Home | History | Annotate | Download | only in IR
      1 //===---- llvm/IRBuilder.h - Builder for LLVM Instructions ------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the IRBuilder class, which is used as a convenient way
     11 // to create LLVM instructions with a consistent and simplified interface.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_IR_IRBUILDER_H
     16 #define LLVM_IR_IRBUILDER_H
     17 
     18 #include "llvm/ADT/ArrayRef.h"
     19 #include "llvm/ADT/StringRef.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/IR/BasicBlock.h"
     22 #include "llvm/IR/ConstantFolder.h"
     23 #include "llvm/IR/DataLayout.h"
     24 #include "llvm/IR/Function.h"
     25 #include "llvm/IR/GlobalVariable.h"
     26 #include "llvm/IR/Instructions.h"
     27 #include "llvm/IR/Intrinsics.h"
     28 #include "llvm/IR/LLVMContext.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/ValueHandle.h"
     31 #include "llvm/Support/CBindingWrapping.h"
     32 
     33 namespace llvm {
     34 class MDNode;
     35 
     36 /// \brief This provides the default implementation of the IRBuilder
     37 /// 'InsertHelper' method that is called whenever an instruction is created by
     38 /// IRBuilder and needs to be inserted.
     39 ///
     40 /// By default, this inserts the instruction at the insertion point.
     41 template <bool preserveNames = true>
     42 class IRBuilderDefaultInserter {
     43 protected:
     44   void InsertHelper(Instruction *I, const Twine &Name,
     45                     BasicBlock *BB, BasicBlock::iterator InsertPt) const {
     46     if (BB) BB->getInstList().insert(InsertPt, I);
     47     if (preserveNames)
     48       I->setName(Name);
     49   }
     50 };
     51 
     52 /// \brief Common base class shared among various IRBuilders.
     53 class IRBuilderBase {
     54   DebugLoc CurDbgLocation;
     55 
     56 protected:
     57   BasicBlock *BB;
     58   BasicBlock::iterator InsertPt;
     59   LLVMContext &Context;
     60 
     61   MDNode *DefaultFPMathTag;
     62   FastMathFlags FMF;
     63 
     64 public:
     65   IRBuilderBase(LLVMContext &context, MDNode *FPMathTag = nullptr)
     66     : Context(context), DefaultFPMathTag(FPMathTag), FMF() {
     67     ClearInsertionPoint();
     68   }
     69 
     70   //===--------------------------------------------------------------------===//
     71   // Builder configuration methods
     72   //===--------------------------------------------------------------------===//
     73 
     74   /// \brief Clear the insertion point: created instructions will not be
     75   /// inserted into a block.
     76   void ClearInsertionPoint() {
     77     BB = nullptr;
     78     InsertPt.reset(nullptr);
     79   }
     80 
     81   BasicBlock *GetInsertBlock() const { return BB; }
     82   BasicBlock::iterator GetInsertPoint() const { return InsertPt; }
     83   LLVMContext &getContext() const { return Context; }
     84 
     85   /// \brief This specifies that created instructions should be appended to the
     86   /// end of the specified block.
     87   void SetInsertPoint(BasicBlock *TheBB) {
     88     BB = TheBB;
     89     InsertPt = BB->end();
     90   }
     91 
     92   /// \brief This specifies that created instructions should be inserted before
     93   /// the specified instruction.
     94   void SetInsertPoint(Instruction *I) {
     95     BB = I->getParent();
     96     InsertPt = I->getIterator();
     97     assert(InsertPt != BB->end() && "Can't read debug loc from end()");
     98     SetCurrentDebugLocation(I->getDebugLoc());
     99   }
    100 
    101   /// \brief This specifies that created instructions should be inserted at the
    102   /// specified point.
    103   void SetInsertPoint(BasicBlock *TheBB, BasicBlock::iterator IP) {
    104     BB = TheBB;
    105     InsertPt = IP;
    106     if (IP != TheBB->end())
    107       SetCurrentDebugLocation(IP->getDebugLoc());
    108   }
    109 
    110   /// \brief Set location information used by debugging information.
    111   void SetCurrentDebugLocation(DebugLoc L) { CurDbgLocation = std::move(L); }
    112 
    113   /// \brief Get location information used by debugging information.
    114   const DebugLoc &getCurrentDebugLocation() const { return CurDbgLocation; }
    115 
    116   /// \brief If this builder has a current debug location, set it on the
    117   /// specified instruction.
