool MostDerivedClassIsVirtual; 801 802 /// LayoutClass - The class we're using for layout information. Will be 803 /// different than the most derived class if we're building a construction 804 /// vtable. 805 const CXXRecordDecl *LayoutClass; 806 807 /// Context - The ASTContext which we will use for layout information. 808 ASTContext &Context; 809 810 /// FinalOverriders - The final overriders of the most derived class. 811 const FinalOverriders Overriders; 812 813 /// VCallOffsetsForVBases - Keeps track of vcall offsets for the virtual 814 /// bases in this vtable. 815 llvm::DenseMap<const CXXRecordDecl *, VCallOffsetMap> VCallOffsetsForVBases; 816 817 /// VBaseOffsetOffsets - Contains the offsets of the virtual base offsets for 818 /// the most derived class. 819 VBaseOffsetOffsetsMapTy VBaseOffsetOffsets; 820 821 /// Components - The components of the vtable being built. 822 SmallVector<VTableComponent, 64> Components; 823 824 /// AddressPoints - Address points for the vtable being built. 825 AddressPointsMapTy AddressPoints; 826 827 /// MethodInfo - Contains information about a method in a vtable. 828 /// (Used for computing 'this' pointer adjustment thunks. 829 struct MethodInfo { 830 /// BaseOffset - The base offset of this method. 831 const CharUnits BaseOffset; 832 833 /// BaseOffsetInLayoutClass - The base offset in the layout class of this 834 /// method. 835 const CharUnits BaseOffsetInLayoutClass; 836 837 /// VTableIndex - The index in the vtable that this method has. 838 /// (For destructors, this is the index of the complete destructor). 839 const uint64_t VTableIndex; 840 841 MethodInfo(CharUnits BaseOffset, CharUnits BaseOffsetInLayoutClass, 842 uint64_t VTableIndex) 843 : BaseOffset(BaseOffset), 844 BaseOffsetInLayoutClass(BaseOffsetInLayoutClass), 845 VTableIndex(VTableIndex) { } 846 847 MethodInfo() 848 : BaseOffset(CharUnits::Zero()), 849 BaseOffsetInLayoutClass(CharUnits::Zero()), 850 VTableIndex(0) { } 851 }; 852 853 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 854 855 /// MethodInfoMap - The information for all methods in the vtable we're 856 /// currently building. 857 MethodInfoMapTy MethodInfoMap; 858 859 /// MethodVTableIndices - Contains the index (relative to the vtable address 860 /// point) where the function pointer for a virtual function is stored. 861 MethodVTableIndicesTy MethodVTableIndices; 862 863 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 864 865 /// VTableThunks - The thunks by vtable index in the vtable currently being 866 /// built. 867 VTableThunksMapTy VTableThunks; 868 869 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 870 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 871 872 /// Thunks - A map that contains all the thunks needed for all methods in the 873 /// most derived class for which the vtable is currently being built. 874 ThunksMapTy Thunks; 875 876 /// AddThunk - Add a thunk for the given method. 877 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk); 878 879 /// ComputeThisAdjustments - Compute the 'this' pointer adjustments for the 880 /// part of the vtable we're currently building. 881 void ComputeThisAdjustments(); 882 883 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 884 885 /// PrimaryVirtualBases - All known virtual bases who are a primary base of 886 /// some other base. 887 VisitedVirtualBasesSetTy PrimaryVirtualBases; 888 889 /// ComputeReturnAdjustment - Compute the return adjustment given a return 890 /// adjustment base offset. 891 ReturnAdjustment ComputeReturnAdjustment(BaseOffset Offset); 892 893 /// ComputeThisAdjustmentBaseOffset - Compute the base offset for adjusting 894 /// the 'this' pointer from the base subobject to the derived subobject. 895 BaseOffset ComputeThisAdjustmentBaseOffset(BaseSubobject Base, 896 BaseSubobject Derived) const; 897 898 /// ComputeThisAdjustment - Compute the 'this' pointer adjustment for the 899 /// given virtual member function, its offset in the layout class and its 900 /// final overrider. 901 ThisAdjustment 902 ComputeThisAdjustment(const CXXMethodDecl *MD, 903 CharUnits BaseOffsetInLayoutClass, 904 FinalOverriders::OverriderInfo Overrider); 905 906 /// AddMethod - Add a single virtual member function to the vtable 907 /// components vector. 908 void AddMethod(const CXXMethodDecl *MD, ReturnAdjustment ReturnAdjustment); 909 910 /// IsOverriderUsed - Returns whether the overrider will ever be used in this 911 /// part of the vtable. 912 /// 913 /// Itanium C++ ABI 2.5.2: 914 /// 915 /// struct A { virtual void f(); }; 916 /// struct B : virtual public A { int i; }; 917 /// struct C : virtual public A { int j; }; 918 /// struct D : public B, public C {}; 919 /// 920 /// When B and C are declared, A is a primary base in each case, so although 921 /// vcall offsets are allocated in the A-in-B and A-in-C vtables, no this 922 /// adjustment is required and no thunk is generated. However, inside D 923 /// objects, A is no longer a primary base of C, so if we allowed calls to 924 /// C::f() to use the copy of A's vtable in the C subobject, we would need 925 /// to adjust this from C* to B::A*, which would require a third-party 926 /// thunk. Since we require that a call to C::f() first convert to A*, 927 /// C-in-D's copy of A's vtable is never referenced, so this is not 928 /// necessary. 929 bool IsOverriderUsed(const CXXMethodDecl *Overrider, 930 CharUnits BaseOffsetInLayoutClass, 931 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 932 CharUnits FirstBaseOffsetInLayoutClass) const; 933 934 935 /// AddMethods - Add the methods of this base subobject and all its 936 /// primary bases to the vtable components vector. 937 void AddMethods(BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 938 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 939 CharUnits FirstBaseOffsetInLayoutClass, 940 PrimaryBasesSetVectorTy &PrimaryBases); 941 942 // LayoutVTable - Layout the vtable for the given base class, including its 943 // secondary vtables and any vtables for virtual bases. 944 void LayoutVTable(); 945 946 /// LayoutPrimaryAndSecondaryVTables - Layout the primary vtable for the 947 /// given base subobject, as well as all its secondary vtables. 948 /// 949 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 950 /// or a direct or indirect base of a virtual base. 951 /// 952 /// \param BaseIsVirtualInLayoutClass - Whether the base subobject is virtual 953 /// in the layout class. 954 void LayoutPrimaryAndSecondaryVTables(BaseSubobject Base, 955 bool BaseIsMorallyVirtual, 956 bool BaseIsVirtualInLayoutClass, 957 CharUnits OffsetInLayoutClass); 958 959 /// LayoutSecondaryVTables - Layout the secondary vtables for the given base 960 /// subobject. 961 /// 962 /// \param BaseIsMorallyVirtual whether the base subobject is a virtual base 963 /// or a direct or indirect base of a virtual base. 964 void LayoutSecondaryVTables(BaseSubobject Base, bool BaseIsMorallyVirtual, 965 CharUnits OffsetInLayoutClass); 966 967 /// DeterminePrimaryVirtualBases - Determine the primary virtual bases in this 968 /// class hierarchy. 969 void DeterminePrimaryVirtualBases(const CXXRecordDecl *RD, 970 CharUnits OffsetInLayoutClass, 971 VisitedVirtualBasesSetTy &VBases); 972 973 /// LayoutVTablesForVirtualBases - Layout vtables for all virtual bases of the 974 /// given base (excluding any primary bases). 975 void LayoutVTablesForVirtualBases(const CXXRecordDecl *RD, 976 VisitedVirtualBasesSetTy &VBases); 977 978 /// isBuildingConstructionVTable - Return whether this vtable builder is 979 /// building a construction vtable. 980 bool isBuildingConstructorVTable() const { 981 return MostDerivedClass != LayoutClass; 982 } 983 984 public: 985 ItaniumVTableBuilder(ItaniumVTableContext &VTables, 986 const CXXRecordDecl *MostDerivedClass, 987 CharUnits MostDerivedClassOffset, 988 bool MostDerivedClassIsVirtual, 989 const CXXRecordDecl *LayoutClass) 990 : VTables(VTables), MostDerivedClass(MostDerivedClass), 991 MostDerivedClassOffset(MostDerivedClassOffset), 992 MostDerivedClassIsVirtual(MostDerivedClassIsVirtual), 993 LayoutClass(LayoutClass), Context(MostDerivedClass->getASTContext()), 994 Overriders(MostDerivedClass, MostDerivedClassOffset, LayoutClass) { 995 assert(!Context.getTargetInfo().getCXXABI().isMicrosoft()); 996 997 LayoutVTable(); 998 999 if (Context.getLangOpts().DumpVTableLayouts) 1000 dumpLayout(llvm::outs()); 1001 } 1002 1003 uint64_t getNumThunks() const { 1004 return Thunks.size(); 1005 } 1006 1007 ThunksMapTy::const_iterator thunks_begin() const { 1008 return Thunks.begin(); 1009 } 1010 1011 ThunksMapTy::const_iterator thunks_end() const { 1012 return Thunks.end(); 1013 } 1014 1015 const VBaseOffsetOffsetsMapTy &getVBaseOffsetOffsets() const { 1016 return VBaseOffsetOffsets; 1017 } 1018 1019 const AddressPointsMapTy &getAddressPoints() const { 1020 return AddressPoints; 1021 } 1022 1023 MethodVTableIndicesTy::const_iterator vtable_indices_begin() const { 1024 return MethodVTableIndices.begin(); 1025 } 1026 1027 MethodVTableIndicesTy::const_iterator vtable_indices_end() const { 1028 return MethodVTableIndices.end(); 1029 } 1030 1031 /// getNumVTableComponents - Return the number of components in the vtable 1032 /// currently built. 1033 uint64_t getNumVTableComponents() const { 1034 return Components.size(); 1035 } 1036 1037 const VTableComponent *vtable_component_begin() const { 1038 return Components.begin(); 1039 } 1040 1041 const VTableComponent *vtable_component_end() const { 1042 return Components.end(); 1043 } 1044 1045 AddressPointsMapTy::const_iterator address_points_begin() const { 1046 return AddressPoints.begin(); 1047 } 1048 1049 AddressPointsMapTy::const_iterator address_points_end() const { 1050 return AddressPoints.end(); 1051 } 1052 1053 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 1054 return VTableThunks.begin(); 1055 } 1056 1057 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 1058 return VTableThunks.end(); 1059 } 1060 1061 /// dumpLayout - Dump the vtable layout. 1062 void dumpLayout(raw_ostream&); 1063 }; 1064 1065 void ItaniumVTableBuilder::AddThunk(const CXXMethodDecl *MD, 1066 const ThunkInfo &Thunk) { 1067 assert(!isBuildingConstructorVTable() && 1068 "Can't add thunks for construction vtable"); 1069 1070 SmallVectorImpl<ThunkInfo> &ThunksVector = Thunks[MD]; 1071 1072 // Check if we have this thunk already. 1073 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) != 1074 ThunksVector.end()) 1075 return; 1076 1077 ThunksVector.push_back(Thunk); 1078 } 1079 1080 typedef llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverriddenMethodsSetTy; 1081 1082 /// Visit all the methods overridden by the given method recursively, 1083 /// in a depth-first pre-order. The Visitor's visitor method returns a bool 1084 /// indicating whether to continue the recursion for the given overridden 1085 /// method (i.e. returning false stops the iteration). 1086 template <class VisitorTy> 1087 static void 1088 visitAllOverriddenMethods(const CXXMethodDecl *MD, VisitorTy &Visitor) { 1089 assert(MD->isVirtual() && "Method is not virtual!"); 1090 1091 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 1092 E = MD->end_overridden_methods(); I != E; ++I) { 1093 const CXXMethodDecl *OverriddenMD = *I; 1094 if (!Visitor(OverriddenMD)) 1095 continue; 1096 visitAllOverriddenMethods(OverriddenMD, Visitor); 1097 } 1098 } 1099 1100 /// ComputeAllOverriddenMethods - Given a method decl, will return a set of all 1101 /// the overridden methods that the function decl overrides. 1102 static void 1103 ComputeAllOverriddenMethods(const CXXMethodDecl *MD, 1104 OverriddenMethodsSetTy& OverriddenMethods) { 1105 auto OverriddenMethodsCollector = [&](const CXXMethodDecl *MD) { 1106 // Don't recurse on this method if we've already collected it. 1107 return OverriddenMethods.insert(MD).second; 1108 }; 1109 visitAllOverriddenMethods(MD, OverriddenMethodsCollector); 1110 } 1111 1112 void ItaniumVTableBuilder::ComputeThisAdjustments() { 1113 // Now go through the method info map and see if any of the methods need 1114 // 'this' pointer adjustments. 1115 for (const auto &MI : MethodInfoMap) { 1116 const CXXMethodDecl *MD = MI.first; 1117 const MethodInfo &MethodInfo = MI.second; 1118 1119 // Ignore adjustments for unused function pointers. 1120 uint64_t VTableIndex = MethodInfo.VTableIndex; 1121 if (Components[VTableIndex].getKind() == 1122 VTableComponent::CK_UnusedFunctionPointer) 1123 continue; 1124 1125 // Get the final overrider for this method. 1126 FinalOverriders::OverriderInfo Overrider = 1127 Overriders.getOverrider(MD, MethodInfo.BaseOffset); 1128 1129 // Check if we need an adjustment at all. 1130 if (MethodInfo.BaseOffsetInLayoutClass == Overrider.Offset) { 1131 // When a return thunk is needed by a derived class that overrides a 1132 // virtual base, gcc uses a virtual 'this' adjustment as well. 1133 // While the thunk itself might be needed by vtables in subclasses or 1134 // in construction vtables, there doesn't seem to be a reason for using 1135 // the thunk in this vtable. Still, we do so to match gcc. 1136 if (VTableThunks.lookup(VTableIndex).Return.isEmpty()) 1137 continue; 1138 } 1139 1140 ThisAdjustment ThisAdjustment = 1141 ComputeThisAdjustment(MD, MethodInfo.BaseOffsetInLayoutClass, Overrider); 1142 1143 if (ThisAdjustment.isEmpty()) 1144 continue; 1145 1146 // Add it. 1147 VTableThunks[VTableIndex].This = ThisAdjustment; 1148 1149 if (isa<CXXDestructorDecl>(MD)) { 1150 // Add an adjustment for the deleting destructor as well. 1151 VTableThunks[VTableIndex + 1].This = ThisAdjustment; 1152 } 1153 } 1154 1155 /// Clear the method info map. 1156 MethodInfoMap.clear(); 1157 1158 if (isBuildingConstructorVTable()) { 1159 // We don't need to store thunk information for construction vtables. 