Home | History | Annotate | Download | only in cast
      1 /* Copyright (C) 1995-1998 Eric Young (eay (at) cryptsoft.com)
      2  * All rights reserved.
      3  *
      4  * This package is an SSL implementation written
      5  * by Eric Young (eay (at) cryptsoft.com).
      6  * The implementation was written so as to conform with Netscapes SSL.
      7  *
      8  * This library is free for commercial and non-commercial use as long as
      9  * the following conditions are aheared to.  The following conditions
     10  * apply to all code found in this distribution, be it the RC4, RSA,
     11  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
     12  * included with this distribution is covered by the same copyright terms
     13  * except that the holder is Tim Hudson (tjh (at) cryptsoft.com).
     14  *
     15  * Copyright remains Eric Young's, and as such any Copyright notices in
     16  * the code are not to be removed.
     17  * If this package is used in a product, Eric Young should be given attribution
     18  * as the author of the parts of the library used.
     19  * This can be in the form of a textual message at program startup or
     20  * in documentation (online or textual) provided with the package.
     21  *
     22  * Redistribution and use in source and binary forms, with or without
     23  * modification, are permitted provided that the following conditions
     24  * are met:
     25  * 1. Redistributions of source code must retain the copyright
     26  *    notice, this list of conditions and the following disclaimer.
     27  * 2. Redistributions in binary form must reproduce the above copyright
     28  *    notice, this list of conditions and the following disclaimer in the
     29  *    documentation and/or other materials provided with the distribution.
     30  * 3. All advertising materials mentioning features or use of this software
     31  *    must display the following acknowledgement:
     32  *    "This product includes cryptographic software written by
     33  *     Eric Young (eay (at) cryptsoft.com)"
     34  *    The word 'cryptographic' can be left out if the rouines from the library
     35  *    being used are not cryptographic related :-).
     36  * 4. If you include any Windows specific code (or a derivative thereof) from
     37  *    the apps directory (application code) you must include an acknowledgement:
     38  *    "This product includes software written by Tim Hudson (tjh (at) cryptsoft.com)"
     39  *
     40  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
     41  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     42  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     43  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
     44  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     45  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     46  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     47  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     48  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     49  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     50  * SUCH DAMAGE.
     51  *
     52  * The licence and distribution terms for any publically available version or
     53  * derivative of this code cannot be changed.  i.e. this code cannot simply be
     54  * copied and put under another distribution licence
     55  * [including the GNU Public Licence.]. */
     56 
     57 #include <openssl/cast.h>
     58 
     59 #if defined(OPENSSL_WINDOWS)
     60 #pragma warning(push, 3)
     61 #include <intrin.h>
     62 #pragma warning(pop)
     63 #endif
     64 
     65 #include "internal.h"
     66 #include "../macros.h"
     67 
     68 
     69 void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
     70                       int enc) {
     71   uint32_t d[2];
     72 
     73   n2l(in, d[0]);
     74   n2l(in, d[1]);
     75   if (enc) {
     76     CAST_encrypt(d, ks);
     77   } else {
     78     CAST_decrypt(d, ks);
     79   }
     80   l2n(d[0], out);
     81   l2n(d[1], out);
     82 }
     83 
     84 #if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
     85 #define ROTL(a, n) (_lrotl(a, n))
     86 #else
     87 #define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
     88 #endif
     89 
     90 #define E_CAST(n, key, L, R, OP1, OP2, OP3)                                   \
     91   {                                                                           \
     92     uint32_t a, b, c, d;                                                      \
     93     t = (key[n * 2] OP1 R) & 0xffffffff;                                      \
     94     t = ROTL(t, (key[n * 2 + 1]));                                            \
     95     a = CAST_S_table0[(t >> 8) & 0xff];                                       \
     96     b = CAST_S_table1[(t)&0xff];                                              \
     97     c = CAST_S_table2[(t >> 24) & 0xff];                                      \
     98     d = CAST_S_table3[(t >> 16) & 0xff];                                      \
     99     L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
    100   }