    118   void SetInstDebugLocation(Instruction *I) const {
    119     if (CurDbgLocation)
    120       I->setDebugLoc(CurDbgLocation);
    121   }
    122 
    123   /// \brief Get the return type of the current function that we're emitting
    124   /// into.
    125   Type *getCurrentFunctionReturnType() const;
    126 
    127   /// InsertPoint - A saved insertion point.
    128   class InsertPoint {
    129     BasicBlock *Block;
    130     BasicBlock::iterator Point;
    131 
    132   public:
    133     /// \brief Creates a new insertion point which doesn't point to anything.
    134     InsertPoint() : Block(nullptr) {}
    135 
    136     /// \brief Creates a new insertion point at the given location.
    137     InsertPoint(BasicBlock *InsertBlock, BasicBlock::iterator InsertPoint)
    138       : Block(InsertBlock), Point(InsertPoint) {}
    139 
    140     /// \brief Returns true if this insert point is set.
    141     bool isSet() const { return (Block != nullptr); }
    142 
    143     llvm::BasicBlock *getBlock() const { return Block; }
    144     llvm::BasicBlock::iterator getPoint() const { return Point; }
    145   };
    146 
    147   /// \brief Returns the current insert point.
    148   InsertPoint saveIP() const {
    149     return InsertPoint(GetInsertBlock(), GetInsertPoint());
    150   }
    151 
    152   /// \brief Returns the current insert point, clearing it in the process.
    153   InsertPoint saveAndClearIP() {
    154     InsertPoint IP(GetInsertBlock(), GetInsertPoint());
    155     ClearInsertionPoint();
    156     return IP;
    157   }
    158 
    159   /// \brief Sets the current insert point to a previously-saved location.
    160   void restoreIP(InsertPoint IP) {
    161     if (IP.isSet())
    162       SetInsertPoint(IP.getBlock(), IP.getPoint());
    163     else
    164       ClearInsertionPoint();
    165   }
    166 
    167   /// \brief Get the floating point math metadata being used.
    168   MDNode *getDefaultFPMathTag() const { return DefaultFPMathTag; }
    169 
    170   /// \brief Get the flags to be applied to created floating point ops
    171   FastMathFlags getFastMathFlags() const { return FMF; }
    172 
    173   /// \brief Clear the fast-math flags.
    174   void clearFastMathFlags() { FMF.clear(); }
    175 
    176   /// \brief Set the floating point math metadata to be used.
    177   void SetDefaultFPMathTag(MDNode *FPMathTag) { DefaultFPMathTag = FPMathTag; }
    178 
    179   /// \brief Set the fast-math flags to be used with generated fp-math operators
    180   void SetFastMathFlags(FastMathFlags NewFMF) { FMF = NewFMF; }
    181 
    182   //===--------------------------------------------------------------------===//
    183   // RAII helpers.
    184   //===--------------------------------------------------------------------===//
    185 
    186   // \brief RAII object that stores the current insertion point and restores it
    187   // when the object is destroyed. This includes the debug location.
    188   class InsertPointGuard {
    189     IRBuilderBase &Builder;
    190     AssertingVH<BasicBlock> Block;
    191     BasicBlock::iterator Point;
    192     DebugLoc DbgLoc;
    193 
    194     InsertPointGuard(const InsertPointGuard &) = delete;
    195     InsertPointGuard &operator=(const InsertPointGuard &) = delete;
    196 
    197   public:
    198     InsertPointGuard(IRBuilderBase &B)
    199         : Builder(B), Block(B.GetInsertBlock()), Point(B.GetInsertPoint()),
    200           DbgLoc(B.getCurrentDebugLocation()) {}
    201 
    202     ~InsertPointGuard() {
    203       Builder.restoreIP(InsertPoint(Block, Point));
    204       Builder.SetCurrentDebugLocation(DbgLoc);
    205     }
    206   };
    207 
    208   // \brief RAII object that stores the current fast math settings and restores
    209   // them when the object is destroyed.
