1 //===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Expression parsing implementation for C++. 11 // 12 //===----------------------------------------------------------------------===// 13 #include "clang/AST/ASTContext.h" 14 #include "RAIIObjectsForParser.h" 15 #include "clang/AST/DeclTemplate.h" 16 #include "clang/Basic/PrettyStackTrace.h" 17 #include "clang/Lex/LiteralSupport.h" 18 #include "clang/Parse/ParseDiagnostic.h" 19 #include "clang/Parse/Parser.h" 20 #include "clang/Sema/DeclSpec.h" 21 #include "clang/Sema/ParsedTemplate.h" 22 #include "clang/Sema/Scope.h" 23 #include "llvm/Support/ErrorHandling.h" 24 25 26 using namespace clang; 27 28 static int SelectDigraphErrorMessage(tok::TokenKind Kind) { 29 switch (Kind) { 30 // template name 31 case tok::unknown: return 0; 32 // casts 33 case tok::kw_const_cast: return 1; 34 case tok::kw_dynamic_cast: return 2; 35 case tok::kw_reinterpret_cast: return 3; 36 case tok::kw_static_cast: return 4; 37 default: 38 llvm_unreachable("Unknown type for digraph error message."); 39 } 40 } 41 42 // Are the two tokens adjacent in the same source file? 43 bool Parser::areTokensAdjacent(const Token &First, const Token &Second) { 44 SourceManager &SM = PP.getSourceManager(); 45 SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation()); 46 SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength()); 47 return FirstEnd == SM.getSpellingLoc(Second.getLocation()); 48 } 49 50 // Suggest fixit for "<::" after a cast. 51 static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken, 52 Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) { 53 // Pull '<:' and ':' off token stream. 54 if (!AtDigraph) 55 PP.Lex(DigraphToken); 56 PP.Lex(ColonToken); 57 58 SourceRange Range; 59 Range.setBegin(DigraphToken.getLocation()); 60 Range.setEnd(ColonToken.getLocation()); 61 P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph) 62 << SelectDigraphErrorMessage(Kind) 63 << FixItHint::CreateReplacement(Range, "< ::"); 64 65 // Update token information to reflect their change in token type. 66 ColonToken.setKind(tok::coloncolon); 67 ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1)); 68 ColonToken.setLength(2); 69 DigraphToken.setKind(tok::less); 70 DigraphToken.setLength(1); 71 72 // Push new tokens back to token stream. 73 PP.EnterToken(ColonToken); 74 if (!AtDigraph) 75 PP.EnterToken(DigraphToken); 76 } 77 78 // Check for '<::' which should be '< ::' instead of '[:' when following 79 // a template name. 80 void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType, 81 bool EnteringContext, 82 IdentifierInfo &II, CXXScopeSpec &SS) { 83 if (!Next.is(tok::l_square) || Next.getLength() != 2) 84 return; 85 86 Token SecondToken = GetLookAheadToken(2); 87 if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken)) 88 return; 89 90 TemplateTy Template; 91 UnqualifiedId TemplateName; 92 TemplateName.setIdentifier(&II, Tok.getLocation()); 93 bool MemberOfUnknownSpecialization; 94 if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false, 95 TemplateName, ObjectType, EnteringContext, 96 Template, MemberOfUnknownSpecialization)) 97 return; 98 99 FixDigraph(*this, PP, Next, SecondToken, tok::unknown, 100 /*AtDigraph*/false); 101 } 102 103 /// \brief Emits an error for a left parentheses after a double colon. 104 /// 105 /// When a '(' is found after a '::', emit an error. Attempt to fix the token 106 /// stream by removing the '(', and the matching ')' if found. 107 void Parser::CheckForLParenAfterColonColon() { 108 if (!Tok.is(tok::l_paren)) 109 return; 110 111 Token LParen = Tok; 112 Token NextTok = GetLookAheadToken(1); 113 Token StarTok = NextTok; 114 // Check for (identifier or (*identifier 115 Token IdentifierTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : StarTok; 116 if (IdentifierTok.isNot(tok::identifier)) 117 return; 118 // Eat the '('. 119 ConsumeParen(); 120 Token RParen; 121 RParen.setLocation(SourceLocation()); 122 // Do we have a ')' ? 123 NextTok = StarTok.is(tok::star) ? GetLookAheadToken(2) : GetLookAheadToken(1); 124 if (NextTok.is(tok::r_paren)) { 125 RParen = NextTok; 126 // Eat the '*' if it is present. 127 if (StarTok.is(tok::star)) 128 ConsumeToken(); 129 // Eat the identifier. 130 ConsumeToken(); 131 // Add the identifier token back. 132 PP.EnterToken(IdentifierTok); 133 // Add the '*' back if it was present. 134 if (StarTok.is(tok::star)) 135 PP.EnterToken(StarTok); 136 // Eat the ')'. 137 ConsumeParen(); 138 } 139 140 Diag(LParen.getLocation(), diag::err_paren_after_colon_colon) 141 << FixItHint::CreateRemoval(LParen.getLocation()) 142 << FixItHint::CreateRemoval(RParen.getLocation()); 143 } 144 145 /// \brief Parse global scope or nested-name-specifier if present. 146 /// 147 /// Parses a C++ global scope specifier ('::') or nested-name-specifier (which 148 /// may be preceded by '::'). Note that this routine will not parse ::new or 149 /// ::delete; it will just leave them in the token stream. 150 /// 151 /// '::'[opt] nested-name-specifier 152 /// '::' 153 /// 154 /// nested-name-specifier: 155 /// type-name '::' 156 /// namespace-name '::' 157 /// nested-name-specifier identifier '::' 158 /// nested-name-specifier 'template'[opt] simple-template-id '::' 159 /// 160 /// 161 /// \param SS the scope specifier that will be set to the parsed 162 /// nested-name-specifier (or empty) 163 /// 164 /// \param ObjectType if this nested-name-specifier is being parsed following 165 /// the "." or "->" of a member access expression, this parameter provides the 166 /// type of the object whose members are being accessed. 167 /// 168 /// \param EnteringContext whether we will be entering into the context of 169 /// the nested-name-specifier after parsing it. 170 /// 171 /// \param MayBePseudoDestructor When non-NULL, points to a flag that 172 /// indicates whether this nested-name-specifier may be part of a 173 /// pseudo-destructor name. In this case, the flag will be set false 174 /// if we don't actually end up parsing a destructor name. Moreorover, 175 /// if we do end up determining that we are parsing a destructor name, 176 /// the last component of the nested-name-specifier is not parsed as 177 /// part of the scope specifier. 178 /// 179 /// \param IsTypename If \c true, this nested-name-specifier is known to be 180 /// part of a type name. This is used to improve error recovery. 181 /// 182 /// \param LastII When non-NULL, points to an IdentifierInfo* that will be 183 /// filled in with the leading identifier in the last component of the 184 /// nested-name-specifier, if any. 185 /// 186 /// \returns true if there was an error parsing a scope specifier 187 bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS, 188 ParsedType ObjectType, 189 bool EnteringContext, 190 bool *MayBePseudoDestructor, 191 bool IsTypename, 192 IdentifierInfo **LastII) { 193 assert(getLangOpts().CPlusPlus && 194 "Call sites of this function should be guarded by checking for C++"); 195 196 if (Tok.is(tok::annot_cxxscope)) { 197 assert(!LastII && "want last identifier but have already annotated scope"); 198 assert(!MayBePseudoDestructor && "unexpected annot_cxxscope"); 199 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 200 Tok.getAnnotationRange(), 201 SS); 202 ConsumeToken(); 203 return false; 204 } 205 206 if (Tok.is(tok::annot_template_id)) { 207 // If the current token is an annotated template id, it may already have 208 // a scope specifier. Restore it. 209 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 210 SS = TemplateId->SS; 211 } 212 213 // Has to happen before any "return false"s in this function. 214 bool CheckForDestructor = false; 215 if (MayBePseudoDestructor && *MayBePseudoDestructor) { 216 CheckForDestructor = true; 217 *MayBePseudoDestructor = false; 218 } 219 220 if (LastII) 221 *LastII = nullptr; 222 223 bool HasScopeSpecifier = false; 224 225 if (Tok.is(tok::coloncolon)) { 226 // ::new and ::delete aren't nested-name-specifiers. 227 tok::TokenKind NextKind = NextToken().getKind(); 228 if (NextKind == tok::kw_new || NextKind == tok::kw_delete) 229 return false; 230 231 if (NextKind == tok::l_brace) { 232 // It is invalid to have :: {, consume the scope qualifier and pretend 233 // like we never saw it. 234 Diag(ConsumeToken(), diag::err_expected) << tok::identifier; 235 } else { 236 // '::' - Global scope qualifier. 237 if (Actions.ActOnCXXGlobalScopeSpecifier(ConsumeToken(), SS)) 238 return true; 239 240 CheckForLParenAfterColonColon(); 241 242 HasScopeSpecifier = true; 243 } 244 } 245 246 if (Tok.is(tok::kw___super)) { 247 SourceLocation SuperLoc = ConsumeToken(); 248 if (!Tok.is(tok::coloncolon)) { 249 Diag(Tok.getLocation(), diag::err_expected_coloncolon_after_super); 250 return true; 251 } 252 253 return Actions.ActOnSuperScopeSpecifier(SuperLoc, ConsumeToken(), SS); 254 } 255 256 if (!HasScopeSpecifier && 257 Tok.isOneOf(tok::kw_decltype, tok::annot_decltype)) { 258 DeclSpec DS(AttrFactory); 259 SourceLocation DeclLoc = Tok.getLocation(); 260 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 261 262 SourceLocation CCLoc; 263 if (!TryConsumeToken(tok::coloncolon, CCLoc)) { 264 AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc); 265 return false; 266 } 267 268 if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc)) 269 SS.SetInvalid(SourceRange(DeclLoc, CCLoc)); 270 271 HasScopeSpecifier = true; 272 } 273 274 while (true) { 275 if (HasScopeSpecifier) { 276 // C++ [basic.lookup.classref]p5: 277 // If the qualified-id has the form 278 // 279 // ::class-name-or-namespace-name::... 280 // 281 // the class-name-or-namespace-name is looked up in global scope as a 282 // class-name or namespace-name. 283 // 284 // To implement this, we clear out the object type as soon as we've 285 // seen a leading '::' or part of a nested-name-specifier. 286 ObjectType = ParsedType(); 287 288 if (Tok.is(tok::code_completion)) { 289 // Code completion for a nested-name-specifier, where the code 290 // code completion token follows the '::'. 291 Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext); 292 // Include code completion token into the range of the scope otherwise 293 // when we try to annotate the scope tokens the dangling code completion 294 // token will cause assertion in 295 // Preprocessor::AnnotatePreviousCachedTokens. 296 SS.setEndLoc(Tok.getLocation()); 297 cutOffParsing(); 298 return true; 299 } 300 } 301 302 // nested-name-specifier: 303 // nested-name-specifier 'template'[opt] simple-template-id '::' 304 305 // Parse the optional 'template' keyword, then make sure we have 306 // 'identifier <' after it. 307 if (Tok.is(tok::kw_template)) { 308 // If we don't have a scope specifier or an object type, this isn't a 309 // nested-name-specifier, since they aren't allowed to start with 310 // 'template'. 311 if (!HasScopeSpecifier && !ObjectType) 312 break; 313 314 TentativeParsingAction TPA(*this); 315 SourceLocation TemplateKWLoc = ConsumeToken(); 316 317 UnqualifiedId TemplateName; 318 if (Tok.is(tok::identifier)) { 319 // Consume the identifier. 320 TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 321 ConsumeToken(); 322 } else if (Tok.is(tok::kw_operator)) { 323 // We don't need to actually parse the unqualified-id in this case, 324 // because a simple-template-id cannot start with 'operator', but 325 // go ahead and parse it anyway for consistency with the case where 326 // we already annotated the template-id. 327 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, 328 TemplateName)) { 329 TPA.Commit(); 330 break; 331 } 332 333 if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId && 334 TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) { 335 Diag(TemplateName.getSourceRange().getBegin(), 336 diag::err_id_after_template_in_nested_name_spec) 337 << TemplateName.getSourceRange(); 338 TPA.Commit(); 339 break; 340 } 341 } else { 342 TPA.Revert(); 343 break; 344 } 345 346 // If the next token is not '<', we have a qualified-id that refers 347 // to a template name, such as T::template apply, but is not a 348 // template-id. 349 if (Tok.isNot(tok::less)) { 350 TPA.Revert(); 351 break; 352 } 353 354 // Commit to parsing the template-id. 355 TPA.Commit(); 356 TemplateTy Template; 357 if (TemplateNameKind TNK 358 = Actions.ActOnDependentTemplateName(getCurScope(), 359 SS, TemplateKWLoc, TemplateName, 360 ObjectType, EnteringContext, 361 Template)) { 362 if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc, 363 TemplateName, false)) 364 return true; 365 } else 366 return true; 367 368 continue; 369 } 370 371 if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) { 372 // We have 373 // 374 // template-id '::' 375 // 376 // So we need to check whether the template-id is a simple-template-id of 377 // the right kind (it should name a type or be dependent), and then 378 // convert it into a type within the nested-name-specifier. 379 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 380 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) { 381 *MayBePseudoDestructor = true; 382 return false; 383 } 384 385 if (LastII) 386 *LastII = TemplateId->Name; 387 388 // Consume the template-id token. 