1 //===- DAGISelMatcherGen.cpp - Matcher generator --------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "DAGISelMatcher.h" 11 #include "CodeGenDAGPatterns.h" 12 #include "CodeGenRegisters.h" 13 #include "llvm/ADT/DenseMap.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/StringMap.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/Record.h" 18 #include <utility> 19 using namespace llvm; 20 21 22 /// getRegisterValueType - Look up and return the ValueType of the specified 23 /// register. If the register is a member of multiple register classes which 24 /// have different associated types, return MVT::Other. 25 static MVT::SimpleValueType getRegisterValueType(Record *R, 26 const CodeGenTarget &T) { 27 bool FoundRC = false; 28 MVT::SimpleValueType VT = MVT::Other; 29 const CodeGenRegister *Reg = T.getRegBank().getReg(R); 30 31 for (const auto &RC : T.getRegBank().getRegClasses()) { 32 if (!RC.contains(Reg)) 33 continue; 34 35 if (!FoundRC) { 36 FoundRC = true; 37 VT = RC.getValueTypeNum(0); 38 continue; 39 } 40 41 // If this occurs in multiple register classes, they all have to agree. 42 assert(VT == RC.getValueTypeNum(0)); 43 } 44 return VT; 45 } 46 47 48 namespace { 49 class MatcherGen { 50 const PatternToMatch &Pattern; 51 const CodeGenDAGPatterns &CGP; 52 53 /// PatWithNoTypes - This is a clone of Pattern.getSrcPattern() that starts 54 /// out with all of the types removed. This allows us to insert type checks 55 /// as we scan the tree. 56 TreePatternNode *PatWithNoTypes; 57 58 /// VariableMap - A map from variable names ('$dst') to the recorded operand 59 /// number that they were captured as. These are biased by 1 to make 60 /// insertion easier. 61 StringMap<unsigned> VariableMap; 62 63 /// This maintains the recorded operand number that OPC_CheckComplexPattern 64 /// drops each sub-operand into. We don't want to insert these into 65 /// VariableMap because that leads to identity checking if they are 66 /// encountered multiple times. Biased by 1 like VariableMap for 67 /// consistency. 68 StringMap<unsigned> NamedComplexPatternOperands; 69 70 /// NextRecordedOperandNo - As we emit opcodes to record matched values in 71 /// the RecordedNodes array, this keeps track of which slot will be next to 72 /// record into. 73 unsigned NextRecordedOperandNo; 74 75 /// MatchedChainNodes - This maintains the position in the recorded nodes 76 /// array of all of the recorded input nodes that have chains. 77 SmallVector<unsigned, 2> MatchedChainNodes; 78 79 /// MatchedGlueResultNodes - This maintains the position in the recorded 80 /// nodes array of all of the recorded input nodes that have glue results. 81 SmallVector<unsigned, 2> MatchedGlueResultNodes; 82 83 /// MatchedComplexPatterns - This maintains a list of all of the 84 /// ComplexPatterns that we need to check. The second element of each pair 85 /// is the recorded operand number of the input node. 86 SmallVector<std::pair<const TreePatternNode*, 87 unsigned>, 2> MatchedComplexPatterns; 88 89 /// PhysRegInputs - List list has an entry for each explicitly specified 90 /// physreg input to the pattern. The first elt is the Register node, the 91 /// second is the recorded slot number the input pattern match saved it in. 92 SmallVector<std::pair<Record*, unsigned>, 2> PhysRegInputs; 93 94 /// Matcher - This is the top level of the generated matcher, the result. 95 Matcher *TheMatcher; 96 97 /// CurPredicate - As we emit matcher nodes, this points to the latest check 98 /// which should have future checks stuck into its Next position. 99 Matcher *CurPredicate; 100 public: 101 MatcherGen(const PatternToMatch &pattern, const CodeGenDAGPatterns &cgp); 102 103 ~MatcherGen() { 104 delete PatWithNoTypes; 105 } 106 107 bool EmitMatcherCode(unsigned Variant); 108 void EmitResultCode(); 109 110 Matcher *GetMatcher() const { return TheMatcher; } 111 private: 112 void AddMatcher(Matcher *NewNode); 113 void InferPossibleTypes(); 114 115 // Matcher Generation. 116 void EmitMatchCode(const TreePatternNode *N, TreePatternNode *NodeNoTypes); 117 void EmitLeafMatchCode(const TreePatternNode *N); 118 void EmitOperatorMatchCode(const TreePatternNode *N, 119 TreePatternNode *NodeNoTypes); 120 121 /// If this is the first time a node with unique identifier Name has been 122 /// seen, record it. Otherwise, emit a check to make sure this is the same 123 /// node. Returns true if this is the first encounter. 124 bool recordUniqueNode(std::string Name); 125 126 // Result Code Generation. 127 unsigned getNamedArgumentSlot(StringRef Name) { 128 unsigned VarMapEntry = VariableMap[Name]; 129 assert(VarMapEntry != 0 && 130 "Variable referenced but not defined and not caught earlier!"); 131 return VarMapEntry-1; 132 } 133 134 /// GetInstPatternNode - Get the pattern for an instruction. 