1160 return; 1161 } 1162 1163 for (const auto &TI : VTableThunks) { 1164 const VTableComponent &Component = Components[TI.first]; 1165 const ThunkInfo &Thunk = TI.second; 1166 const CXXMethodDecl *MD; 1167 1168 switch (Component.getKind()) { 1169 default: 1170 llvm_unreachable("Unexpected vtable component kind!"); 1171 case VTableComponent::CK_FunctionPointer: 1172 MD = Component.getFunctionDecl(); 1173 break; 1174 case VTableComponent::CK_CompleteDtorPointer: 1175 MD = Component.getDestructorDecl(); 1176 break; 1177 case VTableComponent::CK_DeletingDtorPointer: 1178 // We've already added the thunk when we saw the complete dtor pointer. 1179 continue; 1180 } 1181 1182 if (MD->getParent() == MostDerivedClass) 1183 AddThunk(MD, Thunk); 1184 } 1185 } 1186 1187 ReturnAdjustment 1188 ItaniumVTableBuilder::ComputeReturnAdjustment(BaseOffset Offset) { 1189 ReturnAdjustment Adjustment; 1190 1191 if (!Offset.isEmpty()) { 1192 if (Offset.VirtualBase) { 1193 // Get the virtual base offset offset. 1194 if (Offset.DerivedClass == MostDerivedClass) { 1195 // We can get the offset offset directly from our map. 1196 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1197 VBaseOffsetOffsets.lookup(Offset.VirtualBase).getQuantity(); 1198 } else { 1199 Adjustment.Virtual.Itanium.VBaseOffsetOffset = 1200 VTables.getVirtualBaseOffsetOffset(Offset.DerivedClass, 1201 Offset.VirtualBase).getQuantity(); 1202 } 1203 } 1204 1205 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1206 } 1207 1208 return Adjustment; 1209 } 1210 1211 BaseOffset ItaniumVTableBuilder::ComputeThisAdjustmentBaseOffset( 1212 BaseSubobject Base, BaseSubobject Derived) const { 1213 const CXXRecordDecl *BaseRD = Base.getBase(); 1214 const CXXRecordDecl *DerivedRD = Derived.getBase(); 1215 1216 CXXBasePaths Paths(/*FindAmbiguities=*/true, 1217 /*RecordPaths=*/true, /*DetectVirtual=*/true); 1218 1219 if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) 1220 llvm_unreachable("Class must be derived from the passed in base class!"); 1221 1222 // We have to go through all the paths, and see which one leads us to the 1223 // right base subobject. 1224 for (const CXXBasePath &Path : Paths) { 1225 BaseOffset Offset = ComputeBaseOffset(Context, DerivedRD, Path); 1226 1227 CharUnits OffsetToBaseSubobject = Offset.NonVirtualOffset; 1228 1229 if (Offset.VirtualBase) { 1230 // If we have a virtual base class, the non-virtual offset is relative 1231 // to the virtual base class offset. 1232 const ASTRecordLayout &LayoutClassLayout = 1233 Context.getASTRecordLayout(LayoutClass); 1234 1235 /// Get the virtual base offset, relative to the most derived class 1236 /// layout. 1237 OffsetToBaseSubobject += 1238 LayoutClassLayout.getVBaseClassOffset(Offset.VirtualBase); 1239 } else { 1240 // Otherwise, the non-virtual offset is relative to the derived class 1241 // offset. 1242 OffsetToBaseSubobject += Derived.getBaseOffset(); 1243 } 1244 1245 // Check if this path gives us the right base subobject. 1246 if (OffsetToBaseSubobject == Base.getBaseOffset()) { 1247 // Since we're going from the base class _to_ the derived class, we'll 1248 // invert the non-virtual offset here. 1249 Offset.NonVirtualOffset = -Offset.NonVirtualOffset; 1250 return Offset; 1251 } 1252 } 1253 1254 return BaseOffset(); 1255 } 1256 1257 ThisAdjustment ItaniumVTableBuilder::ComputeThisAdjustment( 1258 const CXXMethodDecl *MD, CharUnits BaseOffsetInLayoutClass, 1259 FinalOverriders::OverriderInfo Overrider) { 1260 // Ignore adjustments for pure virtual member functions. 1261 if (Overrider.Method->isPure()) 1262 return ThisAdjustment(); 1263 1264 BaseSubobject OverriddenBaseSubobject(MD->getParent(), 1265 BaseOffsetInLayoutClass); 1266 1267 BaseSubobject OverriderBaseSubobject(Overrider.Method->getParent(), 1268 Overrider.Offset); 1269 1270 // Compute the adjustment offset. 1271 BaseOffset Offset = ComputeThisAdjustmentBaseOffset(OverriddenBaseSubobject, 1272 OverriderBaseSubobject); 1273 if (Offset.isEmpty()) 1274 return ThisAdjustment(); 1275 1276 ThisAdjustment Adjustment; 1277 1278 if (Offset.VirtualBase) { 1279 // Get the vcall offset map for this virtual base. 1280 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Offset.VirtualBase]; 1281 1282 if (VCallOffsets.empty()) { 1283 // We don't have vcall offsets for this virtual base, go ahead and 1284 // build them. 1285 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, MostDerivedClass, 1286 /*FinalOverriders=*/nullptr, 1287 BaseSubobject(Offset.VirtualBase, 1288 CharUnits::Zero()), 1289 /*BaseIsVirtual=*/true, 1290 /*OffsetInLayoutClass=*/ 1291 CharUnits::Zero()); 1292 1293 VCallOffsets = Builder.getVCallOffsets(); 1294 } 1295 1296 Adjustment.Virtual.Itanium.VCallOffsetOffset = 1297 VCallOffsets.getVCallOffsetOffset(MD).getQuantity(); 1298 } 1299 1300 // Set the non-virtual part of the adjustment. 1301 Adjustment.NonVirtual = Offset.NonVirtualOffset.getQuantity(); 1302 1303 return Adjustment; 1304 } 1305 1306 void ItaniumVTableBuilder::AddMethod(const CXXMethodDecl *MD, 1307 ReturnAdjustment ReturnAdjustment) { 1308 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1309 assert(ReturnAdjustment.isEmpty() && 1310 "Destructor can't have return adjustment!"); 1311 1312 // Add both the complete destructor and the deleting destructor. 1313 Components.push_back(VTableComponent::MakeCompleteDtor(DD)); 1314 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 1315 } else { 1316 // Add the return adjustment if necessary. 1317 if (!ReturnAdjustment.isEmpty()) 1318 VTableThunks[Components.size()].Return = ReturnAdjustment; 1319 1320 // Add the function. 1321 Components.push_back(VTableComponent::MakeFunction(MD)); 1322 } 1323 } 1324 1325 /// OverridesIndirectMethodInBase - Return whether the given member function 1326 /// overrides any methods in the set of given bases. 1327 /// Unlike OverridesMethodInBase, this checks "overriders of overriders". 1328 /// For example, if we have: 1329 /// 1330 /// struct A { virtual void f(); } 1331 /// struct B : A { virtual void f(); } 1332 /// struct C : B { virtual void f(); } 1333 /// 1334 /// OverridesIndirectMethodInBase will return true if given C::f as the method 1335 /// and { A } as the set of bases. 1336 static bool OverridesIndirectMethodInBases( 1337 const CXXMethodDecl *MD, 1338 ItaniumVTableBuilder::PrimaryBasesSetVectorTy &Bases) { 1339 if (Bases.count(MD->getParent())) 1340 return true; 1341 1342 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), 1343 E = MD->end_overridden_methods(); I != E; ++I) { 1344 const CXXMethodDecl *OverriddenMD = *I; 1345 1346 // Check "indirect overriders". 1347 if (OverridesIndirectMethodInBases(OverriddenMD, Bases)) 1348 return true; 1349 } 1350 1351 return false; 1352 } 1353 1354 bool ItaniumVTableBuilder::IsOverriderUsed( 1355 const CXXMethodDecl *Overrider, CharUnits BaseOffsetInLayoutClass, 1356 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1357 CharUnits FirstBaseOffsetInLayoutClass) const { 1358 // If the base and the first base in the primary base chain have the same 1359 // offsets, then this overrider will be used. 1360 if (BaseOffsetInLayoutClass == FirstBaseOffsetInLayoutClass) 1361 return true; 1362 1363 // We know now that Base (or a direct or indirect base of it) is a primary 1364 // base in part of the class hierarchy, but not a primary base in the most 1365 // derived class. 1366 1367 // If the overrider is the first base in the primary base chain, we know 1368 // that the overrider will be used. 1369 if (Overrider->getParent() == FirstBaseInPrimaryBaseChain) 1370 return true; 1371 1372 ItaniumVTableBuilder::PrimaryBasesSetVectorTy PrimaryBases; 1373 1374 const CXXRecordDecl *RD = FirstBaseInPrimaryBaseChain; 1375 PrimaryBases.insert(RD); 1376 1377 // Now traverse the base chain, starting with the first base, until we find 1378 // the base that is no longer a primary base. 1379 while (true) { 1380 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1381 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1382 1383 if (!PrimaryBase) 1384 break; 1385 1386 if (Layout.isPrimaryBaseVirtual()) { 1387 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1388 "Primary base should always be at offset 0!"); 1389 1390 const ASTRecordLayout &LayoutClassLayout = 1391 Context.getASTRecordLayout(LayoutClass); 1392 1393 // Now check if this is the primary base that is not a primary base in the 1394 // most derived class. 1395 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1396 FirstBaseOffsetInLayoutClass) { 1397 // We found it, stop walking the chain. 1398 break; 1399 } 1400 } else { 1401 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1402 "Primary base should always be at offset 0!"); 1403 } 1404 1405 if (!PrimaryBases.insert(PrimaryBase)) 1406 llvm_unreachable("Found a duplicate primary base!"); 1407 1408 RD = PrimaryBase; 1409 } 1410 1411 // If the final overrider is an override of one of the primary bases, 1412 // then we know that it will be used. 1413 return OverridesIndirectMethodInBases(Overrider, PrimaryBases); 1414 } 1415 1416 typedef llvm::SmallSetVector<const CXXRecordDecl *, 8> BasesSetVectorTy; 1417 1418 /// FindNearestOverriddenMethod - Given a method, returns the overridden method 1419 /// from the nearest base. Returns null if no method was found. 1420 /// The Bases are expected to be sorted in a base-to-derived order. 1421 static const CXXMethodDecl * 1422 FindNearestOverriddenMethod(const CXXMethodDecl *MD, 1423 BasesSetVectorTy &Bases) { 1424 OverriddenMethodsSetTy OverriddenMethods; 1425 ComputeAllOverriddenMethods(MD, OverriddenMethods); 1426 1427 for (const CXXRecordDecl *PrimaryBase : 1428 llvm::make_range(Bases.rbegin(), Bases.rend())) { 1429 // Now check the overridden methods. 1430 for (const CXXMethodDecl *OverriddenMD : OverriddenMethods) { 1431 // We found our overridden method. 1432 if (OverriddenMD->getParent() == PrimaryBase) 1433 return OverriddenMD; 1434 } 1435 } 1436 1437 return nullptr; 1438 } 1439 1440 void ItaniumVTableBuilder::AddMethods( 1441 BaseSubobject Base, CharUnits BaseOffsetInLayoutClass, 1442 const CXXRecordDecl *FirstBaseInPrimaryBaseChain, 1443 CharUnits FirstBaseOffsetInLayoutClass, 1444 PrimaryBasesSetVectorTy &PrimaryBases) { 1445 // Itanium C++ ABI 2.5.2: 1446 // The order of the virtual function pointers in a virtual table is the 1447 // order of declaration of the corresponding member functions in the class. 1448 // 1449 // There is an entry for any virtual function declared in a class, 1450 // whether it is a new function or overrides a base class function, 1451 // unless it overrides a function from the primary base, and conversion 1452 // between their return types does not require an adjustment. 1453 1454 const CXXRecordDecl *RD = Base.getBase(); 1455 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1456 1457 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1458 CharUnits PrimaryBaseOffset; 1459 CharUnits PrimaryBaseOffsetInLayoutClass; 1460 if (Layout.isPrimaryBaseVirtual()) { 1461 assert(Layout.getVBaseClassOffset(PrimaryBase).isZero() && 1462 "Primary vbase should have a zero offset!"); 1463 1464 const ASTRecordLayout &MostDerivedClassLayout = 1465 Context.getASTRecordLayout(MostDerivedClass); 1466 1467 PrimaryBaseOffset = 1468 MostDerivedClassLayout.getVBaseClassOffset(PrimaryBase); 1469 1470 const ASTRecordLayout &LayoutClassLayout = 1471 Context.getASTRecordLayout(LayoutClass); 1472 1473 PrimaryBaseOffsetInLayoutClass = 1474 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1475 } else { 1476 assert(Layout.getBaseClassOffset(PrimaryBase).isZero() && 1477 "Primary base should have a zero offset!"); 1478 1479 PrimaryBaseOffset = Base.getBaseOffset(); 1480 PrimaryBaseOffsetInLayoutClass = BaseOffsetInLayoutClass; 1481 } 1482 1483 AddMethods(BaseSubobject(PrimaryBase, PrimaryBaseOffset), 1484 PrimaryBaseOffsetInLayoutClass, FirstBaseInPrimaryBaseChain, 1485 FirstBaseOffsetInLayoutClass, PrimaryBases); 1486 1487 if (!PrimaryBases.insert(PrimaryBase)) 1488 llvm_unreachable("Found a duplicate primary base!"); 1489 } 1490 1491 const CXXDestructorDecl *ImplicitVirtualDtor = nullptr; 1492 1493 typedef llvm::SmallVector<const CXXMethodDecl *, 8> NewVirtualFunctionsTy; 1494 NewVirtualFunctionsTy NewVirtualFunctions; 1495 1496 // Now go through all virtual member functions and add them. 1497 for (const auto *MD : RD->methods()) { 1498 if (!MD->isVirtual()) 1499 continue; 1500 MD = MD->getCanonicalDecl(); 1501 1502 // Get the final overrider. 1503 FinalOverriders::OverriderInfo Overrider = 1504 Overriders.getOverrider(MD, Base.getBaseOffset()); 1505 1506 // Check if this virtual member function overrides a method in a primary 1507 // base. If this is the case, and the return type doesn't require adjustment 1508 // then we can just use the member function from the primary base. 1509 if (const CXXMethodDecl *OverriddenMD = 1510 FindNearestOverriddenMethod(MD, PrimaryBases)) { 1511 if (ComputeReturnAdjustmentBaseOffset(Context, MD, 1512 OverriddenMD).isEmpty()) { 1513 // Replace the method info of the overridden method with our own 1514 // method. 1515 assert(MethodInfoMap.count(OverriddenMD) && 1516 "Did not find the overridden method!"); 1517 MethodInfo &OverriddenMethodInfo = MethodInfoMap[OverriddenMD]; 1518 1519 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1520 OverriddenMethodInfo.VTableIndex); 1521 1522 assert(!MethodInfoMap.count(MD) && 1523 "Should not have method info for this method yet!"); 1524 1525 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1526 MethodInfoMap.erase(OverriddenMD); 1527 1528 // If the overridden method exists in a virtual base class or a direct 1529 // or indirect base class of a virtual base class, we need to emit a 1530 // thunk if we ever have a class hierarchy where the base class is not 1531 // a primary base in the complete object. 1532 if (!isBuildingConstructorVTable() && OverriddenMD != MD) { 1533 // Compute the this adjustment. 