389 ConsumeToken(); 390 391 assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!"); 392 SourceLocation CCLoc = ConsumeToken(); 393 394 HasScopeSpecifier = true; 395 396 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 397 TemplateId->NumArgs); 398 399 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), 400 SS, 401 TemplateId->TemplateKWLoc, 402 TemplateId->Template, 403 TemplateId->TemplateNameLoc, 404 TemplateId->LAngleLoc, 405 TemplateArgsPtr, 406 TemplateId->RAngleLoc, 407 CCLoc, 408 EnteringContext)) { 409 SourceLocation StartLoc 410 = SS.getBeginLoc().isValid()? SS.getBeginLoc() 411 : TemplateId->TemplateNameLoc; 412 SS.SetInvalid(SourceRange(StartLoc, CCLoc)); 413 } 414 415 continue; 416 } 417 418 // The rest of the nested-name-specifier possibilities start with 419 // tok::identifier. 420 if (Tok.isNot(tok::identifier)) 421 break; 422 423 IdentifierInfo &II = *Tok.getIdentifierInfo(); 424 425 // nested-name-specifier: 426 // type-name '::' 427 // namespace-name '::' 428 // nested-name-specifier identifier '::' 429 Token Next = NextToken(); 430 431 // If we get foo:bar, this is almost certainly a typo for foo::bar. Recover 432 // and emit a fixit hint for it. 433 if (Next.is(tok::colon) && !ColonIsSacred) { 434 if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, 435 Tok.getLocation(), 436 Next.getLocation(), ObjectType, 437 EnteringContext) && 438 // If the token after the colon isn't an identifier, it's still an 439 // error, but they probably meant something else strange so don't 440 // recover like this. 441 PP.LookAhead(1).is(tok::identifier)) { 442 Diag(Next, diag::err_unexpected_colon_in_nested_name_spec) 443 << FixItHint::CreateReplacement(Next.getLocation(), "::"); 444 // Recover as if the user wrote '::'. 445 Next.setKind(tok::coloncolon); 446 } 447 } 448 449 if (Next.is(tok::coloncolon) && GetLookAheadToken(2).is(tok::l_brace)) { 450 // It is invalid to have :: {, consume the scope qualifier and pretend 451 // like we never saw it. 452 Token Identifier = Tok; // Stash away the identifier. 453 ConsumeToken(); // Eat the identifier, current token is now '::'. 454 Diag(PP.getLocForEndOfToken(ConsumeToken()), diag::err_expected) 455 << tok::identifier; 456 UnconsumeToken(Identifier); // Stick the identifier back. 457 Next = NextToken(); // Point Next at the '{' token. 458 } 459 460 if (Next.is(tok::coloncolon)) { 461 if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) && 462 !Actions.isNonTypeNestedNameSpecifier( 463 getCurScope(), SS, Tok.getLocation(), II, ObjectType)) { 464 *MayBePseudoDestructor = true; 465 return false; 466 } 467 468 if (ColonIsSacred) { 469 const Token &Next2 = GetLookAheadToken(2); 470 if (Next2.is(tok::kw_private) || Next2.is(tok::kw_protected) || 471 Next2.is(tok::kw_public) || Next2.is(tok::kw_virtual)) { 472 Diag(Next2, diag::err_unexpected_token_in_nested_name_spec) 473 << Next2.getName() 474 << FixItHint::CreateReplacement(Next.getLocation(), ":"); 475 Token ColonColon; 476 PP.Lex(ColonColon); 477 ColonColon.setKind(tok::colon); 478 PP.EnterToken(ColonColon); 479 break; 480 } 481 } 482 483 if (LastII) 484 *LastII = &II; 485 486 // We have an identifier followed by a '::'. Lookup this name 487 // as the name in a nested-name-specifier. 488 Token Identifier = Tok; 489 SourceLocation IdLoc = ConsumeToken(); 490 assert(Tok.isOneOf(tok::coloncolon, tok::colon) && 491 "NextToken() not working properly!"); 492 Token ColonColon = Tok; 493 SourceLocation CCLoc = ConsumeToken(); 494 495 CheckForLParenAfterColonColon(); 496 497 bool IsCorrectedToColon = false; 498 bool *CorrectionFlagPtr = ColonIsSacred ? &IsCorrectedToColon : nullptr; 499 if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc, 500 ObjectType, EnteringContext, SS, 501 false, CorrectionFlagPtr)) { 502 // Identifier is not recognized as a nested name, but we can have 503 // mistyped '::' instead of ':'. 504 if (CorrectionFlagPtr && IsCorrectedToColon) { 505 ColonColon.setKind(tok::colon); 506 PP.EnterToken(Tok); 507 PP.EnterToken(ColonColon); 508 Tok = Identifier; 509 break; 510 } 511 SS.SetInvalid(SourceRange(IdLoc, CCLoc)); 512 } 513 HasScopeSpecifier = true; 514 continue; 515 } 516 517 CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS); 518 519 // nested-name-specifier: 520 // type-name '<' 521 if (Next.is(tok::less)) { 522 TemplateTy Template; 523 UnqualifiedId TemplateName; 524 TemplateName.setIdentifier(&II, Tok.getLocation()); 525 bool MemberOfUnknownSpecialization; 526 if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS, 527 /*hasTemplateKeyword=*/false, 528 TemplateName, 529 ObjectType, 530 EnteringContext, 531 Template, 532 MemberOfUnknownSpecialization)) { 533 // We have found a template name, so annotate this token 534 // with a template-id annotation. We do not permit the 535 // template-id to be translated into a type annotation, 536 // because some clients (e.g., the parsing of class template 537 // specializations) still want to see the original template-id 538 // token. 539 ConsumeToken(); 540 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 541 TemplateName, false)) 542 return true; 543 continue; 544 } 545 546 if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) && 547 (IsTypename || IsTemplateArgumentList(1))) { 548 // We have something like t::getAs<T>, where getAs is a 549 // member of an unknown specialization. However, this will only 550 // parse correctly as a template, so suggest the keyword 'template' 551 // before 'getAs' and treat this as a dependent template name. 552 unsigned DiagID = diag::err_missing_dependent_template_keyword; 553 if (getLangOpts().MicrosoftExt) 554 DiagID = diag::warn_missing_dependent_template_keyword; 555 556 Diag(Tok.getLocation(), DiagID) 557 << II.getName() 558 << FixItHint::CreateInsertion(Tok.getLocation(), "template "); 559 560 if (TemplateNameKind TNK 561 = Actions.ActOnDependentTemplateName(getCurScope(), 562 SS, SourceLocation(), 563 TemplateName, ObjectType, 564 EnteringContext, Template)) { 565 // Consume the identifier. 566 ConsumeToken(); 567 if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(), 568 TemplateName, false)) 569 return true; 570 } 571 else 572 return true; 573 574 continue; 575 } 576 } 577 578 // We don't have any tokens that form the beginning of a 579 // nested-name-specifier, so we're done. 580 break; 581 } 582 583 // Even if we didn't see any pieces of a nested-name-specifier, we 584 // still check whether there is a tilde in this position, which 585 // indicates a potential pseudo-destructor. 586 if (CheckForDestructor && Tok.is(tok::tilde)) 587 *MayBePseudoDestructor = true; 588 589 return false; 590 } 591 592 ExprResult Parser::tryParseCXXIdExpression(CXXScopeSpec &SS, bool isAddressOfOperand, 593 Token &Replacement) { 594 SourceLocation TemplateKWLoc; 595 UnqualifiedId Name; 596 if (ParseUnqualifiedId(SS, 597 /*EnteringContext=*/false, 598 /*AllowDestructorName=*/false, 599 /*AllowConstructorName=*/false, 600 /*ObjectType=*/ParsedType(), TemplateKWLoc, Name)) 601 return ExprError(); 602 603 // This is only the direct operand of an & operator if it is not 604 // followed by a postfix-expression suffix. 605 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 606 isAddressOfOperand = false; 607 608 return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name, 609 Tok.is(tok::l_paren), isAddressOfOperand, 610 nullptr, /*IsInlineAsmIdentifier=*/false, 611 &Replacement); 612 } 613 614 /// ParseCXXIdExpression - Handle id-expression. 615 /// 616 /// id-expression: 617 /// unqualified-id 618 /// qualified-id 619 /// 620 /// qualified-id: 621 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 622 /// '::' identifier 623 /// '::' operator-function-id 624 /// '::' template-id 625 /// 626 /// NOTE: The standard specifies that, for qualified-id, the parser does not 627 /// expect: 628 /// 629 /// '::' conversion-function-id 630 /// '::' '~' class-name 631 /// 632 /// This may cause a slight inconsistency on diagnostics: 633 /// 634 /// class C {}; 635 /// namespace A {} 636 /// void f() { 637 /// :: A :: ~ C(); // Some Sema error about using destructor with a 638 /// // namespace. 639 /// :: ~ C(); // Some Parser error like 'unexpected ~'. 640 /// } 641 /// 642 /// We simplify the parser a bit and make it work like: 643 /// 644 /// qualified-id: 645 /// '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 646 /// '::' unqualified-id 647 /// 648 /// That way Sema can handle and report similar errors for namespaces and the 649 /// global scope. 650 /// 651 /// The isAddressOfOperand parameter indicates that this id-expression is a 652 /// direct operand of the address-of operator. This is, besides member contexts, 653 /// the only place where a qualified-id naming a non-static class member may 654 /// appear. 655 /// 656 ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) { 657 // qualified-id: 658 // '::'[opt] nested-name-specifier 'template'[opt] unqualified-id 659 // '::' unqualified-id 660 // 661 CXXScopeSpec SS; 662 ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false); 663 664 Token Replacement; 665 ExprResult Result = 666 tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 667 if (Result.isUnset()) { 668 // If the ExprResult is valid but null, then typo correction suggested a 669 // keyword replacement that needs to be reparsed. 670 UnconsumeToken(Replacement); 671 Result = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 672 } 673 assert(!Result.isUnset() && "Typo correction suggested a keyword replacement " 674 "for a previous keyword suggestion"); 675 return Result; 676 } 677 678 /// ParseLambdaExpression - Parse a C++11 lambda expression. 679 /// 680 /// lambda-expression: 681 /// lambda-introducer lambda-declarator[opt] compound-statement 682 /// 683 /// lambda-introducer: 684 /// '[' lambda-capture[opt] ']' 685 /// 686 /// lambda-capture: 687 /// capture-default 688 /// capture-list 689 /// capture-default ',' capture-list 690 /// 691 /// capture-default: 692 /// '&' 693 /// '=' 694 /// 695 /// capture-list: 696 /// capture 697 /// capture-list ',' capture 698 /// 699 /// capture: 700 /// simple-capture 701 /// init-capture [C++1y] 702 /// 703 /// simple-capture: 704 /// identifier 705 /// '&' identifier 706 /// 'this' 707 /// 708 /// init-capture: [C++1y] 709 /// identifier initializer 710 /// '&' identifier initializer 711 /// 712 /// lambda-declarator: 713 /// '(' parameter-declaration-clause ')' attribute-specifier[opt] 714 /// 'mutable'[opt] exception-specification[opt] 715 /// trailing-return-type[opt] 716 /// 717 ExprResult Parser::ParseLambdaExpression() { 718 // Parse lambda-introducer. 719 LambdaIntroducer Intro; 720 Optional<unsigned> DiagID = ParseLambdaIntroducer(Intro); 721 if (DiagID) { 722 Diag(Tok, DiagID.getValue()); 723 SkipUntil(tok::r_square, StopAtSemi); 724 SkipUntil(tok::l_brace, StopAtSemi); 725 SkipUntil(tok::r_brace, StopAtSemi); 726 return ExprError(); 727 } 728 729 return ParseLambdaExpressionAfterIntroducer(Intro); 730 } 731 732 /// TryParseLambdaExpression - Use lookahead and potentially tentative 733 /// parsing to determine if we are looking at a C++0x lambda expression, and parse 734 /// it if we are. 735 /// 736 /// If we are not looking at a lambda expression, returns ExprError(). 737 ExprResult Parser::TryParseLambdaExpression() { 738 assert(getLangOpts().CPlusPlus11 739 && Tok.is(tok::l_square) 740 && "Not at the start of a possible lambda expression."); 741 742 const Token Next = NextToken(), After = GetLookAheadToken(2); 743 744 // If lookahead indicates this is a lambda... 745 if (Next.is(tok::r_square) || // [] 746 Next.is(tok::equal) || // [= 747 (Next.is(tok::amp) && // [&] or [&, 748 (After.is(tok::r_square) || 749 After.is(tok::comma))) || 750 (Next.is(tok::identifier) && // [identifier] 751 After.is(tok::r_square))) { 752 return ParseLambdaExpression(); 753 } 754 755 // If lookahead indicates an ObjC message send... 756 // [identifier identifier 757 if (Next.is(tok::identifier) && After.is(tok::identifier)) { 758 return ExprEmpty(); 759 } 760 761 // Here, we're stuck: lambda introducers and Objective-C message sends are 762 // unambiguous, but it requires arbitrary lookhead. [a,b,c,d,e,f,g] is a 763 // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send. Instead of 764 // writing two routines to parse a lambda introducer, just try to parse 765 // a lambda introducer first, and fall back if that fails. 766 // (TryParseLambdaIntroducer never produces any diagnostic output.) 767 LambdaIntroducer Intro; 768 if (TryParseLambdaIntroducer(Intro)) 769 return ExprEmpty(); 770 771 return ParseLambdaExpressionAfterIntroducer(Intro); 772 } 773 774 /// \brief Parse a lambda introducer. 775 /// \param Intro A LambdaIntroducer filled in with information about the 776 /// contents of the lambda-introducer. 777 /// \param SkippedInits If non-null, we are disambiguating between an Obj-C 778 /// message send and a lambda expression. In this mode, we will 779 /// sometimes skip the initializers for init-captures and not fully 780 /// populate \p Intro. This flag will be set to \c true if we do so. 781 /// \return A DiagnosticID if it hit something unexpected. The location for 782 /// for the diagnostic is that of the current token. 783 Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro, 784 bool *SkippedInits) { 785 typedef Optional<unsigned> DiagResult; 786 787 assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['."); 788 BalancedDelimiterTracker T(*this, tok::l_square); 789 T.consumeOpen(); 790 791 Intro.Range.setBegin(T.getOpenLocation()); 792 793 bool first = true; 794 795 // Parse capture-default. 