135 const TreePatternNode *GetInstPatternNode(const DAGInstruction &Ins, 136 const TreePatternNode *N); 137 138 void EmitResultOperand(const TreePatternNode *N, 139 SmallVectorImpl<unsigned> &ResultOps); 140 void EmitResultOfNamedOperand(const TreePatternNode *N, 141 SmallVectorImpl<unsigned> &ResultOps); 142 void EmitResultLeafAsOperand(const TreePatternNode *N, 143 SmallVectorImpl<unsigned> &ResultOps); 144 void EmitResultInstructionAsOperand(const TreePatternNode *N, 145 SmallVectorImpl<unsigned> &ResultOps); 146 void EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 147 SmallVectorImpl<unsigned> &ResultOps); 148 }; 149 150 } // end anon namespace. 151 152 MatcherGen::MatcherGen(const PatternToMatch &pattern, 153 const CodeGenDAGPatterns &cgp) 154 : Pattern(pattern), CGP(cgp), NextRecordedOperandNo(0), 155 TheMatcher(nullptr), CurPredicate(nullptr) { 156 // We need to produce the matcher tree for the patterns source pattern. To do 157 // this we need to match the structure as well as the types. To do the type 158 // matching, we want to figure out the fewest number of type checks we need to 159 // emit. For example, if there is only one integer type supported by a 160 // target, there should be no type comparisons at all for integer patterns! 161 // 162 // To figure out the fewest number of type checks needed, clone the pattern, 163 // remove the types, then perform type inference on the pattern as a whole. 164 // If there are unresolved types, emit an explicit check for those types, 165 // apply the type to the tree, then rerun type inference. Iterate until all 166 // types are resolved. 167 // 168 PatWithNoTypes = Pattern.getSrcPattern()->clone(); 169 PatWithNoTypes->RemoveAllTypes(); 170 171 // If there are types that are manifestly known, infer them. 172 InferPossibleTypes(); 173 } 174 175 /// InferPossibleTypes - As we emit the pattern, we end up generating type 176 /// checks and applying them to the 'PatWithNoTypes' tree. As we do this, we 177 /// want to propagate implied types as far throughout the tree as possible so 178 /// that we avoid doing redundant type checks. This does the type propagation. 179 void MatcherGen::InferPossibleTypes() { 180 // TP - Get *SOME* tree pattern, we don't care which. It is only used for 181 // diagnostics, which we know are impossible at this point. 182 TreePattern &TP = *CGP.pf_begin()->second; 183 184 bool MadeChange = true; 185 while (MadeChange) 186 MadeChange = PatWithNoTypes->ApplyTypeConstraints(TP, 187 true/*Ignore reg constraints*/); 188 } 189 190 191 /// AddMatcher - Add a matcher node to the current graph we're building. 192 void MatcherGen::AddMatcher(Matcher *NewNode) { 193 if (CurPredicate) 194 CurPredicate->setNext(NewNode); 195 else 196 TheMatcher = NewNode; 197 CurPredicate = NewNode; 198 } 199 200 201 //===----------------------------------------------------------------------===// 202 // Pattern Match Generation 203 //===----------------------------------------------------------------------===// 204 205 /// EmitLeafMatchCode - Generate matching code for leaf nodes. 206 void MatcherGen::EmitLeafMatchCode(const TreePatternNode *N) { 207 assert(N->isLeaf() && "Not a leaf?"); 208 209 // Direct match against an integer constant. 210 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 211 // If this is the root of the dag we're matching, we emit a redundant opcode 212 // check to ensure that this gets folded into the normal top-level 213 // OpcodeSwitch. 214 if (N == Pattern.getSrcPattern()) { 215 const SDNodeInfo &NI = CGP.getSDNodeInfo(CGP.getSDNodeNamed("imm")); 216 AddMatcher(new CheckOpcodeMatcher(NI)); 217 } 218 219 return AddMatcher(new CheckIntegerMatcher(II->getValue())); 220 } 221 222 // An UnsetInit represents a named node without any constraints. 223 if (isa<UnsetInit>(N->getLeafValue())) { 224 assert(N->hasName() && "Unnamed ? leaf"); 225 return; 226 } 227 228 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 229 if (!DI) { 230 errs() << "Unknown leaf kind: " << *N << "\n"; 231 abort(); 232 } 233 234 Record *LeafRec = DI->getDef(); 235 236 // A ValueType leaf node can represent a register when named, or itself when 237 // unnamed. 238 if (LeafRec->isSubClassOf("ValueType")) { 239 // A named ValueType leaf always matches: (add i32:$a, i32:$b). 240 if (N->hasName()) 241 return; 242 // An unnamed ValueType as in (sext_inreg GPR:$foo, i8). 243 return AddMatcher(new CheckValueTypeMatcher(LeafRec->getName())); 244 } 245 246 if (// Handle register references. Nothing to do here, they always match. 247 LeafRec->isSubClassOf("RegisterClass") || 248 LeafRec->isSubClassOf("RegisterOperand") || 249 LeafRec->isSubClassOf("PointerLikeRegClass") || 250 LeafRec->isSubClassOf("SubRegIndex") || 251 // Place holder for SRCVALUE nodes. Nothing to do here. 252 LeafRec->getName() == "srcvalue") 253 return; 254 255 // If we have a physreg reference like (mul gpr:$src, EAX) then we need to 256 // record the register 257 if (LeafRec->isSubClassOf("Register")) { 258 AddMatcher(new RecordMatcher("physreg input "+LeafRec->getName(), 259 NextRecordedOperandNo)); 260 PhysRegInputs.push_back(std::make_pair(LeafRec, NextRecordedOperandNo++)); 261 return; 262 } 263 264 if (LeafRec->isSubClassOf("CondCode")) 265 return AddMatcher(new CheckCondCodeMatcher(LeafRec->getName())); 266 267 if (LeafRec->isSubClassOf("ComplexPattern")) { 268 // We can't model ComplexPattern uses that don't have their name taken yet. 269 // The OPC_CheckComplexPattern operation implicitly records the results. 