1 //===- BreakCriticalEdges.cpp - Critical Edge Elimination Pass ------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // BreakCriticalEdges pass - Break all of the critical edges in the CFG by 11 // inserting a dummy basic block. This pass may be "required" by passes that 12 // cannot deal with critical edges. For this usage, the structure type is 13 // forward declared. This pass obviously invalidates the CFG, but can update 14 // dominator trees. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/Transforms/Scalar.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/AliasAnalysis.h" 22 #include "llvm/Analysis/CFG.h" 23 #include "llvm/Analysis/LoopInfo.h" 24 #include "llvm/IR/CFG.h" 25 #include "llvm/IR/Dominators.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Type.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 31 using namespace llvm; 32 33 #define DEBUG_TYPE "break-crit-edges" 34 35 STATISTIC(NumBroken, "Number of blocks inserted"); 36 37 namespace { 38 struct BreakCriticalEdges : public FunctionPass { 39 static char ID; // Pass identification, replacement for typeid 40 BreakCriticalEdges() : FunctionPass(ID) { 41 initializeBreakCriticalEdgesPass(*PassRegistry::getPassRegistry()); 42 } 43 44 bool runOnFunction(Function &F) override { 45 auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 46 auto *DT = DTWP ? &DTWP->getDomTree() : nullptr; 47 auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); 48 auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr; 49 unsigned N = 50 SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions(DT, LI)); 51 NumBroken += N; 52 return N > 0; 53 } 54 55 void getAnalysisUsage(AnalysisUsage &AU) const override { 56 AU.addPreserved<DominatorTreeWrapperPass>(); 57 AU.addPreserved<LoopInfoWrapperPass>(); 58 59 // No loop canonicalization guarantees are broken by this pass. 60 AU.addPreservedID(LoopSimplifyID); 61 } 62 }; 63 } 64 65 char BreakCriticalEdges::ID = 0; 66 INITIALIZE_PASS(BreakCriticalEdges, "break-crit-edges", 67 "Break critical edges in CFG", false, false) 68 69 // Publicly exposed interface to pass... 70 char &llvm::BreakCriticalEdgesID = BreakCriticalEdges::ID; 71 FunctionPass *llvm::createBreakCriticalEdgesPass() { 72 return new BreakCriticalEdges(); 73 } 74 75 //===----------------------------------------------------------------------===// 76 // Implementation of the external critical edge manipulation functions 77 //===----------------------------------------------------------------------===// 78 79 /// createPHIsForSplitLoopExit - When a loop exit edge is split, LCSSA form 80 /// may require new PHIs in the new exit block. This function inserts the 81 /// new PHIs, as needed. Preds is a list of preds inside the loop, SplitBB 82 /// is the new loop exit block, and DestBB is the old loop exit, now the 83 /// successor of SplitBB. 84 static void createPHIsForSplitLoopExit(ArrayRef<BasicBlock *> Preds, 85 BasicBlock *SplitBB, 86 BasicBlock *DestBB) { 87 // SplitBB shouldn't have anything non-trivial in it yet. 88 assert((SplitBB->getFirstNonPHI() == SplitBB->getTerminator() || 89 SplitBB->isLandingPad()) && "SplitBB has non-PHI nodes!"); 90 91 // For each PHI in the destination block. 92 for (BasicBlock::iterator I = DestBB->begin(); 93 PHINode *PN = dyn_cast<PHINode>(I); ++I) { 94 unsigned Idx = PN->getBasicBlockIndex(SplitBB); 95 Value *V = PN->getIncomingValue(Idx); 96 97 // If the input is a PHI which already satisfies LCSSA, don't create 98 // a new one. 99 if (const PHINode *VP = dyn_cast<PHINode>(V)) 100 if (VP->getParent() == SplitBB) 101 continue; 102 103 // Otherwise a new PHI is needed. Create one and populate it. 104 PHINode *NewPN = PHINode::Create( 105 PN->getType(), Preds.size(), "split", 106 SplitBB->isLandingPad() ? &SplitBB->front() : SplitBB->getTerminator()); 107 for (unsigned i = 0, e = Preds.size(); i != e; ++i) 108 NewPN->addIncoming(V, Preds[i]); 109 110 // Update the original PHI. 111 PN->setIncomingValue(Idx, NewPN); 112 } 113 } 114 115 /// SplitCriticalEdge - If this edge is a critical edge, insert a new node to 116 /// split the critical edge. This will update DominatorTree information if it 117 /// is available, thus calling this pass will not invalidate either of them. 118 /// This returns the new block if the edge was split, null otherwise. 