796 if (Tok.is(tok::amp) && 797 (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) { 798 Intro.Default = LCD_ByRef; 799 Intro.DefaultLoc = ConsumeToken(); 800 first = false; 801 } else if (Tok.is(tok::equal)) { 802 Intro.Default = LCD_ByCopy; 803 Intro.DefaultLoc = ConsumeToken(); 804 first = false; 805 } 806 807 while (Tok.isNot(tok::r_square)) { 808 if (!first) { 809 if (Tok.isNot(tok::comma)) { 810 // Provide a completion for a lambda introducer here. Except 811 // in Objective-C, where this is Almost Surely meant to be a message 812 // send. In that case, fail here and let the ObjC message 813 // expression parser perform the completion. 814 if (Tok.is(tok::code_completion) && 815 !(getLangOpts().ObjC1 && Intro.Default == LCD_None && 816 !Intro.Captures.empty())) { 817 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 818 /*AfterAmpersand=*/false); 819 cutOffParsing(); 820 break; 821 } 822 823 return DiagResult(diag::err_expected_comma_or_rsquare); 824 } 825 ConsumeToken(); 826 } 827 828 if (Tok.is(tok::code_completion)) { 829 // If we're in Objective-C++ and we have a bare '[', then this is more 830 // likely to be a message receiver. 831 if (getLangOpts().ObjC1 && first) 832 Actions.CodeCompleteObjCMessageReceiver(getCurScope()); 833 else 834 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 835 /*AfterAmpersand=*/false); 836 cutOffParsing(); 837 break; 838 } 839 840 first = false; 841 842 // Parse capture. 843 LambdaCaptureKind Kind = LCK_ByCopy; 844 LambdaCaptureInitKind InitKind = LambdaCaptureInitKind::NoInit; 845 SourceLocation Loc; 846 IdentifierInfo *Id = nullptr; 847 SourceLocation EllipsisLoc; 848 ExprResult Init; 849 850 if (Tok.is(tok::kw_this)) { 851 Kind = LCK_This; 852 Loc = ConsumeToken(); 853 } else { 854 if (Tok.is(tok::amp)) { 855 Kind = LCK_ByRef; 856 ConsumeToken(); 857 858 if (Tok.is(tok::code_completion)) { 859 Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro, 860 /*AfterAmpersand=*/true); 861 cutOffParsing(); 862 break; 863 } 864 } 865 866 if (Tok.is(tok::identifier)) { 867 Id = Tok.getIdentifierInfo(); 868 Loc = ConsumeToken(); 869 } else if (Tok.is(tok::kw_this)) { 870 // FIXME: If we want to suggest a fixit here, will need to return more 871 // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be 872 // Clear()ed to prevent emission in case of tentative parsing? 873 return DiagResult(diag::err_this_captured_by_reference); 874 } else { 875 return DiagResult(diag::err_expected_capture); 876 } 877 878 if (Tok.is(tok::l_paren)) { 879 BalancedDelimiterTracker Parens(*this, tok::l_paren); 880 Parens.consumeOpen(); 881 882 InitKind = LambdaCaptureInitKind::DirectInit; 883 884 ExprVector Exprs; 885 CommaLocsTy Commas; 886 if (SkippedInits) { 887 Parens.skipToEnd(); 888 *SkippedInits = true; 889 } else if (ParseExpressionList(Exprs, Commas)) { 890 Parens.skipToEnd(); 891 Init = ExprError(); 892 } else { 893 Parens.consumeClose(); 894 Init = Actions.ActOnParenListExpr(Parens.getOpenLocation(), 895 Parens.getCloseLocation(), 896 Exprs); 897 } 898 } else if (Tok.isOneOf(tok::l_brace, tok::equal)) { 899 // Each lambda init-capture forms its own full expression, which clears 900 // Actions.MaybeODRUseExprs. So create an expression evaluation context 901 // to save the necessary state, and restore it later. 902 EnterExpressionEvaluationContext EC(Actions, 903 Sema::PotentiallyEvaluated); 904 905 if (TryConsumeToken(tok::equal)) 906 InitKind = LambdaCaptureInitKind::CopyInit; 907 else 908 InitKind = LambdaCaptureInitKind::ListInit; 909 910 if (!SkippedInits) { 911 Init = ParseInitializer(); 912 } else if (Tok.is(tok::l_brace)) { 913 BalancedDelimiterTracker Braces(*this, tok::l_brace); 914 Braces.consumeOpen(); 915 Braces.skipToEnd(); 916 *SkippedInits = true; 917 } else { 918 // We're disambiguating this: 919 // 920 // [..., x = expr 921 // 922 // We need to find the end of the following expression in order to 923 // determine whether this is an Obj-C message send's receiver, a 924 // C99 designator, or a lambda init-capture. 925 // 926 // Parse the expression to find where it ends, and annotate it back 927 // onto the tokens. We would have parsed this expression the same way 928 // in either case: both the RHS of an init-capture and the RHS of an 929 // assignment expression are parsed as an initializer-clause, and in 930 // neither case can anything be added to the scope between the '[' and 931 // here. 932 // 933 // FIXME: This is horrible. Adding a mechanism to skip an expression 934 // would be much cleaner. 935 // FIXME: If there is a ',' before the next ']' or ':', we can skip to 936 // that instead. (And if we see a ':' with no matching '?', we can 937 // classify this as an Obj-C message send.) 938 SourceLocation StartLoc = Tok.getLocation(); 939 InMessageExpressionRAIIObject MaybeInMessageExpression(*this, true); 940 Init = ParseInitializer(); 941 942 if (Tok.getLocation() != StartLoc) { 943 // Back out the lexing of the token after the initializer. 944 PP.RevertCachedTokens(1); 945 946 // Replace the consumed tokens with an appropriate annotation. 947 Tok.setLocation(StartLoc); 948 Tok.setKind(tok::annot_primary_expr); 949 setExprAnnotation(Tok, Init); 950 Tok.setAnnotationEndLoc(PP.getLastCachedTokenLocation()); 951 PP.AnnotateCachedTokens(Tok); 952 953 // Consume the annotated initializer. 954 ConsumeToken(); 955 } 956 } 957 } else 958 TryConsumeToken(tok::ellipsis, EllipsisLoc); 959 } 960 // If this is an init capture, process the initialization expression 961 // right away. For lambda init-captures such as the following: 962 // const int x = 10; 963 // auto L = [i = x+1](int a) { 964 // return [j = x+2, 965 // &k = x](char b) { }; 966 // }; 967 // keep in mind that each lambda init-capture has to have: 968 // - its initialization expression executed in the context 969 // of the enclosing/parent decl-context. 970 // - but the variable itself has to be 'injected' into the 971 // decl-context of its lambda's call-operator (which has 972 // not yet been created). 973 // Each init-expression is a full-expression that has to get 974 // Sema-analyzed (for capturing etc.) before its lambda's 975 // call-operator's decl-context, scope & scopeinfo are pushed on their 976 // respective stacks. Thus if any variable is odr-used in the init-capture 977 // it will correctly get captured in the enclosing lambda, if one exists. 978 // The init-variables above are created later once the lambdascope and 979 // call-operators decl-context is pushed onto its respective stack. 980 981 // Since the lambda init-capture's initializer expression occurs in the 982 // context of the enclosing function or lambda, therefore we can not wait 983 // till a lambda scope has been pushed on before deciding whether the 984 // variable needs to be captured. We also need to process all 985 // lvalue-to-rvalue conversions and discarded-value conversions, 986 // so that we can avoid capturing certain constant variables. 987 // For e.g., 988 // void test() { 989 // const int x = 10; 990 // auto L = [&z = x](char a) { <-- don't capture by the current lambda 991 // return [y = x](int i) { <-- don't capture by enclosing lambda 992 // return y; 993 // } 994 // }; 995 // If x was not const, the second use would require 'L' to capture, and 996 // that would be an error. 997 998 ParsedType InitCaptureType; 999 if (Init.isUsable()) { 1000 // Get the pointer and store it in an lvalue, so we can use it as an 1001 // out argument. 1002 Expr *InitExpr = Init.get(); 1003 // This performs any lvalue-to-rvalue conversions if necessary, which 1004 // can affect what gets captured in the containing decl-context. 1005 InitCaptureType = Actions.actOnLambdaInitCaptureInitialization( 1006 Loc, Kind == LCK_ByRef, Id, InitKind, InitExpr); 1007 Init = InitExpr; 1008 } 1009 Intro.addCapture(Kind, Loc, Id, EllipsisLoc, InitKind, Init, 1010 InitCaptureType); 1011 } 1012 1013 T.consumeClose(); 1014 Intro.Range.setEnd(T.getCloseLocation()); 1015 return DiagResult(); 1016 } 1017 1018 /// TryParseLambdaIntroducer - Tentatively parse a lambda introducer. 1019 /// 1020 /// Returns true if it hit something unexpected. 1021 bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) { 1022 TentativeParsingAction PA(*this); 1023 1024 bool SkippedInits = false; 1025 Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro, &SkippedInits)); 1026 1027 if (DiagID) { 1028 PA.Revert(); 1029 return true; 1030 } 1031 1032 if (SkippedInits) { 1033 // Parse it again, but this time parse the init-captures too. 1034 PA.Revert(); 1035 Intro = LambdaIntroducer(); 1036 DiagID = ParseLambdaIntroducer(Intro); 1037 assert(!DiagID && "parsing lambda-introducer failed on reparse"); 1038 return false; 1039 } 1040 1041 PA.Commit(); 1042 return false; 1043 } 1044 1045 /// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda 1046 /// expression. 1047 ExprResult Parser::ParseLambdaExpressionAfterIntroducer( 1048 LambdaIntroducer &Intro) { 1049 SourceLocation LambdaBeginLoc = Intro.Range.getBegin(); 1050 Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda); 1051 1052 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc, 1053 "lambda expression parsing"); 1054 1055 1056 1057 // FIXME: Call into Actions to add any init-capture declarations to the 1058 // scope while parsing the lambda-declarator and compound-statement. 1059 1060 // Parse lambda-declarator[opt]. 1061 DeclSpec DS(AttrFactory); 1062 Declarator D(DS, Declarator::LambdaExprContext); 1063 TemplateParameterDepthRAII CurTemplateDepthTracker(TemplateParameterDepth); 1064 Actions.PushLambdaScope(); 1065 1066 TypeResult TrailingReturnType; 1067 if (Tok.is(tok::l_paren)) { 1068 ParseScope PrototypeScope(this, 1069 Scope::FunctionPrototypeScope | 1070 Scope::FunctionDeclarationScope | 1071 Scope::DeclScope); 1072 1073 SourceLocation DeclEndLoc; 1074 BalancedDelimiterTracker T(*this, tok::l_paren); 1075 T.consumeOpen(); 1076 SourceLocation LParenLoc = T.getOpenLocation(); 1077 1078 // Parse parameter-declaration-clause. 1079 ParsedAttributes Attr(AttrFactory); 1080 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 1081 SourceLocation EllipsisLoc; 1082 1083 if (Tok.isNot(tok::r_paren)) { 1084 Actions.RecordParsingTemplateParameterDepth(TemplateParameterDepth); 1085 ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc); 1086 // For a generic lambda, each 'auto' within the parameter declaration 1087 // clause creates a template type parameter, so increment the depth. 1088 if (Actions.getCurGenericLambda()) 1089 ++CurTemplateDepthTracker; 1090 } 1091 T.consumeClose(); 1092 SourceLocation RParenLoc = T.getCloseLocation(); 1093 DeclEndLoc = RParenLoc; 1094 1095 // GNU-style attributes must be parsed before the mutable specifier to be 1096 // compatible with GCC. 1097 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1098 1099 // MSVC-style attributes must be parsed before the mutable specifier to be 1100 // compatible with MSVC. 1101 MaybeParseMicrosoftDeclSpecs(Attr, &DeclEndLoc); 1102 1103 // Parse 'mutable'[opt]. 1104 SourceLocation MutableLoc; 1105 if (TryConsumeToken(tok::kw_mutable, MutableLoc)) 1106 DeclEndLoc = MutableLoc; 1107 1108 // Parse exception-specification[opt]. 1109 ExceptionSpecificationType ESpecType = EST_None; 1110 SourceRange ESpecRange; 1111 SmallVector<ParsedType, 2> DynamicExceptions; 1112 SmallVector<SourceRange, 2> DynamicExceptionRanges; 1113 ExprResult NoexceptExpr; 1114 CachedTokens *ExceptionSpecTokens; 1115 ESpecType = tryParseExceptionSpecification(/*Delayed=*/false, 1116 ESpecRange, 1117 DynamicExceptions, 1118 DynamicExceptionRanges, 1119 NoexceptExpr, 1120 ExceptionSpecTokens); 1121 1122 if (ESpecType != EST_None) 1123 DeclEndLoc = ESpecRange.getEnd(); 1124 1125 // Parse attribute-specifier[opt]. 1126 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1127 1128 SourceLocation FunLocalRangeEnd = DeclEndLoc; 1129 1130 // Parse trailing-return-type[opt]. 1131 if (Tok.is(tok::arrow)) { 1132 FunLocalRangeEnd = Tok.getLocation(); 1133 SourceRange Range; 1134 TrailingReturnType = ParseTrailingReturnType(Range); 1135 if (Range.getEnd().isValid()) 1136 DeclEndLoc = Range.getEnd(); 1137 } 1138 1139 PrototypeScope.Exit(); 1140 1141 SourceLocation NoLoc; 1142 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1143 /*isAmbiguous=*/false, 1144 LParenLoc, 1145 ParamInfo.data(), ParamInfo.size(), 1146 EllipsisLoc, RParenLoc, 1147 DS.getTypeQualifiers(), 1148 /*RefQualifierIsLValueRef=*/true, 1149 /*RefQualifierLoc=*/NoLoc, 1150 /*ConstQualifierLoc=*/NoLoc, 1151 /*VolatileQualifierLoc=*/NoLoc, 1152 /*RestrictQualifierLoc=*/NoLoc, 1153 MutableLoc, 1154 ESpecType, ESpecRange, 1155 DynamicExceptions.data(), 1156 DynamicExceptionRanges.data(), 1157 DynamicExceptions.size(), 1158 NoexceptExpr.isUsable() ? 1159 NoexceptExpr.get() : nullptr, 1160 /*ExceptionSpecTokens*/nullptr, 1161 LParenLoc, FunLocalRangeEnd, D, 1162 TrailingReturnType), 1163 Attr, DeclEndLoc); 1164 } else if (Tok.isOneOf(tok::kw_mutable, tok::arrow, tok::kw___attribute) || 1165 (Tok.is(tok::l_square) && NextToken().is(tok::l_square))) { 1166 // It's common to forget that one needs '()' before 'mutable', an attribute 1167 // specifier, or the result type. Deal with this. 1168 unsigned TokKind = 0; 1169 switch (Tok.getKind()) { 1170 case tok::kw_mutable: TokKind = 0; break; 1171 case tok::arrow: TokKind = 1; break; 1172 case tok::kw___attribute: 1173 case tok::l_square: TokKind = 2; break; 1174 default: llvm_unreachable("Unknown token kind"); 1175 } 1176 1177 Diag(Tok, diag::err_lambda_missing_parens) 1178 << TokKind 1179 << FixItHint::CreateInsertion(Tok.getLocation(), "() "); 1180 SourceLocation DeclLoc = Tok.getLocation(); 1181 SourceLocation DeclEndLoc = DeclLoc; 1182 1183 // GNU-style attributes must be parsed before the mutable specifier to be 1184 // compatible with GCC. 1185 ParsedAttributes Attr(AttrFactory); 1186 MaybeParseGNUAttributes(Attr, &DeclEndLoc); 1187 1188 // Parse 'mutable', if it's there. 