270 if (N->getName().empty()) { 271 std::string S; 272 raw_string_ostream OS(S); 273 OS << "We expect complex pattern uses to have names: " << *N; 274 PrintFatalError(OS.str()); 275 } 276 277 // Remember this ComplexPattern so that we can emit it after all the other 278 // structural matches are done. 279 unsigned InputOperand = VariableMap[N->getName()] - 1; 280 MatchedComplexPatterns.push_back(std::make_pair(N, InputOperand)); 281 return; 282 } 283 284 errs() << "Unknown leaf kind: " << *N << "\n"; 285 abort(); 286 } 287 288 void MatcherGen::EmitOperatorMatchCode(const TreePatternNode *N, 289 TreePatternNode *NodeNoTypes) { 290 assert(!N->isLeaf() && "Not an operator?"); 291 292 if (N->getOperator()->isSubClassOf("ComplexPattern")) { 293 // The "name" of a non-leaf complex pattern (MY_PAT $op1, $op2) is 294 // "MY_PAT:op1:op2". We should already have validated that the uses are 295 // consistent. 296 std::string PatternName = N->getOperator()->getName(); 297 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 298 PatternName += ":"; 299 PatternName += N->getChild(i)->getName(); 300 } 301 302 if (recordUniqueNode(PatternName)) { 303 auto NodeAndOpNum = std::make_pair(N, NextRecordedOperandNo - 1); 304 MatchedComplexPatterns.push_back(NodeAndOpNum); 305 } 306 307 return; 308 } 309 310 const SDNodeInfo &CInfo = CGP.getSDNodeInfo(N->getOperator()); 311 312 // If this is an 'and R, 1234' where the operation is AND/OR and the RHS is 313 // a constant without a predicate fn that has more that one bit set, handle 314 // this as a special case. This is usually for targets that have special 315 // handling of certain large constants (e.g. alpha with it's 8/16/32-bit 316 // handling stuff). Using these instructions is often far more efficient 317 // than materializing the constant. Unfortunately, both the instcombiner 318 // and the dag combiner can often infer that bits are dead, and thus drop 319 // them from the mask in the dag. For example, it might turn 'AND X, 255' 320 // into 'AND X, 254' if it knows the low bit is set. Emit code that checks 321 // to handle this. 322 if ((N->getOperator()->getName() == "and" || 323 N->getOperator()->getName() == "or") && 324 N->getChild(1)->isLeaf() && N->getChild(1)->getPredicateFns().empty() && 325 N->getPredicateFns().empty()) { 326 if (IntInit *II = dyn_cast<IntInit>(N->getChild(1)->getLeafValue())) { 327 if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits. 328 // If this is at the root of the pattern, we emit a redundant 329 // CheckOpcode so that the following checks get factored properly under 330 // a single opcode check. 331 if (N == Pattern.getSrcPattern()) 332 AddMatcher(new CheckOpcodeMatcher(CInfo)); 333 334 // Emit the CheckAndImm/CheckOrImm node. 335 if (N->getOperator()->getName() == "and") 336 AddMatcher(new CheckAndImmMatcher(II->getValue())); 337 else 338 AddMatcher(new CheckOrImmMatcher(II->getValue())); 339 340 // Match the LHS of the AND as appropriate. 341 AddMatcher(new MoveChildMatcher(0)); 342 EmitMatchCode(N->getChild(0), NodeNoTypes->getChild(0)); 343 AddMatcher(new MoveParentMatcher()); 344 return; 345 } 346 } 347 } 348 349 // Check that the current opcode lines up. 350 AddMatcher(new CheckOpcodeMatcher(CInfo)); 351 352 // If this node has memory references (i.e. is a load or store), tell the 353 // interpreter to capture them in the memref array. 354 if (N->NodeHasProperty(SDNPMemOperand, CGP)) 355 AddMatcher(new RecordMemRefMatcher()); 356 357 // If this node has a chain, then the chain is operand #0 is the SDNode, and 358 // the child numbers of the node are all offset by one. 359 unsigned OpNo = 0; 360 if (N->NodeHasProperty(SDNPHasChain, CGP)) { 361 // Record the node and remember it in our chained nodes list. 362 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 363 "' chained node", 364 NextRecordedOperandNo)); 365 // Remember all of the input chains our pattern will match. 366 MatchedChainNodes.push_back(NextRecordedOperandNo++); 367 368 // Don't look at the input chain when matching the tree pattern to the 369 // SDNode. 370 OpNo = 1; 371 372 // If this node is not the root and the subtree underneath it produces a 373 // chain, then the result of matching the node is also produce a chain. 374 // Beyond that, this means that we're also folding (at least) the root node 375 // into the node that produce the chain (for example, matching 376 // "(add reg, (load ptr))" as a add_with_memory on X86). This is 377 // problematic, if the 'reg' node also uses the load (say, its chain). 378 // Graphically: 379 // 380 // [LD] 381 // ^ ^ 382 // | \ DAG's like cheese. 383 // / | 384 // / [YY] 385 // | ^ 386 // [XX]--/ 387 // 388 // It would be invalid to fold XX and LD. In this case, folding the two 389 // nodes together would induce a cycle in the DAG, making it a 'cyclic DAG' 390 // To prevent this, we emit a dynamic check for legality before allowing 391 // this to be folded. 