    210   class FastMathFlagGuard {
    211     IRBuilderBase &Builder;
    212     FastMathFlags FMF;
    213     MDNode *FPMathTag;
    214 
    215     FastMathFlagGuard(const FastMathFlagGuard &) = delete;
    216     FastMathFlagGuard &operator=(
    217         const FastMathFlagGuard &) = delete;
    218 
    219   public:
    220     FastMathFlagGuard(IRBuilderBase &B)
    221         : Builder(B), FMF(B.FMF), FPMathTag(B.DefaultFPMathTag) {}
    222 
    223     ~FastMathFlagGuard() {
    224       Builder.FMF = FMF;
    225       Builder.DefaultFPMathTag = FPMathTag;
    226     }
    227   };
    228 
    229   //===--------------------------------------------------------------------===//
    230   // Miscellaneous creation methods.
    231   //===--------------------------------------------------------------------===//
    232 
    233   /// \brief Make a new global variable with initializer type i8*
    234   ///
    235   /// Make a new global variable with an initializer that has array of i8 type
    236   /// filled in with the null terminated string value specified.  The new global
    237   /// variable will be marked mergable with any others of the same contents.  If
    238   /// Name is specified, it is the name of the global variable created.
    239   GlobalVariable *CreateGlobalString(StringRef Str, const Twine &Name = "",
    240                                      unsigned AddressSpace = 0);
    241 
    242   /// \brief Get a constant value representing either true or false.
    243   ConstantInt *getInt1(bool V) {
    244     return ConstantInt::get(getInt1Ty(), V);
    245   }
    246 
    247   /// \brief Get the constant value for i1 true.
    248   ConstantInt *getTrue() {
    249     return ConstantInt::getTrue(Context);
    250   }
    251 
    252   /// \brief Get the constant value for i1 false.
    253   ConstantInt *getFalse() {
    254     return ConstantInt::getFalse(Context);
    255   }
    256 
    257   /// \brief Get a constant 8-bit value.
    258   ConstantInt *getInt8(uint8_t C) {
    259     return ConstantInt::get(getInt8Ty(), C);
    260   }
    261 
    262   /// \brief Get a constant 16-bit value.
    263   ConstantInt *getInt16(uint16_t C) {
    264     return ConstantInt::get(getInt16Ty(), C);
    265   }
    266 
    267   /// \brief Get a constant 32-bit value.
    268   ConstantInt *getInt32(uint32_t C) {
    269     return ConstantInt::get(getInt32Ty(), C);
    270   }
    271 
    272   /// \brief Get a constant 64-bit value.
    273   ConstantInt *getInt64(uint64_t C) {
    274     return ConstantInt::get(getInt64Ty(), C);
    275   }
    276 
    277   /// \brief Get a constant N-bit value, zero extended or truncated from
    278   /// a 64-bit value.
    279   ConstantInt *getIntN(unsigned N, uint64_t C) {
    280     return ConstantInt::get(getIntNTy(N), C);
    281   }
    282 
    283   /// \brief Get a constant integer value.
    284   ConstantInt *getInt(const APInt &AI) {
    285     return ConstantInt::get(Context, AI);
    286   }
    287 
    288   //===--------------------------------------------------------------------===//
    289   // Type creation methods
    290   //===--------------------------------------------------------------------===//
    291 
    292   /// \brief Fetch the type representing a single bit
    293   IntegerType *getInt1Ty() {
    294     return Type::getInt1Ty(Context);
    295   }
    296 
    297   /// \brief Fetch the type representing an 8-bit integer.
    298   IntegerType *getInt8Ty() {
    299     return Type::getInt8Ty(Context);
    300   }
    301 
    302   /// \brief Fetch the type representing a 16-bit integer.
    303   IntegerType *getInt16Ty() {
    304     return Type::getInt16Ty(Context);
    305   }
    306 
    307   /// \brief Fetch the type representing a 32-bit integer.
    308   IntegerType *getInt32Ty() {
    309     return Type::getInt32Ty(Context);
    310   }
    311 
    312   /// \brief Fetch the type representing a 64-bit integer.
    313   IntegerType *getInt64Ty() {
    314     return Type::getInt64Ty(Context);
    315   }
    316 
    317   /// \brief Fetch the type representing a 128-bit integer.
    318   IntegerType *getInt128Ty() { return Type::getInt128Ty(Context); }
    319 
    320   /// \brief Fetch the type representing an N-bit integer.
    321   IntegerType *getIntNTy(unsigned N) {
    322     return Type::getIntNTy(Context, N);
    323   }
    324 
    325   /// \brief Fetch the type representing a 16-bit floating point value.