1189 SourceLocation MutableLoc; 1190 if (Tok.is(tok::kw_mutable)) { 1191 MutableLoc = ConsumeToken(); 1192 DeclEndLoc = MutableLoc; 1193 } 1194 1195 // Parse attribute-specifier[opt]. 1196 MaybeParseCXX11Attributes(Attr, &DeclEndLoc); 1197 1198 // Parse the return type, if there is one. 1199 if (Tok.is(tok::arrow)) { 1200 SourceRange Range; 1201 TrailingReturnType = ParseTrailingReturnType(Range); 1202 if (Range.getEnd().isValid()) 1203 DeclEndLoc = Range.getEnd(); 1204 } 1205 1206 SourceLocation NoLoc; 1207 D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true, 1208 /*isAmbiguous=*/false, 1209 /*LParenLoc=*/NoLoc, 1210 /*Params=*/nullptr, 1211 /*NumParams=*/0, 1212 /*EllipsisLoc=*/NoLoc, 1213 /*RParenLoc=*/NoLoc, 1214 /*TypeQuals=*/0, 1215 /*RefQualifierIsLValueRef=*/true, 1216 /*RefQualifierLoc=*/NoLoc, 1217 /*ConstQualifierLoc=*/NoLoc, 1218 /*VolatileQualifierLoc=*/NoLoc, 1219 /*RestrictQualifierLoc=*/NoLoc, 1220 MutableLoc, 1221 EST_None, 1222 /*ESpecRange=*/SourceRange(), 1223 /*Exceptions=*/nullptr, 1224 /*ExceptionRanges=*/nullptr, 1225 /*NumExceptions=*/0, 1226 /*NoexceptExpr=*/nullptr, 1227 /*ExceptionSpecTokens=*/nullptr, 1228 DeclLoc, DeclEndLoc, D, 1229 TrailingReturnType), 1230 Attr, DeclEndLoc); 1231 } 1232 1233 1234 // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using 1235 // it. 1236 unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope; 1237 ParseScope BodyScope(this, ScopeFlags); 1238 1239 Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope()); 1240 1241 // Parse compound-statement. 1242 if (!Tok.is(tok::l_brace)) { 1243 Diag(Tok, diag::err_expected_lambda_body); 1244 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1245 return ExprError(); 1246 } 1247 1248 StmtResult Stmt(ParseCompoundStatementBody()); 1249 BodyScope.Exit(); 1250 1251 if (!Stmt.isInvalid() && !TrailingReturnType.isInvalid()) 1252 return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.get(), getCurScope()); 1253 1254 Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope()); 1255 return ExprError(); 1256 } 1257 1258 /// ParseCXXCasts - This handles the various ways to cast expressions to another 1259 /// type. 1260 /// 1261 /// postfix-expression: [C++ 5.2p1] 1262 /// 'dynamic_cast' '<' type-name '>' '(' expression ')' 1263 /// 'static_cast' '<' type-name '>' '(' expression ')' 1264 /// 'reinterpret_cast' '<' type-name '>' '(' expression ')' 1265 /// 'const_cast' '<' type-name '>' '(' expression ')' 1266 /// 1267 ExprResult Parser::ParseCXXCasts() { 1268 tok::TokenKind Kind = Tok.getKind(); 1269 const char *CastName = nullptr; // For error messages 1270 1271 switch (Kind) { 1272 default: llvm_unreachable("Unknown C++ cast!"); 1273 case tok::kw_const_cast: CastName = "const_cast"; break; 1274 case tok::kw_dynamic_cast: CastName = "dynamic_cast"; break; 1275 case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break; 1276 case tok::kw_static_cast: CastName = "static_cast"; break; 1277 } 1278 1279 SourceLocation OpLoc = ConsumeToken(); 1280 SourceLocation LAngleBracketLoc = Tok.getLocation(); 1281 1282 // Check for "<::" which is parsed as "[:". If found, fix token stream, 1283 // diagnose error, suggest fix, and recover parsing. 1284 if (Tok.is(tok::l_square) && Tok.getLength() == 2) { 1285 Token Next = NextToken(); 1286 if (Next.is(tok::colon) && areTokensAdjacent(Tok, Next)) 1287 FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true); 1288 } 1289 1290 if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName)) 1291 return ExprError(); 1292 1293 // Parse the common declaration-specifiers piece. 1294 DeclSpec DS(AttrFactory); 1295 ParseSpecifierQualifierList(DS); 1296 1297 // Parse the abstract-declarator, if present. 1298 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1299 ParseDeclarator(DeclaratorInfo); 1300 1301 SourceLocation RAngleBracketLoc = Tok.getLocation(); 1302 1303 if (ExpectAndConsume(tok::greater)) 1304 return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << tok::less); 1305 1306 SourceLocation LParenLoc, RParenLoc; 1307 BalancedDelimiterTracker T(*this, tok::l_paren); 1308 1309 if (T.expectAndConsume(diag::err_expected_lparen_after, CastName)) 1310 return ExprError(); 1311 1312 ExprResult Result = ParseExpression(); 1313 1314 // Match the ')'. 1315 T.consumeClose(); 1316 1317 if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType()) 1318 Result = Actions.ActOnCXXNamedCast(OpLoc, Kind, 1319 LAngleBracketLoc, DeclaratorInfo, 1320 RAngleBracketLoc, 1321 T.getOpenLocation(), Result.get(), 1322 T.getCloseLocation()); 1323 1324 return Result; 1325 } 1326 1327 /// ParseCXXTypeid - This handles the C++ typeid expression. 1328 /// 1329 /// postfix-expression: [C++ 5.2p1] 1330 /// 'typeid' '(' expression ')' 1331 /// 'typeid' '(' type-id ')' 1332 /// 1333 ExprResult Parser::ParseCXXTypeid() { 1334 assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!"); 1335 1336 SourceLocation OpLoc = ConsumeToken(); 1337 SourceLocation LParenLoc, RParenLoc; 1338 BalancedDelimiterTracker T(*this, tok::l_paren); 1339 1340 // typeid expressions are always parenthesized. 1341 if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid")) 1342 return ExprError(); 1343 LParenLoc = T.getOpenLocation(); 1344 1345 ExprResult Result; 1346 1347 // C++0x [expr.typeid]p3: 1348 // When typeid is applied to an expression other than an lvalue of a 1349 // polymorphic class type [...] The expression is an unevaluated 1350 // operand (Clause 5). 1351 // 1352 // Note that we can't tell whether the expression is an lvalue of a 1353 // polymorphic class type until after we've parsed the expression; we 1354 // speculatively assume the subexpression is unevaluated, and fix it up 1355 // later. 1356 // 1357 // We enter the unevaluated context before trying to determine whether we 1358 // have a type-id, because the tentative parse logic will try to resolve 1359 // names, and must treat them as unevaluated. 1360 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated, 1361 Sema::ReuseLambdaContextDecl); 1362 1363 if (isTypeIdInParens()) { 1364 TypeResult Ty = ParseTypeName(); 1365 1366 // Match the ')'. 1367 T.consumeClose(); 1368 RParenLoc = T.getCloseLocation(); 1369 if (Ty.isInvalid() || RParenLoc.isInvalid()) 1370 return ExprError(); 1371 1372 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true, 1373 Ty.get().getAsOpaquePtr(), RParenLoc); 1374 } else { 1375 Result = ParseExpression(); 1376 1377 // Match the ')'. 1378 if (Result.isInvalid()) 1379 SkipUntil(tok::r_paren, StopAtSemi); 1380 else { 1381 T.consumeClose(); 1382 RParenLoc = T.getCloseLocation(); 1383 if (RParenLoc.isInvalid()) 1384 return ExprError(); 1385 1386 Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false, 1387 Result.get(), RParenLoc); 1388 } 1389 } 1390 1391 return Result; 1392 } 1393 1394 /// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression. 1395 /// 1396 /// '__uuidof' '(' expression ')' 1397 /// '__uuidof' '(' type-id ')' 1398 /// 1399 ExprResult Parser::ParseCXXUuidof() { 1400 assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!"); 1401 1402 SourceLocation OpLoc = ConsumeToken(); 1403 BalancedDelimiterTracker T(*this, tok::l_paren); 1404 1405 // __uuidof expressions are always parenthesized. 1406 if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof")) 1407 return ExprError(); 1408 1409 ExprResult Result; 1410 1411 if (isTypeIdInParens()) { 1412 TypeResult Ty = ParseTypeName(); 1413 1414 // Match the ')'. 1415 T.consumeClose(); 1416 1417 if (Ty.isInvalid()) 1418 return ExprError(); 1419 1420 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true, 1421 Ty.get().getAsOpaquePtr(), 1422 T.getCloseLocation()); 1423 } else { 1424 EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated); 1425 Result = ParseExpression(); 1426 1427 // Match the ')'. 1428 if (Result.isInvalid()) 1429 SkipUntil(tok::r_paren, StopAtSemi); 1430 else { 1431 T.consumeClose(); 1432 1433 Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), 1434 /*isType=*/false, 1435 Result.get(), T.getCloseLocation()); 1436 } 1437 } 1438 1439 return Result; 1440 } 1441 1442 /// \brief Parse a C++ pseudo-destructor expression after the base, 1443 /// . or -> operator, and nested-name-specifier have already been 1444 /// parsed. 1445 /// 1446 /// postfix-expression: [C++ 5.2] 1447 /// postfix-expression . pseudo-destructor-name 1448 /// postfix-expression -> pseudo-destructor-name 1449 /// 1450 /// pseudo-destructor-name: 1451 /// ::[opt] nested-name-specifier[opt] type-name :: ~type-name 1452 /// ::[opt] nested-name-specifier template simple-template-id :: 1453 /// ~type-name 1454 /// ::[opt] nested-name-specifier[opt] ~type-name 1455 /// 1456 ExprResult 1457 Parser::ParseCXXPseudoDestructor(Expr *Base, SourceLocation OpLoc, 1458 tok::TokenKind OpKind, 1459 CXXScopeSpec &SS, 1460 ParsedType ObjectType) { 1461 // We're parsing either a pseudo-destructor-name or a dependent 1462 // member access that has the same form as a 1463 // pseudo-destructor-name. We parse both in the same way and let 1464 // the action model sort them out. 1465 // 1466 // Note that the ::[opt] nested-name-specifier[opt] has already 1467 // been parsed, and if there was a simple-template-id, it has 1468 // been coalesced into a template-id annotation token. 1469 UnqualifiedId FirstTypeName; 1470 SourceLocation CCLoc; 1471 if (Tok.is(tok::identifier)) { 1472 FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 1473 ConsumeToken(); 1474 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1475 CCLoc = ConsumeToken(); 1476 } else if (Tok.is(tok::annot_template_id)) { 1477 // FIXME: retrieve TemplateKWLoc from template-id annotation and 1478 // store it in the pseudo-dtor node (to be used when instantiating it). 1479 FirstTypeName.setTemplateId( 1480 (TemplateIdAnnotation *)Tok.getAnnotationValue()); 1481 ConsumeToken(); 1482 assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail"); 1483 CCLoc = ConsumeToken(); 1484 } else { 1485 FirstTypeName.setIdentifier(nullptr, SourceLocation()); 1486 } 1487 1488 // Parse the tilde. 1489 assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail"); 1490 SourceLocation TildeLoc = ConsumeToken(); 1491 1492 if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) { 1493 DeclSpec DS(AttrFactory); 1494 ParseDecltypeSpecifier(DS); 1495 if (DS.getTypeSpecType() == TST_error) 1496 return ExprError(); 1497 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1498 TildeLoc, DS); 1499 } 1500 1501 if (!Tok.is(tok::identifier)) { 1502 Diag(Tok, diag::err_destructor_tilde_identifier); 1503 return ExprError(); 1504 } 1505 1506 // Parse the second type. 1507 UnqualifiedId SecondTypeName; 1508 IdentifierInfo *Name = Tok.getIdentifierInfo(); 1509 SourceLocation NameLoc = ConsumeToken(); 1510 SecondTypeName.setIdentifier(Name, NameLoc); 1511 1512 // If there is a '<', the second type name is a template-id. Parse 1513 // it as such. 1514 if (Tok.is(tok::less) && 1515 ParseUnqualifiedIdTemplateId(SS, SourceLocation(), 1516 Name, NameLoc, 1517 false, ObjectType, SecondTypeName, 1518 /*AssumeTemplateName=*/true)) 1519 return ExprError(); 1520 1521 return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc, OpKind, 1522 SS, FirstTypeName, CCLoc, TildeLoc, 1523 SecondTypeName); 1524 } 1525 1526 /// ParseCXXBoolLiteral - This handles the C++ Boolean literals. 1527 /// 1528 /// boolean-literal: [C++ 2.13.5] 1529 /// 'true' 1530 /// 'false' 1531 ExprResult Parser::ParseCXXBoolLiteral() { 1532 tok::TokenKind Kind = Tok.getKind(); 1533 return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind); 1534 } 1535 1536 /// ParseThrowExpression - This handles the C++ throw expression. 1537 /// 1538 /// throw-expression: [C++ 15] 1539 /// 'throw' assignment-expression[opt] 1540 ExprResult Parser::ParseThrowExpression() { 1541 assert(Tok.is(tok::kw_throw) && "Not throw!"); 1542 SourceLocation ThrowLoc = ConsumeToken(); // Eat the throw token. 1543 1544 // If the current token isn't the start of an assignment-expression, 1545 // then the expression is not present. This handles things like: 1546 // "C ? throw : (void)42", which is crazy but legal. 1547 switch (Tok.getKind()) { // FIXME: move this predicate somewhere common. 1548 case tok::semi: 1549 case tok::r_paren: 1550 case tok::r_square: 1551 case tok::r_brace: 1552 case tok::colon: 1553 case tok::comma: 1554 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, nullptr); 1555 1556 default: 1557 ExprResult Expr(ParseAssignmentExpression()); 1558 if (Expr.isInvalid()) return Expr; 1559 return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.get()); 1560 } 1561 } 1562 1563 /// \brief Parse the C++ Coroutines co_yield expression. 1564 /// 1565 /// co_yield-expression: 1566 /// 'co_yield' assignment-expression[opt] 1567 ExprResult Parser::ParseCoyieldExpression() { 1568 assert(Tok.is(tok::kw_co_yield) && "Not co_yield!"); 1569 1570 SourceLocation Loc = ConsumeToken(); 1571 ExprResult Expr = Tok.is(tok::l_brace) ? ParseBraceInitializer() 1572 : ParseAssignmentExpression(); 1573 if (!Expr.isInvalid()) 1574 Expr = Actions.ActOnCoyieldExpr(getCurScope(), Loc, Expr.get()); 1575 return Expr; 1576 } 1577 1578 /// ParseCXXThis - This handles the C++ 'this' pointer. 