119 /// 120 /// If MergeIdenticalEdges is true (not the default), *all* edges from TI to the 121 /// specified successor will be merged into the same critical edge block. 122 /// This is most commonly interesting with switch instructions, which may 123 /// have many edges to any one destination. This ensures that all edges to that 124 /// dest go to one block instead of each going to a different block, but isn't 125 /// the standard definition of a "critical edge". 126 /// 127 /// It is invalid to call this function on a critical edge that starts at an 128 /// IndirectBrInst. Splitting these edges will almost always create an invalid 129 /// program because the address of the new block won't be the one that is jumped 130 /// to. 131 /// 132 BasicBlock *llvm::SplitCriticalEdge(TerminatorInst *TI, unsigned SuccNum, 133 const CriticalEdgeSplittingOptions &Options) { 134 if (!isCriticalEdge(TI, SuccNum, Options.MergeIdenticalEdges)) 135 return nullptr; 136 137 assert(!isa<IndirectBrInst>(TI) && 138 "Cannot split critical edge from IndirectBrInst"); 139 140 BasicBlock *TIBB = TI->getParent(); 141 BasicBlock *DestBB = TI->getSuccessor(SuccNum); 142 143 // Splitting the critical edge to a pad block is non-trivial. Don't do 144 // it in this generic function. 145 if (DestBB->isEHPad()) return nullptr; 146 147 // Create a new basic block, linking it into the CFG. 148 BasicBlock *NewBB = BasicBlock::Create(TI->getContext(), 149 TIBB->getName() + "." + DestBB->getName() + "_crit_edge"); 150 // Create our unconditional branch. 151 BranchInst *NewBI = BranchInst::Create(DestBB, NewBB); 152 NewBI->setDebugLoc(TI->getDebugLoc()); 153 154 // Branch to the new block, breaking the edge. 155 TI->setSuccessor(SuccNum, NewBB); 156 157 // Insert the block into the function... right after the block TI lives in. 158 Function &F = *TIBB->getParent(); 159 Function::iterator FBBI = TIBB->getIterator(); 160 F.getBasicBlockList().insert(++FBBI, NewBB); 161 162 // If there are any PHI nodes in DestBB, we need to update them so that they 163 // merge incoming values from NewBB instead of from TIBB. 164 { 165 unsigned BBIdx = 0; 166 for (BasicBlock::iterator I = DestBB->begin(); isa<PHINode>(I); ++I) { 167 // We no longer enter through TIBB, now we come in through NewBB. 168 // Revector exactly one entry in the PHI node that used to come from 169 // TIBB to come from NewBB. 170 PHINode *PN = cast<PHINode>(I); 171 172 // Reuse the previous value of BBIdx if it lines up. In cases where we 173 // have multiple phi nodes with *lots* of predecessors, this is a speed 174 // win because we don't have to scan the PHI looking for TIBB. This 175 // happens because the BB list of PHI nodes are usually in the same 176 // order. 177 if (PN->getIncomingBlock(BBIdx) != TIBB) 178 BBIdx = PN->getBasicBlockIndex(TIBB); 179 PN->setIncomingBlock(BBIdx, NewBB); 180 } 181 } 182 183 // If there are any other edges from TIBB to DestBB, update those to go 184 // through the split block, making those edges non-critical as well (and 185 // reducing the number of phi entries in the DestBB if relevant). 186 if (Options.MergeIdenticalEdges) { 187 for (unsigned i = SuccNum+1, e = TI->getNumSuccessors(); i != e; ++i) { 188 if (TI->getSuccessor(i) != DestBB) continue; 189 190 // Remove an entry for TIBB from DestBB phi nodes. 191 DestBB->removePredecessor(TIBB, Options.DontDeleteUselessPHIs); 192 193 // We found another edge to DestBB, go to NewBB instead. 194 TI->setSuccessor(i, NewBB); 195 } 196 } 197 198 // If we have nothing to update, just return. 199 auto *DT = Options.DT; 200 auto *LI = Options.LI; 201 if (!DT && !LI) 202 return NewBB; 203 204 // Now update analysis information. Since the only predecessor of NewBB is 205 // the TIBB, TIBB clearly dominates NewBB. TIBB usually doesn't dominate 206 // anything, as there are other successors of DestBB. However, if all other 207 // predecessors of DestBB are already dominated by DestBB (e.g. DestBB is a 208 // loop header) then NewBB dominates DestBB. 