392 // 393 const TreePatternNode *Root = Pattern.getSrcPattern(); 394 if (N != Root) { // Not the root of the pattern. 395 // If there is a node between the root and this node, then we definitely 396 // need to emit the check. 397 bool NeedCheck = !Root->hasChild(N); 398 399 // If it *is* an immediate child of the root, we can still need a check if 400 // the root SDNode has multiple inputs. For us, this means that it is an 401 // intrinsic, has multiple operands, or has other inputs like chain or 402 // glue). 403 if (!NeedCheck) { 404 const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Root->getOperator()); 405 NeedCheck = 406 Root->getOperator() == CGP.get_intrinsic_void_sdnode() || 407 Root->getOperator() == CGP.get_intrinsic_w_chain_sdnode() || 408 Root->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() || 409 PInfo.getNumOperands() > 1 || 410 PInfo.hasProperty(SDNPHasChain) || 411 PInfo.hasProperty(SDNPInGlue) || 412 PInfo.hasProperty(SDNPOptInGlue); 413 } 414 415 if (NeedCheck) 416 AddMatcher(new CheckFoldableChainNodeMatcher()); 417 } 418 } 419 420 // If this node has an output glue and isn't the root, remember it. 421 if (N->NodeHasProperty(SDNPOutGlue, CGP) && 422 N != Pattern.getSrcPattern()) { 423 // TODO: This redundantly records nodes with both glues and chains. 424 425 // Record the node and remember it in our chained nodes list. 426 AddMatcher(new RecordMatcher("'" + N->getOperator()->getName() + 427 "' glue output node", 428 NextRecordedOperandNo)); 429 // Remember all of the nodes with output glue our pattern will match. 430 MatchedGlueResultNodes.push_back(NextRecordedOperandNo++); 431 } 432 433 // If this node is known to have an input glue or if it *might* have an input 434 // glue, capture it as the glue input of the pattern. 435 if (N->NodeHasProperty(SDNPOptInGlue, CGP) || 436 N->NodeHasProperty(SDNPInGlue, CGP)) 437 AddMatcher(new CaptureGlueInputMatcher()); 438 439 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { 440 // Get the code suitable for matching this child. Move to the child, check 441 // it then move back to the parent. 442 AddMatcher(new MoveChildMatcher(OpNo)); 443 EmitMatchCode(N->getChild(i), NodeNoTypes->getChild(i)); 444 AddMatcher(new MoveParentMatcher()); 445 } 446 } 447 448 bool MatcherGen::recordUniqueNode(std::string Name) { 449 unsigned &VarMapEntry = VariableMap[Name]; 450 if (VarMapEntry == 0) { 451 // If it is a named node, we must emit a 'Record' opcode. 452 AddMatcher(new RecordMatcher("$" + Name, NextRecordedOperandNo)); 453 VarMapEntry = ++NextRecordedOperandNo; 454 return true; 455 } 456 457 // If we get here, this is a second reference to a specific name. Since 458 // we already have checked that the first reference is valid, we don't 459 // have to recursively match it, just check that it's the same as the 460 // previously named thing. 461 AddMatcher(new CheckSameMatcher(VarMapEntry-1)); 462 return false; 463 } 464 465 void MatcherGen::EmitMatchCode(const TreePatternNode *N, 466 TreePatternNode *NodeNoTypes) { 467 // If N and NodeNoTypes don't agree on a type, then this is a case where we 468 // need to do a type check. Emit the check, apply the type to NodeNoTypes and 469 // reinfer any correlated types. 470 SmallVector<unsigned, 2> ResultsToTypeCheck; 471 472 for (unsigned i = 0, e = NodeNoTypes->getNumTypes(); i != e; ++i) { 473 if (NodeNoTypes->getExtType(i) == N->getExtType(i)) continue; 474 NodeNoTypes->setType(i, N->getExtType(i)); 475 InferPossibleTypes(); 476 ResultsToTypeCheck.push_back(i); 477 } 478 479 // If this node has a name associated with it, capture it in VariableMap. If 480 // we already saw this in the pattern, emit code to verify dagness. 481 if (!N->getName().empty()) 482 if (!recordUniqueNode(N->getName())) 483 return; 484 485 if (N->isLeaf()) 486 EmitLeafMatchCode(N); 487 else 488 EmitOperatorMatchCode(N, NodeNoTypes); 489 490 // If there are node predicates for this node, generate their checks. 491 for (unsigned i = 0, e = N->getPredicateFns().size(); i != e; ++i) 492 AddMatcher(new CheckPredicateMatcher(N->getPredicateFns()[i])); 493 494 for (unsigned i = 0, e = ResultsToTypeCheck.size(); i != e; ++i) 495 AddMatcher(new CheckTypeMatcher(N->getType(ResultsToTypeCheck[i]), 496 ResultsToTypeCheck[i])); 497 } 498 499 /// EmitMatcherCode - Generate the code that matches the predicate of this 500 /// pattern for the specified Variant. If the variant is invalid this returns 501 /// true and does not generate code, if it is valid, it returns false. 502 bool MatcherGen::EmitMatcherCode(unsigned Variant) { 503 // If the root of the pattern is a ComplexPattern and if it is specified to 504 // match some number of root opcodes, these are considered to be our variants. 505 // Depending on which variant we're generating code for, emit the root opcode 506 // check. 507 if (const ComplexPattern *CP = 508 Pattern.getSrcPattern()->getComplexPatternInfo(CGP)) { 509 const std::vector<Record*> &OpNodes = CP->getRootNodes(); 510 assert(!OpNodes.empty() &&"Complex Pattern must specify what it can match"); 511 if (Variant >= OpNodes.size()) return true; 512 513 AddMatcher(new CheckOpcodeMatcher(CGP.getSDNodeInfo(OpNodes[Variant]))); 514 } else { 515 if (Variant != 0) return true; 516 } 517 518 // Emit the matcher for the pattern structure and types. 