1579 /// 1580 /// C++ 9.3.2: In the body of a non-static member function, the keyword this is 1581 /// a non-lvalue expression whose value is the address of the object for which 1582 /// the function is called. 1583 ExprResult Parser::ParseCXXThis() { 1584 assert(Tok.is(tok::kw_this) && "Not 'this'!"); 1585 SourceLocation ThisLoc = ConsumeToken(); 1586 return Actions.ActOnCXXThis(ThisLoc); 1587 } 1588 1589 /// ParseCXXTypeConstructExpression - Parse construction of a specified type. 1590 /// Can be interpreted either as function-style casting ("int(x)") 1591 /// or class type construction ("ClassType(x,y,z)") 1592 /// or creation of a value-initialized type ("int()"). 1593 /// See [C++ 5.2.3]. 1594 /// 1595 /// postfix-expression: [C++ 5.2p1] 1596 /// simple-type-specifier '(' expression-list[opt] ')' 1597 /// [C++0x] simple-type-specifier braced-init-list 1598 /// typename-specifier '(' expression-list[opt] ')' 1599 /// [C++0x] typename-specifier braced-init-list 1600 /// 1601 ExprResult 1602 Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) { 1603 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 1604 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get(); 1605 1606 assert((Tok.is(tok::l_paren) || 1607 (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace))) 1608 && "Expected '(' or '{'!"); 1609 1610 if (Tok.is(tok::l_brace)) { 1611 ExprResult Init = ParseBraceInitializer(); 1612 if (Init.isInvalid()) 1613 return Init; 1614 Expr *InitList = Init.get(); 1615 return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(), 1616 MultiExprArg(&InitList, 1), 1617 SourceLocation()); 1618 } else { 1619 BalancedDelimiterTracker T(*this, tok::l_paren); 1620 T.consumeOpen(); 1621 1622 ExprVector Exprs; 1623 CommaLocsTy CommaLocs; 1624 1625 if (Tok.isNot(tok::r_paren)) { 1626 if (ParseExpressionList(Exprs, CommaLocs, [&] { 1627 Actions.CodeCompleteConstructor(getCurScope(), 1628 TypeRep.get()->getCanonicalTypeInternal(), 1629 DS.getLocEnd(), Exprs); 1630 })) { 1631 SkipUntil(tok::r_paren, StopAtSemi); 1632 return ExprError(); 1633 } 1634 } 1635 1636 // Match the ')'. 1637 T.consumeClose(); 1638 1639 // TypeRep could be null, if it references an invalid typedef. 1640 if (!TypeRep) 1641 return ExprError(); 1642 1643 assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&& 1644 "Unexpected number of commas!"); 1645 return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(), 1646 Exprs, 1647 T.getCloseLocation()); 1648 } 1649 } 1650 1651 /// ParseCXXCondition - if/switch/while condition expression. 1652 /// 1653 /// condition: 1654 /// expression 1655 /// type-specifier-seq declarator '=' assignment-expression 1656 /// [C++11] type-specifier-seq declarator '=' initializer-clause 1657 /// [C++11] type-specifier-seq declarator braced-init-list 1658 /// [GNU] type-specifier-seq declarator simple-asm-expr[opt] attributes[opt] 1659 /// '=' assignment-expression 1660 /// 1661 /// \param ExprOut if the condition was parsed as an expression, the parsed 1662 /// expression. 1663 /// 1664 /// \param DeclOut if the condition was parsed as a declaration, the parsed 1665 /// declaration. 1666 /// 1667 /// \param Loc The location of the start of the statement that requires this 1668 /// condition, e.g., the "for" in a for loop. 1669 /// 1670 /// \param ConvertToBoolean Whether the condition expression should be 1671 /// converted to a boolean value. 1672 /// 1673 /// \returns true if there was a parsing, false otherwise. 1674 bool Parser::ParseCXXCondition(ExprResult &ExprOut, 1675 Decl *&DeclOut, 1676 SourceLocation Loc, 1677 bool ConvertToBoolean) { 1678 if (Tok.is(tok::code_completion)) { 1679 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition); 1680 cutOffParsing(); 1681 return true; 1682 } 1683 1684 ParsedAttributesWithRange attrs(AttrFactory); 1685 MaybeParseCXX11Attributes(attrs); 1686 1687 if (!isCXXConditionDeclaration()) { 1688 ProhibitAttributes(attrs); 1689 1690 // Parse the expression. 1691 ExprOut = ParseExpression(); // expression 1692 DeclOut = nullptr; 1693 if (ExprOut.isInvalid()) 1694 return true; 1695 1696 // If required, convert to a boolean value. 1697 if (ConvertToBoolean) 1698 ExprOut 1699 = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get()); 1700 return ExprOut.isInvalid(); 1701 } 1702 1703 // type-specifier-seq 1704 DeclSpec DS(AttrFactory); 1705 DS.takeAttributesFrom(attrs); 1706 ParseSpecifierQualifierList(DS, AS_none, DSC_condition); 1707 1708 // declarator 1709 Declarator DeclaratorInfo(DS, Declarator::ConditionContext); 1710 ParseDeclarator(DeclaratorInfo); 1711 1712 // simple-asm-expr[opt] 1713 if (Tok.is(tok::kw_asm)) { 1714 SourceLocation Loc; 1715 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 1716 if (AsmLabel.isInvalid()) { 1717 SkipUntil(tok::semi, StopAtSemi); 1718 return true; 1719 } 1720 DeclaratorInfo.setAsmLabel(AsmLabel.get()); 1721 DeclaratorInfo.SetRangeEnd(Loc); 1722 } 1723 1724 // If attributes are present, parse them. 1725 MaybeParseGNUAttributes(DeclaratorInfo); 1726 1727 // Type-check the declaration itself. 1728 DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(), 1729 DeclaratorInfo); 1730 DeclOut = Dcl.get(); 1731 ExprOut = ExprError(); 1732 1733 // '=' assignment-expression 1734 // If a '==' or '+=' is found, suggest a fixit to '='. 1735 bool CopyInitialization = isTokenEqualOrEqualTypo(); 1736 if (CopyInitialization) 1737 ConsumeToken(); 1738 1739 ExprResult InitExpr = ExprError(); 1740 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1741 Diag(Tok.getLocation(), 1742 diag::warn_cxx98_compat_generalized_initializer_lists); 1743 InitExpr = ParseBraceInitializer(); 1744 } else if (CopyInitialization) { 1745 InitExpr = ParseAssignmentExpression(); 1746 } else if (Tok.is(tok::l_paren)) { 1747 // This was probably an attempt to initialize the variable. 1748 SourceLocation LParen = ConsumeParen(), RParen = LParen; 1749 if (SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch)) 1750 RParen = ConsumeParen(); 1751 Diag(DeclOut ? DeclOut->getLocation() : LParen, 1752 diag::err_expected_init_in_condition_lparen) 1753 << SourceRange(LParen, RParen); 1754 } else { 1755 Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(), 1756 diag::err_expected_init_in_condition); 1757 } 1758 1759 if (!InitExpr.isInvalid()) 1760 Actions.AddInitializerToDecl(DeclOut, InitExpr.get(), !CopyInitialization, 1761 DS.containsPlaceholderType()); 1762 else 1763 Actions.ActOnInitializerError(DeclOut); 1764 1765 // FIXME: Build a reference to this declaration? Convert it to bool? 1766 // (This is currently handled by Sema). 1767 1768 Actions.FinalizeDeclaration(DeclOut); 1769 1770 return false; 1771 } 1772 1773 /// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers. 1774 /// This should only be called when the current token is known to be part of 1775 /// simple-type-specifier. 1776 /// 1777 /// simple-type-specifier: 1778 /// '::'[opt] nested-name-specifier[opt] type-name 1779 /// '::'[opt] nested-name-specifier 'template' simple-template-id [TODO] 1780 /// char 1781 /// wchar_t 1782 /// bool 1783 /// short 1784 /// int 1785 /// long 1786 /// signed 1787 /// unsigned 1788 /// float 1789 /// double 1790 /// void 1791 /// [GNU] typeof-specifier 1792 /// [C++0x] auto [TODO] 1793 /// 1794 /// type-name: 1795 /// class-name 1796 /// enum-name 1797 /// typedef-name 1798 /// 1799 void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) { 1800 DS.SetRangeStart(Tok.getLocation()); 1801 const char *PrevSpec; 1802 unsigned DiagID; 1803 SourceLocation Loc = Tok.getLocation(); 1804 const clang::PrintingPolicy &Policy = 1805 Actions.getASTContext().getPrintingPolicy(); 1806 1807 switch (Tok.getKind()) { 1808 case tok::identifier: // foo::bar 1809 case tok::coloncolon: // ::foo::bar 1810 llvm_unreachable("Annotation token should already be formed!"); 1811 default: 1812 llvm_unreachable("Not a simple-type-specifier token!"); 1813 1814 // type-name 1815 case tok::annot_typename: { 1816 if (getTypeAnnotation(Tok)) 1817 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, 1818 getTypeAnnotation(Tok), Policy); 1819 else 1820 DS.SetTypeSpecError(); 1821 1822 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1823 ConsumeToken(); 1824 1825 DS.Finish(Actions, Policy); 1826 return; 1827 } 1828 1829 // builtin types 1830 case tok::kw_short: 1831 DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID, Policy); 1832 break; 1833 case tok::kw_long: 1834 DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID, Policy); 1835 break; 1836 case tok::kw___int64: 1837 DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID, Policy); 1838 break; 1839 case tok::kw_signed: 1840 DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID); 1841 break; 1842 case tok::kw_unsigned: 1843 DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID); 1844 break; 1845 case tok::kw_void: 1846 DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID, Policy); 1847 break; 1848 case tok::kw_char: 1849 DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID, Policy); 1850 break; 1851 case tok::kw_int: 1852 DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID, Policy); 1853 break; 1854 case tok::kw___int128: 1855 DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID, Policy); 1856 break; 1857 case tok::kw_half: 1858 DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID, Policy); 1859 break; 1860 case tok::kw_float: 1861 DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID, Policy); 1862 break; 1863 case tok::kw_double: 1864 DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID, Policy); 1865 break; 1866 case tok::kw_wchar_t: 1867 DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID, Policy); 1868 break; 1869 case tok::kw_char16_t: 1870 DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID, Policy); 1871 break; 1872 case tok::kw_char32_t: 1873 DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID, Policy); 1874 break; 1875 case tok::kw_bool: 1876 DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID, Policy); 1877 break; 1878 case tok::annot_decltype: 1879 case tok::kw_decltype: 1880 DS.SetRangeEnd(ParseDecltypeSpecifier(DS)); 1881 return DS.Finish(Actions, Policy); 1882 1883 // GNU typeof support. 1884 case tok::kw_typeof: 1885 ParseTypeofSpecifier(DS); 1886 DS.Finish(Actions, Policy); 1887 return; 1888 } 1889 if (Tok.is(tok::annot_typename)) 1890 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 1891 else 1892 DS.SetRangeEnd(Tok.getLocation()); 1893 ConsumeToken(); 1894 DS.Finish(Actions, Policy); 1895 } 1896 1897 /// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++ 1898 /// [dcl.name]), which is a non-empty sequence of type-specifiers, 1899 /// e.g., "const short int". Note that the DeclSpec is *not* finished 1900 /// by parsing the type-specifier-seq, because these sequences are 1901 /// typically followed by some form of declarator. Returns true and 1902 /// emits diagnostics if this is not a type-specifier-seq, false 1903 /// otherwise. 1904 /// 1905 /// type-specifier-seq: [C++ 8.1] 1906 /// type-specifier type-specifier-seq[opt] 1907 /// 1908 bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) { 1909 ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier); 1910 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); 1911 return false; 1912 } 1913 1914 /// \brief Finish parsing a C++ unqualified-id that is a template-id of 1915 /// some form. 1916 /// 1917 /// This routine is invoked when a '<' is encountered after an identifier or 1918 /// operator-function-id is parsed by \c ParseUnqualifiedId() to determine 1919 /// whether the unqualified-id is actually a template-id. This routine will 1920 /// then parse the template arguments and form the appropriate template-id to 1921 /// return to the caller. 1922 /// 1923 /// \param SS the nested-name-specifier that precedes this template-id, if 1924 /// we're actually parsing a qualified-id. 1925 /// 1926 /// \param Name for constructor and destructor names, this is the actual 1927 /// identifier that may be a template-name. 1928 /// 1929 /// \param NameLoc the location of the class-name in a constructor or 1930 /// destructor. 1931 /// 1932 /// \param EnteringContext whether we're entering the scope of the 1933 /// nested-name-specifier. 1934 /// 1935 /// \param ObjectType if this unqualified-id occurs within a member access 1936 /// expression, the type of the base object whose member is being accessed. 1937 /// 1938 /// \param Id as input, describes the template-name or operator-function-id 1939 /// that precedes the '<'. If template arguments were parsed successfully, 1940 /// will be updated with the template-id. 1941 /// 1942 /// \param AssumeTemplateId When true, this routine will assume that the name 1943 /// refers to a template without performing name lookup to verify. 1944 /// 1945 /// \returns true if a parse error occurred, false otherwise. 