1534 ThisAdjustment ThisAdjustment = 1535 ComputeThisAdjustment(OverriddenMD, BaseOffsetInLayoutClass, 1536 Overrider); 1537 1538 if (ThisAdjustment.Virtual.Itanium.VCallOffsetOffset && 1539 Overrider.Method->getParent() == MostDerivedClass) { 1540 1541 // There's no return adjustment from OverriddenMD and MD, 1542 // but that doesn't mean there isn't one between MD and 1543 // the final overrider. 1544 BaseOffset ReturnAdjustmentOffset = 1545 ComputeReturnAdjustmentBaseOffset(Context, Overrider.Method, MD); 1546 ReturnAdjustment ReturnAdjustment = 1547 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1548 1549 // This is a virtual thunk for the most derived class, add it. 1550 AddThunk(Overrider.Method, 1551 ThunkInfo(ThisAdjustment, ReturnAdjustment)); 1552 } 1553 } 1554 1555 continue; 1556 } 1557 } 1558 1559 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1560 if (MD->isImplicit()) { 1561 // Itanium C++ ABI 2.5.2: 1562 // If a class has an implicitly-defined virtual destructor, 1563 // its entries come after the declared virtual function pointers. 1564 1565 assert(!ImplicitVirtualDtor && 1566 "Did already see an implicit virtual dtor!"); 1567 ImplicitVirtualDtor = DD; 1568 continue; 1569 } 1570 } 1571 1572 NewVirtualFunctions.push_back(MD); 1573 } 1574 1575 if (ImplicitVirtualDtor) 1576 NewVirtualFunctions.push_back(ImplicitVirtualDtor); 1577 1578 for (const CXXMethodDecl *MD : NewVirtualFunctions) { 1579 // Get the final overrider. 1580 FinalOverriders::OverriderInfo Overrider = 1581 Overriders.getOverrider(MD, Base.getBaseOffset()); 1582 1583 // Insert the method info for this method. 1584 MethodInfo MethodInfo(Base.getBaseOffset(), BaseOffsetInLayoutClass, 1585 Components.size()); 1586 1587 assert(!MethodInfoMap.count(MD) && 1588 "Should not have method info for this method yet!"); 1589 MethodInfoMap.insert(std::make_pair(MD, MethodInfo)); 1590 1591 // Check if this overrider is going to be used. 1592 const CXXMethodDecl *OverriderMD = Overrider.Method; 1593 if (!IsOverriderUsed(OverriderMD, BaseOffsetInLayoutClass, 1594 FirstBaseInPrimaryBaseChain, 1595 FirstBaseOffsetInLayoutClass)) { 1596 Components.push_back(VTableComponent::MakeUnusedFunction(OverriderMD)); 1597 continue; 1598 } 1599 1600 // Check if this overrider needs a return adjustment. 1601 // We don't want to do this for pure virtual member functions. 1602 BaseOffset ReturnAdjustmentOffset; 1603 if (!OverriderMD->isPure()) { 1604 ReturnAdjustmentOffset = 1605 ComputeReturnAdjustmentBaseOffset(Context, OverriderMD, MD); 1606 } 1607 1608 ReturnAdjustment ReturnAdjustment = 1609 ComputeReturnAdjustment(ReturnAdjustmentOffset); 1610 1611 AddMethod(Overrider.Method, ReturnAdjustment); 1612 } 1613 } 1614 1615 void ItaniumVTableBuilder::LayoutVTable() { 1616 LayoutPrimaryAndSecondaryVTables(BaseSubobject(MostDerivedClass, 1617 CharUnits::Zero()), 1618 /*BaseIsMorallyVirtual=*/false, 1619 MostDerivedClassIsVirtual, 1620 MostDerivedClassOffset); 1621 1622 VisitedVirtualBasesSetTy VBases; 1623 1624 // Determine the primary virtual bases. 1625 DeterminePrimaryVirtualBases(MostDerivedClass, MostDerivedClassOffset, 1626 VBases); 1627 VBases.clear(); 1628 1629 LayoutVTablesForVirtualBases(MostDerivedClass, VBases); 1630 1631 // -fapple-kext adds an extra entry at end of vtbl. 1632 bool IsAppleKext = Context.getLangOpts().AppleKext; 1633 if (IsAppleKext) 1634 Components.push_back(VTableComponent::MakeVCallOffset(CharUnits::Zero())); 1635 } 1636 1637 void ItaniumVTableBuilder::LayoutPrimaryAndSecondaryVTables( 1638 BaseSubobject Base, bool BaseIsMorallyVirtual, 1639 bool BaseIsVirtualInLayoutClass, CharUnits OffsetInLayoutClass) { 1640 assert(Base.getBase()->isDynamicClass() && "class does not have a vtable!"); 1641 1642 // Add vcall and vbase offsets for this vtable. 1643 VCallAndVBaseOffsetBuilder Builder(MostDerivedClass, LayoutClass, &Overriders, 1644 Base, BaseIsVirtualInLayoutClass, 1645 OffsetInLayoutClass); 1646 Components.append(Builder.components_begin(), Builder.components_end()); 1647 1648 // Check if we need to add these vcall offsets. 1649 if (BaseIsVirtualInLayoutClass && !Builder.getVCallOffsets().empty()) { 1650 VCallOffsetMap &VCallOffsets = VCallOffsetsForVBases[Base.getBase()]; 1651 1652 if (VCallOffsets.empty()) 1653 VCallOffsets = Builder.getVCallOffsets(); 1654 } 1655 1656 // If we're laying out the most derived class we want to keep track of the 1657 // virtual base class offset offsets. 1658 if (Base.getBase() == MostDerivedClass) 1659 VBaseOffsetOffsets = Builder.getVBaseOffsetOffsets(); 1660 1661 // Add the offset to top. 1662 CharUnits OffsetToTop = MostDerivedClassOffset - OffsetInLayoutClass; 1663 Components.push_back(VTableComponent::MakeOffsetToTop(OffsetToTop)); 1664 1665 // Next, add the RTTI. 1666 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 1667 1668 uint64_t AddressPoint = Components.size(); 1669 1670 // Now go through all virtual member functions and add them. 1671 PrimaryBasesSetVectorTy PrimaryBases; 1672 AddMethods(Base, OffsetInLayoutClass, 1673 Base.getBase(), OffsetInLayoutClass, 1674 PrimaryBases); 1675 1676 const CXXRecordDecl *RD = Base.getBase(); 1677 if (RD == MostDerivedClass) { 1678 assert(MethodVTableIndices.empty()); 1679 for (const auto &I : MethodInfoMap) { 1680 const CXXMethodDecl *MD = I.first; 1681 const MethodInfo &MI = I.second; 1682 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 1683 MethodVTableIndices[GlobalDecl(DD, Dtor_Complete)] 1684 = MI.VTableIndex - AddressPoint; 1685 MethodVTableIndices[GlobalDecl(DD, Dtor_Deleting)] 1686 = MI.VTableIndex + 1 - AddressPoint; 1687 } else { 1688 MethodVTableIndices[MD] = MI.VTableIndex - AddressPoint; 1689 } 1690 } 1691 } 1692 1693 // Compute 'this' pointer adjustments. 1694 ComputeThisAdjustments(); 1695 1696 // Add all address points. 1697 while (true) { 1698 AddressPoints.insert(std::make_pair( 1699 BaseSubobject(RD, OffsetInLayoutClass), 1700 AddressPoint)); 1701 1702 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1703 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1704 1705 if (!PrimaryBase) 1706 break; 1707 1708 if (Layout.isPrimaryBaseVirtual()) { 1709 // Check if this virtual primary base is a primary base in the layout 1710 // class. If it's not, we don't want to add it. 1711 const ASTRecordLayout &LayoutClassLayout = 1712 Context.getASTRecordLayout(LayoutClass); 1713 1714 if (LayoutClassLayout.getVBaseClassOffset(PrimaryBase) != 1715 OffsetInLayoutClass) { 1716 // We don't want to add this class (or any of its primary bases). 1717 break; 1718 } 1719 } 1720 1721 RD = PrimaryBase; 1722 } 1723 1724 // Layout secondary vtables. 1725 LayoutSecondaryVTables(Base, BaseIsMorallyVirtual, OffsetInLayoutClass); 1726 } 1727 1728 void 1729 ItaniumVTableBuilder::LayoutSecondaryVTables(BaseSubobject Base, 1730 bool BaseIsMorallyVirtual, 1731 CharUnits OffsetInLayoutClass) { 1732 // Itanium C++ ABI 2.5.2: 1733 // Following the primary virtual table of a derived class are secondary 1734 // virtual tables for each of its proper base classes, except any primary 1735 // base(s) with which it shares its primary virtual table. 1736 1737 const CXXRecordDecl *RD = Base.getBase(); 1738 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1739 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase(); 1740 1741 for (const auto &B : RD->bases()) { 1742 // Ignore virtual bases, we'll emit them later. 1743 if (B.isVirtual()) 1744 continue; 1745 1746 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1747 1748 // Ignore bases that don't have a vtable. 1749 if (!BaseDecl->isDynamicClass()) 1750 continue; 1751 1752 if (isBuildingConstructorVTable()) { 1753 // Itanium C++ ABI 2.6.4: 1754 // Some of the base class subobjects may not need construction virtual 1755 // tables, which will therefore not be present in the construction 1756 // virtual table group, even though the subobject virtual tables are 1757 // present in the main virtual table group for the complete object. 1758 if (!BaseIsMorallyVirtual && !BaseDecl->getNumVBases()) 1759 continue; 1760 } 1761 1762 // Get the base offset of this base. 1763 CharUnits RelativeBaseOffset = Layout.getBaseClassOffset(BaseDecl); 1764 CharUnits BaseOffset = Base.getBaseOffset() + RelativeBaseOffset; 1765 1766 CharUnits BaseOffsetInLayoutClass = 1767 OffsetInLayoutClass + RelativeBaseOffset; 1768 1769 // Don't emit a secondary vtable for a primary base. We might however want 1770 // to emit secondary vtables for other bases of this base. 1771 if (BaseDecl == PrimaryBase) { 1772 LayoutSecondaryVTables(BaseSubobject(BaseDecl, BaseOffset), 1773 BaseIsMorallyVirtual, BaseOffsetInLayoutClass); 1774 continue; 1775 } 1776 1777 // Layout the primary vtable (and any secondary vtables) for this base. 1778 LayoutPrimaryAndSecondaryVTables( 1779 BaseSubobject(BaseDecl, BaseOffset), 1780 BaseIsMorallyVirtual, 1781 /*BaseIsVirtualInLayoutClass=*/false, 1782 BaseOffsetInLayoutClass); 1783 } 1784 } 1785 1786 void ItaniumVTableBuilder::DeterminePrimaryVirtualBases( 1787 const CXXRecordDecl *RD, CharUnits OffsetInLayoutClass, 1788 VisitedVirtualBasesSetTy &VBases) { 1789 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 1790 1791 // Check if this base has a primary base. 1792 if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 1793 1794 // Check if it's virtual. 1795 if (Layout.isPrimaryBaseVirtual()) { 1796 bool IsPrimaryVirtualBase = true; 1797 1798 if (isBuildingConstructorVTable()) { 1799 // Check if the base is actually a primary base in the class we use for 1800 // layout. 1801 const ASTRecordLayout &LayoutClassLayout = 1802 Context.getASTRecordLayout(LayoutClass); 1803 1804 CharUnits PrimaryBaseOffsetInLayoutClass = 1805 LayoutClassLayout.getVBaseClassOffset(PrimaryBase); 1806 1807 // We know that the base is not a primary base in the layout class if 1808 // the base offsets are different. 1809 if (PrimaryBaseOffsetInLayoutClass != OffsetInLayoutClass) 1810 IsPrimaryVirtualBase = false; 1811 } 1812 1813 if (IsPrimaryVirtualBase) 1814 PrimaryVirtualBases.insert(PrimaryBase); 1815 } 1816 } 1817 1818 // Traverse bases, looking for more primary virtual bases. 1819 for (const auto &B : RD->bases()) { 1820 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1821 1822 CharUnits BaseOffsetInLayoutClass; 1823 1824 if (B.isVirtual()) { 1825 if (!VBases.insert(BaseDecl).second) 1826 continue; 1827 1828 const ASTRecordLayout &LayoutClassLayout = 1829 Context.getASTRecordLayout(LayoutClass); 1830 1831 BaseOffsetInLayoutClass = 1832 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1833 } else { 1834 BaseOffsetInLayoutClass = 1835 OffsetInLayoutClass + Layout.getBaseClassOffset(BaseDecl); 1836 } 1837 1838 DeterminePrimaryVirtualBases(BaseDecl, BaseOffsetInLayoutClass, VBases); 1839 } 1840 } 1841 1842 void ItaniumVTableBuilder::LayoutVTablesForVirtualBases( 1843 const CXXRecordDecl *RD, VisitedVirtualBasesSetTy &VBases) { 1844 // Itanium C++ ABI 2.5.2: 1845 // Then come the virtual base virtual tables, also in inheritance graph 1846 // order, and again excluding primary bases (which share virtual tables with 1847 // the classes for which they are primary). 1848 for (const auto &B : RD->bases()) { 1849 const CXXRecordDecl *BaseDecl = B.getType()->getAsCXXRecordDecl(); 1850 1851 // Check if this base needs a vtable. (If it's virtual, not a primary base 1852 // of some other class, and we haven't visited it before). 1853 if (B.isVirtual() && BaseDecl->isDynamicClass() && 1854 !PrimaryVirtualBases.count(BaseDecl) && 1855 VBases.insert(BaseDecl).second) { 1856 const ASTRecordLayout &MostDerivedClassLayout = 1857 Context.getASTRecordLayout(MostDerivedClass); 1858 CharUnits BaseOffset = 1859 MostDerivedClassLayout.getVBaseClassOffset(BaseDecl); 1860 1861 const ASTRecordLayout &LayoutClassLayout = 1862 Context.getASTRecordLayout(LayoutClass); 1863 CharUnits BaseOffsetInLayoutClass = 1864 LayoutClassLayout.getVBaseClassOffset(BaseDecl); 1865 1866 LayoutPrimaryAndSecondaryVTables( 1867 BaseSubobject(BaseDecl, BaseOffset), 1868 /*BaseIsMorallyVirtual=*/true, 1869 /*BaseIsVirtualInLayoutClass=*/true, 1870 BaseOffsetInLayoutClass); 1871 } 1872 1873 // We only need to check the base for virtual base vtables if it actually 1874 // has virtual bases. 1875 if (BaseDecl->getNumVBases()) 1876 LayoutVTablesForVirtualBases(BaseDecl, VBases); 1877 } 1878 } 1879 1880 /// dumpLayout - Dump the vtable layout. 1881 void ItaniumVTableBuilder::dumpLayout(raw_ostream &Out) { 1882 // FIXME: write more tests that actually use the dumpLayout output to prevent 1883 // ItaniumVTableBuilder regressions. 1884 1885 if (isBuildingConstructorVTable()) { 1886 Out << "Construction vtable for ('"; 1887 MostDerivedClass->printQualifiedName(Out); 1888 Out << "', "; 1889 Out << MostDerivedClassOffset.getQuantity() << ") in '"; 1890 LayoutClass->printQualifiedName(Out); 1891 } else { 1892 Out << "Vtable for '"; 1893 MostDerivedClass->printQualifiedName(Out); 1894 } 1895 Out << "' (" << Components.size() << " entries).\n"; 1896 1897 // Iterate through the address points and insert them into a new map where 1898 // they are keyed by the index and not the base object. 1899 // Since an address point can be shared by multiple subobjects, we use an 1900 // STL multimap. 1901 std::multimap<uint64_t, BaseSubobject> AddressPointsByIndex; 1902 for (const auto &AP : AddressPoints) { 1903 const BaseSubobject &Base = AP.first; 1904 uint64_t Index = AP.second; 1905 1906 AddressPointsByIndex.insert(std::make_pair(Index, Base)); 1907 } 1908 1909 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 1910 uint64_t Index = I; 1911 1912 Out << llvm::format("%4d | ", I); 1913 1914 const VTableComponent &Component = Components[I]; 1915 1916 // Dump the component. 