1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_COMPILER_OPERATOR_H_ 6 #define V8_COMPILER_OPERATOR_H_ 7 8 #include <ostream> // NOLINT(readability/streams) 9 10 #include "src/base/flags.h" 11 #include "src/base/functional.h" 12 #include "src/handles.h" 13 #include "src/zone.h" 14 15 namespace v8 { 16 namespace internal { 17 namespace compiler { 18 19 // An operator represents description of the "computation" of a node in the 20 // compiler IR. A computation takes values (i.e. data) as input and produces 21 // zero or more values as output. The side-effects of a computation must be 22 // captured by additional control and data dependencies which are part of the 23 // IR graph. 24 // Operators are immutable and describe the statically-known parts of a 25 // computation. Thus they can be safely shared by many different nodes in the 26 // IR graph, or even globally between graphs. Operators can have "static 27 // parameters" which are compile-time constant parameters to the operator, such 28 // as the name for a named field access, the ID of a runtime function, etc. 29 // Static parameters are private to the operator and only semantically 30 // meaningful to the operator itself. 31 class Operator : public ZoneObject { 32 public: 33 typedef uint16_t Opcode; 34 35 // Properties inform the operator-independent optimizer about legal 36 // transformations for nodes that have this operator. 37 enum Property { 38 kNoProperties = 0, 39 kReducible = 1 << 0, // Participates in strength reduction. 40 kCommutative = 1 << 1, // OP(a, b) == OP(b, a) for all inputs. 41 kAssociative = 1 << 2, // OP(a, OP(b,c)) == OP(OP(a,b), c) for all inputs. 42 kIdempotent = 1 << 3, // OP(a); OP(a) == OP(a). 43 kNoRead = 1 << 4, // Has no scheduling dependency on Effects 44 kNoWrite = 1 << 5, // Does not modify any Effects and thereby 45 // create new scheduling dependencies. 46 kNoThrow = 1 << 6, // Can never generate an exception. 47 kFoldable = kNoRead | kNoWrite, 48 kKontrol = kFoldable | kNoThrow, 49 kEliminatable = kNoWrite | kNoThrow, 50 kPure = kNoRead | kNoWrite | kNoThrow | kIdempotent 51 }; 52 typedef base::Flags<Property, uint8_t> Properties; 53 54 // Constructor. 55 Operator(Opcode opcode, Properties properties, const char* mnemonic, 56 size_t value_in, size_t effect_in, size_t control_in, 57 size_t value_out, size_t effect_out, size_t control_out); 58 59 virtual ~Operator() {} 60 61 // A small integer unique to all instances of a particular kind of operator, 62 // useful for quick matching for specific kinds of operators. For fast access 63 // the opcode is stored directly in the operator object. 64 Opcode opcode() const { return opcode_; } 65 66 // Returns a constant string representing the mnemonic of the operator, 67 // without the static parameters. Useful for debugging. 68 const char* mnemonic() const { return mnemonic_; } 69 70 // Check if this operator equals another operator. Equivalent operators can 71 // be merged, and nodes with equivalent operators and equivalent inputs 72 // can be merged. 73 virtual bool Equals(const Operator* that) const { 74 return this->opcode() == that->opcode(); 75 } 76 77 // Compute a hashcode to speed up equivalence-set checking. 78 // Equal operators should always have equal hashcodes, and unequal operators 79 // should have unequal hashcodes with high probability. 80 virtual size_t HashCode() const { return base::hash<Opcode>()(opcode()); } 81 82 // Check whether this operator has the given property. 83 bool HasProperty(Property property) const { 84 return (properties() & property) == property; 85 } 86 87 Properties properties() const { return properties_; } 88 89 // TODO(bmeurer): Use bit fields below? 90 static const size_t kMaxControlOutputCount = (1u << 16) - 1; 91 92 // TODO(titzer): convert return values here to size_t. 93 int ValueInputCount() const { return value_in_; } 94 int EffectInputCount() const { return effect_in_; } 95 int ControlInputCount() const { return control_in_; } 96 97 int ValueOutputCount() const { return value_out_; } 98 int EffectOutputCount() const { return effect_out_; } 99 int ControlOutputCount() const { return control_out_; } 100 101 static size_t ZeroIfEliminatable(Properties properties) { 102 return (properties & kEliminatable) == kEliminatable ? 