1946 bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS, 1947 SourceLocation TemplateKWLoc, 1948 IdentifierInfo *Name, 1949 SourceLocation NameLoc, 1950 bool EnteringContext, 1951 ParsedType ObjectType, 1952 UnqualifiedId &Id, 1953 bool AssumeTemplateId) { 1954 assert((AssumeTemplateId || Tok.is(tok::less)) && 1955 "Expected '<' to finish parsing a template-id"); 1956 1957 TemplateTy Template; 1958 TemplateNameKind TNK = TNK_Non_template; 1959 switch (Id.getKind()) { 1960 case UnqualifiedId::IK_Identifier: 1961 case UnqualifiedId::IK_OperatorFunctionId: 1962 case UnqualifiedId::IK_LiteralOperatorId: 1963 if (AssumeTemplateId) { 1964 TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc, 1965 Id, ObjectType, EnteringContext, 1966 Template); 1967 if (TNK == TNK_Non_template) 1968 return true; 1969 } else { 1970 bool MemberOfUnknownSpecialization; 1971 TNK = Actions.isTemplateName(getCurScope(), SS, 1972 TemplateKWLoc.isValid(), Id, 1973 ObjectType, EnteringContext, Template, 1974 MemberOfUnknownSpecialization); 1975 1976 if (TNK == TNK_Non_template && MemberOfUnknownSpecialization && 1977 ObjectType && IsTemplateArgumentList()) { 1978 // We have something like t->getAs<T>(), where getAs is a 1979 // member of an unknown specialization. However, this will only 1980 // parse correctly as a template, so suggest the keyword 'template' 1981 // before 'getAs' and treat this as a dependent template name. 1982 std::string Name; 1983 if (Id.getKind() == UnqualifiedId::IK_Identifier) 1984 Name = Id.Identifier->getName(); 1985 else { 1986 Name = "operator "; 1987 if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId) 1988 Name += getOperatorSpelling(Id.OperatorFunctionId.Operator); 1989 else 1990 Name += Id.Identifier->getName(); 1991 } 1992 Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword) 1993 << Name 1994 << FixItHint::CreateInsertion(Id.StartLocation, "template "); 1995 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 1996 SS, TemplateKWLoc, Id, 1997 ObjectType, EnteringContext, 1998 Template); 1999 if (TNK == TNK_Non_template) 2000 return true; 2001 } 2002 } 2003 break; 2004 2005 case UnqualifiedId::IK_ConstructorName: { 2006 UnqualifiedId TemplateName; 2007 bool MemberOfUnknownSpecialization; 2008 TemplateName.setIdentifier(Name, NameLoc); 2009 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2010 TemplateName, ObjectType, 2011 EnteringContext, Template, 2012 MemberOfUnknownSpecialization); 2013 break; 2014 } 2015 2016 case UnqualifiedId::IK_DestructorName: { 2017 UnqualifiedId TemplateName; 2018 bool MemberOfUnknownSpecialization; 2019 TemplateName.setIdentifier(Name, NameLoc); 2020 if (ObjectType) { 2021 TNK = Actions.ActOnDependentTemplateName(getCurScope(), 2022 SS, TemplateKWLoc, TemplateName, 2023 ObjectType, EnteringContext, 2024 Template); 2025 if (TNK == TNK_Non_template) 2026 return true; 2027 } else { 2028 TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(), 2029 TemplateName, ObjectType, 2030 EnteringContext, Template, 2031 MemberOfUnknownSpecialization); 2032 2033 if (TNK == TNK_Non_template && !Id.DestructorName.get()) { 2034 Diag(NameLoc, diag::err_destructor_template_id) 2035 << Name << SS.getRange(); 2036 return true; 2037 } 2038 } 2039 break; 2040 } 2041 2042 default: 2043 return false; 2044 } 2045 2046 if (TNK == TNK_Non_template) 2047 return false; 2048 2049 // Parse the enclosed template argument list. 2050 SourceLocation LAngleLoc, RAngleLoc; 2051 TemplateArgList TemplateArgs; 2052 if (Tok.is(tok::less) && 2053 ParseTemplateIdAfterTemplateName(Template, Id.StartLocation, 2054 SS, true, LAngleLoc, 2055 TemplateArgs, 2056 RAngleLoc)) 2057 return true; 2058 2059 if (Id.getKind() == UnqualifiedId::IK_Identifier || 2060 Id.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2061 Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) { 2062 // Form a parsed representation of the template-id to be stored in the 2063 // UnqualifiedId. 2064 TemplateIdAnnotation *TemplateId 2065 = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds); 2066 2067 // FIXME: Store name for literal operator too. 2068 if (Id.getKind() == UnqualifiedId::IK_Identifier) { 2069 TemplateId->Name = Id.Identifier; 2070 TemplateId->Operator = OO_None; 2071 TemplateId->TemplateNameLoc = Id.StartLocation; 2072 } else { 2073 TemplateId->Name = nullptr; 2074 TemplateId->Operator = Id.OperatorFunctionId.Operator; 2075 TemplateId->TemplateNameLoc = Id.StartLocation; 2076 } 2077 2078 TemplateId->SS = SS; 2079 TemplateId->TemplateKWLoc = TemplateKWLoc; 2080 TemplateId->Template = Template; 2081 TemplateId->Kind = TNK; 2082 TemplateId->LAngleLoc = LAngleLoc; 2083 TemplateId->RAngleLoc = RAngleLoc; 2084 ParsedTemplateArgument *Args = TemplateId->getTemplateArgs(); 2085 for (unsigned Arg = 0, ArgEnd = TemplateArgs.size(); 2086 Arg != ArgEnd; ++Arg) 2087 Args[Arg] = TemplateArgs[Arg]; 2088 2089 Id.setTemplateId(TemplateId); 2090 return false; 2091 } 2092 2093 // Bundle the template arguments together. 2094 ASTTemplateArgsPtr TemplateArgsPtr(TemplateArgs); 2095 2096 // Constructor and destructor names. 2097 TypeResult Type 2098 = Actions.ActOnTemplateIdType(SS, TemplateKWLoc, 2099 Template, NameLoc, 2100 LAngleLoc, TemplateArgsPtr, RAngleLoc, 2101 /*IsCtorOrDtorName=*/true); 2102 if (Type.isInvalid()) 2103 return true; 2104 2105 if (Id.getKind() == UnqualifiedId::IK_ConstructorName) 2106 Id.setConstructorName(Type.get(), NameLoc, RAngleLoc); 2107 else 2108 Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc); 2109 2110 return false; 2111 } 2112 2113 /// \brief Parse an operator-function-id or conversion-function-id as part 2114 /// of a C++ unqualified-id. 2115 /// 2116 /// This routine is responsible only for parsing the operator-function-id or 2117 /// conversion-function-id; it does not handle template arguments in any way. 2118 /// 2119 /// \code 2120 /// operator-function-id: [C++ 13.5] 2121 /// 'operator' operator 2122 /// 2123 /// operator: one of 2124 /// new delete new[] delete[] 2125 /// + - * / % ^ & | ~ 2126 /// ! = < > += -= *= /= %= 2127 /// ^= &= |= << >> >>= <<= == != 2128 /// <= >= && || ++ -- , ->* -> 2129 /// () [] 2130 /// 2131 /// conversion-function-id: [C++ 12.3.2] 2132 /// operator conversion-type-id 2133 /// 2134 /// conversion-type-id: 2135 /// type-specifier-seq conversion-declarator[opt] 2136 /// 2137 /// conversion-declarator: 2138 /// ptr-operator conversion-declarator[opt] 2139 /// \endcode 2140 /// 2141 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2142 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2143 /// 2144 /// \param EnteringContext whether we are entering the scope of the 2145 /// nested-name-specifier. 2146 /// 2147 /// \param ObjectType if this unqualified-id occurs within a member access 2148 /// expression, the type of the base object whose member is being accessed. 2149 /// 2150 /// \param Result on a successful parse, contains the parsed unqualified-id. 2151 /// 2152 /// \returns true if parsing fails, false otherwise. 2153 bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext, 2154 ParsedType ObjectType, 2155 UnqualifiedId &Result) { 2156 assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword"); 2157 2158 // Consume the 'operator' keyword. 2159 SourceLocation KeywordLoc = ConsumeToken(); 2160 2161 // Determine what kind of operator name we have. 2162 unsigned SymbolIdx = 0; 2163 SourceLocation SymbolLocations[3]; 2164 OverloadedOperatorKind Op = OO_None; 2165 switch (Tok.getKind()) { 2166 case tok::kw_new: 2167 case tok::kw_delete: { 2168 bool isNew = Tok.getKind() == tok::kw_new; 2169 // Consume the 'new' or 'delete'. 2170 SymbolLocations[SymbolIdx++] = ConsumeToken(); 2171 // Check for array new/delete. 2172 if (Tok.is(tok::l_square) && 2173 (!getLangOpts().CPlusPlus11 || NextToken().isNot(tok::l_square))) { 2174 // Consume the '[' and ']'. 2175 BalancedDelimiterTracker T(*this, tok::l_square); 2176 T.consumeOpen(); 2177 T.consumeClose(); 2178 if (T.getCloseLocation().isInvalid()) 2179 return true; 2180 2181 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2182 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2183 Op = isNew? OO_Array_New : OO_Array_Delete; 2184 } else { 2185 Op = isNew? OO_New : OO_Delete; 2186 } 2187 break; 2188 } 2189 2190 #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ 2191 case tok::Token: \ 2192 SymbolLocations[SymbolIdx++] = ConsumeToken(); \ 2193 Op = OO_##Name; \ 2194 break; 2195 #define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly) 2196 #include "clang/Basic/OperatorKinds.def" 2197 2198 case tok::l_paren: { 2199 // Consume the '(' and ')'. 2200 BalancedDelimiterTracker T(*this, tok::l_paren); 2201 T.consumeOpen(); 2202 T.consumeClose(); 2203 if (T.getCloseLocation().isInvalid()) 2204 return true; 2205 2206 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2207 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2208 Op = OO_Call; 2209 break; 2210 } 2211 2212 case tok::l_square: { 2213 // Consume the '[' and ']'. 2214 BalancedDelimiterTracker T(*this, tok::l_square); 2215 T.consumeOpen(); 2216 T.consumeClose(); 2217 if (T.getCloseLocation().isInvalid()) 2218 return true; 2219 2220 SymbolLocations[SymbolIdx++] = T.getOpenLocation(); 2221 SymbolLocations[SymbolIdx++] = T.getCloseLocation(); 2222 Op = OO_Subscript; 2223 break; 2224 } 2225 2226 case tok::code_completion: { 2227 // Code completion for the operator name. 2228 Actions.CodeCompleteOperatorName(getCurScope()); 2229 cutOffParsing(); 2230 // Don't try to parse any further. 2231 return true; 2232 } 2233 2234 default: 2235 break; 2236 } 2237 2238 if (Op != OO_None) { 2239 // We have parsed an operator-function-id. 2240 Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations); 2241 return false; 2242 } 2243 2244 // Parse a literal-operator-id. 2245 // 2246 // literal-operator-id: C++11 [over.literal] 2247 // operator string-literal identifier 2248 // operator user-defined-string-literal 2249 2250 if (getLangOpts().CPlusPlus11 && isTokenStringLiteral()) { 2251 Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator); 2252 2253 SourceLocation DiagLoc; 2254 unsigned DiagId = 0; 2255 2256 // We're past translation phase 6, so perform string literal concatenation 2257 // before checking for "". 2258 SmallVector<Token, 4> Toks; 2259 SmallVector<SourceLocation, 4> TokLocs; 2260 while (isTokenStringLiteral()) { 2261 if (!Tok.is(tok::string_literal) && !DiagId) { 2262 // C++11 [over.literal]p1: 2263 // The string-literal or user-defined-string-literal in a 2264 // literal-operator-id shall have no encoding-prefix [...]. 2265 DiagLoc = Tok.getLocation(); 2266 DiagId = diag::err_literal_operator_string_prefix; 2267 } 2268 Toks.push_back(Tok); 2269 TokLocs.push_back(ConsumeStringToken()); 2270 } 2271 2272 StringLiteralParser Literal(Toks, PP); 2273 if (Literal.hadError) 2274 return true; 2275 2276 // Grab the literal operator's suffix, which will be either the next token 2277 // or a ud-suffix from the string literal. 2278 IdentifierInfo *II = nullptr; 2279 SourceLocation SuffixLoc; 2280 if (!Literal.getUDSuffix().empty()) { 2281 II = &PP.getIdentifierTable().get(Literal.getUDSuffix()); 2282 SuffixLoc = 2283 Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()], 2284 Literal.getUDSuffixOffset(), 2285 PP.getSourceManager(), getLangOpts()); 2286 } else if (Tok.is(tok::identifier)) { 2287 II = Tok.getIdentifierInfo(); 2288 SuffixLoc = ConsumeToken(); 2289 TokLocs.push_back(SuffixLoc); 2290 } else { 2291 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 2292 return true; 2293 } 2294 2295 // The string literal must be empty. 2296 if (!Literal.GetString().empty() || Literal.Pascal) { 2297 // C++11 [over.literal]p1: 2298 // The string-literal or user-defined-string-literal in a 2299 // literal-operator-id shall [...] contain no characters 2300 // other than the implicit terminating '\0'. 2301 DiagLoc = TokLocs.front(); 2302 DiagId = diag::err_literal_operator_string_not_empty; 2303 } 2304 2305 if (DiagId) { 2306 // This isn't a valid literal-operator-id, but we think we know 2307 // what the user meant. Tell them what they should have written. 2308 SmallString<32> Str; 2309 Str += "\"\""; 2310 Str += II->getName(); 2311 Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement( 2312 SourceRange(TokLocs.front(), TokLocs.back()), Str); 2313 } 2314 2315 Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc); 2316 2317 return Actions.checkLiteralOperatorId(SS, Result); 2318 } 2319 2320 // Parse a conversion-function-id. 2321 // 2322 // conversion-function-id: [C++ 12.3.2] 2323 // operator conversion-type-id 2324 // 2325 // conversion-type-id: 2326 // type-specifier-seq conversion-declarator[opt] 2327 // 2328 // conversion-declarator: 2329 // ptr-operator conversion-declarator[opt] 2330 2331 // Parse the type-specifier-seq. 2332 DeclSpec DS(AttrFactory); 2333 if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType? 2334 return true; 2335 2336 // Parse the conversion-declarator, which is merely a sequence of 2337 // ptr-operators. 2338 Declarator D(DS, Declarator::ConversionIdContext); 2339 ParseDeclaratorInternal(D, /*DirectDeclParser=*/nullptr); 2340 2341 // Finish up the type. 2342 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D); 2343 if (Ty.isInvalid()) 2344 return true; 2345 2346 // Note that this is a conversion-function-id. 2347 Result.setConversionFunctionId(KeywordLoc, Ty.get(), 2348 D.getSourceRange().getEnd()); 2349 return false; 2350 } 2351 2352 /// \brief Parse a C++ unqualified-id (or a C identifier), which describes the 2353 /// name of an entity. 2354 /// 2355 /// \code 2356 /// unqualified-id: [C++ expr.prim.general] 2357 /// identifier 2358 /// operator-function-id 2359 /// conversion-function-id 2360 /// [C++0x] literal-operator-id [TODO] 2361 /// ~ class-name 2362 /// template-id 2363 /// 2364 /// \endcode 2365 /// 2366 /// \param SS The nested-name-specifier that preceded this unqualified-id. If 2367 /// non-empty, then we are parsing the unqualified-id of a qualified-id. 2368 /// 2369 /// \param EnteringContext whether we are entering the scope of the 2370 /// nested-name-specifier. 