    326   Type *getHalfTy() {
    327     return Type::getHalfTy(Context);
    328   }
    329 
    330   /// \brief Fetch the type representing a 32-bit floating point value.
    331   Type *getFloatTy() {
    332     return Type::getFloatTy(Context);
    333   }
    334 
    335   /// \brief Fetch the type representing a 64-bit floating point value.
    336   Type *getDoubleTy() {
    337     return Type::getDoubleTy(Context);
    338   }
    339 
    340   /// \brief Fetch the type representing void.
    341   Type *getVoidTy() {
    342     return Type::getVoidTy(Context);
    343   }
    344 
    345   /// \brief Fetch the type representing a pointer to an 8-bit integer value.
    346   PointerType *getInt8PtrTy(unsigned AddrSpace = 0) {
    347     return Type::getInt8PtrTy(Context, AddrSpace);
    348   }
    349 
    350   /// \brief Fetch the type representing a pointer to an integer value.
    351   IntegerType *getIntPtrTy(const DataLayout &DL, unsigned AddrSpace = 0) {
    352     return DL.getIntPtrType(Context, AddrSpace);
    353   }
    354 
    355   //===--------------------------------------------------------------------===//
    356   // Intrinsic creation methods
    357   //===--------------------------------------------------------------------===//
    358 
    359   /// \brief Create and insert a memset to the specified pointer and the
    360   /// specified value.
    361   ///
    362   /// If the pointer isn't an i8*, it will be converted. If a TBAA tag is
    363   /// specified, it will be added to the instruction. Likewise with alias.scope
    364   /// and noalias tags.
    365   CallInst *CreateMemSet(Value *Ptr, Value *Val, uint64_t Size, unsigned Align,
    366                          bool isVolatile = false, MDNode *TBAATag = nullptr,
    367                          MDNode *ScopeTag = nullptr,
    368                          MDNode *NoAliasTag = nullptr) {
    369     return CreateMemSet(Ptr, Val, getInt64(Size), Align, isVolatile,
    370                         TBAATag, ScopeTag, NoAliasTag);
    371   }
    372 
    373   CallInst *CreateMemSet(Value *Ptr, Value *Val, Value *Size, unsigned Align,
    374                          bool isVolatile = false, MDNode *TBAATag = nullptr,
    375                          MDNode *ScopeTag = nullptr,
    376                          MDNode *NoAliasTag = nullptr);
    377 
    378   /// \brief Create and insert a memcpy between the specified pointers.
    379   ///
    380   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
    381   /// specified, it will be added to the instruction. Likewise with alias.scope
    382   /// and noalias tags.
    383   CallInst *CreateMemCpy(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
    384                          bool isVolatile = false, MDNode *TBAATag = nullptr,
    385                          MDNode *TBAAStructTag = nullptr,
    386                          MDNode *ScopeTag = nullptr,
    387                          MDNode *NoAliasTag = nullptr) {
    388     return CreateMemCpy(Dst, Src, getInt64(Size), Align, isVolatile, TBAATag,
    389                         TBAAStructTag, ScopeTag, NoAliasTag);
    390   }
    391 
    392   CallInst *CreateMemCpy(Value *Dst, Value *Src, Value *Size, unsigned Align,
    393                          bool isVolatile = false, MDNode *TBAATag = nullptr,
    394                          MDNode *TBAAStructTag = nullptr,
    395                          MDNode *ScopeTag = nullptr,
    396                          MDNode *NoAliasTag = nullptr);
    397 
    398   /// \brief Create and insert a memmove between the specified
    399   /// pointers.
    400   ///
    401   /// If the pointers aren't i8*, they will be converted.  If a TBAA tag is
    402   /// specified, it will be added to the instruction. Likewise with alias.scope
    403   /// and noalias tags.
    404   CallInst *CreateMemMove(Value *Dst, Value *Src, uint64_t Size, unsigned Align,
    405                           bool isVolatile = false, MDNode *TBAATag = nullptr,
    406                           MDNode *ScopeTag = nullptr,
    407                           MDNode *NoAliasTag = nullptr) {
    408     return CreateMemMove(Dst, Src, getInt64(Size), Align, isVolatile,
    409                          TBAATag, ScopeTag, NoAliasTag);
    410   }
    411 
    412   CallInst *CreateMemMove(Value *Dst, Value *Src, Value *Size, unsigned Align,
    413                           bool isVolatile = false, MDNode *TBAATag = nullptr,
    414                           MDNode *ScopeTag = nullptr,
    415                           MDNode *NoAliasTag = nullptr);
    416 
    417   /// \brief Create a lifetime.start intrinsic.