1917 switch (Component.getKind()) { 1918 1919 case VTableComponent::CK_VCallOffset: 1920 Out << "vcall_offset (" 1921 << Component.getVCallOffset().getQuantity() 1922 << ")"; 1923 break; 1924 1925 case VTableComponent::CK_VBaseOffset: 1926 Out << "vbase_offset (" 1927 << Component.getVBaseOffset().getQuantity() 1928 << ")"; 1929 break; 1930 1931 case VTableComponent::CK_OffsetToTop: 1932 Out << "offset_to_top (" 1933 << Component.getOffsetToTop().getQuantity() 1934 << ")"; 1935 break; 1936 1937 case VTableComponent::CK_RTTI: 1938 Component.getRTTIDecl()->printQualifiedName(Out); 1939 Out << " RTTI"; 1940 break; 1941 1942 case VTableComponent::CK_FunctionPointer: { 1943 const CXXMethodDecl *MD = Component.getFunctionDecl(); 1944 1945 std::string Str = 1946 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 1947 MD); 1948 Out << Str; 1949 if (MD->isPure()) 1950 Out << " [pure]"; 1951 1952 if (MD->isDeleted()) 1953 Out << " [deleted]"; 1954 1955 ThunkInfo Thunk = VTableThunks.lookup(I); 1956 if (!Thunk.isEmpty()) { 1957 // If this function pointer has a return adjustment, dump it. 1958 if (!Thunk.Return.isEmpty()) { 1959 Out << "\n [return adjustment: "; 1960 Out << Thunk.Return.NonVirtual << " non-virtual"; 1961 1962 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 1963 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 1964 Out << " vbase offset offset"; 1965 } 1966 1967 Out << ']'; 1968 } 1969 1970 // If this function pointer has a 'this' pointer adjustment, dump it. 1971 if (!Thunk.This.isEmpty()) { 1972 Out << "\n [this adjustment: "; 1973 Out << Thunk.This.NonVirtual << " non-virtual"; 1974 1975 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 1976 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 1977 Out << " vcall offset offset"; 1978 } 1979 1980 Out << ']'; 1981 } 1982 } 1983 1984 break; 1985 } 1986 1987 case VTableComponent::CK_CompleteDtorPointer: 1988 case VTableComponent::CK_DeletingDtorPointer: { 1989 bool IsComplete = 1990 Component.getKind() == VTableComponent::CK_CompleteDtorPointer; 1991 1992 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 1993 1994 DD->printQualifiedName(Out); 1995 if (IsComplete) 1996 Out << "() [complete]"; 1997 else 1998 Out << "() [deleting]"; 1999 2000 if (DD->isPure()) 2001 Out << " [pure]"; 2002 2003 ThunkInfo Thunk = VTableThunks.lookup(I); 2004 if (!Thunk.isEmpty()) { 2005 // If this destructor has a 'this' pointer adjustment, dump it. 2006 if (!Thunk.This.isEmpty()) { 2007 Out << "\n [this adjustment: "; 2008 Out << Thunk.This.NonVirtual << " non-virtual"; 2009 2010 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2011 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2012 Out << " vcall offset offset"; 2013 } 2014 2015 Out << ']'; 2016 } 2017 } 2018 2019 break; 2020 } 2021 2022 case VTableComponent::CK_UnusedFunctionPointer: { 2023 const CXXMethodDecl *MD = Component.getUnusedFunctionDecl(); 2024 2025 std::string Str = 2026 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2027 MD); 2028 Out << "[unused] " << Str; 2029 if (MD->isPure()) 2030 Out << " [pure]"; 2031 } 2032 2033 } 2034 2035 Out << '\n'; 2036 2037 // Dump the next address point. 2038 uint64_t NextIndex = Index + 1; 2039 if (AddressPointsByIndex.count(NextIndex)) { 2040 if (AddressPointsByIndex.count(NextIndex) == 1) { 2041 const BaseSubobject &Base = 2042 AddressPointsByIndex.find(NextIndex)->second; 2043 2044 Out << " -- ("; 2045 Base.getBase()->printQualifiedName(Out); 2046 Out << ", " << Base.getBaseOffset().getQuantity(); 2047 Out << ") vtable address --\n"; 2048 } else { 2049 CharUnits BaseOffset = 2050 AddressPointsByIndex.lower_bound(NextIndex)->second.getBaseOffset(); 2051 2052 // We store the class names in a set to get a stable order. 2053 std::set<std::string> ClassNames; 2054 for (const auto &I : 2055 llvm::make_range(AddressPointsByIndex.equal_range(NextIndex))) { 2056 assert(I.second.getBaseOffset() == BaseOffset && 2057 "Invalid base offset!"); 2058 const CXXRecordDecl *RD = I.second.getBase(); 2059 ClassNames.insert(RD->getQualifiedNameAsString()); 2060 } 2061 2062 for (const std::string &Name : ClassNames) { 2063 Out << " -- (" << Name; 2064 Out << ", " << BaseOffset.getQuantity() << ") vtable address --\n"; 2065 } 2066 } 2067 } 2068 } 2069 2070 Out << '\n'; 2071 2072 if (isBuildingConstructorVTable()) 2073 return; 2074 2075 if (MostDerivedClass->getNumVBases()) { 2076 // We store the virtual base class names and their offsets in a map to get 2077 // a stable order. 2078 2079 std::map<std::string, CharUnits> ClassNamesAndOffsets; 2080 for (const auto &I : VBaseOffsetOffsets) { 2081 std::string ClassName = I.first->getQualifiedNameAsString(); 2082 CharUnits OffsetOffset = I.second; 2083 ClassNamesAndOffsets.insert(std::make_pair(ClassName, OffsetOffset)); 2084 } 2085 2086 Out << "Virtual base offset offsets for '"; 2087 MostDerivedClass->printQualifiedName(Out); 2088 Out << "' ("; 2089 Out << ClassNamesAndOffsets.size(); 2090 Out << (ClassNamesAndOffsets.size() == 1 ? " entry" : " entries") << ").\n"; 2091 2092 for (const auto &I : ClassNamesAndOffsets) 2093 Out << " " << I.first << " | " << I.second.getQuantity() << '\n'; 2094 2095 Out << "\n"; 2096 } 2097 2098 if (!Thunks.empty()) { 2099 // We store the method names in a map to get a stable order. 2100 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 2101 2102 for (const auto &I : Thunks) { 2103 const CXXMethodDecl *MD = I.first; 2104 std::string MethodName = 2105 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2106 MD); 2107 2108 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 2109 } 2110 2111 for (const auto &I : MethodNamesAndDecls) { 2112 const std::string &MethodName = I.first; 2113 const CXXMethodDecl *MD = I.second; 2114 2115 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 2116 std::sort(ThunksVector.begin(), ThunksVector.end(), 2117 [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 2118 assert(LHS.Method == nullptr && RHS.Method == nullptr); 2119 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 2120 }); 2121 2122 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 2123 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 2124 2125 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 2126 const ThunkInfo &Thunk = ThunksVector[I]; 2127 2128 Out << llvm::format("%4d | ", I); 2129 2130 // If this function pointer has a return pointer adjustment, dump it. 2131 if (!Thunk.Return.isEmpty()) { 2132 Out << "return adjustment: " << Thunk.Return.NonVirtual; 2133 Out << " non-virtual"; 2134 if (Thunk.Return.Virtual.Itanium.VBaseOffsetOffset) { 2135 Out << ", " << Thunk.Return.Virtual.Itanium.VBaseOffsetOffset; 2136 Out << " vbase offset offset"; 2137 } 2138 2139 if (!Thunk.This.isEmpty()) 2140 Out << "\n "; 2141 } 2142 2143 // If this function pointer has a 'this' pointer adjustment, dump it. 2144 if (!Thunk.This.isEmpty()) { 2145 Out << "this adjustment: "; 2146 Out << Thunk.This.NonVirtual << " non-virtual"; 2147 2148 if (Thunk.This.Virtual.Itanium.VCallOffsetOffset) { 2149 Out << ", " << Thunk.This.Virtual.Itanium.VCallOffsetOffset; 2150 Out << " vcall offset offset"; 2151 } 2152 } 2153 2154 Out << '\n'; 2155 } 2156 2157 Out << '\n'; 2158 } 2159 } 2160 2161 // Compute the vtable indices for all the member functions. 2162 // Store them in a map keyed by the index so we'll get a sorted table. 2163 std::map<uint64_t, std::string> IndicesMap; 2164 2165 for (const auto *MD : MostDerivedClass->methods()) { 2166 // We only want virtual member functions. 2167 if (!MD->isVirtual()) 2168 continue; 2169 MD = MD->getCanonicalDecl(); 2170 2171 std::string MethodName = 2172 PredefinedExpr::ComputeName(PredefinedExpr::PrettyFunctionNoVirtual, 2173 MD); 2174 2175 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2176 GlobalDecl GD(DD, Dtor_Complete); 2177 assert(MethodVTableIndices.count(GD)); 2178 uint64_t VTableIndex = MethodVTableIndices[GD]; 2179 IndicesMap[VTableIndex] = MethodName + " [complete]"; 2180 IndicesMap[VTableIndex + 1] = MethodName + " [deleting]"; 2181 } else { 2182 assert(MethodVTableIndices.count(MD)); 2183 IndicesMap[MethodVTableIndices[MD]] = MethodName; 2184 } 2185 } 2186 2187 // Print the vtable indices for all the member functions. 2188 if (!IndicesMap.empty()) { 2189 Out << "VTable indices for '"; 2190 MostDerivedClass->printQualifiedName(Out); 2191 Out << "' (" << IndicesMap.size() << " entries).\n"; 2192 2193 for (const auto &I : IndicesMap) { 2194 uint64_t VTableIndex = I.first; 2195 const std::string &MethodName = I.second; 2196 2197 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName 2198 << '\n'; 2199 } 2200 } 2201 2202 Out << '\n'; 2203 } 2204 } 2205 2206 VTableLayout::VTableLayout(uint64_t NumVTableComponents, 2207 const VTableComponent *VTableComponents, 2208 uint64_t NumVTableThunks, 2209 const VTableThunkTy *VTableThunks, 2210 const AddressPointsMapTy &AddressPoints, 2211 bool IsMicrosoftABI) 2212 : NumVTableComponents(NumVTableComponents), 2213 VTableComponents(new VTableComponent[NumVTableComponents]), 2214 NumVTableThunks(NumVTableThunks), 2215 VTableThunks(new VTableThunkTy[NumVTableThunks]), 2216 AddressPoints(AddressPoints), 2217 IsMicrosoftABI(IsMicrosoftABI) { 2218 std::copy(VTableComponents, VTableComponents+NumVTableComponents, 2219 this->VTableComponents.get()); 2220 std::copy(VTableThunks, VTableThunks+NumVTableThunks, 2221 this->VTableThunks.get()); 2222 std::sort(this->VTableThunks.get(), 2223 this->VTableThunks.get() + NumVTableThunks, 2224 [](const VTableLayout::VTableThunkTy &LHS, 2225 const VTableLayout::VTableThunkTy &RHS) { 2226 assert((LHS.first != RHS.first || LHS.second == RHS.second) && 2227 "Different thunks should have unique indices!"); 2228 return LHS.first < RHS.first; 2229 }); 2230 } 2231 2232 VTableLayout::~VTableLayout() { } 2233 2234 ItaniumVTableContext::ItaniumVTableContext(ASTContext &Context) 2235 : VTableContextBase(/*MS=*/false) {} 2236 2237 ItaniumVTableContext::~ItaniumVTableContext() { 2238 llvm::DeleteContainerSeconds(VTableLayouts); 2239 } 2240 2241 uint64_t ItaniumVTableContext::getMethodVTableIndex(GlobalDecl GD) { 2242 MethodVTableIndicesTy::iterator I = MethodVTableIndices.find(GD); 2243 if (I != MethodVTableIndices.end()) 2244 return I->second; 2245 2246 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 2247 2248 computeVTableRelatedInformation(RD); 2249 2250 I = MethodVTableIndices.find(GD); 2251 assert(I != MethodVTableIndices.end() && "Did not find index!"); 2252 return I->second; 2253 } 2254 2255 CharUnits 2256 ItaniumVTableContext::getVirtualBaseOffsetOffset(const CXXRecordDecl *RD, 2257 const CXXRecordDecl *VBase) { 2258 ClassPairTy ClassPair(RD, VBase); 2259 2260 VirtualBaseClassOffsetOffsetsMapTy::iterator I = 2261 VirtualBaseClassOffsetOffsets.find(ClassPair); 2262 if (I != VirtualBaseClassOffsetOffsets.end()) 2263 return I->second; 2264 2265 VCallAndVBaseOffsetBuilder Builder(RD, RD, /*FinalOverriders=*/nullptr, 2266 BaseSubobject(RD, CharUnits::Zero()), 2267 /*BaseIsVirtual=*/false, 2268 /*OffsetInLayoutClass=*/CharUnits::Zero()); 2269 2270 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2271 // Insert all types. 2272 ClassPairTy ClassPair(RD, I.first); 2273 2274 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2275 } 2276 2277 I = VirtualBaseClassOffsetOffsets.find(ClassPair); 2278 assert(I != VirtualBaseClassOffsetOffsets.end() && "Did not find index!"); 2279 2280 return I->second; 2281 } 2282 2283 static VTableLayout *CreateVTableLayout(const ItaniumVTableBuilder &Builder) { 2284 SmallVector<VTableLayout::VTableThunkTy, 1> 2285 VTableThunks(Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 2286 2287 return new VTableLayout(Builder.getNumVTableComponents(), 2288 Builder.vtable_component_begin(), 2289 VTableThunks.size(), 2290 VTableThunks.data(), 2291 Builder.getAddressPoints(), 2292 /*IsMicrosoftABI=*/false); 2293 } 2294 2295 void 2296 ItaniumVTableContext::computeVTableRelatedInformation(const CXXRecordDecl *RD) { 2297 const VTableLayout *&Entry = VTableLayouts[RD]; 2298 2299 // Check if we've computed this information before. 2300 if (Entry) 2301 return; 2302 2303 ItaniumVTableBuilder Builder(*this, RD, CharUnits::Zero(), 2304 /*MostDerivedClassIsVirtual=*/0, RD); 2305 Entry = CreateVTableLayout(Builder); 2306 2307 MethodVTableIndices.insert(Builder.vtable_indices_begin(), 2308 Builder.vtable_indices_end()); 2309 2310 // Add the known thunks. 2311 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 2312 2313 // If we don't have the vbase information for this class, insert it. 2314 // getVirtualBaseOffsetOffset will compute it separately without computing 2315 // the rest of the vtable related information. 2316 if (!RD->getNumVBases()) 2317 return; 2318 2319 const CXXRecordDecl *VBase = 2320 RD->vbases_begin()->getType()->getAsCXXRecordDecl(); 2321 2322 if (VirtualBaseClassOffsetOffsets.count(std::make_pair(RD, VBase))) 2323 return; 2324 2325 for (const auto &I : Builder.getVBaseOffsetOffsets()) { 2326 // Insert all types. 2327 ClassPairTy ClassPair(RD, I.first); 2328 2329 VirtualBaseClassOffsetOffsets.insert(std::make_pair(ClassPair, I.second)); 2330 } 2331 } 2332 2333 VTableLayout *ItaniumVTableContext::createConstructionVTableLayout( 2334 const CXXRecordDecl *MostDerivedClass, CharUnits MostDerivedClassOffset, 2335 bool MostDerivedClassIsVirtual, const CXXRecordDecl *LayoutClass) { 2336 ItaniumVTableBuilder Builder(*this, MostDerivedClass, MostDerivedClassOffset, 2337 MostDerivedClassIsVirtual, LayoutClass); 2338 return CreateVTableLayout(Builder); 2339 } 2340 2341 namespace { 2342 2343 // Vtables in the Microsoft ABI are different from the Itanium ABI. 2344 // 2345 // The main differences are: 2346 // 1. Separate vftable and vbtable. 2347 // 2348 // 2. Each subobject with a vfptr gets its own vftable rather than an address 2349 // point in a single vtable shared between all the subobjects. 