519 EmitMatchCode(Pattern.getSrcPattern(), PatWithNoTypes); 520 521 // If the pattern has a predicate on it (e.g. only enabled when a subtarget 522 // feature is around, do the check). 523 if (!Pattern.getPredicateCheck().empty()) 524 AddMatcher(new CheckPatternPredicateMatcher(Pattern.getPredicateCheck())); 525 526 // Now that we've completed the structural type match, emit any ComplexPattern 527 // checks (e.g. addrmode matches). We emit this after the structural match 528 // because they are generally more expensive to evaluate and more difficult to 529 // factor. 530 for (unsigned i = 0, e = MatchedComplexPatterns.size(); i != e; ++i) { 531 const TreePatternNode *N = MatchedComplexPatterns[i].first; 532 533 // Remember where the results of this match get stuck. 534 if (N->isLeaf()) { 535 NamedComplexPatternOperands[N->getName()] = NextRecordedOperandNo + 1; 536 } else { 537 unsigned CurOp = NextRecordedOperandNo; 538 for (unsigned i = 0; i < N->getNumChildren(); ++i) { 539 NamedComplexPatternOperands[N->getChild(i)->getName()] = CurOp + 1; 540 CurOp += N->getChild(i)->getNumMIResults(CGP); 541 } 542 } 543 544 // Get the slot we recorded the value in from the name on the node. 545 unsigned RecNodeEntry = MatchedComplexPatterns[i].second; 546 547 const ComplexPattern &CP = *N->getComplexPatternInfo(CGP); 548 549 // Emit a CheckComplexPat operation, which does the match (aborting if it 550 // fails) and pushes the matched operands onto the recorded nodes list. 551 AddMatcher(new CheckComplexPatMatcher(CP, RecNodeEntry, 552 N->getName(), NextRecordedOperandNo)); 553 554 // Record the right number of operands. 555 NextRecordedOperandNo += CP.getNumOperands(); 556 if (CP.hasProperty(SDNPHasChain)) { 557 // If the complex pattern has a chain, then we need to keep track of the 558 // fact that we just recorded a chain input. The chain input will be 559 // matched as the last operand of the predicate if it was successful. 560 ++NextRecordedOperandNo; // Chained node operand. 561 562 // It is the last operand recorded. 563 assert(NextRecordedOperandNo > 1 && 564 "Should have recorded input/result chains at least!"); 565 MatchedChainNodes.push_back(NextRecordedOperandNo-1); 566 } 567 568 // TODO: Complex patterns can't have output glues, if they did, we'd want 569 // to record them. 570 } 571 572 return false; 573 } 574 575 576 //===----------------------------------------------------------------------===// 577 // Node Result Generation 578 //===----------------------------------------------------------------------===// 579 580 void MatcherGen::EmitResultOfNamedOperand(const TreePatternNode *N, 581 SmallVectorImpl<unsigned> &ResultOps){ 582 assert(!N->getName().empty() && "Operand not named!"); 583 584 if (unsigned SlotNo = NamedComplexPatternOperands[N->getName()]) { 585 // Complex operands have already been completely selected, just find the 586 // right slot ant add the arguments directly. 587 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 588 ResultOps.push_back(SlotNo - 1 + i); 589 590 return; 591 } 592 593 unsigned SlotNo = getNamedArgumentSlot(N->getName()); 594 595 // If this is an 'imm' or 'fpimm' node, make sure to convert it to the target 596 // version of the immediate so that it doesn't get selected due to some other 597 // node use. 598 if (!N->isLeaf()) { 599 StringRef OperatorName = N->getOperator()->getName(); 600 if (OperatorName == "imm" || OperatorName == "fpimm") { 601 AddMatcher(new EmitConvertToTargetMatcher(SlotNo)); 602 ResultOps.push_back(NextRecordedOperandNo++); 603 return; 604 } 605 } 606 607 for (unsigned i = 0; i < N->getNumMIResults(CGP); ++i) 608 ResultOps.push_back(SlotNo + i); 609 } 610 611 void MatcherGen::EmitResultLeafAsOperand(const TreePatternNode *N, 612 SmallVectorImpl<unsigned> &ResultOps) { 613 assert(N->isLeaf() && "Must be a leaf"); 614 615 if (IntInit *II = dyn_cast<IntInit>(N->getLeafValue())) { 616 AddMatcher(new EmitIntegerMatcher(II->getValue(), N->getType(0))); 617 ResultOps.push_back(NextRecordedOperandNo++); 618 return; 619 } 620 621 // If this is an explicit register reference, handle it. 622 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 623 Record *Def = DI->getDef(); 624 if (Def->isSubClassOf("Register")) { 625 const CodeGenRegister *Reg = 626 CGP.getTargetInfo().getRegBank().getReg(Def); 627 AddMatcher(new EmitRegisterMatcher(Reg, N->getType(0))); 628 ResultOps.push_back(NextRecordedOperandNo++); 629 return; 630 } 631 632 if (Def->getName() == "zero_reg") { 633 AddMatcher(new EmitRegisterMatcher(nullptr, N->getType(0))); 634 ResultOps.push_back(NextRecordedOperandNo++); 635 return; 636 } 637 638 // Handle a reference to a register class. This is used 639 // in COPY_TO_SUBREG instructions. 