209 SmallVector<BasicBlock*, 8> OtherPreds; 210 211 // If there is a PHI in the block, loop over predecessors with it, which is 212 // faster than iterating pred_begin/end. 213 if (PHINode *PN = dyn_cast<PHINode>(DestBB->begin())) { 214 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 215 if (PN->getIncomingBlock(i) != NewBB) 216 OtherPreds.push_back(PN->getIncomingBlock(i)); 217 } else { 218 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); 219 I != E; ++I) { 220 BasicBlock *P = *I; 221 if (P != NewBB) 222 OtherPreds.push_back(P); 223 } 224 } 225 226 bool NewBBDominatesDestBB = true; 227 228 // Should we update DominatorTree information? 229 if (DT) { 230 DomTreeNode *TINode = DT->getNode(TIBB); 231 232 // The new block is not the immediate dominator for any other nodes, but 233 // TINode is the immediate dominator for the new node. 234 // 235 if (TINode) { // Don't break unreachable code! 236 DomTreeNode *NewBBNode = DT->addNewBlock(NewBB, TIBB); 237 DomTreeNode *DestBBNode = nullptr; 238 239 // If NewBBDominatesDestBB hasn't been computed yet, do so with DT. 240 if (!OtherPreds.empty()) { 241 DestBBNode = DT->getNode(DestBB); 242 while (!OtherPreds.empty() && NewBBDominatesDestBB) { 243 if (DomTreeNode *OPNode = DT->getNode(OtherPreds.back())) 244 NewBBDominatesDestBB = DT->dominates(DestBBNode, OPNode); 245 OtherPreds.pop_back(); 246 } 247 OtherPreds.clear(); 248 } 249 250 // If NewBBDominatesDestBB, then NewBB dominates DestBB, otherwise it 251 // doesn't dominate anything. 252 if (NewBBDominatesDestBB) { 253 if (!DestBBNode) DestBBNode = DT->getNode(DestBB); 254 DT->changeImmediateDominator(DestBBNode, NewBBNode); 255 } 256 } 257 } 258 259 // Update LoopInfo if it is around. 260 if (LI) { 261 if (Loop *TIL = LI->getLoopFor(TIBB)) { 262 // If one or the other blocks were not in a loop, the new block is not 263 // either, and thus LI doesn't need to be updated. 264 if (Loop *DestLoop = LI->getLoopFor(DestBB)) { 265 if (TIL == DestLoop) { 266 // Both in the same loop, the NewBB joins loop. 267 DestLoop->addBasicBlockToLoop(NewBB, *LI); 268 } else if (TIL->contains(DestLoop)) { 269 // Edge from an outer loop to an inner loop. Add to the outer loop. 270 TIL->addBasicBlockToLoop(NewBB, *LI); 271 } else if (DestLoop->contains(TIL)) { 272 // Edge from an inner loop to an outer loop. Add to the outer loop. 273 DestLoop->addBasicBlockToLoop(NewBB, *LI); 274 } else { 275 // Edge from two loops with no containment relation. Because these 276 // are natural loops, we know that the destination block must be the 277 // header of its loop (adding a branch into a loop elsewhere would 278 // create an irreducible loop). 279 assert(DestLoop->getHeader() == DestBB && 280 "Should not create irreducible loops!"); 281 if (Loop *P = DestLoop->getParentLoop()) 282 P->addBasicBlockToLoop(NewBB, *LI); 283 } 284 } 285 286 // If TIBB is in a loop and DestBB is outside of that loop, we may need 287 // to update LoopSimplify form and LCSSA form. 288 if (!TIL->contains(DestBB)) { 289 assert(!TIL->contains(NewBB) && 290 "Split point for loop exit is contained in loop!"); 291 292 // Update LCSSA form in the newly created exit block. 293 if (Options.PreserveLCSSA) { 294 createPHIsForSplitLoopExit(TIBB, NewBB, DestBB); 295 } 296 297 // The only that we can break LoopSimplify form by splitting a critical 298 // edge is if after the split there exists some edge from TIL to DestBB 299 // *and* the only edge into DestBB from outside of TIL is that of 300 // NewBB. If the first isn't true, then LoopSimplify still holds, NewBB 301 // is the new exit block and it has no non-loop predecessors. If the 302 // second isn't true, then DestBB was not in LoopSimplify form prior to 303 // the split as it had a non-loop predecessor. In both of these cases, 304 // the predecessor must be directly in TIL, not in a subloop, or again 305 // LoopSimplify doesn't hold. 306 SmallVector<BasicBlock *, 4> LoopPreds; 307 for (pred_iterator I = pred_begin(DestBB), E = pred_end(DestBB); I != E; 308 ++I) { 309 BasicBlock *P = *I; 310 if (P == NewBB) 311 continue; // The new block is known. 312 if (LI->getLoopFor(P) != TIL) { 313 // No need to re-simplify, it wasn't to start with. 314 LoopPreds.clear(); 315 break; 316 } 317 LoopPreds.push_back(P); 318 } 319 if (!LoopPreds.empty()) { 320 assert(!DestBB->isEHPad() && "We don't split edges to EH pads!"); 321 BasicBlock *NewExitBB = SplitBlockPredecessors( 322 DestBB, LoopPreds, "split", DT, LI, Options.PreserveLCSSA); 323 if (Options.PreserveLCSSA) 324 createPHIsForSplitLoopExit(LoopPreds, NewExitBB, DestBB); 325 } 326 } 327 } 328 } 329 330 return NewBB; 331 } 332