2350 // Each vftable is represented by a separate section and virtual calls 2351 // must be done using the vftable which has a slot for the function to be 2352 // called. 2353 // 2354 // 3. Virtual method definitions expect their 'this' parameter to point to the 2355 // first vfptr whose table provides a compatible overridden method. In many 2356 // cases, this permits the original vf-table entry to directly call 2357 // the method instead of passing through a thunk. 2358 // See example before VFTableBuilder::ComputeThisOffset below. 2359 // 2360 // A compatible overridden method is one which does not have a non-trivial 2361 // covariant-return adjustment. 2362 // 2363 // The first vfptr is the one with the lowest offset in the complete-object 2364 // layout of the defining class, and the method definition will subtract 2365 // that constant offset from the parameter value to get the real 'this' 2366 // value. Therefore, if the offset isn't really constant (e.g. if a virtual 2367 // function defined in a virtual base is overridden in a more derived 2368 // virtual base and these bases have a reverse order in the complete 2369 // object), the vf-table may require a this-adjustment thunk. 2370 // 2371 // 4. vftables do not contain new entries for overrides that merely require 2372 // this-adjustment. Together with #3, this keeps vf-tables smaller and 2373 // eliminates the need for this-adjustment thunks in many cases, at the cost 2374 // of often requiring redundant work to adjust the "this" pointer. 2375 // 2376 // 5. Instead of VTT and constructor vtables, vbtables and vtordisps are used. 2377 // Vtordisps are emitted into the class layout if a class has 2378 // a) a user-defined ctor/dtor 2379 // and 2380 // b) a method overriding a method in a virtual base. 2381 // 2382 // To get a better understanding of this code, 2383 // you might want to see examples in test/CodeGenCXX/microsoft-abi-vtables-*.cpp 2384 2385 class VFTableBuilder { 2386 public: 2387 typedef MicrosoftVTableContext::MethodVFTableLocation MethodVFTableLocation; 2388 2389 typedef llvm::DenseMap<GlobalDecl, MethodVFTableLocation> 2390 MethodVFTableLocationsTy; 2391 2392 typedef llvm::iterator_range<MethodVFTableLocationsTy::const_iterator> 2393 method_locations_range; 2394 2395 private: 2396 /// VTables - Global vtable information. 2397 MicrosoftVTableContext &VTables; 2398 2399 /// Context - The ASTContext which we will use for layout information. 2400 ASTContext &Context; 2401 2402 /// MostDerivedClass - The most derived class for which we're building this 2403 /// vtable. 2404 const CXXRecordDecl *MostDerivedClass; 2405 2406 const ASTRecordLayout &MostDerivedClassLayout; 2407 2408 const VPtrInfo &WhichVFPtr; 2409 2410 /// FinalOverriders - The final overriders of the most derived class. 2411 const FinalOverriders Overriders; 2412 2413 /// Components - The components of the vftable being built. 2414 SmallVector<VTableComponent, 64> Components; 2415 2416 MethodVFTableLocationsTy MethodVFTableLocations; 2417 2418 /// \brief Does this class have an RTTI component? 2419 bool HasRTTIComponent; 2420 2421 /// MethodInfo - Contains information about a method in a vtable. 2422 /// (Used for computing 'this' pointer adjustment thunks. 2423 struct MethodInfo { 2424 /// VBTableIndex - The nonzero index in the vbtable that 2425 /// this method's base has, or zero. 2426 const uint64_t VBTableIndex; 2427 2428 /// VFTableIndex - The index in the vftable that this method has. 2429 const uint64_t VFTableIndex; 2430 2431 /// Shadowed - Indicates if this vftable slot is shadowed by 2432 /// a slot for a covariant-return override. If so, it shouldn't be printed 2433 /// or used for vcalls in the most derived class. 2434 bool Shadowed; 2435 2436 /// UsesExtraSlot - Indicates if this vftable slot was created because 2437 /// any of the overridden slots required a return adjusting thunk. 2438 bool UsesExtraSlot; 2439 2440 MethodInfo(uint64_t VBTableIndex, uint64_t VFTableIndex, 2441 bool UsesExtraSlot = false) 2442 : VBTableIndex(VBTableIndex), VFTableIndex(VFTableIndex), 2443 Shadowed(false), UsesExtraSlot(UsesExtraSlot) {} 2444 2445 MethodInfo() 2446 : VBTableIndex(0), VFTableIndex(0), Shadowed(false), 2447 UsesExtraSlot(false) {} 2448 }; 2449 2450 typedef llvm::DenseMap<const CXXMethodDecl *, MethodInfo> MethodInfoMapTy; 2451 2452 /// MethodInfoMap - The information for all methods in the vftable we're 2453 /// currently building. 2454 MethodInfoMapTy MethodInfoMap; 2455 2456 typedef llvm::DenseMap<uint64_t, ThunkInfo> VTableThunksMapTy; 2457 2458 /// VTableThunks - The thunks by vftable index in the vftable currently being 2459 /// built. 2460 VTableThunksMapTy VTableThunks; 2461 2462 typedef SmallVector<ThunkInfo, 1> ThunkInfoVectorTy; 2463 typedef llvm::DenseMap<const CXXMethodDecl *, ThunkInfoVectorTy> ThunksMapTy; 2464 2465 /// Thunks - A map that contains all the thunks needed for all methods in the 2466 /// most derived class for which the vftable is currently being built. 2467 ThunksMapTy Thunks; 2468 2469 /// AddThunk - Add a thunk for the given method. 2470 void AddThunk(const CXXMethodDecl *MD, const ThunkInfo &Thunk) { 2471 SmallVector<ThunkInfo, 1> &ThunksVector = Thunks[MD]; 2472 2473 // Check if we have this thunk already. 2474 if (std::find(ThunksVector.begin(), ThunksVector.end(), Thunk) != 2475 ThunksVector.end()) 2476 return; 2477 2478 ThunksVector.push_back(Thunk); 2479 } 2480 2481 /// ComputeThisOffset - Returns the 'this' argument offset for the given 2482 /// method, relative to the beginning of the MostDerivedClass. 2483 CharUnits ComputeThisOffset(FinalOverriders::OverriderInfo Overrider); 2484 2485 void CalculateVtordispAdjustment(FinalOverriders::OverriderInfo Overrider, 2486 CharUnits ThisOffset, ThisAdjustment &TA); 2487 2488 /// AddMethod - Add a single virtual member function to the vftable 2489 /// components vector. 2490 void AddMethod(const CXXMethodDecl *MD, ThunkInfo TI) { 2491 if (!TI.isEmpty()) { 2492 VTableThunks[Components.size()] = TI; 2493 AddThunk(MD, TI); 2494 } 2495 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2496 assert(TI.Return.isEmpty() && 2497 "Destructor can't have return adjustment!"); 2498 Components.push_back(VTableComponent::MakeDeletingDtor(DD)); 2499 } else { 2500 Components.push_back(VTableComponent::MakeFunction(MD)); 2501 } 2502 } 2503 2504 /// AddMethods - Add the methods of this base subobject and the relevant 2505 /// subbases to the vftable we're currently laying out. 2506 void AddMethods(BaseSubobject Base, unsigned BaseDepth, 2507 const CXXRecordDecl *LastVBase, 2508 BasesSetVectorTy &VisitedBases); 2509 2510 void LayoutVFTable() { 2511 // RTTI data goes before all other entries. 2512 if (HasRTTIComponent) 2513 Components.push_back(VTableComponent::MakeRTTI(MostDerivedClass)); 2514 2515 BasesSetVectorTy VisitedBases; 2516 AddMethods(BaseSubobject(MostDerivedClass, CharUnits::Zero()), 0, nullptr, 2517 VisitedBases); 2518 assert((HasRTTIComponent ? Components.size() - 1 : Components.size()) && 2519 "vftable can't be empty"); 2520 2521 assert(MethodVFTableLocations.empty()); 2522 for (const auto &I : MethodInfoMap) { 2523 const CXXMethodDecl *MD = I.first; 2524 const MethodInfo &MI = I.second; 2525 // Skip the methods that the MostDerivedClass didn't override 2526 // and the entries shadowed by return adjusting thunks. 2527 if (MD->getParent() != MostDerivedClass || MI.Shadowed) 2528 continue; 2529 MethodVFTableLocation Loc(MI.VBTableIndex, WhichVFPtr.getVBaseWithVPtr(), 2530 WhichVFPtr.NonVirtualOffset, MI.VFTableIndex); 2531 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) { 2532 MethodVFTableLocations[GlobalDecl(DD, Dtor_Deleting)] = Loc; 2533 } else { 2534 MethodVFTableLocations[MD] = Loc; 2535 } 2536 } 2537 } 2538 2539 public: 2540 VFTableBuilder(MicrosoftVTableContext &VTables, 2541 const CXXRecordDecl *MostDerivedClass, const VPtrInfo *Which) 2542 : VTables(VTables), 2543 Context(MostDerivedClass->getASTContext()), 2544 MostDerivedClass(MostDerivedClass), 2545 MostDerivedClassLayout(Context.getASTRecordLayout(MostDerivedClass)), 2546 WhichVFPtr(*Which), 2547 Overriders(MostDerivedClass, CharUnits(), MostDerivedClass) { 2548 // Only include the RTTI component if we know that we will provide a 2549 // definition of the vftable. 2550 HasRTTIComponent = Context.getLangOpts().RTTIData && 2551 !MostDerivedClass->hasAttr<DLLImportAttr>() && 2552 MostDerivedClass->getTemplateSpecializationKind() != 2553 TSK_ExplicitInstantiationDeclaration; 2554 2555 LayoutVFTable(); 2556 2557 if (Context.getLangOpts().DumpVTableLayouts) 2558 dumpLayout(llvm::outs()); 2559 } 2560 2561 uint64_t getNumThunks() const { return Thunks.size(); } 2562 2563 ThunksMapTy::const_iterator thunks_begin() const { return Thunks.begin(); } 2564 2565 ThunksMapTy::const_iterator thunks_end() const { return Thunks.end(); } 2566 2567 method_locations_range vtable_locations() const { 2568 return method_locations_range(MethodVFTableLocations.begin(), 2569 MethodVFTableLocations.end()); 2570 } 2571 2572 uint64_t getNumVTableComponents() const { return Components.size(); } 2573 2574 const VTableComponent *vtable_component_begin() const { 2575 return Components.begin(); 2576 } 2577 2578 const VTableComponent *vtable_component_end() const { 2579 return Components.end(); 2580 } 2581 2582 VTableThunksMapTy::const_iterator vtable_thunks_begin() const { 2583 return VTableThunks.begin(); 2584 } 2585 2586 VTableThunksMapTy::const_iterator vtable_thunks_end() const { 2587 return VTableThunks.end(); 2588 } 2589 2590 void dumpLayout(raw_ostream &); 2591 }; 2592 2593 } // end namespace 2594 2595 // Let's study one class hierarchy as an example: 2596 // struct A { 2597 // virtual void f(); 2598 // int x; 2599 // }; 2600 // 2601 // struct B : virtual A { 2602 // virtual void f(); 2603 // }; 2604 // 2605 // Record layouts: 2606 // struct A: 2607 // 0 | (A vftable pointer) 2608 // 4 | int x 2609 // 2610 // struct B: 2611 // 0 | (B vbtable pointer) 2612 // 4 | struct A (virtual base) 2613 // 4 | (A vftable pointer) 2614 // 8 | int x 2615 // 2616 // Let's assume we have a pointer to the A part of an object of dynamic type B: 2617 // B b; 2618 // A *a = (A*)&b; 2619 // a->f(); 2620 // 2621 // In this hierarchy, f() belongs to the vftable of A, so B::f() expects 2622 // "this" parameter to point at the A subobject, which is B+4. 2623 // In the B::f() prologue, it adjusts "this" back to B by subtracting 4, 2624 // performed as a *static* adjustment. 2625 // 2626 // Interesting thing happens when we alter the relative placement of A and B 2627 // subobjects in a class: 2628 // struct C : virtual B { }; 2629 // 2630 // C c; 2631 // A *a = (A*)&c; 2632 // a->f(); 2633 // 2634 // Respective record layout is: 2635 // 0 | (C vbtable pointer) 2636 // 4 | struct A (virtual base) 2637 // 4 | (A vftable pointer) 2638 // 8 | int x 2639 // 12 | struct B (virtual base) 2640 // 12 | (B vbtable pointer) 2641 // 2642 // The final overrider of f() in class C is still B::f(), so B+4 should be 2643 // passed as "this" to that code. However, "a" points at B-8, so the respective 2644 // vftable entry should hold a thunk that adds 12 to the "this" argument before 2645 // performing a tail call to B::f(). 2646 // 2647 // With this example in mind, we can now calculate the 'this' argument offset 2648 // for the given method, relative to the beginning of the MostDerivedClass. 2649 CharUnits 2650 VFTableBuilder::ComputeThisOffset(FinalOverriders::OverriderInfo Overrider) { 2651 BasesSetVectorTy Bases; 2652 2653 { 2654 // Find the set of least derived bases that define the given method. 2655 OverriddenMethodsSetTy VisitedOverriddenMethods; 2656 auto InitialOverriddenDefinitionCollector = [&]( 2657 const CXXMethodDecl *OverriddenMD) { 2658 if (OverriddenMD->size_overridden_methods() == 0) 2659 Bases.insert(OverriddenMD->getParent()); 2660 // Don't recurse on this method if we've already collected it. 2661 return VisitedOverriddenMethods.insert(OverriddenMD).second; 2662 }; 2663 visitAllOverriddenMethods(Overrider.Method, 2664 InitialOverriddenDefinitionCollector); 2665 } 2666 2667 // If there are no overrides then 'this' is located 2668 // in the base that defines the method. 2669 if (Bases.size() == 0) 2670 return Overrider.Offset; 2671 2672 CXXBasePaths Paths; 2673 Overrider.Method->getParent()->lookupInBases( 2674 [&Bases](const CXXBaseSpecifier *Specifier, CXXBasePath &) { 2675 return Bases.count(Specifier->getType()->getAsCXXRecordDecl()); 2676 }, 2677 Paths); 2678 2679 // This will hold the smallest this offset among overridees of MD. 2680 // This implies that an offset of a non-virtual base will dominate an offset 2681 // of a virtual base to potentially reduce the number of thunks required 2682 // in the derived classes that inherit this method. 2683 CharUnits Ret; 2684 bool First = true; 2685 2686 const ASTRecordLayout &OverriderRDLayout = 2687 Context.getASTRecordLayout(Overrider.Method->getParent()); 2688 for (const CXXBasePath &Path : Paths) { 2689 CharUnits ThisOffset = Overrider.Offset; 2690 CharUnits LastVBaseOffset; 2691 2692 // For each path from the overrider to the parents of the overridden 2693 // methods, traverse the path, calculating the this offset in the most 2694 // derived class. 2695 for (const CXXBasePathElement &Element : Path) { 2696 QualType CurTy = Element.Base->getType(); 2697 const CXXRecordDecl *PrevRD = Element.Class, 2698 *CurRD = CurTy->getAsCXXRecordDecl(); 2699 const ASTRecordLayout &Layout = Context.getASTRecordLayout(PrevRD); 2700 2701 if (Element.Base->isVirtual()) { 2702 // The interesting things begin when you have virtual inheritance. 2703 // The final overrider will use a static adjustment equal to the offset 2704 // of the vbase in the final overrider class. 