640 if (Def->isSubClassOf("RegisterOperand")) 641 Def = Def->getValueAsDef("RegClass"); 642 if (Def->isSubClassOf("RegisterClass")) { 643 std::string Value = getQualifiedName(Def) + "RegClassID"; 644 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 645 ResultOps.push_back(NextRecordedOperandNo++); 646 return; 647 } 648 649 // Handle a subregister index. This is used for INSERT_SUBREG etc. 650 if (Def->isSubClassOf("SubRegIndex")) { 651 std::string Value = getQualifiedName(Def); 652 AddMatcher(new EmitStringIntegerMatcher(Value, MVT::i32)); 653 ResultOps.push_back(NextRecordedOperandNo++); 654 return; 655 } 656 } 657 658 errs() << "unhandled leaf node: \n"; 659 N->dump(); 660 } 661 662 /// GetInstPatternNode - Get the pattern for an instruction. 663 /// 664 const TreePatternNode *MatcherGen:: 665 GetInstPatternNode(const DAGInstruction &Inst, const TreePatternNode *N) { 666 const TreePattern *InstPat = Inst.getPattern(); 667 668 // FIXME2?: Assume actual pattern comes before "implicit". 669 TreePatternNode *InstPatNode; 670 if (InstPat) 671 InstPatNode = InstPat->getTree(0); 672 else if (/*isRoot*/ N == Pattern.getDstPattern()) 673 InstPatNode = Pattern.getSrcPattern(); 674 else 675 return nullptr; 676 677 if (InstPatNode && !InstPatNode->isLeaf() && 678 InstPatNode->getOperator()->getName() == "set") 679 InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1); 680 681 return InstPatNode; 682 } 683 684 static bool 685 mayInstNodeLoadOrStore(const TreePatternNode *N, 686 const CodeGenDAGPatterns &CGP) { 687 Record *Op = N->getOperator(); 688 const CodeGenTarget &CGT = CGP.getTargetInfo(); 689 CodeGenInstruction &II = CGT.getInstruction(Op); 690 return II.mayLoad || II.mayStore; 691 } 692 693 static unsigned 694 numNodesThatMayLoadOrStore(const TreePatternNode *N, 695 const CodeGenDAGPatterns &CGP) { 696 if (N->isLeaf()) 697 return 0; 698 699 Record *OpRec = N->getOperator(); 700 if (!OpRec->isSubClassOf("Instruction")) 701 return 0; 702 703 unsigned Count = 0; 704 if (mayInstNodeLoadOrStore(N, CGP)) 705 ++Count; 706 707 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 708 Count += numNodesThatMayLoadOrStore(N->getChild(i), CGP); 709 710 return Count; 711 } 712 713 void MatcherGen:: 714 EmitResultInstructionAsOperand(const TreePatternNode *N, 715 SmallVectorImpl<unsigned> &OutputOps) { 716 Record *Op = N->getOperator(); 717 const CodeGenTarget &CGT = CGP.getTargetInfo(); 718 CodeGenInstruction &II = CGT.getInstruction(Op); 719 const DAGInstruction &Inst = CGP.getInstruction(Op); 720 721 // If we can, get the pattern for the instruction we're generating. We derive 722 // a variety of information from this pattern, such as whether it has a chain. 723 // 724 // FIXME2: This is extremely dubious for several reasons, not the least of 725 // which it gives special status to instructions with patterns that Pat<> 726 // nodes can't duplicate. 727 const TreePatternNode *InstPatNode = GetInstPatternNode(Inst, N); 728 729 // NodeHasChain - Whether the instruction node we're creating takes chains. 730 bool NodeHasChain = InstPatNode && 731 InstPatNode->TreeHasProperty(SDNPHasChain, CGP); 732 733 // Instructions which load and store from memory should have a chain, 734 // regardless of whether they happen to have an internal pattern saying so. 735 if (Pattern.getSrcPattern()->TreeHasProperty(SDNPHasChain, CGP) 736 && (II.hasCtrlDep || II.mayLoad || II.mayStore || II.canFoldAsLoad || 737 II.hasSideEffects)) 738 NodeHasChain = true; 739 740 bool isRoot = N == Pattern.getDstPattern(); 741 742 // TreeHasOutGlue - True if this tree has glue. 743 bool TreeHasInGlue = false, TreeHasOutGlue = false; 744 if (isRoot) { 745 const TreePatternNode *SrcPat = Pattern.getSrcPattern(); 746 TreeHasInGlue = SrcPat->TreeHasProperty(SDNPOptInGlue, CGP) || 747 SrcPat->TreeHasProperty(SDNPInGlue, CGP); 748 749 // FIXME2: this is checking the entire pattern, not just the node in 750 // question, doing this just for the root seems like a total hack. 751 TreeHasOutGlue = SrcPat->TreeHasProperty(SDNPOutGlue, CGP); 752 } 753 754 // NumResults - This is the number of results produced by the instruction in 755 // the "outs" list. 756 unsigned NumResults = Inst.getNumResults(); 757 758 // Number of operands we know the output instruction must have. If it is 759 // variadic, we could have more operands. 760 unsigned NumFixedOperands = II.Operands.size(); 761 762 SmallVector<unsigned, 8> InstOps; 763 764 // Loop over all of the fixed operands of the instruction pattern, emitting 765 // code to fill them all in. The node 'N' usually has number children equal to 766 // the number of input operands of the instruction. However, in cases where 767 // there are predicate operands for an instruction, we need to fill in the 768 // 'execute always' values. Match up the node operands to the instruction 769 // operands to do this. 770 unsigned ChildNo = 0; 771 for (unsigned InstOpNo = NumResults, e = NumFixedOperands; 772 InstOpNo != e; ++InstOpNo) { 773 // Determine what to emit for this operand. 774 Record *OperandNode = II.Operands[InstOpNo].Rec; 775 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 776 !CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) { 777 // This is a predicate or optional def operand; emit the 778 // 'default ops' operands. 