2371 /// 2372 /// \param AllowDestructorName whether we allow parsing of a destructor name. 2373 /// 2374 /// \param AllowConstructorName whether we allow parsing a constructor name. 2375 /// 2376 /// \param ObjectType if this unqualified-id occurs within a member access 2377 /// expression, the type of the base object whose member is being accessed. 2378 /// 2379 /// \param Result on a successful parse, contains the parsed unqualified-id. 2380 /// 2381 /// \returns true if parsing fails, false otherwise. 2382 bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext, 2383 bool AllowDestructorName, 2384 bool AllowConstructorName, 2385 ParsedType ObjectType, 2386 SourceLocation& TemplateKWLoc, 2387 UnqualifiedId &Result) { 2388 2389 // Handle 'A::template B'. This is for template-ids which have not 2390 // already been annotated by ParseOptionalCXXScopeSpecifier(). 2391 bool TemplateSpecified = false; 2392 if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) && 2393 (ObjectType || SS.isSet())) { 2394 TemplateSpecified = true; 2395 TemplateKWLoc = ConsumeToken(); 2396 } 2397 2398 // unqualified-id: 2399 // identifier 2400 // template-id (when it hasn't already been annotated) 2401 if (Tok.is(tok::identifier)) { 2402 // Consume the identifier. 2403 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2404 SourceLocation IdLoc = ConsumeToken(); 2405 2406 if (!getLangOpts().CPlusPlus) { 2407 // If we're not in C++, only identifiers matter. Record the 2408 // identifier and return. 2409 Result.setIdentifier(Id, IdLoc); 2410 return false; 2411 } 2412 2413 if (AllowConstructorName && 2414 Actions.isCurrentClassName(*Id, getCurScope(), &SS)) { 2415 // We have parsed a constructor name. 2416 ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(), 2417 &SS, false, false, 2418 ParsedType(), 2419 /*IsCtorOrDtorName=*/true, 2420 /*NonTrivialTypeSourceInfo=*/true); 2421 Result.setConstructorName(Ty, IdLoc, IdLoc); 2422 } else { 2423 // We have parsed an identifier. 2424 Result.setIdentifier(Id, IdLoc); 2425 } 2426 2427 // If the next token is a '<', we may have a template. 2428 if (TemplateSpecified || Tok.is(tok::less)) 2429 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc, 2430 EnteringContext, ObjectType, 2431 Result, TemplateSpecified); 2432 2433 return false; 2434 } 2435 2436 // unqualified-id: 2437 // template-id (already parsed and annotated) 2438 if (Tok.is(tok::annot_template_id)) { 2439 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 2440 2441 // If the template-name names the current class, then this is a constructor 2442 if (AllowConstructorName && TemplateId->Name && 2443 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) { 2444 if (SS.isSet()) { 2445 // C++ [class.qual]p2 specifies that a qualified template-name 2446 // is taken as the constructor name where a constructor can be 2447 // declared. Thus, the template arguments are extraneous, so 2448 // complain about them and remove them entirely. 2449 Diag(TemplateId->TemplateNameLoc, 2450 diag::err_out_of_line_constructor_template_id) 2451 << TemplateId->Name 2452 << FixItHint::CreateRemoval( 2453 SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)); 2454 ParsedType Ty = Actions.getTypeName(*TemplateId->Name, 2455 TemplateId->TemplateNameLoc, 2456 getCurScope(), 2457 &SS, false, false, 2458 ParsedType(), 2459 /*IsCtorOrDtorName=*/true, 2460 /*NontrivialTypeSourceInfo=*/true); 2461 Result.setConstructorName(Ty, TemplateId->TemplateNameLoc, 2462 TemplateId->RAngleLoc); 2463 ConsumeToken(); 2464 return false; 2465 } 2466 2467 Result.setConstructorTemplateId(TemplateId); 2468 ConsumeToken(); 2469 return false; 2470 } 2471 2472 // We have already parsed a template-id; consume the annotation token as 2473 // our unqualified-id. 2474 Result.setTemplateId(TemplateId); 2475 TemplateKWLoc = TemplateId->TemplateKWLoc; 2476 ConsumeToken(); 2477 return false; 2478 } 2479 2480 // unqualified-id: 2481 // operator-function-id 2482 // conversion-function-id 2483 if (Tok.is(tok::kw_operator)) { 2484 if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result)) 2485 return true; 2486 2487 // If we have an operator-function-id or a literal-operator-id and the next 2488 // token is a '<', we may have a 2489 // 2490 // template-id: 2491 // operator-function-id < template-argument-list[opt] > 2492 if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId || 2493 Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) && 2494 (TemplateSpecified || Tok.is(tok::less))) 2495 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2496 nullptr, SourceLocation(), 2497 EnteringContext, ObjectType, 2498 Result, TemplateSpecified); 2499 2500 return false; 2501 } 2502 2503 if (getLangOpts().CPlusPlus && 2504 (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) { 2505 // C++ [expr.unary.op]p10: 2506 // There is an ambiguity in the unary-expression ~X(), where X is a 2507 // class-name. The ambiguity is resolved in favor of treating ~ as a 2508 // unary complement rather than treating ~X as referring to a destructor. 2509 2510 // Parse the '~'. 2511 SourceLocation TildeLoc = ConsumeToken(); 2512 2513 if (SS.isEmpty() && Tok.is(tok::kw_decltype)) { 2514 DeclSpec DS(AttrFactory); 2515 SourceLocation EndLoc = ParseDecltypeSpecifier(DS); 2516 if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) { 2517 Result.setDestructorName(TildeLoc, Type, EndLoc); 2518 return false; 2519 } 2520 return true; 2521 } 2522 2523 // Parse the class-name. 2524 if (Tok.isNot(tok::identifier)) { 2525 Diag(Tok, diag::err_destructor_tilde_identifier); 2526 return true; 2527 } 2528 2529 // If the user wrote ~T::T, correct it to T::~T. 2530 DeclaratorScopeObj DeclScopeObj(*this, SS); 2531 if (!TemplateSpecified && NextToken().is(tok::coloncolon)) { 2532 // Don't let ParseOptionalCXXScopeSpecifier() "correct" 2533 // `int A; struct { ~A::A(); };` to `int A; struct { ~A:A(); };`, 2534 // it will confuse this recovery logic. 2535 ColonProtectionRAIIObject ColonRAII(*this, false); 2536 2537 if (SS.isSet()) { 2538 AnnotateScopeToken(SS, /*NewAnnotation*/true); 2539 SS.clear(); 2540 } 2541 if (ParseOptionalCXXScopeSpecifier(SS, ObjectType, EnteringContext)) 2542 return true; 2543 if (SS.isNotEmpty()) 2544 ObjectType = ParsedType(); 2545 if (Tok.isNot(tok::identifier) || NextToken().is(tok::coloncolon) || 2546 !SS.isSet()) { 2547 Diag(TildeLoc, diag::err_destructor_tilde_scope); 2548 return true; 2549 } 2550 2551 // Recover as if the tilde had been written before the identifier. 2552 Diag(TildeLoc, diag::err_destructor_tilde_scope) 2553 << FixItHint::CreateRemoval(TildeLoc) 2554 << FixItHint::CreateInsertion(Tok.getLocation(), "~"); 2555 2556 // Temporarily enter the scope for the rest of this function. 2557 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) 2558 DeclScopeObj.EnterDeclaratorScope(); 2559 } 2560 2561 // Parse the class-name (or template-name in a simple-template-id). 2562 IdentifierInfo *ClassName = Tok.getIdentifierInfo(); 2563 SourceLocation ClassNameLoc = ConsumeToken(); 2564 2565 if (TemplateSpecified || Tok.is(tok::less)) { 2566 Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc); 2567 return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, 2568 ClassName, ClassNameLoc, 2569 EnteringContext, ObjectType, 2570 Result, TemplateSpecified); 2571 } 2572 2573 // Note that this is a destructor name. 2574 ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName, 2575 ClassNameLoc, getCurScope(), 2576 SS, ObjectType, 2577 EnteringContext); 2578 if (!Ty) 2579 return true; 2580 2581 Result.setDestructorName(TildeLoc, Ty, ClassNameLoc); 2582 return false; 2583 } 2584 2585 Diag(Tok, diag::err_expected_unqualified_id) 2586 << getLangOpts().CPlusPlus; 2587 return true; 2588 } 2589 2590 /// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate 2591 /// memory in a typesafe manner and call constructors. 2592 /// 2593 /// This method is called to parse the new expression after the optional :: has 2594 /// been already parsed. If the :: was present, "UseGlobal" is true and "Start" 2595 /// is its location. Otherwise, "Start" is the location of the 'new' token. 2596 /// 2597 /// new-expression: 2598 /// '::'[opt] 'new' new-placement[opt] new-type-id 2599 /// new-initializer[opt] 2600 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2601 /// new-initializer[opt] 2602 /// 2603 /// new-placement: 2604 /// '(' expression-list ')' 2605 /// 2606 /// new-type-id: 2607 /// type-specifier-seq new-declarator[opt] 2608 /// [GNU] attributes type-specifier-seq new-declarator[opt] 2609 /// 2610 /// new-declarator: 2611 /// ptr-operator new-declarator[opt] 2612 /// direct-new-declarator 2613 /// 2614 /// new-initializer: 2615 /// '(' expression-list[opt] ')' 2616 /// [C++0x] braced-init-list 2617 /// 2618 ExprResult 2619 Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) { 2620 assert(Tok.is(tok::kw_new) && "expected 'new' token"); 2621 ConsumeToken(); // Consume 'new' 2622 2623 // A '(' now can be a new-placement or the '(' wrapping the type-id in the 2624 // second form of new-expression. It can't be a new-type-id. 2625 2626 ExprVector PlacementArgs; 2627 SourceLocation PlacementLParen, PlacementRParen; 2628 2629 SourceRange TypeIdParens; 2630 DeclSpec DS(AttrFactory); 2631 Declarator DeclaratorInfo(DS, Declarator::CXXNewContext); 2632 if (Tok.is(tok::l_paren)) { 2633 // If it turns out to be a placement, we change the type location. 2634 BalancedDelimiterTracker T(*this, tok::l_paren); 2635 T.consumeOpen(); 2636 PlacementLParen = T.getOpenLocation(); 2637 if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) { 2638 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2639 return ExprError(); 2640 } 2641 2642 T.consumeClose(); 2643 PlacementRParen = T.getCloseLocation(); 2644 if (PlacementRParen.isInvalid()) { 2645 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2646 return ExprError(); 2647 } 2648 2649 if (PlacementArgs.empty()) { 2650 // Reset the placement locations. There was no placement. 2651 TypeIdParens = T.getRange(); 2652 PlacementLParen = PlacementRParen = SourceLocation(); 2653 } else { 2654 // We still need the type. 2655 if (Tok.is(tok::l_paren)) { 2656 BalancedDelimiterTracker T(*this, tok::l_paren); 2657 T.consumeOpen(); 2658 MaybeParseGNUAttributes(DeclaratorInfo); 2659 ParseSpecifierQualifierList(DS); 2660 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2661 ParseDeclarator(DeclaratorInfo); 2662 T.consumeClose(); 2663 TypeIdParens = T.getRange(); 2664 } else { 2665 MaybeParseGNUAttributes(DeclaratorInfo); 2666 if (ParseCXXTypeSpecifierSeq(DS)) 2667 DeclaratorInfo.setInvalidType(true); 2668 else { 2669 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2670 ParseDeclaratorInternal(DeclaratorInfo, 2671 &Parser::ParseDirectNewDeclarator); 2672 } 2673 } 2674 } 2675 } else { 2676 // A new-type-id is a simplified type-id, where essentially the 2677 // direct-declarator is replaced by a direct-new-declarator. 2678 MaybeParseGNUAttributes(DeclaratorInfo); 2679 if (ParseCXXTypeSpecifierSeq(DS)) 2680 DeclaratorInfo.setInvalidType(true); 2681 else { 2682 DeclaratorInfo.SetSourceRange(DS.getSourceRange()); 2683 ParseDeclaratorInternal(DeclaratorInfo, 2684 &Parser::ParseDirectNewDeclarator); 2685 } 2686 } 2687 if (DeclaratorInfo.isInvalidType()) { 2688 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2689 return ExprError(); 2690 } 2691 2692 ExprResult Initializer; 2693 2694 if (Tok.is(tok::l_paren)) { 2695 SourceLocation ConstructorLParen, ConstructorRParen; 2696 ExprVector ConstructorArgs; 2697 BalancedDelimiterTracker T(*this, tok::l_paren); 2698 T.consumeOpen(); 2699 ConstructorLParen = T.getOpenLocation(); 2700 if (Tok.isNot(tok::r_paren)) { 2701 CommaLocsTy CommaLocs; 2702 if (ParseExpressionList(ConstructorArgs, CommaLocs, [&] { 2703 ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), 2704 DeclaratorInfo).get(); 2705 Actions.CodeCompleteConstructor(getCurScope(), 2706 TypeRep.get()->getCanonicalTypeInternal(), 2707 DeclaratorInfo.getLocEnd(), 2708 ConstructorArgs); 2709 })) { 2710 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2711 return ExprError(); 2712 } 2713 } 2714 T.consumeClose(); 2715 ConstructorRParen = T.getCloseLocation(); 2716 if (ConstructorRParen.isInvalid()) { 2717 SkipUntil(tok::semi, StopAtSemi | StopBeforeMatch); 2718 return ExprError(); 2719 } 2720 Initializer = Actions.ActOnParenListExpr(ConstructorLParen, 2721 ConstructorRParen, 2722 ConstructorArgs); 2723 } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus11) { 2724 Diag(Tok.getLocation(), 2725 diag::warn_cxx98_compat_generalized_initializer_lists); 2726 Initializer = ParseBraceInitializer(); 2727 } 2728 if (Initializer.isInvalid()) 2729 return Initializer; 2730 2731 return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen, 2732 PlacementArgs, PlacementRParen, 2733 TypeIdParens, DeclaratorInfo, Initializer.get()); 2734 } 2735 2736 /// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be 2737 /// passed to ParseDeclaratorInternal. 2738 /// 2739 /// direct-new-declarator: 2740 /// '[' expression ']' 2741 /// direct-new-declarator '[' constant-expression ']' 2742 /// 2743 void Parser::ParseDirectNewDeclarator(Declarator &D) { 2744 // Parse the array dimensions. 2745 bool first = true; 2746 while (Tok.is(tok::l_square)) { 2747 // An array-size expression can't start with a lambda. 