2705 // For example, if the final overrider is in a vbase B of the most 2706 // derived class and it overrides a method of the B's own vbase A, 2707 // it uses A* as "this". In its prologue, it can cast A* to B* with 2708 // a static offset. This offset is used regardless of the actual 2709 // offset of A from B in the most derived class, requiring an 2710 // this-adjusting thunk in the vftable if A and B are laid out 2711 // differently in the most derived class. 2712 LastVBaseOffset = ThisOffset = 2713 Overrider.Offset + OverriderRDLayout.getVBaseClassOffset(CurRD); 2714 } else { 2715 ThisOffset += Layout.getBaseClassOffset(CurRD); 2716 } 2717 } 2718 2719 if (isa<CXXDestructorDecl>(Overrider.Method)) { 2720 if (LastVBaseOffset.isZero()) { 2721 // If a "Base" class has at least one non-virtual base with a virtual 2722 // destructor, the "Base" virtual destructor will take the address 2723 // of the "Base" subobject as the "this" argument. 2724 ThisOffset = Overrider.Offset; 2725 } else { 2726 // A virtual destructor of a virtual base takes the address of the 2727 // virtual base subobject as the "this" argument. 2728 ThisOffset = LastVBaseOffset; 2729 } 2730 } 2731 2732 if (Ret > ThisOffset || First) { 2733 First = false; 2734 Ret = ThisOffset; 2735 } 2736 } 2737 2738 assert(!First && "Method not found in the given subobject?"); 2739 return Ret; 2740 } 2741 2742 // Things are getting even more complex when the "this" adjustment has to 2743 // use a dynamic offset instead of a static one, or even two dynamic offsets. 2744 // This is sometimes required when a virtual call happens in the middle of 2745 // a non-most-derived class construction or destruction. 2746 // 2747 // Let's take a look at the following example: 2748 // struct A { 2749 // virtual void f(); 2750 // }; 2751 // 2752 // void foo(A *a) { a->f(); } // Knows nothing about siblings of A. 2753 // 2754 // struct B : virtual A { 2755 // virtual void f(); 2756 // B() { 2757 // foo(this); 2758 // } 2759 // }; 2760 // 2761 // struct C : virtual B { 2762 // virtual void f(); 2763 // }; 2764 // 2765 // Record layouts for these classes are: 2766 // struct A 2767 // 0 | (A vftable pointer) 2768 // 2769 // struct B 2770 // 0 | (B vbtable pointer) 2771 // 4 | (vtordisp for vbase A) 2772 // 8 | struct A (virtual base) 2773 // 8 | (A vftable pointer) 2774 // 2775 // struct C 2776 // 0 | (C vbtable pointer) 2777 // 4 | (vtordisp for vbase A) 2778 // 8 | struct A (virtual base) // A precedes B! 2779 // 8 | (A vftable pointer) 2780 // 12 | struct B (virtual base) 2781 // 12 | (B vbtable pointer) 2782 // 2783 // When one creates an object of type C, the C constructor: 2784 // - initializes all the vbptrs, then 2785 // - calls the A subobject constructor 2786 // (initializes A's vfptr with an address of A vftable), then 2787 // - calls the B subobject constructor 2788 // (initializes A's vfptr with an address of B vftable and vtordisp for A), 2789 // that in turn calls foo(), then 2790 // - initializes A's vfptr with an address of C vftable and zeroes out the 2791 // vtordisp 2792 // FIXME: if a structor knows it belongs to MDC, why doesn't it use a vftable 2793 // without vtordisp thunks? 2794 // FIXME: how are vtordisp handled in the presence of nooverride/final? 2795 // 2796 // When foo() is called, an object with a layout of class C has a vftable 2797 // referencing B::f() that assumes a B layout, so the "this" adjustments are 2798 // incorrect, unless an extra adjustment is done. This adjustment is called 2799 // "vtordisp adjustment". Vtordisp basically holds the difference between the 2800 // actual location of a vbase in the layout class and the location assumed by 2801 // the vftable of the class being constructed/destructed. Vtordisp is only 2802 // needed if "this" escapes a 2803 // structor (or we can't prove otherwise). 2804 // [i.e. vtordisp is a dynamic adjustment for a static adjustment, which is an 2805 // estimation of a dynamic adjustment] 2806 // 2807 // foo() gets a pointer to the A vbase and doesn't know anything about B or C, 2808 // so it just passes that pointer as "this" in a virtual call. 2809 // If there was no vtordisp, that would just dispatch to B::f(). 2810 // However, B::f() assumes B+8 is passed as "this", 2811 // yet the pointer foo() passes along is B-4 (i.e. C+8). 2812 // An extra adjustment is needed, so we emit a thunk into the B vftable. 2813 // This vtordisp thunk subtracts the value of vtordisp 2814 // from the "this" argument (-12) before making a tailcall to B::f(). 2815 // 2816 // Let's consider an even more complex example: 2817 // struct D : virtual B, virtual C { 2818 // D() { 2819 // foo(this); 2820 // } 2821 // }; 2822 // 2823 // struct D 2824 // 0 | (D vbtable pointer) 2825 // 4 | (vtordisp for vbase A) 2826 // 8 | struct A (virtual base) // A precedes both B and C! 2827 // 8 | (A vftable pointer) 2828 // 12 | struct B (virtual base) // B precedes C! 2829 // 12 | (B vbtable pointer) 2830 // 16 | struct C (virtual base) 2831 // 16 | (C vbtable pointer) 2832 // 2833 // When D::D() calls foo(), we find ourselves in a thunk that should tailcall 2834 // to C::f(), which assumes C+8 as its "this" parameter. This time, foo() 2835 // passes along A, which is C-8. The A vtordisp holds 2836 // "D.vbptr[index_of_A] - offset_of_A_in_D" 2837 // and we statically know offset_of_A_in_D, so can get a pointer to D. 2838 // When we know it, we can make an extra vbtable lookup to locate the C vbase 2839 // and one extra static adjustment to calculate the expected value of C+8. 2840 void VFTableBuilder::CalculateVtordispAdjustment( 2841 FinalOverriders::OverriderInfo Overrider, CharUnits ThisOffset, 2842 ThisAdjustment &TA) { 2843 const ASTRecordLayout::VBaseOffsetsMapTy &VBaseMap = 2844 MostDerivedClassLayout.getVBaseOffsetsMap(); 2845 const ASTRecordLayout::VBaseOffsetsMapTy::const_iterator &VBaseMapEntry = 2846 VBaseMap.find(WhichVFPtr.getVBaseWithVPtr()); 2847 assert(VBaseMapEntry != VBaseMap.end()); 2848 2849 // If there's no vtordisp or the final overrider is defined in the same vbase 2850 // as the initial declaration, we don't need any vtordisp adjustment. 2851 if (!VBaseMapEntry->second.hasVtorDisp() || 2852 Overrider.VirtualBase == WhichVFPtr.getVBaseWithVPtr()) 2853 return; 2854 2855 // OK, now we know we need to use a vtordisp thunk. 2856 // The implicit vtordisp field is located right before the vbase. 2857 CharUnits OffsetOfVBaseWithVFPtr = VBaseMapEntry->second.VBaseOffset; 2858 TA.Virtual.Microsoft.VtordispOffset = 2859 (OffsetOfVBaseWithVFPtr - WhichVFPtr.FullOffsetInMDC).getQuantity() - 4; 2860 2861 // A simple vtordisp thunk will suffice if the final overrider is defined 2862 // in either the most derived class or its non-virtual base. 2863 if (Overrider.Method->getParent() == MostDerivedClass || 2864 !Overrider.VirtualBase) 2865 return; 2866 2867 // Otherwise, we need to do use the dynamic offset of the final overrider 2868 // in order to get "this" adjustment right. 2869 TA.Virtual.Microsoft.VBPtrOffset = 2870 (OffsetOfVBaseWithVFPtr + WhichVFPtr.NonVirtualOffset - 2871 MostDerivedClassLayout.getVBPtrOffset()).getQuantity(); 2872 TA.Virtual.Microsoft.VBOffsetOffset = 2873 Context.getTypeSizeInChars(Context.IntTy).getQuantity() * 2874 VTables.getVBTableIndex(MostDerivedClass, Overrider.VirtualBase); 2875 2876 TA.NonVirtual = (ThisOffset - Overrider.Offset).getQuantity(); 2877 } 2878 2879 static void GroupNewVirtualOverloads( 2880 const CXXRecordDecl *RD, 2881 SmallVector<const CXXMethodDecl *, 10> &VirtualMethods) { 2882 // Put the virtual methods into VirtualMethods in the proper order: 2883 // 1) Group overloads by declaration name. New groups are added to the 2884 // vftable in the order of their first declarations in this class 2885 // (including overrides, non-virtual methods and any other named decl that 2886 // might be nested within the class). 2887 // 2) In each group, new overloads appear in the reverse order of declaration. 2888 typedef SmallVector<const CXXMethodDecl *, 1> MethodGroup; 2889 SmallVector<MethodGroup, 10> Groups; 2890 typedef llvm::DenseMap<DeclarationName, unsigned> VisitedGroupIndicesTy; 2891 VisitedGroupIndicesTy VisitedGroupIndices; 2892 for (const auto *D : RD->decls()) { 2893 const auto *ND = dyn_cast<NamedDecl>(D); 2894 if (!ND) 2895 continue; 2896 VisitedGroupIndicesTy::iterator J; 2897 bool Inserted; 2898 std::tie(J, Inserted) = VisitedGroupIndices.insert( 2899 std::make_pair(ND->getDeclName(), Groups.size())); 2900 if (Inserted) 2901 Groups.push_back(MethodGroup()); 2902 if (const auto *MD = dyn_cast<CXXMethodDecl>(ND)) 2903 if (MD->isVirtual()) 2904 Groups[J->second].push_back(MD->getCanonicalDecl()); 2905 } 2906 2907 for (const MethodGroup &Group : Groups) 2908 VirtualMethods.append(Group.rbegin(), Group.rend()); 2909 } 2910 2911 static bool isDirectVBase(const CXXRecordDecl *Base, const CXXRecordDecl *RD) { 2912 for (const auto &B : RD->bases()) { 2913 if (B.isVirtual() && B.getType()->getAsCXXRecordDecl() == Base) 2914 return true; 2915 } 2916 return false; 2917 } 2918 2919 void VFTableBuilder::AddMethods(BaseSubobject Base, unsigned BaseDepth, 2920 const CXXRecordDecl *LastVBase, 2921 BasesSetVectorTy &VisitedBases) { 2922 const CXXRecordDecl *RD = Base.getBase(); 2923 if (!RD->isPolymorphic()) 2924 return; 2925 2926 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2927 2928 // See if this class expands a vftable of the base we look at, which is either 2929 // the one defined by the vfptr base path or the primary base of the current 2930 // class. 2931 const CXXRecordDecl *NextBase = nullptr, *NextLastVBase = LastVBase; 2932 CharUnits NextBaseOffset; 2933 if (BaseDepth < WhichVFPtr.PathToBaseWithVPtr.size()) { 2934 NextBase = WhichVFPtr.PathToBaseWithVPtr[BaseDepth]; 2935 if (isDirectVBase(NextBase, RD)) { 2936 NextLastVBase = NextBase; 2937 NextBaseOffset = MostDerivedClassLayout.getVBaseClassOffset(NextBase); 2938 } else { 2939 NextBaseOffset = 2940 Base.getBaseOffset() + Layout.getBaseClassOffset(NextBase); 2941 } 2942 } else if (const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase()) { 2943 assert(!Layout.isPrimaryBaseVirtual() && 2944 "No primary virtual bases in this ABI"); 2945 NextBase = PrimaryBase; 2946 NextBaseOffset = Base.getBaseOffset(); 2947 } 2948 2949 if (NextBase) { 2950 AddMethods(BaseSubobject(NextBase, NextBaseOffset), BaseDepth + 1, 2951 NextLastVBase, VisitedBases); 2952 if (!VisitedBases.insert(NextBase)) 2953 llvm_unreachable("Found a duplicate primary base!"); 2954 } 2955 2956 SmallVector<const CXXMethodDecl*, 10> VirtualMethods; 2957 // Put virtual methods in the proper order. 2958 GroupNewVirtualOverloads(RD, VirtualMethods); 2959 2960 // Now go through all virtual member functions and add them to the current 2961 // vftable. This is done by 2962 // - replacing overridden methods in their existing slots, as long as they 2963 // don't require return adjustment; calculating This adjustment if needed. 2964 // - adding new slots for methods of the current base not present in any 2965 // sub-bases; 2966 // - adding new slots for methods that require Return adjustment. 2967 // We keep track of the methods visited in the sub-bases in MethodInfoMap. 2968 for (const CXXMethodDecl *MD : VirtualMethods) { 2969 FinalOverriders::OverriderInfo FinalOverrider = 2970 Overriders.getOverrider(MD, Base.getBaseOffset()); 2971 const CXXMethodDecl *FinalOverriderMD = FinalOverrider.Method; 2972 const CXXMethodDecl *OverriddenMD = 2973 FindNearestOverriddenMethod(MD, VisitedBases); 2974 2975 ThisAdjustment ThisAdjustmentOffset; 2976 bool ReturnAdjustingThunk = false, ForceReturnAdjustmentMangling = false; 2977 CharUnits ThisOffset = ComputeThisOffset(FinalOverrider); 2978 ThisAdjustmentOffset.NonVirtual = 2979 (ThisOffset - WhichVFPtr.FullOffsetInMDC).getQuantity(); 2980 if ((OverriddenMD || FinalOverriderMD != MD) && 2981 WhichVFPtr.getVBaseWithVPtr()) 2982 CalculateVtordispAdjustment(FinalOverrider, ThisOffset, 2983 ThisAdjustmentOffset); 2984 2985 if (OverriddenMD) { 2986 // If MD overrides anything in this vftable, we need to update the 2987 // entries. 2988 MethodInfoMapTy::iterator OverriddenMDIterator = 2989 MethodInfoMap.find(OverriddenMD); 2990 2991 // If the overridden method went to a different vftable, skip it. 2992 if (OverriddenMDIterator == MethodInfoMap.end()) 2993 continue; 2994 2995 MethodInfo &OverriddenMethodInfo = OverriddenMDIterator->second; 2996 2997 // Let's check if the overrider requires any return adjustments. 2998 // We must create a new slot if the MD's return type is not trivially 2999 // convertible to the OverriddenMD's one. 3000 // Once a chain of method overrides adds a return adjusting vftable slot, 3001 // all subsequent overrides will also use an extra method slot. 3002 ReturnAdjustingThunk = !ComputeReturnAdjustmentBaseOffset( 3003 Context, MD, OverriddenMD).isEmpty() || 3004 OverriddenMethodInfo.UsesExtraSlot; 3005 3006 if (!ReturnAdjustingThunk) { 3007 // No return adjustment needed - just replace the overridden method info 3008 // with the current info. 3009 MethodInfo MI(OverriddenMethodInfo.VBTableIndex, 3010 OverriddenMethodInfo.VFTableIndex); 3011 MethodInfoMap.erase(OverriddenMDIterator); 3012 3013 assert(!MethodInfoMap.count(MD) && 3014 "Should not have method info for this method yet!"); 3015 MethodInfoMap.insert(std::make_pair(MD, MI)); 3016 continue; 3017 } 3018 3019 // In case we need a return adjustment, we'll add a new slot for 3020 // the overrider. Mark the overriden method as shadowed by the new slot. 3021 OverriddenMethodInfo.Shadowed = true; 3022 3023 // Force a special name mangling for a return-adjusting thunk 3024 // unless the method is the final overrider without this adjustment. 3025 ForceReturnAdjustmentMangling = 3026 !(MD == FinalOverriderMD && ThisAdjustmentOffset.isEmpty()); 3027 } else if (Base.getBaseOffset() != WhichVFPtr.FullOffsetInMDC || 3028 MD->size_overridden_methods()) { 3029 // Skip methods that don't belong to the vftable of the current class, 3030 // e.g. each method that wasn't seen in any of the visited sub-bases 3031 // but overrides multiple methods of other sub-bases. 