779 const DAGDefaultOperand &DefaultOp 780 = CGP.getDefaultOperand(OperandNode); 781 for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) 782 EmitResultOperand(DefaultOp.DefaultOps[i], InstOps); 783 continue; 784 } 785 786 // Otherwise this is a normal operand or a predicate operand without 787 // 'execute always'; emit it. 788 789 // For operands with multiple sub-operands we may need to emit 790 // multiple child patterns to cover them all. However, ComplexPattern 791 // children may themselves emit multiple MI operands. 792 unsigned NumSubOps = 1; 793 if (OperandNode->isSubClassOf("Operand")) { 794 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 795 if (unsigned NumArgs = MIOpInfo->getNumArgs()) 796 NumSubOps = NumArgs; 797 } 798 799 unsigned FinalNumOps = InstOps.size() + NumSubOps; 800 while (InstOps.size() < FinalNumOps) { 801 const TreePatternNode *Child = N->getChild(ChildNo); 802 unsigned BeforeAddingNumOps = InstOps.size(); 803 EmitResultOperand(Child, InstOps); 804 assert(InstOps.size() > BeforeAddingNumOps && "Didn't add any operands"); 805 806 // If the operand is an instruction and it produced multiple results, just 807 // take the first one. 808 if (!Child->isLeaf() && Child->getOperator()->isSubClassOf("Instruction")) 809 InstOps.resize(BeforeAddingNumOps+1); 810 811 ++ChildNo; 812 } 813 } 814 815 // If this is a variadic output instruction (i.e. REG_SEQUENCE), we can't 816 // expand suboperands, use default operands, or other features determined from 817 // the CodeGenInstruction after the fixed operands, which were handled 818 // above. Emit the remaining instructions implicitly added by the use for 819 // variable_ops. 820 if (II.Operands.isVariadic) { 821 for (unsigned I = ChildNo, E = N->getNumChildren(); I < E; ++I) 822 EmitResultOperand(N->getChild(I), InstOps); 823 } 824 825 // If this node has input glue or explicitly specified input physregs, we 826 // need to add chained and glued copyfromreg nodes and materialize the glue 827 // input. 828 if (isRoot && !PhysRegInputs.empty()) { 829 // Emit all of the CopyToReg nodes for the input physical registers. These 830 // occur in patterns like (mul:i8 AL:i8, GR8:i8:$src). 831 for (unsigned i = 0, e = PhysRegInputs.size(); i != e; ++i) 832 AddMatcher(new EmitCopyToRegMatcher(PhysRegInputs[i].second, 833 PhysRegInputs[i].first)); 834 // Even if the node has no other glue inputs, the resultant node must be 835 // glued to the CopyFromReg nodes we just generated. 836 TreeHasInGlue = true; 837 } 838 839 // Result order: node results, chain, glue 840 841 // Determine the result types. 842 SmallVector<MVT::SimpleValueType, 4> ResultVTs; 843 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) 844 ResultVTs.push_back(N->getType(i)); 845 846 // If this is the root instruction of a pattern that has physical registers in 847 // its result pattern, add output VTs for them. For example, X86 has: 848 // (set AL, (mul ...)) 849 // This also handles implicit results like: 850 // (implicit EFLAGS) 851 if (isRoot && !Pattern.getDstRegs().empty()) { 852 // If the root came from an implicit def in the instruction handling stuff, 853 // don't re-add it. 854 Record *HandledReg = nullptr; 855 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 856 HandledReg = II.ImplicitDefs[0]; 857 858 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 859 Record *Reg = Pattern.getDstRegs()[i]; 860 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 861 ResultVTs.push_back(getRegisterValueType(Reg, CGT)); 862 } 863 } 864 865 // If this is the root of the pattern and the pattern we're matching includes 866 // a node that is variadic, mark the generated node as variadic so that it 867 // gets the excess operands from the input DAG. 868 int NumFixedArityOperands = -1; 869 if (isRoot && 870 Pattern.getSrcPattern()->NodeHasProperty(SDNPVariadic, CGP)) 871 NumFixedArityOperands = Pattern.getSrcPattern()->getNumChildren(); 872 873 // If this is the root node and multiple matched nodes in the input pattern 874 // have MemRefs in them, have the interpreter collect them and plop them onto 875 // this node. If there is just one node with MemRefs, leave them on that node 876 // even if it is not the root. 877 // 878 // FIXME3: This is actively incorrect for result patterns with multiple 879 // memory-referencing instructions. 880 bool PatternHasMemOperands = 881 Pattern.getSrcPattern()->TreeHasProperty(SDNPMemOperand, CGP); 882 883 bool NodeHasMemRefs = false; 884 if (PatternHasMemOperands) { 885 unsigned NumNodesThatLoadOrStore = 886 numNodesThatMayLoadOrStore(Pattern.getDstPattern(), CGP); 887 bool NodeIsUniqueLoadOrStore = mayInstNodeLoadOrStore(N, CGP) && 888 NumNodesThatLoadOrStore == 1; 889 NodeHasMemRefs = 890 NodeIsUniqueLoadOrStore || (isRoot && (mayInstNodeLoadOrStore(N, CGP) || 891 NumNodesThatLoadOrStore != 1)); 892 } 893 894 assert((!ResultVTs.empty() || TreeHasOutGlue || NodeHasChain) && 895 "Node has no result"); 896 897 AddMatcher(new EmitNodeMatcher(II.Namespace+"::"+II.TheDef->getName(), 898 ResultVTs, InstOps, 899 NodeHasChain, TreeHasInGlue, TreeHasOutGlue, 900 NodeHasMemRefs, NumFixedArityOperands, 901 NextRecordedOperandNo)); 902 903 // The non-chain and non-glue results of the newly emitted node get recorded. 