    418   ///
    419   /// If the pointer isn't i8* it will be converted.
    420   CallInst *CreateLifetimeStart(Value *Ptr, ConstantInt *Size = nullptr);
    421 
    422   /// \brief Create a lifetime.end intrinsic.
    423   ///
    424   /// If the pointer isn't i8* it will be converted.
    425   CallInst *CreateLifetimeEnd(Value *Ptr, ConstantInt *Size = nullptr);
    426 
    427   /// \brief Create a call to Masked Load intrinsic
    428   CallInst *CreateMaskedLoad(Value *Ptr, unsigned Align, Value *Mask,
    429                              Value *PassThru = nullptr, const Twine &Name = "");
    430 
    431   /// \brief Create a call to Masked Store intrinsic
    432   CallInst *CreateMaskedStore(Value *Val, Value *Ptr, unsigned Align,
    433                               Value *Mask);
    434 
    435   /// \brief Create an assume intrinsic call that allows the optimizer to
    436   /// assume that the provided condition will be true.
    437   CallInst *CreateAssumption(Value *Cond);
    438 
    439   /// \brief Create a call to the experimental.gc.statepoint intrinsic to
    440   /// start a new statepoint sequence.
    441   CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
    442                                    Value *ActualCallee,
    443                                    ArrayRef<Value *> CallArgs,
    444                                    ArrayRef<Value *> DeoptArgs,
    445                                    ArrayRef<Value *> GCArgs,
    446                                    const Twine &Name = "");
    447 
    448   /// \brief Create a call to the experimental.gc.statepoint intrinsic to
    449   /// start a new statepoint sequence.
    450   CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
    451                                    Value *ActualCallee, uint32_t Flags,
    452                                    ArrayRef<Use> CallArgs,
    453                                    ArrayRef<Use> TransitionArgs,
    454                                    ArrayRef<Use> DeoptArgs,
    455                                    ArrayRef<Value *> GCArgs,
    456                                    const Twine &Name = "");
    457 
    458   // \brief Conveninence function for the common case when CallArgs are filled
    459   // in using makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be
    460   // .get()'ed to get the Value pointer.
    461   CallInst *CreateGCStatepointCall(uint64_t ID, uint32_t NumPatchBytes,
    462                                    Value *ActualCallee, ArrayRef<Use> CallArgs,
    463                                    ArrayRef<Value *> DeoptArgs,
    464                                    ArrayRef<Value *> GCArgs,
    465                                    const Twine &Name = "");
    466 
    467   /// brief Create an invoke to the experimental.gc.statepoint intrinsic to
    468   /// start a new statepoint sequence.
    469   InvokeInst *
    470   CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
    471                            Value *ActualInvokee, BasicBlock *NormalDest,
    472                            BasicBlock *UnwindDest, ArrayRef<Value *> InvokeArgs,
    473                            ArrayRef<Value *> DeoptArgs,
    474                            ArrayRef<Value *> GCArgs, const Twine &Name = "");
    475 
    476   /// brief Create an invoke to the experimental.gc.statepoint intrinsic to
    477   /// start a new statepoint sequence.
    478   InvokeInst *CreateGCStatepointInvoke(
    479       uint64_t ID, uint32_t NumPatchBytes, Value *ActualInvokee,
    480       BasicBlock *NormalDest, BasicBlock *UnwindDest, uint32_t Flags,
    481       ArrayRef<Use> InvokeArgs, ArrayRef<Use> TransitionArgs,
    482       ArrayRef<Use> DeoptArgs, ArrayRef<Value *> GCArgs,
    483       const Twine &Name = "");
    484 
    485   // Conveninence function for the common case when CallArgs are filled in using
    486   // makeArrayRef(CS.arg_begin(), CS.arg_end()); Use needs to be .get()'ed to
    487   // get the Value *.