    101 
    102 void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
    103   uint32_t l, r, t;
    104   const uint32_t *k;
    105 
    106   k = &key->data[0];
    107   l = data[0];
    108   r = data[1];
    109 
    110   E_CAST(0, k, l, r, +, ^, -);
    111   E_CAST(1, k, r, l, ^, -, +);
    112   E_CAST(2, k, l, r, -, +, ^);
    113   E_CAST(3, k, r, l, +, ^, -);
    114   E_CAST(4, k, l, r, ^, -, +);
    115   E_CAST(5, k, r, l, -, +, ^);
    116   E_CAST(6, k, l, r, +, ^, -);
    117   E_CAST(7, k, r, l, ^, -, +);
    118   E_CAST(8, k, l, r, -, +, ^);
    119   E_CAST(9, k, r, l, +, ^, -);
    120   E_CAST(10, k, l, r, ^, -, +);
    121   E_CAST(11, k, r, l, -, +, ^);
    122 
    123   if (!key->short_key) {
    124     E_CAST(12, k, l, r, +, ^, -);
    125     E_CAST(13, k, r, l, ^, -, +);
    126     E_CAST(14, k, l, r, -, +, ^);
    127     E_CAST(15, k, r, l, +, ^, -);
    128   }
    129 
    130   data[1] = l & 0xffffffffL;
    131   data[0] = r & 0xffffffffL;
    132 }
    133 
    134 void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
    135   uint32_t l, r, t;
    136   const uint32_t *k;
    137 
    138   k = &key->data[0];
    139   l = data[0];
    140   r = data[1];
    141 
    142   if (!key->short_key) {
    143     E_CAST(15, k, l, r, +, ^, -);
    144     E_CAST(14, k, r, l, -, +, ^);
    145     E_CAST(13, k, l, r, ^, -, +);
    146     E_CAST(12, k, r, l, +, ^, -);
    147   }
    148 
    149   E_CAST(11, k, l, r, -, +, ^);
    150   E_CAST(10, k, r, l, ^, -, +);
    151   E_CAST(9, k, l, r, +, ^, -);
    152   E_CAST(8, k, r, l, -, +, ^);
    153   E_CAST(7, k, l, r, ^, -, +);
    154   E_CAST(6, k, r, l, +, ^, -);
    155   E_CAST(5, k, l, r, -, +, ^);
    156   E_CAST(4, k, r, l, ^, -, +);
    157   E_CAST(3, k, l, r, +, ^, -);
    158   E_CAST(2, k, r, l, -, +, ^);
    159   E_CAST(1, k, l, r, ^, -, +);
    160   E_CAST(0, k, r, l, +, ^, -);
    161 
    162   data[1] = l & 0xffffffffL;
    163   data[0] = r & 0xffffffffL;
    164 }
    165 
    166 void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, long length,
    167                       const CAST_KEY *ks, uint8_t *iv, int enc) {
    168   uint32_t tin0, tin1;
    169   uint32_t tout0, tout1, xor0, xor1;
    170   long l = length;
    171   uint32_t tin[2];
    172 
    173   if (enc) {
    174     n2l(iv, tout0);
    175     n2l(iv, tout1);
    176     iv -= 8;
    177     for (l -= 8; l >= 0; l -= 8) {
    178       n2l(in, tin0);
    179       n2l(in, tin1);
    180       tin0 ^= tout0;
    181       tin1 ^= tout1;
    182       tin[0] = tin0;
    183       tin[1] = tin1;
    184       CAST_encrypt(tin, ks);
    185       tout0 = tin[0];
    186       tout1 = tin[1];
    187       l2n(tout0, out);
    188       l2n(tout1, out);
    189     }
    190     if (l != -8) {
    191       n2ln(in, tin0, tin1, l + 8);
    192       tin0 ^= tout0;
    193       tin1 ^= tout1;
    194       tin[0] = tin0;
    195       tin[1] = tin1;
    196       CAST_encrypt(tin, ks);
    197       tout0 = tin[0];
    198       tout1 = tin[1];
    199       l2n(tout0, out);
    200       l2n(tout1, out);
    201     }
    202     l2n(tout0, iv);
    203     l2n(tout1, iv);
    204   } else {
    205     n2l(iv, xor0);
    206     n2l(iv, xor1);
    207     iv -= 8;
    208     for (l -= 8; l >= 0; l -= 8) {
    209       n2l(in, tin0);
    210       n2l(in, tin1);
    211       tin[0] = tin0;
    212       tin[1] = tin1;
    213       CAST_decrypt(tin, ks);
    214       tout0 = tin[0] ^ xor0;
    215       tout1 = tin[1] ^ xor1;
    216       l2n(tout0, out);
    217       l2n(tout1, out);
    218       xor0 = tin0;
    219       xor1 = tin1;
    220     }
    221     if (l != -8) {
    222       n2l(in, tin0);
    223       n2l(in, tin1);
    224       tin[0] = tin0;
    225       tin[1] = tin1;
    226       CAST_decrypt(tin, ks);
    227       tout0 = tin[0] ^ xor0;
    228       tout1 = tin[1] ^ xor1;
    229       l2nn(tout0, tout1, out, l + 8);
    230       xor0 = tin0;
    231       xor1 = tin1;
    232     }
    233     l2n(xor0, iv);
    234     l2n(xor1, iv);
    235   }
    236   tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
    237   tin[0] = tin[1] = 0;
    238 }
    239 
    240 #define CAST_exp(l, A, a, n)   \
    241   A[n / 4] = l;                \
    242   a[n + 3] = (l)&0xff;         \
    243   a[n + 2] = (l >> 8) & 0xff;  \
    244   a[n + 1] = (l >> 16) & 0xff; \
    245   a[n + 0] = (l >> 24) & 0xff;
    246 #define S4 CAST_S_table4
    247 #define S5 CAST_S_table5
    248 #define S6 CAST_S_table6
    249 #define S7 CAST_S_table7
    250 
    251 void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
    252   uint32_t x[16];
    253   uint32_t z[16];
    254   uint32_t k[32];
    255   uint32_t X[4], Z[4];
    256   uint32_t l, *K;
    257   size_t i;
    258 
    259   for (i = 0; i < 16; i++) {
    260     x[i] = 0;
    261   }
    262 
    263   if (len > 16) {
    264     len = 16;
    265   }
    266 
    267   for (i = 0; i < len; i++) {
    268     x[i] = data[i];
    269   }
    270 
    271   if (len <= 10) {
    272     key->short_key = 1;
    273   } else {