904 for (unsigned i = 0, e = ResultVTs.size(); i != e; ++i) { 905 if (ResultVTs[i] == MVT::Other || ResultVTs[i] == MVT::Glue) break; 906 OutputOps.push_back(NextRecordedOperandNo++); 907 } 908 } 909 910 void MatcherGen:: 911 EmitResultSDNodeXFormAsOperand(const TreePatternNode *N, 912 SmallVectorImpl<unsigned> &ResultOps) { 913 assert(N->getOperator()->isSubClassOf("SDNodeXForm") && "Not SDNodeXForm?"); 914 915 // Emit the operand. 916 SmallVector<unsigned, 8> InputOps; 917 918 // FIXME2: Could easily generalize this to support multiple inputs and outputs 919 // to the SDNodeXForm. For now we just support one input and one output like 920 // the old instruction selector. 921 assert(N->getNumChildren() == 1); 922 EmitResultOperand(N->getChild(0), InputOps); 923 924 // The input currently must have produced exactly one result. 925 assert(InputOps.size() == 1 && "Unexpected input to SDNodeXForm"); 926 927 AddMatcher(new EmitNodeXFormMatcher(InputOps[0], N->getOperator())); 928 ResultOps.push_back(NextRecordedOperandNo++); 929 } 930 931 void MatcherGen::EmitResultOperand(const TreePatternNode *N, 932 SmallVectorImpl<unsigned> &ResultOps) { 933 // This is something selected from the pattern we matched. 934 if (!N->getName().empty()) 935 return EmitResultOfNamedOperand(N, ResultOps); 936 937 if (N->isLeaf()) 938 return EmitResultLeafAsOperand(N, ResultOps); 939 940 Record *OpRec = N->getOperator(); 941 if (OpRec->isSubClassOf("Instruction")) 942 return EmitResultInstructionAsOperand(N, ResultOps); 943 if (OpRec->isSubClassOf("SDNodeXForm")) 944 return EmitResultSDNodeXFormAsOperand(N, ResultOps); 945 errs() << "Unknown result node to emit code for: " << *N << '\n'; 946 PrintFatalError("Unknown node in result pattern!"); 947 } 948 949 void MatcherGen::EmitResultCode() { 950 // Patterns that match nodes with (potentially multiple) chain inputs have to 951 // merge them together into a token factor. This informs the generated code 952 // what all the chained nodes are. 953 if (!MatchedChainNodes.empty()) 954 AddMatcher(new EmitMergeInputChainsMatcher(MatchedChainNodes)); 955 956 // Codegen the root of the result pattern, capturing the resulting values. 957 SmallVector<unsigned, 8> Ops; 958 EmitResultOperand(Pattern.getDstPattern(), Ops); 959 960 // At this point, we have however many values the result pattern produces. 961 // However, the input pattern might not need all of these. If there are 962 // excess values at the end (such as implicit defs of condition codes etc) 963 // just lop them off. This doesn't need to worry about glue or chains, just 964 // explicit results. 965 // 966 unsigned NumSrcResults = Pattern.getSrcPattern()->getNumTypes(); 967 968 // If the pattern also has (implicit) results, count them as well. 969 if (!Pattern.getDstRegs().empty()) { 970 // If the root came from an implicit def in the instruction handling stuff, 971 // don't re-add it. 972 Record *HandledReg = nullptr; 973 const TreePatternNode *DstPat = Pattern.getDstPattern(); 974 if (!DstPat->isLeaf() &&DstPat->getOperator()->isSubClassOf("Instruction")){ 975 const CodeGenTarget &CGT = CGP.getTargetInfo(); 976 CodeGenInstruction &II = CGT.getInstruction(DstPat->getOperator()); 977 978 if (II.HasOneImplicitDefWithKnownVT(CGT) != MVT::Other) 979 HandledReg = II.ImplicitDefs[0]; 980 } 981 982 for (unsigned i = 0; i != Pattern.getDstRegs().size(); ++i) { 983 Record *Reg = Pattern.getDstRegs()[i]; 984 if (!Reg->isSubClassOf("Register") || Reg == HandledReg) continue; 985 ++NumSrcResults; 986 } 987 } 988 989 assert(Ops.size() >= NumSrcResults && "Didn't provide enough results"); 990 Ops.resize(NumSrcResults); 991 992 // If the matched pattern covers nodes which define a glue result, emit a node 993 // that tells the matcher about them so that it can update their results. 994 if (!MatchedGlueResultNodes.empty()) 995 AddMatcher(new MarkGlueResultsMatcher(MatchedGlueResultNodes)); 996 997 AddMatcher(new CompleteMatchMatcher(Ops, Pattern)); 998 } 999 1000 1001 /// ConvertPatternToMatcher - Create the matcher for the specified pattern with 1002 /// the specified variant. If the variant number is invalid, this returns null. 1003 Matcher *llvm::ConvertPatternToMatcher(const PatternToMatch &Pattern, 1004 unsigned Variant, 1005 const CodeGenDAGPatterns &CGP) { 1006 MatcherGen Gen(Pattern, CGP); 1007 1008 // Generate the code for the matcher. 1009 if (Gen.EmitMatcherCode(Variant)) 1010 return nullptr; 1011 1012 // FIXME2: Kill extra MoveParent commands at the end of the matcher sequence. 1013 // FIXME2: Split result code out to another table, and make the matcher end 1014 // with an "Emit <index>" command. This allows result generation stuff to be 1015 // shared and factored? 1016 1017 // If the match succeeds, then we generate Pattern. 1018 Gen.EmitResultCode(); 1019 1020 // Unconditional match. 1021 return Gen.GetMatcher(); 1022 } 1023