    488   InvokeInst *
    489   CreateGCStatepointInvoke(uint64_t ID, uint32_t NumPatchBytes,
    490                            Value *ActualInvokee, BasicBlock *NormalDest,
    491                            BasicBlock *UnwindDest, ArrayRef<Use> InvokeArgs,
    492                            ArrayRef<Value *> DeoptArgs,
    493                            ArrayRef<Value *> GCArgs, const Twine &Name = "");
    494 
    495   /// \brief Create a call to the experimental.gc.result intrinsic to extract
    496   /// the result from a call wrapped in a statepoint.
    497   CallInst *CreateGCResult(Instruction *Statepoint,
    498                            Type *ResultType,
    499                            const Twine &Name = "");
    500 
    501   /// \brief Create a call to the experimental.gc.relocate intrinsics to
    502   /// project the relocated value of one pointer from the statepoint.
    503   CallInst *CreateGCRelocate(Instruction *Statepoint,
    504                              int BaseOffset,
    505                              int DerivedOffset,
    506                              Type *ResultType,
    507                              const Twine &Name = "");
    508 
    509 private:
    510   /// \brief Create a call to a masked intrinsic with given Id.
    511   /// Masked intrinsic has only one overloaded type - data type.
    512   CallInst *CreateMaskedIntrinsic(Intrinsic::ID Id, ArrayRef<Value *> Ops,
    513                                   Type *DataTy, const Twine &Name = "");
    514 
    515   Value *getCastedInt8PtrValue(Value *Ptr);
    516 };
    517 
    518 /// \brief This provides a uniform API for creating instructions and inserting
    519 /// them into a basic block: either at the end of a BasicBlock, or at a specific
    520 /// iterator location in a block.
    521 ///
    522 /// Note that the builder does not expose the full generality of LLVM
    523 /// instructions.  For access to extra instruction properties, use the mutators
    524 /// (e.g. setVolatile) on the instructions after they have been
    525 /// created. Convenience state exists to specify fast-math flags and fp-math
    526 /// tags.
    527 ///
    528 /// The first template argument handles whether or not to preserve names in the
    529 /// final instruction output. This defaults to on.  The second template argument
    530 /// specifies a class to use for creating constants.  This defaults to creating
    531 /// minimally folded constants.  The third template argument allows clients to
    532 /// specify custom insertion hooks that are called on every newly created
    533 /// insertion.
    534 template<bool preserveNames = true, typename T = ConstantFolder,
    535          typename Inserter = IRBuilderDefaultInserter<preserveNames> >
    536 class IRBuilder : public IRBuilderBase, public Inserter {
    537   T Folder;
    538 
    539 public:
    540   IRBuilder(LLVMContext &C, const T &F, Inserter I = Inserter(),
    541             MDNode *FPMathTag = nullptr)
    542       : IRBuilderBase(C, FPMathTag), Inserter(std::move(I)), Folder(F) {}
    543 
    544   explicit IRBuilder(LLVMContext &C, MDNode *FPMathTag = nullptr)
    545     : IRBuilderBase(C, FPMathTag), Folder() {
    546   }
    547 
    548   explicit IRBuilder(BasicBlock *TheBB, const T &F, MDNode *FPMathTag = nullptr)
    549     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
    550     SetInsertPoint(TheBB);
    551   }
    552 
    553   explicit IRBuilder(BasicBlock *TheBB, MDNode *FPMathTag = nullptr)
    554     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
    555     SetInsertPoint(TheBB);
    556   }
    557 
    558   explicit IRBuilder(Instruction *IP, MDNode *FPMathTag = nullptr)
    559     : IRBuilderBase(IP->getContext(), FPMathTag), Folder() {
    560     SetInsertPoint(IP);
    561   }
    562 
    563   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP, const T& F,
    564             MDNode *FPMathTag = nullptr)
    565     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder(F) {
    566     SetInsertPoint(TheBB, IP);
    567   }
    568 
    569   IRBuilder(BasicBlock *TheBB, BasicBlock::iterator IP,
    570             MDNode *FPMathTag = nullptr)
    571     : IRBuilderBase(TheBB->getContext(), FPMathTag), Folder() {
    572     SetInsertPoint(TheBB, IP);
    573   }
    574 
    575   /// \brief Get the constant folder being used.
    576   const T &getFolder() { return Folder; }
    577 
    578   /// \brief Return true if this builder is configured to actually add the
    579   /// requested names to IR created through it.
    580   bool isNamePreserving() const { return preserveNames; }
    581 
    582   /// \brief Insert and return the specified instruction.