    274     key->short_key = 0;
    275   }
    276 
    277   K = &k[0];
    278   X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
    279   X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
    280   X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
    281   X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
    282 
    283   for (;;) {
    284     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
    285     CAST_exp(l, Z, z, 0);
    286     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
    287     CAST_exp(l, Z, z, 4);
    288     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
    289     CAST_exp(l, Z, z, 8);
    290     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
    291     CAST_exp(l, Z, z, 12);
    292 
    293     K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
    294     K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
    295     K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
    296     K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
    297 
    298     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
    299     CAST_exp(l, X, x, 0);
    300     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
    301     CAST_exp(l, X, x, 4);
    302     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
    303     CAST_exp(l, X, x, 8);
    304     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
    305     CAST_exp(l, X, x, 12);
    306 
    307     K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
    308     K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
    309     K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
    310     K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
    311 
    312     l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
    313     CAST_exp(l, Z, z, 0);
    314     l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
    315     CAST_exp(l, Z, z, 4);
    316     l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
    317     CAST_exp(l, Z, z, 8);
    318     l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
    319     CAST_exp(l, Z, z, 12);
    320 
    321     K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
    322     K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
    323     K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
    324     K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
    325 
    326     l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
    327     CAST_exp(l, X, x, 0);
    328     l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
    329     CAST_exp(l, X, x, 4);
    330     l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
    331     CAST_exp(l, X, x, 8);
    332     l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
    333     CAST_exp(l, X, x, 12);
    334 
    335     K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
    336     K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
    337     K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
    338     K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
    339     if (K != k) {
    340       break;
    341     }
    342     K += 16;
    343   }
    344 
    345   for (i = 0; i < 16; i++) {
    346     key->data[i * 2] = k[i];
    347     key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
    348   }
    349 }
    350 
    351 /* The input and output encrypted as though 64bit cfb mode is being used. The
    352  * extra state information to record how much of the 64bit block we have used
    353  * is contained in *num. */
    354 void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, long length,
    355                         const CAST_KEY *schedule, uint8_t *ivec, int *num,
    356                         int enc) {
    357   uint32_t v0, v1, t;
    358   int n = *num;
    359   long l = length;
    360   uint32_t ti[2];
    361   uint8_t *iv, c, cc;
    362 
    363   iv = ivec;
    364   if (enc) {
    365     while (l--) {
    366       if (n == 0) {
    367         n2l(iv, v0);
    368         ti[0] = v0;
    369         n2l(iv, v1);
    370         ti[1] = v1;
    371         CAST_encrypt((uint32_t *)ti, schedule);
    372         iv = ivec;
    373         t = ti[0];
    374         l2n(t, iv);
    375         t = ti[1];
    376         l2n(t, iv);
    377         iv = ivec;
    378       }
    379       c = *(in++) ^ iv[n];
    380       *(out++) = c;
    381       iv[n] = c;
    382       n = (n + 1) & 0x07;
    383     }
    384   } else {
    385     while (l--) {
    386       if (n == 0) {
    387         n2l(iv, v0);
    388         ti[0] = v0;
    389         n2l(iv, v1);
    390         ti[1] = v1;
    391         CAST_encrypt((uint32_t *)ti, schedule);
    392         iv = ivec;
    393         t = ti[0];
    394         l2n(t, iv);
    395         t = ti[1];
    396         l2n(t, iv);
    397         iv = ivec;
    398       }
    399       cc = *(in++);
    400       c = iv[n];
    401       iv[n] = cc;
    402       *(out++) = c ^ cc;
    403       n = (n + 1) & 0x07;
    404     }
    405   }
    406   v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
    407   *num = n;
    408 }
    409