3032 continue; 3033 } 3034 3035 // If we got here, MD is a method not seen in any of the sub-bases or 3036 // it requires return adjustment. Insert the method info for this method. 3037 unsigned VBIndex = 3038 LastVBase ? VTables.getVBTableIndex(MostDerivedClass, LastVBase) : 0; 3039 MethodInfo MI(VBIndex, 3040 HasRTTIComponent ? Components.size() - 1 : Components.size(), 3041 ReturnAdjustingThunk); 3042 3043 assert(!MethodInfoMap.count(MD) && 3044 "Should not have method info for this method yet!"); 3045 MethodInfoMap.insert(std::make_pair(MD, MI)); 3046 3047 // Check if this overrider needs a return adjustment. 3048 // We don't want to do this for pure virtual member functions. 3049 BaseOffset ReturnAdjustmentOffset; 3050 ReturnAdjustment ReturnAdjustment; 3051 if (!FinalOverriderMD->isPure()) { 3052 ReturnAdjustmentOffset = 3053 ComputeReturnAdjustmentBaseOffset(Context, FinalOverriderMD, MD); 3054 } 3055 if (!ReturnAdjustmentOffset.isEmpty()) { 3056 ForceReturnAdjustmentMangling = true; 3057 ReturnAdjustment.NonVirtual = 3058 ReturnAdjustmentOffset.NonVirtualOffset.getQuantity(); 3059 if (ReturnAdjustmentOffset.VirtualBase) { 3060 const ASTRecordLayout &DerivedLayout = 3061 Context.getASTRecordLayout(ReturnAdjustmentOffset.DerivedClass); 3062 ReturnAdjustment.Virtual.Microsoft.VBPtrOffset = 3063 DerivedLayout.getVBPtrOffset().getQuantity(); 3064 ReturnAdjustment.Virtual.Microsoft.VBIndex = 3065 VTables.getVBTableIndex(ReturnAdjustmentOffset.DerivedClass, 3066 ReturnAdjustmentOffset.VirtualBase); 3067 } 3068 } 3069 3070 AddMethod(FinalOverriderMD, 3071 ThunkInfo(ThisAdjustmentOffset, ReturnAdjustment, 3072 ForceReturnAdjustmentMangling ? MD : nullptr)); 3073 } 3074 } 3075 3076 static void PrintBasePath(const VPtrInfo::BasePath &Path, raw_ostream &Out) { 3077 for (const CXXRecordDecl *Elem : 3078 llvm::make_range(Path.rbegin(), Path.rend())) { 3079 Out << "'"; 3080 Elem->printQualifiedName(Out); 3081 Out << "' in "; 3082 } 3083 } 3084 3085 static void dumpMicrosoftThunkAdjustment(const ThunkInfo &TI, raw_ostream &Out, 3086 bool ContinueFirstLine) { 3087 const ReturnAdjustment &R = TI.Return; 3088 bool Multiline = false; 3089 const char *LinePrefix = "\n "; 3090 if (!R.isEmpty() || TI.Method) { 3091 if (!ContinueFirstLine) 3092 Out << LinePrefix; 3093 Out << "[return adjustment (to type '" 3094 << TI.Method->getReturnType().getCanonicalType().getAsString() 3095 << "'): "; 3096 if (R.Virtual.Microsoft.VBPtrOffset) 3097 Out << "vbptr at offset " << R.Virtual.Microsoft.VBPtrOffset << ", "; 3098 if (R.Virtual.Microsoft.VBIndex) 3099 Out << "vbase #" << R.Virtual.Microsoft.VBIndex << ", "; 3100 Out << R.NonVirtual << " non-virtual]"; 3101 Multiline = true; 3102 } 3103 3104 const ThisAdjustment &T = TI.This; 3105 if (!T.isEmpty()) { 3106 if (Multiline || !ContinueFirstLine) 3107 Out << LinePrefix; 3108 Out << "[this adjustment: "; 3109 if (!TI.This.Virtual.isEmpty()) { 3110 assert(T.Virtual.Microsoft.VtordispOffset < 0); 3111 Out << "vtordisp at " << T.Virtual.Microsoft.VtordispOffset << ", "; 3112 if (T.Virtual.Microsoft.VBPtrOffset) { 3113 Out << "vbptr at " << T.Virtual.Microsoft.VBPtrOffset 3114 << " to the left,"; 3115 assert(T.Virtual.Microsoft.VBOffsetOffset > 0); 3116 Out << LinePrefix << " vboffset at " 3117 << T.Virtual.Microsoft.VBOffsetOffset << " in the vbtable, "; 3118 } 3119 } 3120 Out << T.NonVirtual << " non-virtual]"; 3121 } 3122 } 3123 3124 void VFTableBuilder::dumpLayout(raw_ostream &Out) { 3125 Out << "VFTable for "; 3126 PrintBasePath(WhichVFPtr.PathToBaseWithVPtr, Out); 3127 Out << "'"; 3128 MostDerivedClass->printQualifiedName(Out); 3129 Out << "' (" << Components.size() 3130 << (Components.size() == 1 ? " entry" : " entries") << ").\n"; 3131 3132 for (unsigned I = 0, E = Components.size(); I != E; ++I) { 3133 Out << llvm::format("%4d | ", I); 3134 3135 const VTableComponent &Component = Components[I]; 3136 3137 // Dump the component. 3138 switch (Component.getKind()) { 3139 case VTableComponent::CK_RTTI: 3140 Component.getRTTIDecl()->printQualifiedName(Out); 3141 Out << " RTTI"; 3142 break; 3143 3144 case VTableComponent::CK_FunctionPointer: { 3145 const CXXMethodDecl *MD = Component.getFunctionDecl(); 3146 3147 // FIXME: Figure out how to print the real thunk type, since they can 3148 // differ in the return type. 3149 std::string Str = PredefinedExpr::ComputeName( 3150 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3151 Out << Str; 3152 if (MD->isPure()) 3153 Out << " [pure]"; 3154 3155 if (MD->isDeleted()) 3156 Out << " [deleted]"; 3157 3158 ThunkInfo Thunk = VTableThunks.lookup(I); 3159 if (!Thunk.isEmpty()) 3160 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3161 3162 break; 3163 } 3164 3165 case VTableComponent::CK_DeletingDtorPointer: { 3166 const CXXDestructorDecl *DD = Component.getDestructorDecl(); 3167 3168 DD->printQualifiedName(Out); 3169 Out << "() [scalar deleting]"; 3170 3171 if (DD->isPure()) 3172 Out << " [pure]"; 3173 3174 ThunkInfo Thunk = VTableThunks.lookup(I); 3175 if (!Thunk.isEmpty()) { 3176 assert(Thunk.Return.isEmpty() && 3177 "No return adjustment needed for destructors!"); 3178 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/false); 3179 } 3180 3181 break; 3182 } 3183 3184 default: 3185 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3186 unsigned DiagID = Diags.getCustomDiagID( 3187 DiagnosticsEngine::Error, 3188 "Unexpected vftable component type %0 for component number %1"); 3189 Diags.Report(MostDerivedClass->getLocation(), DiagID) 3190 << I << Component.getKind(); 3191 } 3192 3193 Out << '\n'; 3194 } 3195 3196 Out << '\n'; 3197 3198 if (!Thunks.empty()) { 3199 // We store the method names in a map to get a stable order. 3200 std::map<std::string, const CXXMethodDecl *> MethodNamesAndDecls; 3201 3202 for (const auto &I : Thunks) { 3203 const CXXMethodDecl *MD = I.first; 3204 std::string MethodName = PredefinedExpr::ComputeName( 3205 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3206 3207 MethodNamesAndDecls.insert(std::make_pair(MethodName, MD)); 3208 } 3209 3210 for (const auto &MethodNameAndDecl : MethodNamesAndDecls) { 3211 const std::string &MethodName = MethodNameAndDecl.first; 3212 const CXXMethodDecl *MD = MethodNameAndDecl.second; 3213 3214 ThunkInfoVectorTy ThunksVector = Thunks[MD]; 3215 std::stable_sort(ThunksVector.begin(), ThunksVector.end(), 3216 [](const ThunkInfo &LHS, const ThunkInfo &RHS) { 3217 // Keep different thunks with the same adjustments in the order they 3218 // were put into the vector. 3219 return std::tie(LHS.This, LHS.Return) < std::tie(RHS.This, RHS.Return); 3220 }); 3221 3222 Out << "Thunks for '" << MethodName << "' (" << ThunksVector.size(); 3223 Out << (ThunksVector.size() == 1 ? " entry" : " entries") << ").\n"; 3224 3225 for (unsigned I = 0, E = ThunksVector.size(); I != E; ++I) { 3226 const ThunkInfo &Thunk = ThunksVector[I]; 3227 3228 Out << llvm::format("%4d | ", I); 3229 dumpMicrosoftThunkAdjustment(Thunk, Out, /*ContinueFirstLine=*/true); 3230 Out << '\n'; 3231 } 3232 3233 Out << '\n'; 3234 } 3235 } 3236 3237 Out.flush(); 3238 } 3239 3240 static bool setsIntersect(const llvm::SmallPtrSet<const CXXRecordDecl *, 4> &A, 3241 ArrayRef<const CXXRecordDecl *> B) { 3242 for (const CXXRecordDecl *Decl : B) { 3243 if (A.count(Decl)) 3244 return true; 3245 } 3246 return false; 3247 } 3248 3249 static bool rebucketPaths(VPtrInfoVector &Paths); 3250 3251 /// Produces MSVC-compatible vbtable data. The symbols produced by this 3252 /// algorithm match those produced by MSVC 2012 and newer, which is different 3253 /// from MSVC 2010. 3254 /// 3255 /// MSVC 2012 appears to minimize the vbtable names using the following 3256 /// algorithm. First, walk the class hierarchy in the usual order, depth first, 3257 /// left to right, to find all of the subobjects which contain a vbptr field. 3258 /// Visiting each class node yields a list of inheritance paths to vbptrs. Each 3259 /// record with a vbptr creates an initially empty path. 3260 /// 3261 /// To combine paths from child nodes, the paths are compared to check for 3262 /// ambiguity. Paths are "ambiguous" if multiple paths have the same set of 3263 /// components in the same order. Each group of ambiguous paths is extended by 3264 /// appending the class of the base from which it came. If the current class 3265 /// node produced an ambiguous path, its path is extended with the current class. 3266 /// After extending paths, MSVC again checks for ambiguity, and extends any 3267 /// ambiguous path which wasn't already extended. Because each node yields an 3268 /// unambiguous set of paths, MSVC doesn't need to extend any path more than once 3269 /// to produce an unambiguous set of paths. 3270 /// 3271 /// TODO: Presumably vftables use the same algorithm. 3272 void MicrosoftVTableContext::computeVTablePaths(bool ForVBTables, 3273 const CXXRecordDecl *RD, 3274 VPtrInfoVector &Paths) { 3275 assert(Paths.empty()); 3276 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3277 3278 // Base case: this subobject has its own vptr. 3279 if (ForVBTables ? Layout.hasOwnVBPtr() : Layout.hasOwnVFPtr()) 3280 Paths.push_back(new VPtrInfo(RD)); 3281 3282 // Recursive case: get all the vbtables from our bases and remove anything 3283 // that shares a virtual base. 3284 llvm::SmallPtrSet<const CXXRecordDecl*, 4> VBasesSeen; 3285 for (const auto &B : RD->bases()) { 3286 const CXXRecordDecl *Base = B.getType()->getAsCXXRecordDecl(); 3287 if (B.isVirtual() && VBasesSeen.count(Base)) 3288 continue; 3289 3290 if (!Base->isDynamicClass()) 3291 continue; 3292 3293 const VPtrInfoVector &BasePaths = 3294 ForVBTables ? enumerateVBTables(Base) : getVFPtrOffsets(Base); 3295 3296 for (VPtrInfo *BaseInfo : BasePaths) { 3297 // Don't include the path if it goes through a virtual base that we've 3298 // already included. 3299 if (setsIntersect(VBasesSeen, BaseInfo->ContainingVBases)) 3300 continue; 3301 3302 // Copy the path and adjust it as necessary. 3303 VPtrInfo *P = new VPtrInfo(*BaseInfo); 3304 3305 // We mangle Base into the path if the path would've been ambiguous and it 3306 // wasn't already extended with Base. 3307 if (P->MangledPath.empty() || P->MangledPath.back() != Base) 3308 P->NextBaseToMangle = Base; 3309 3310 // Keep track of which vtable the derived class is going to extend with 3311 // new methods or bases. We append to either the vftable of our primary 3312 // base, or the first non-virtual base that has a vbtable. 3313 if (P->ReusingBase == Base && 3314 Base == (ForVBTables ? Layout.getBaseSharingVBPtr() 3315 : Layout.getPrimaryBase())) 3316 P->ReusingBase = RD; 3317 3318 // Keep track of the full adjustment from the MDC to this vtable. The 3319 // adjustment is captured by an optional vbase and a non-virtual offset. 3320 if (B.isVirtual()) 3321 P->ContainingVBases.push_back(Base); 3322 else if (P->ContainingVBases.empty()) 3323 P->NonVirtualOffset += Layout.getBaseClassOffset(Base); 3324 3325 // Update the full offset in the MDC. 3326 P->FullOffsetInMDC = P->NonVirtualOffset; 3327 if (const CXXRecordDecl *VB = P->getVBaseWithVPtr()) 3328 P->FullOffsetInMDC += Layout.getVBaseClassOffset(VB); 3329 3330 Paths.push_back(P); 3331 } 3332 3333 if (B.isVirtual()) 3334 VBasesSeen.insert(Base); 3335 3336 // After visiting any direct base, we've transitively visited all of its 3337 // morally virtual bases. 3338 for (const auto &VB : Base->vbases()) 3339 VBasesSeen.insert(VB.getType()->getAsCXXRecordDecl()); 3340 } 3341 3342 // Sort the paths into buckets, and if any of them are ambiguous, extend all 3343 // paths in ambiguous buckets. 3344 bool Changed = true; 3345 while (Changed) 3346 Changed = rebucketPaths(Paths); 3347 } 3348 3349 static bool extendPath(VPtrInfo *P) { 3350 if (P->NextBaseToMangle) { 3351 P->MangledPath.push_back(P->NextBaseToMangle); 3352 P->NextBaseToMangle = nullptr;// Prevent the path from being extended twice. 3353 return true; 3354 } 3355 return false; 3356 } 3357 3358 static bool rebucketPaths(VPtrInfoVector &Paths) { 3359 // What we're essentially doing here is bucketing together ambiguous paths. 3360 // Any bucket with more than one path in it gets extended by NextBase, which 3361 // is usually the direct base of the inherited the vbptr. This code uses a 3362 // sorted vector to implement a multiset to form the buckets. Note that the 3363 // ordering is based on pointers, but it doesn't change our output order. The 3364 // current algorithm is designed to match MSVC 2012's names. 3365 VPtrInfoVector PathsSorted(Paths); 3366 std::sort(PathsSorted.begin(), PathsSorted.end(), 3367 [](const VPtrInfo *LHS, const VPtrInfo *RHS) { 3368 return LHS->MangledPath < RHS->MangledPath; 3369 }); 3370 bool Changed = false; 3371 for (size_t I = 0, E = PathsSorted.size(); I != E;) { 3372 // Scan forward to find the end of the bucket. 3373 size_t BucketStart = I; 3374 do { 3375 ++I; 3376 } while (I != E && PathsSorted[BucketStart]->MangledPath == 3377 PathsSorted[I]->MangledPath); 3378 3379 // If this bucket has multiple paths, extend them all. 3380 if (I - BucketStart > 1) { 3381 for (size_t II = BucketStart; II != I; ++II) 3382 Changed |= extendPath(PathsSorted[II]); 3383 assert(Changed && "no paths were extended to fix ambiguity"); 3384 } 3385 } 3386 return Changed; 3387 } 3388 3389 MicrosoftVTableContext::~MicrosoftVTableContext() { 3390 for (auto &P : VFPtrLocations) 3391 llvm::DeleteContainerPointers(*P.second); 3392 llvm::DeleteContainerSeconds(VFPtrLocations); 3393 llvm::DeleteContainerSeconds(VFTableLayouts); 3394 llvm::DeleteContainerSeconds(VBaseInfo); 3395 } 3396 3397 namespace { 3398 typedef llvm::SetVector<BaseSubobject, std::vector<BaseSubobject>, 3399 llvm::DenseSet<BaseSubobject>> FullPathTy; 3400 } 3401 3402 // This recursive function finds all paths from a subobject centered at 3403 // (RD, Offset) to the subobject located at BaseWithVPtr. 