    583   template<typename InstTy>
    584   InstTy *Insert(InstTy *I, const Twine &Name = "") const {
    585     this->InsertHelper(I, Name, BB, InsertPt);
    586     this->SetInstDebugLocation(I);
    587     return I;
    588   }
    589 
    590   /// \brief No-op overload to handle constants.
    591   Constant *Insert(Constant *C, const Twine& = "") const {
    592     return C;
    593   }
    594 
    595   //===--------------------------------------------------------------------===//
    596   // Instruction creation methods: Terminators
    597   //===--------------------------------------------------------------------===//
    598 
    599 private:
    600   /// \brief Helper to add branch weight and unpredictable metadata onto an
    601   /// instruction.
    602   /// \returns The annotated instruction.
    603   template <typename InstTy>
    604   InstTy *addBranchMetadata(InstTy *I, MDNode *Weights, MDNode *Unpredictable) {
    605     if (Weights)
    606       I->setMetadata(LLVMContext::MD_prof, Weights);
    607     if (Unpredictable)
    608       I->setMetadata(LLVMContext::MD_unpredictable, Unpredictable);
    609     return I;
    610   }
    611 
    612 public:
    613   /// \brief Create a 'ret void' instruction.
    614   ReturnInst *CreateRetVoid() {
    615     return Insert(ReturnInst::Create(Context));
    616   }
    617 
    618   /// \brief Create a 'ret <val>' instruction.
    619   ReturnInst *CreateRet(Value *V) {
    620     return Insert(ReturnInst::Create(Context, V));
    621   }
    622 
    623   /// \brief Create a sequence of N insertvalue instructions,
    624   /// with one Value from the retVals array each, that build a aggregate
    625   /// return value one value at a time, and a ret instruction to return
    626   /// the resulting aggregate value.
    627   ///
    628   /// This is a convenience function for code that uses aggregate return values
    629   /// as a vehicle for having multiple return values.
    630   ReturnInst *CreateAggregateRet(Value *const *retVals, unsigned N) {
    631     Value *V = UndefValue::get(getCurrentFunctionReturnType());
    632     for (unsigned i = 0; i != N; ++i)
    633       V = CreateInsertValue(V, retVals[i], i, "mrv");
    634     return Insert(ReturnInst::Create(Context, V));
    635   }
    636 
    637   /// \brief Create an unconditional 'br label X' instruction.
    638   BranchInst *CreateBr(BasicBlock *Dest) {
    639     return Insert(BranchInst::Create(Dest));
    640   }
    641 
    642   /// \brief Create a conditional 'br Cond, TrueDest, FalseDest'
    643   /// instruction.
    644   BranchInst *CreateCondBr(Value *Cond, BasicBlock *True, BasicBlock *False,
    645                            MDNode *BranchWeights = nullptr,
    646                            MDNode *Unpredictable = nullptr) {
    647     return Insert(addBranchMetadata(BranchInst::Create(True, False, Cond),
    648                                     BranchWeights, Unpredictable));
    649   }
    650 
    651   /// \brief Create a switch instruction with the specified value, default dest,
    652   /// and with a hint for the number of cases that will be added (for efficient
    653   /// allocation).
    654   SwitchInst *CreateSwitch(Value *V, BasicBlock *Dest, unsigned NumCases = 10,
    655                            MDNode *BranchWeights = nullptr,
    656                            MDNode *Unpredictable = nullptr) {
    657     return Insert(addBranchMetadata(SwitchInst::Create(V, Dest, NumCases),
    658                                     BranchWeights, Unpredictable));
    659   }
    660 
    661   /// \brief Create an indirect branch instruction with the specified address
    662   /// operand, with an optional hint for the number of destinations that will be
    663   /// added (for efficient allocation).
    664   IndirectBrInst *CreateIndirectBr(Value *Addr, unsigned NumDests = 10) {
    665     return Insert(IndirectBrInst::Create(Addr, NumDests));
    666   }
    667 
    668   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
    669                            BasicBlock *UnwindDest, const Twine &Name = "") {
    670     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, None),
    671                   Name);
    672   }
    673   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
    674                            BasicBlock *UnwindDest, Value *Arg1,
    675                            const Twine &Name = "") {
    676     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Arg1),
    677                   Name);
    678   }
    679   InvokeInst *CreateInvoke3(Value *Callee, BasicBlock *NormalDest,
    680                             BasicBlock *UnwindDest, Value *Arg1,
    681                             Value *Arg2, Value *Arg3,
    682                             const Twine &Name = "") {
    683     Value *Args[] = { Arg1, Arg2, Arg3 };
    684     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
    685                   Name);
    686   }
    687   /// \brief Create an invoke instruction.