2748 if (CheckProhibitedCXX11Attribute()) 2749 continue; 2750 2751 BalancedDelimiterTracker T(*this, tok::l_square); 2752 T.consumeOpen(); 2753 2754 ExprResult Size(first ? ParseExpression() 2755 : ParseConstantExpression()); 2756 if (Size.isInvalid()) { 2757 // Recover 2758 SkipUntil(tok::r_square, StopAtSemi); 2759 return; 2760 } 2761 first = false; 2762 2763 T.consumeClose(); 2764 2765 // Attributes here appertain to the array type. C++11 [expr.new]p5. 2766 ParsedAttributes Attrs(AttrFactory); 2767 MaybeParseCXX11Attributes(Attrs); 2768 2769 D.AddTypeInfo(DeclaratorChunk::getArray(0, 2770 /*static=*/false, /*star=*/false, 2771 Size.get(), 2772 T.getOpenLocation(), 2773 T.getCloseLocation()), 2774 Attrs, T.getCloseLocation()); 2775 2776 if (T.getCloseLocation().isInvalid()) 2777 return; 2778 } 2779 } 2780 2781 /// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id. 2782 /// This ambiguity appears in the syntax of the C++ new operator. 2783 /// 2784 /// new-expression: 2785 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 2786 /// new-initializer[opt] 2787 /// 2788 /// new-placement: 2789 /// '(' expression-list ')' 2790 /// 2791 bool Parser::ParseExpressionListOrTypeId( 2792 SmallVectorImpl<Expr*> &PlacementArgs, 2793 Declarator &D) { 2794 // The '(' was already consumed. 2795 if (isTypeIdInParens()) { 2796 ParseSpecifierQualifierList(D.getMutableDeclSpec()); 2797 D.SetSourceRange(D.getDeclSpec().getSourceRange()); 2798 ParseDeclarator(D); 2799 return D.isInvalidType(); 2800 } 2801 2802 // It's not a type, it has to be an expression list. 2803 // Discard the comma locations - ActOnCXXNew has enough parameters. 2804 CommaLocsTy CommaLocs; 2805 return ParseExpressionList(PlacementArgs, CommaLocs); 2806 } 2807 2808 /// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used 2809 /// to free memory allocated by new. 2810 /// 2811 /// This method is called to parse the 'delete' expression after the optional 2812 /// '::' has been already parsed. If the '::' was present, "UseGlobal" is true 2813 /// and "Start" is its location. Otherwise, "Start" is the location of the 2814 /// 'delete' token. 2815 /// 2816 /// delete-expression: 2817 /// '::'[opt] 'delete' cast-expression 2818 /// '::'[opt] 'delete' '[' ']' cast-expression 2819 ExprResult 2820 Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) { 2821 assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword"); 2822 ConsumeToken(); // Consume 'delete' 2823 2824 // Array delete? 2825 bool ArrayDelete = false; 2826 if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) { 2827 // C++11 [expr.delete]p1: 2828 // Whenever the delete keyword is followed by empty square brackets, it 2829 // shall be interpreted as [array delete]. 2830 // [Footnote: A lambda expression with a lambda-introducer that consists 2831 // of empty square brackets can follow the delete keyword if 2832 // the lambda expression is enclosed in parentheses.] 2833 // FIXME: Produce a better diagnostic if the '[]' is unambiguously a 2834 // lambda-introducer. 2835 ArrayDelete = true; 2836 BalancedDelimiterTracker T(*this, tok::l_square); 2837 2838 T.consumeOpen(); 2839 T.consumeClose(); 2840 if (T.getCloseLocation().isInvalid()) 2841 return ExprError(); 2842 } 2843 2844 ExprResult Operand(ParseCastExpression(false)); 2845 if (Operand.isInvalid()) 2846 return Operand; 2847 2848 return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.get()); 2849 } 2850 2851 static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) { 2852 switch (kind) { 2853 default: llvm_unreachable("Not a known type trait"); 2854 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 2855 case tok::kw_ ## Spelling: return UTT_ ## Name; 2856 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 2857 case tok::kw_ ## Spelling: return BTT_ ## Name; 2858 #include "clang/Basic/TokenKinds.def" 2859 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 2860 case tok::kw_ ## Spelling: return TT_ ## Name; 2861 #include "clang/Basic/TokenKinds.def" 2862 } 2863 } 2864 2865 static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) { 2866 switch(kind) { 2867 default: llvm_unreachable("Not a known binary type trait"); 2868 case tok::kw___array_rank: return ATT_ArrayRank; 2869 case tok::kw___array_extent: return ATT_ArrayExtent; 2870 } 2871 } 2872 2873 static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) { 2874 switch(kind) { 2875 default: llvm_unreachable("Not a known unary expression trait."); 2876 case tok::kw___is_lvalue_expr: return ET_IsLValueExpr; 2877 case tok::kw___is_rvalue_expr: return ET_IsRValueExpr; 2878 } 2879 } 2880 2881 static unsigned TypeTraitArity(tok::TokenKind kind) { 2882 switch (kind) { 2883 default: llvm_unreachable("Not a known type trait"); 2884 #define TYPE_TRAIT(N,Spelling,K) case tok::kw_##Spelling: return N; 2885 #include "clang/Basic/TokenKinds.def" 2886 } 2887 } 2888 2889 /// \brief Parse the built-in type-trait pseudo-functions that allow 2890 /// implementation of the TR1/C++11 type traits templates. 2891 /// 2892 /// primary-expression: 2893 /// unary-type-trait '(' type-id ')' 2894 /// binary-type-trait '(' type-id ',' type-id ')' 2895 /// type-trait '(' type-id-seq ')' 2896 /// 2897 /// type-id-seq: 2898 /// type-id ...[opt] type-id-seq[opt] 2899 /// 2900 ExprResult Parser::ParseTypeTrait() { 2901 tok::TokenKind Kind = Tok.getKind(); 2902 unsigned Arity = TypeTraitArity(Kind); 2903 2904 SourceLocation Loc = ConsumeToken(); 2905 2906 BalancedDelimiterTracker Parens(*this, tok::l_paren); 2907 if (Parens.expectAndConsume()) 2908 return ExprError(); 2909 2910 SmallVector<ParsedType, 2> Args; 2911 do { 2912 // Parse the next type. 2913 TypeResult Ty = ParseTypeName(); 2914 if (Ty.isInvalid()) { 2915 Parens.skipToEnd(); 2916 return ExprError(); 2917 } 2918 2919 // Parse the ellipsis, if present. 2920 if (Tok.is(tok::ellipsis)) { 2921 Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken()); 2922 if (Ty.isInvalid()) { 2923 Parens.skipToEnd(); 2924 return ExprError(); 2925 } 2926 } 2927 2928 // Add this type to the list of arguments. 2929 Args.push_back(Ty.get()); 2930 } while (TryConsumeToken(tok::comma)); 2931 2932 if (Parens.consumeClose()) 2933 return ExprError(); 2934 2935 SourceLocation EndLoc = Parens.getCloseLocation(); 2936 2937 if (Arity && Args.size() != Arity) { 2938 Diag(EndLoc, diag::err_type_trait_arity) 2939 << Arity << 0 << (Arity > 1) << (int)Args.size() << SourceRange(Loc); 2940 return ExprError(); 2941 } 2942 2943 if (!Arity && Args.empty()) { 2944 Diag(EndLoc, diag::err_type_trait_arity) 2945 << 1 << 1 << 1 << (int)Args.size() << SourceRange(Loc); 2946 return ExprError(); 2947 } 2948 2949 return Actions.ActOnTypeTrait(TypeTraitFromTokKind(Kind), Loc, Args, EndLoc); 2950 } 2951 2952 /// ParseArrayTypeTrait - Parse the built-in array type-trait 2953 /// pseudo-functions. 2954 /// 2955 /// primary-expression: 2956 /// [Embarcadero] '__array_rank' '(' type-id ')' 2957 /// [Embarcadero] '__array_extent' '(' type-id ',' expression ')' 2958 /// 2959 ExprResult Parser::ParseArrayTypeTrait() { 2960 ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind()); 2961 SourceLocation Loc = ConsumeToken(); 2962 2963 BalancedDelimiterTracker T(*this, tok::l_paren); 2964 if (T.expectAndConsume()) 2965 return ExprError(); 2966 2967 TypeResult Ty = ParseTypeName(); 2968 if (Ty.isInvalid()) { 2969 SkipUntil(tok::comma, StopAtSemi); 2970 SkipUntil(tok::r_paren, StopAtSemi); 2971 return ExprError(); 2972 } 2973 2974 switch (ATT) { 2975 case ATT_ArrayRank: { 2976 T.consumeClose(); 2977 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), nullptr, 2978 T.getCloseLocation()); 2979 } 2980 case ATT_ArrayExtent: { 2981 if (ExpectAndConsume(tok::comma)) { 2982 SkipUntil(tok::r_paren, StopAtSemi); 2983 return ExprError(); 2984 } 2985 2986 ExprResult DimExpr = ParseExpression(); 2987 T.consumeClose(); 2988 2989 return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(), 2990 T.getCloseLocation()); 2991 } 2992 } 2993 llvm_unreachable("Invalid ArrayTypeTrait!"); 2994 } 2995 2996 /// ParseExpressionTrait - Parse built-in expression-trait 2997 /// pseudo-functions like __is_lvalue_expr( xxx ). 2998 /// 2999 /// primary-expression: 3000 /// [Embarcadero] expression-trait '(' expression ')' 3001 /// 3002 ExprResult Parser::ParseExpressionTrait() { 3003 ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind()); 3004 SourceLocation Loc = ConsumeToken(); 3005 3006 BalancedDelimiterTracker T(*this, tok::l_paren); 3007 if (T.expectAndConsume()) 3008 return ExprError(); 3009 3010 ExprResult Expr = ParseExpression(); 3011 3012 T.consumeClose(); 3013 3014 return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(), 3015 T.getCloseLocation()); 3016 } 3017 3018 3019 /// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a 3020 /// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate 3021 /// based on the context past the parens. 3022 ExprResult 3023 Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType, 3024 ParsedType &CastTy, 3025 BalancedDelimiterTracker &Tracker, 3026 ColonProtectionRAIIObject &ColonProt) { 3027 assert(getLangOpts().CPlusPlus && "Should only be called for C++!"); 3028 assert(ExprType == CastExpr && "Compound literals are not ambiguous!"); 3029 assert(isTypeIdInParens() && "Not a type-id!"); 3030 3031 ExprResult Result(true); 3032 CastTy = ParsedType(); 3033 3034 // We need to disambiguate a very ugly part of the C++ syntax: 3035 // 3036 // (T())x; - type-id 3037 // (T())*x; - type-id 3038 // (T())/x; - expression 3039 // (T()); - expression 3040 // 3041 // The bad news is that we cannot use the specialized tentative parser, since 3042 // it can only verify that the thing inside the parens can be parsed as 3043 // type-id, it is not useful for determining the context past the parens. 3044 // 3045 // The good news is that the parser can disambiguate this part without 3046 // making any unnecessary Action calls. 3047 // 3048 // It uses a scheme similar to parsing inline methods. The parenthesized 3049 // tokens are cached, the context that follows is determined (possibly by 3050 // parsing a cast-expression), and then we re-introduce the cached tokens 3051 // into the token stream and parse them appropriately. 3052 3053 ParenParseOption ParseAs; 3054 CachedTokens Toks; 3055 3056 // Store the tokens of the parentheses. We will parse them after we determine 3057 // the context that follows them. 3058 if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) { 3059 // We didn't find the ')' we expected. 3060 Tracker.consumeClose(); 3061 return ExprError(); 3062 } 3063 3064 if (Tok.is(tok::l_brace)) { 3065 ParseAs = CompoundLiteral; 3066 } else { 3067 bool NotCastExpr; 3068 if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) { 3069 NotCastExpr = true; 3070 } else { 3071 // Try parsing the cast-expression that may follow. 3072 // If it is not a cast-expression, NotCastExpr will be true and no token 3073 // will be consumed. 3074 ColonProt.restore(); 3075 Result = ParseCastExpression(false/*isUnaryExpression*/, 3076 false/*isAddressofOperand*/, 3077 NotCastExpr, 3078 // type-id has priority. 3079 IsTypeCast); 3080 } 3081 3082 // If we parsed a cast-expression, it's really a type-id, otherwise it's 3083 // an expression. 3084 ParseAs = NotCastExpr ? SimpleExpr : CastExpr; 3085 } 3086 3087 // The current token should go after the cached tokens. 3088 Toks.push_back(Tok); 3089 // Re-enter the stored parenthesized tokens into the token stream, so we may 3090 // parse them now. 3091 PP.EnterTokenStream(Toks.data(), Toks.size(), 3092 true/*DisableMacroExpansion*/, false/*OwnsTokens*/); 3093 // Drop the current token and bring the first cached one. It's the same token 3094 // as when we entered this function. 3095 ConsumeAnyToken(); 3096 3097 if (ParseAs >= CompoundLiteral) { 3098 // Parse the type declarator. 3099 DeclSpec DS(AttrFactory); 3100 Declarator DeclaratorInfo(DS, Declarator::TypeNameContext); 3101 { 3102 ColonProtectionRAIIObject InnerColonProtection(*this); 3103 ParseSpecifierQualifierList(DS); 3104 ParseDeclarator(DeclaratorInfo); 3105 } 3106 3107 // Match the ')'. 3108 Tracker.consumeClose(); 3109 ColonProt.restore(); 3110 3111 if (ParseAs == CompoundLiteral) { 3112 ExprType = CompoundLiteral; 3113 if (DeclaratorInfo.isInvalidType()) 3114 return ExprError(); 3115 3116 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3117 return ParseCompoundLiteralExpression(Ty.get(), 3118 Tracker.getOpenLocation(), 3119 Tracker.getCloseLocation()); 3120 } 3121 3122 // We parsed '(' type-id ')' and the thing after it wasn't a '{'. 3123 assert(ParseAs == CastExpr); 3124 3125 if (DeclaratorInfo.isInvalidType()) 3126 return ExprError(); 3127 3128 // Result is what ParseCastExpression returned earlier. 3129 if (!Result.isInvalid()) 3130 Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(), 3131 DeclaratorInfo, CastTy, 3132 Tracker.getCloseLocation(), Result.get()); 3133 return Result; 3134 } 3135 3136 // Not a compound literal, and not followed by a cast-expression. 3137 assert(ParseAs == SimpleExpr); 3138 3139 ExprType = SimpleExpr; 3140 Result = ParseExpression(); 3141 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3142 Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(), 3143 Tok.getLocation(), Result.get()); 3144 3145 // Match the ')'. 3146 if (Result.isInvalid()) { 3147 SkipUntil(tok::r_paren, StopAtSemi); 3148 return ExprError(); 3149 } 3150 3151 Tracker.consumeClose(); 3152 return Result; 3153 } 3154