3404 static void findPathsToSubobject(ASTContext &Context, 3405 const ASTRecordLayout &MostDerivedLayout, 3406 const CXXRecordDecl *RD, CharUnits Offset, 3407 BaseSubobject BaseWithVPtr, 3408 FullPathTy &FullPath, 3409 std::list<FullPathTy> &Paths) { 3410 if (BaseSubobject(RD, Offset) == BaseWithVPtr) { 3411 Paths.push_back(FullPath); 3412 return; 3413 } 3414 3415 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3416 3417 for (const CXXBaseSpecifier &BS : RD->bases()) { 3418 const CXXRecordDecl *Base = BS.getType()->getAsCXXRecordDecl(); 3419 CharUnits NewOffset = BS.isVirtual() 3420 ? MostDerivedLayout.getVBaseClassOffset(Base) 3421 : Offset + Layout.getBaseClassOffset(Base); 3422 FullPath.insert(BaseSubobject(Base, NewOffset)); 3423 findPathsToSubobject(Context, MostDerivedLayout, Base, NewOffset, 3424 BaseWithVPtr, FullPath, Paths); 3425 FullPath.pop_back(); 3426 } 3427 } 3428 3429 // Return the paths which are not subsets of other paths. 3430 static void removeRedundantPaths(std::list<FullPathTy> &FullPaths) { 3431 FullPaths.remove_if([&](const FullPathTy &SpecificPath) { 3432 for (const FullPathTy &OtherPath : FullPaths) { 3433 if (&SpecificPath == &OtherPath) 3434 continue; 3435 if (std::all_of(SpecificPath.begin(), SpecificPath.end(), 3436 [&](const BaseSubobject &BSO) { 3437 return OtherPath.count(BSO) != 0; 3438 })) { 3439 return true; 3440 } 3441 } 3442 return false; 3443 }); 3444 } 3445 3446 static CharUnits getOffsetOfFullPath(ASTContext &Context, 3447 const CXXRecordDecl *RD, 3448 const FullPathTy &FullPath) { 3449 const ASTRecordLayout &MostDerivedLayout = 3450 Context.getASTRecordLayout(RD); 3451 CharUnits Offset = CharUnits::fromQuantity(-1); 3452 for (const BaseSubobject &BSO : FullPath) { 3453 const CXXRecordDecl *Base = BSO.getBase(); 3454 // The first entry in the path is always the most derived record, skip it. 3455 if (Base == RD) { 3456 assert(Offset.getQuantity() == -1); 3457 Offset = CharUnits::Zero(); 3458 continue; 3459 } 3460 assert(Offset.getQuantity() != -1); 3461 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3462 // While we know which base has to be traversed, we don't know if that base 3463 // was a virtual base. 3464 const CXXBaseSpecifier *BaseBS = std::find_if( 3465 RD->bases_begin(), RD->bases_end(), [&](const CXXBaseSpecifier &BS) { 3466 return BS.getType()->getAsCXXRecordDecl() == Base; 3467 }); 3468 Offset = BaseBS->isVirtual() ? MostDerivedLayout.getVBaseClassOffset(Base) 3469 : Offset + Layout.getBaseClassOffset(Base); 3470 RD = Base; 3471 } 3472 return Offset; 3473 } 3474 3475 // We want to select the path which introduces the most covariant overrides. If 3476 // two paths introduce overrides which the other path doesn't contain, issue a 3477 // diagnostic. 3478 static const FullPathTy *selectBestPath(ASTContext &Context, 3479 const CXXRecordDecl *RD, VPtrInfo *Info, 3480 std::list<FullPathTy> &FullPaths) { 3481 // Handle some easy cases first. 3482 if (FullPaths.empty()) 3483 return nullptr; 3484 if (FullPaths.size() == 1) 3485 return &FullPaths.front(); 3486 3487 const FullPathTy *BestPath = nullptr; 3488 typedef std::set<const CXXMethodDecl *> OverriderSetTy; 3489 OverriderSetTy LastOverrides; 3490 for (const FullPathTy &SpecificPath : FullPaths) { 3491 assert(!SpecificPath.empty()); 3492 OverriderSetTy CurrentOverrides; 3493 const CXXRecordDecl *TopLevelRD = SpecificPath.begin()->getBase(); 3494 // Find the distance from the start of the path to the subobject with the 3495 // VPtr. 3496 CharUnits BaseOffset = 3497 getOffsetOfFullPath(Context, TopLevelRD, SpecificPath); 3498 FinalOverriders Overriders(TopLevelRD, CharUnits::Zero(), TopLevelRD); 3499 for (const CXXMethodDecl *MD : Info->BaseWithVPtr->methods()) { 3500 if (!MD->isVirtual()) 3501 continue; 3502 FinalOverriders::OverriderInfo OI = 3503 Overriders.getOverrider(MD->getCanonicalDecl(), BaseOffset); 3504 const CXXMethodDecl *OverridingMethod = OI.Method; 3505 // Only overriders which have a return adjustment introduce problematic 3506 // thunks. 3507 if (ComputeReturnAdjustmentBaseOffset(Context, OverridingMethod, MD) 3508 .isEmpty()) 3509 continue; 3510 // It's possible that the overrider isn't in this path. If so, skip it 3511 // because this path didn't introduce it. 3512 const CXXRecordDecl *OverridingParent = OverridingMethod->getParent(); 3513 if (std::none_of(SpecificPath.begin(), SpecificPath.end(), 3514 [&](const BaseSubobject &BSO) { 3515 return BSO.getBase() == OverridingParent; 3516 })) 3517 continue; 3518 CurrentOverrides.insert(OverridingMethod); 3519 } 3520 OverriderSetTy NewOverrides = 3521 llvm::set_difference(CurrentOverrides, LastOverrides); 3522 if (NewOverrides.empty()) 3523 continue; 3524 OverriderSetTy MissingOverrides = 3525 llvm::set_difference(LastOverrides, CurrentOverrides); 3526 if (MissingOverrides.empty()) { 3527 // This path is a strict improvement over the last path, let's use it. 3528 BestPath = &SpecificPath; 3529 std::swap(CurrentOverrides, LastOverrides); 3530 } else { 3531 // This path introduces an overrider with a conflicting covariant thunk. 3532 DiagnosticsEngine &Diags = Context.getDiagnostics(); 3533 const CXXMethodDecl *CovariantMD = *NewOverrides.begin(); 3534 const CXXMethodDecl *ConflictMD = *MissingOverrides.begin(); 3535 Diags.Report(RD->getLocation(), diag::err_vftable_ambiguous_component) 3536 << RD; 3537 Diags.Report(CovariantMD->getLocation(), diag::note_covariant_thunk) 3538 << CovariantMD; 3539 Diags.Report(ConflictMD->getLocation(), diag::note_covariant_thunk) 3540 << ConflictMD; 3541 } 3542 } 3543 // Go with the path that introduced the most covariant overrides. If there is 3544 // no such path, pick the first path. 3545 return BestPath ? BestPath : &FullPaths.front(); 3546 } 3547 3548 static void computeFullPathsForVFTables(ASTContext &Context, 3549 const CXXRecordDecl *RD, 3550 VPtrInfoVector &Paths) { 3551 const ASTRecordLayout &MostDerivedLayout = Context.getASTRecordLayout(RD); 3552 FullPathTy FullPath; 3553 std::list<FullPathTy> FullPaths; 3554 for (VPtrInfo *Info : Paths) { 3555 findPathsToSubobject( 3556 Context, MostDerivedLayout, RD, CharUnits::Zero(), 3557 BaseSubobject(Info->BaseWithVPtr, Info->FullOffsetInMDC), FullPath, 3558 FullPaths); 3559 FullPath.clear(); 3560 removeRedundantPaths(FullPaths); 3561 Info->PathToBaseWithVPtr.clear(); 3562 if (const FullPathTy *BestPath = 3563 selectBestPath(Context, RD, Info, FullPaths)) 3564 for (const BaseSubobject &BSO : *BestPath) 3565 Info->PathToBaseWithVPtr.push_back(BSO.getBase()); 3566 FullPaths.clear(); 3567 } 3568 } 3569 3570 void MicrosoftVTableContext::computeVTableRelatedInformation( 3571 const CXXRecordDecl *RD) { 3572 assert(RD->isDynamicClass()); 3573 3574 // Check if we've computed this information before. 3575 if (VFPtrLocations.count(RD)) 3576 return; 3577 3578 const VTableLayout::AddressPointsMapTy EmptyAddressPointsMap; 3579 3580 VPtrInfoVector *VFPtrs = new VPtrInfoVector(); 3581 computeVTablePaths(/*ForVBTables=*/false, RD, *VFPtrs); 3582 computeFullPathsForVFTables(Context, RD, *VFPtrs); 3583 VFPtrLocations[RD] = VFPtrs; 3584 3585 MethodVFTableLocationsTy NewMethodLocations; 3586 for (const VPtrInfo *VFPtr : *VFPtrs) { 3587 VFTableBuilder Builder(*this, RD, VFPtr); 3588 3589 VFTableIdTy id(RD, VFPtr->FullOffsetInMDC); 3590 assert(VFTableLayouts.count(id) == 0); 3591 SmallVector<VTableLayout::VTableThunkTy, 1> VTableThunks( 3592 Builder.vtable_thunks_begin(), Builder.vtable_thunks_end()); 3593 VFTableLayouts[id] = new VTableLayout( 3594 Builder.getNumVTableComponents(), Builder.vtable_component_begin(), 3595 VTableThunks.size(), VTableThunks.data(), EmptyAddressPointsMap, true); 3596 Thunks.insert(Builder.thunks_begin(), Builder.thunks_end()); 3597 3598 for (const auto &Loc : Builder.vtable_locations()) { 3599 GlobalDecl GD = Loc.first; 3600 MethodVFTableLocation NewLoc = Loc.second; 3601 auto M = NewMethodLocations.find(GD); 3602 if (M == NewMethodLocations.end() || NewLoc < M->second) 3603 NewMethodLocations[GD] = NewLoc; 3604 } 3605 } 3606 3607 MethodVFTableLocations.insert(NewMethodLocations.begin(), 3608 NewMethodLocations.end()); 3609 if (Context.getLangOpts().DumpVTableLayouts) 3610 dumpMethodLocations(RD, NewMethodLocations, llvm::outs()); 3611 } 3612 3613 void MicrosoftVTableContext::dumpMethodLocations( 3614 const CXXRecordDecl *RD, const MethodVFTableLocationsTy &NewMethods, 3615 raw_ostream &Out) { 3616 // Compute the vtable indices for all the member functions. 3617 // Store them in a map keyed by the location so we'll get a sorted table. 3618 std::map<MethodVFTableLocation, std::string> IndicesMap; 3619 bool HasNonzeroOffset = false; 3620 3621 for (const auto &I : NewMethods) { 3622 const CXXMethodDecl *MD = cast<const CXXMethodDecl>(I.first.getDecl()); 3623 assert(MD->isVirtual()); 3624 3625 std::string MethodName = PredefinedExpr::ComputeName( 3626 PredefinedExpr::PrettyFunctionNoVirtual, MD); 3627 3628 if (isa<CXXDestructorDecl>(MD)) { 3629 IndicesMap[I.second] = MethodName + " [scalar deleting]"; 3630 } else { 3631 IndicesMap[I.second] = MethodName; 3632 } 3633 3634 if (!I.second.VFPtrOffset.isZero() || I.second.VBTableIndex != 0) 3635 HasNonzeroOffset = true; 3636 } 3637 3638 // Print the vtable indices for all the member functions. 3639 if (!IndicesMap.empty()) { 3640 Out << "VFTable indices for "; 3641 Out << "'"; 3642 RD->printQualifiedName(Out); 3643 Out << "' (" << IndicesMap.size() 3644 << (IndicesMap.size() == 1 ? " entry" : " entries") << ").\n"; 3645 3646 CharUnits LastVFPtrOffset = CharUnits::fromQuantity(-1); 3647 uint64_t LastVBIndex = 0; 3648 for (const auto &I : IndicesMap) { 3649 CharUnits VFPtrOffset = I.first.VFPtrOffset; 3650 uint64_t VBIndex = I.first.VBTableIndex; 3651 if (HasNonzeroOffset && 3652 (VFPtrOffset != LastVFPtrOffset || VBIndex != LastVBIndex)) { 3653 assert(VBIndex > LastVBIndex || VFPtrOffset > LastVFPtrOffset); 3654 Out << " -- accessible via "; 3655 if (VBIndex) 3656 Out << "vbtable index " << VBIndex << ", "; 3657 Out << "vfptr at offset " << VFPtrOffset.getQuantity() << " --\n"; 3658 LastVFPtrOffset = VFPtrOffset; 3659 LastVBIndex = VBIndex; 3660 } 3661 3662 uint64_t VTableIndex = I.first.Index; 3663 const std::string &MethodName = I.second; 3664 Out << llvm::format("%4" PRIu64 " | ", VTableIndex) << MethodName << '\n'; 3665 } 3666 Out << '\n'; 3667 } 3668 3669 Out.flush(); 3670 } 3671 3672 const VirtualBaseInfo *MicrosoftVTableContext::computeVBTableRelatedInformation( 3673 const CXXRecordDecl *RD) { 3674 VirtualBaseInfo *VBI; 3675 3676 { 3677 // Get or create a VBI for RD. Don't hold a reference to the DenseMap cell, 3678 // as it may be modified and rehashed under us. 3679 VirtualBaseInfo *&Entry = VBaseInfo[RD]; 3680 if (Entry) 3681 return Entry; 3682 Entry = VBI = new VirtualBaseInfo(); 3683 } 3684 3685 computeVTablePaths(/*ForVBTables=*/true, RD, VBI->VBPtrPaths); 3686 3687 // First, see if the Derived class shared the vbptr with a non-virtual base. 3688 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3689 if (const CXXRecordDecl *VBPtrBase = Layout.getBaseSharingVBPtr()) { 3690 // If the Derived class shares the vbptr with a non-virtual base, the shared 3691 // virtual bases come first so that the layout is the same. 3692 const VirtualBaseInfo *BaseInfo = 3693 computeVBTableRelatedInformation(VBPtrBase); 3694 VBI->VBTableIndices.insert(BaseInfo->VBTableIndices.begin(), 3695 BaseInfo->VBTableIndices.end()); 3696 } 3697 3698 // New vbases are added to the end of the vbtable. 3699 // Skip the self entry and vbases visited in the non-virtual base, if any. 3700 unsigned VBTableIndex = 1 + VBI->VBTableIndices.size(); 3701 for (const auto &VB : RD->vbases()) { 3702 const CXXRecordDecl *CurVBase = VB.getType()->getAsCXXRecordDecl(); 3703 if (!VBI->VBTableIndices.count(CurVBase)) 3704 VBI->VBTableIndices[CurVBase] = VBTableIndex++; 3705 } 3706 3707 return VBI; 3708 } 3709 3710 unsigned MicrosoftVTableContext::getVBTableIndex(const CXXRecordDecl *Derived, 3711 const CXXRecordDecl *VBase) { 3712 const VirtualBaseInfo *VBInfo = computeVBTableRelatedInformation(Derived); 3713 assert(VBInfo->VBTableIndices.count(VBase)); 3714 return VBInfo->VBTableIndices.find(VBase)->second; 3715 } 3716 3717 const VPtrInfoVector & 3718 MicrosoftVTableContext::enumerateVBTables(const CXXRecordDecl *RD) { 3719 return computeVBTableRelatedInformation(RD)->VBPtrPaths; 3720 } 3721 3722 const VPtrInfoVector & 3723 MicrosoftVTableContext::getVFPtrOffsets(const CXXRecordDecl *RD) { 3724 computeVTableRelatedInformation(RD); 3725 3726 assert(VFPtrLocations.count(RD) && "Couldn't find vfptr locations"); 3727 return *VFPtrLocations[RD]; 3728 } 3729 3730 const VTableLayout & 3731 MicrosoftVTableContext::getVFTableLayout(const CXXRecordDecl *RD, 3732 CharUnits VFPtrOffset) { 3733 computeVTableRelatedInformation(RD); 3734 3735 VFTableIdTy id(RD, VFPtrOffset); 3736 assert(VFTableLayouts.count(id) && "Couldn't find a VFTable at this offset"); 3737 return *VFTableLayouts[id]; 3738 } 3739 3740 const MicrosoftVTableContext::MethodVFTableLocation & 3741 MicrosoftVTableContext::getMethodVFTableLocation(GlobalDecl GD) { 3742 assert(cast<CXXMethodDecl>(GD.getDecl())->isVirtual() && 3743 "Only use this method for virtual methods or dtors"); 3744 if (isa<CXXDestructorDecl>(GD.getDecl())) 3745 assert(GD.getDtorType() == Dtor_Deleting); 3746 3747 MethodVFTableLocationsTy::iterator I = MethodVFTableLocations.find(GD); 3748 if (I != MethodVFTableLocations.end()) 3749 return I->second; 3750 3751 const CXXRecordDecl *RD = cast<CXXMethodDecl>(GD.getDecl())->getParent(); 3752 3753 computeVTableRelatedInformation(RD); 3754 3755 I = MethodVFTableLocations.find(GD); 3756 assert(I != MethodVFTableLocations.end() && "Did not find index!"); 3757 return I->second; 3758 } 3759