0 : 1; 103 } 104 105 static size_t ZeroIfNoThrow(Properties properties) { 106 return (properties & kNoThrow) == kNoThrow ? 0 : 2; 107 } 108 109 static size_t ZeroIfPure(Properties properties) { 110 return (properties & kPure) == kPure ? 0 : 1; 111 } 112 113 // TODO(titzer): API for input and output types, for typechecking graph. 114 protected: 115 // Print the full operator into the given stream, including any 116 // static parameters. Useful for debugging and visualizing the IR. 117 virtual void PrintTo(std::ostream& os) const; 118 friend std::ostream& operator<<(std::ostream& os, const Operator& op); 119 120 private: 121 Opcode opcode_; 122 Properties properties_; 123 const char* mnemonic_; 124 uint32_t value_in_; 125 uint16_t effect_in_; 126 uint16_t control_in_; 127 uint16_t value_out_; 128 uint8_t effect_out_; 129 uint16_t control_out_; 130 131 DISALLOW_COPY_AND_ASSIGN(Operator); 132 }; 133 134 DEFINE_OPERATORS_FOR_FLAGS(Operator::Properties) 135 136 std::ostream& operator<<(std::ostream& os, const Operator& op); 137 138 139 // Default equality function for below Operator1<*> class. 140 template <typename T> 141 struct OpEqualTo : public std::equal_to<T> {}; 142 143 144 // Default hashing function for below Operator1<*> class. 145 template <typename T> 146 struct OpHash : public base::hash<T> {}; 147 148 149 // A templatized implementation of Operator that has one static parameter of 150 // type {T} with the proper default equality and hashing functions. 151 template <typename T, typename Pred = OpEqualTo<T>, typename Hash = OpHash<T>> 152 class Operator1 : public Operator { 153 public: 154 Operator1(Opcode opcode, Properties properties, const char* mnemonic, 155 size_t value_in, size_t effect_in, size_t control_in, 156 size_t value_out, size_t effect_out, size_t control_out, 157 T parameter, Pred const& pred = Pred(), Hash const& hash = Hash()) 158 : Operator(opcode, properties, mnemonic, value_in, effect_in, control_in, 159 value_out, effect_out, control_out), 160 parameter_(parameter), 161 pred_(pred), 162 hash_(hash) {} 163 164 T const& parameter() const { return parameter_; } 165 166 bool Equals(const Operator* other) const final { 167 if (opcode() != other->opcode()) return false; 168 const Operator1<T, Pred, Hash>* that = 169 reinterpret_cast<const Operator1<T, Pred, Hash>*>(other); 170 return this->pred_(this->parameter(), that->parameter()); 171 } 172 size_t HashCode() const final { 173 return base::hash_combine(this->opcode(), this->hash_(this->parameter())); 174 } 175 virtual void PrintParameter(std::ostream& os) const { 176 os << "[" << this->parameter() << "]"; 177 } 178 179 protected: 180 void PrintTo(std::ostream& os) const final { 181 os << mnemonic(); 182 PrintParameter(os); 183 } 184 185 private: 186 T const parameter_; 187 Pred const pred_; 188 Hash const hash_; 189 }; 190 191 192 // Helper to extract parameters from Operator1<*> operator. 193 template <typename T> 194 inline T const& OpParameter(const Operator* op) { 195 return reinterpret_cast<const Operator1<T, OpEqualTo<T>, OpHash<T>>*>(op) 196 ->parameter(); 197 } 198 199 200 // NOTE: We have to be careful to use the right equal/hash functions below, for 201 // float/double we always use the ones operating on the bit level, for Handle<> 202 // we always use the ones operating on the location level. 203 template <> 204 struct OpEqualTo<float> : public base::bit_equal_to<float> {}; 205 template <> 206 struct OpHash<float> : public base::bit_hash<float> {}; 207 208 template <> 209 struct OpEqualTo<double> : public base::bit_equal_to<double> {}; 210 template <> 211 struct OpHash<double> : public base::bit_hash<double> {}; 212 213 template <> 214 struct OpEqualTo<Handle<HeapObject>> : public Handle<HeapObject>::equal_to {}; 215 template <> 216 struct OpHash<Handle<HeapObject>> : public Handle<HeapObject>::hash {}; 217 218 template <> 219 struct OpEqualTo<Handle<String>> : public Handle<String>::equal_to {}; 220 template <> 221 struct OpHash<Handle<String>> : public Handle<String>::hash {}; 222 223 template <> 224 struct OpEqualTo<Handle<ScopeInfo>> : public Handle<ScopeInfo>::equal_to {}; 225 template <> 226 struct OpHash<Handle<ScopeInfo>> : public Handle<ScopeInfo>::hash {}; 227 228 } // namespace compiler 229 } // namespace internal 230 } // namespace v8 231 232 #endif // V8_COMPILER_OPERATOR_H_ 233