    688   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
    689                            BasicBlock *UnwindDest, ArrayRef<Value *> Args,
    690                            const Twine &Name = "") {
    691     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args),
    692                   Name);
    693   }
    694   InvokeInst *CreateInvoke(Value *Callee, BasicBlock *NormalDest,
    695                            BasicBlock *UnwindDest, ArrayRef<Value *> Args,
    696                            ArrayRef<OperandBundleDef> OpBundles,
    697                            const Twine &Name = "") {
    698     return Insert(InvokeInst::Create(Callee, NormalDest, UnwindDest, Args,
    699                                      OpBundles), Name);
    700   }
    701 
    702   ResumeInst *CreateResume(Value *Exn) {
    703     return Insert(ResumeInst::Create(Exn));
    704   }
    705 
    706   CleanupReturnInst *CreateCleanupRet(CleanupPadInst *CleanupPad,
    707                                       BasicBlock *UnwindBB = nullptr) {
    708     return Insert(CleanupReturnInst::Create(CleanupPad, UnwindBB));
    709   }
    710 
    711   CatchSwitchInst *CreateCatchSwitch(Value *ParentPad, BasicBlock *UnwindBB,
    712                                      unsigned NumHandlers,
    713                                      const Twine &Name = "") {
    714     return Insert(CatchSwitchInst::Create(ParentPad, UnwindBB, NumHandlers),
    715                   Name);
    716   }
    717 
    718   CatchPadInst *CreateCatchPad(Value *ParentPad, ArrayRef<Value *> Args,
    719                                const Twine &Name = "") {
    720     return Insert(CatchPadInst::Create(ParentPad, Args), Name);
    721   }
    722 
    723   CleanupPadInst *CreateCleanupPad(Value *ParentPad,
    724                                    ArrayRef<Value *> Args = None,
    725                                    const Twine &Name = "") {
    726     return Insert(CleanupPadInst::Create(ParentPad, Args), Name);
    727   }
    728 
    729   CatchReturnInst *CreateCatchRet(CatchPadInst *CatchPad, BasicBlock *BB) {
    730     return Insert(CatchReturnInst::Create(CatchPad, BB));
    731   }
    732 
    733   UnreachableInst *CreateUnreachable() {
    734     return Insert(new UnreachableInst(Context));
    735   }
    736 
    737   //===--------------------------------------------------------------------===//
    738   // Instruction creation methods: Binary Operators
    739   //===--------------------------------------------------------------------===//
    740 private:
    741   BinaryOperator *CreateInsertNUWNSWBinOp(BinaryOperator::BinaryOps Opc,
    742                                           Value *LHS, Value *RHS,
    743                                           const Twine &Name,
    744                                           bool HasNUW, bool HasNSW) {
    745     BinaryOperator *BO = Insert(BinaryOperator::Create(Opc, LHS, RHS), Name);
    746     if (HasNUW) BO->setHasNoUnsignedWrap();
    747     if (HasNSW) BO->setHasNoSignedWrap();
    748     return BO;
    749   }
    750 
    751   Instruction *AddFPMathAttributes(Instruction *I,
    752                                    MDNode *FPMathTag,
    753                                    FastMathFlags FMF) const {
    754     if (!FPMathTag)
    755       FPMathTag = DefaultFPMathTag;
    756     if (FPMathTag)
    757       I->setMetadata(LLVMContext::MD_fpmath, FPMathTag);
    758     I->setFastMathFlags(FMF);
    759     return I;
    760   }
    761 
    762 public:
    763   Value *CreateAdd(Value *LHS, Value *RHS, const Twine &Name = "",
    764                    bool HasNUW = false, bool HasNSW = false) {
    765     if (Constant *LC = dyn_cast<Constant>(LHS))
    766       if (Constant *RC = dyn_cast<Constant>(RHS))
    767         return Insert(Folder.CreateAdd(LC, RC, HasNUW, HasNSW), Name);
    768     return CreateInsertNUWNSWBinOp(Instruction::Add, LHS, RHS, Name,
    769                                    HasNUW, HasNSW);
    770   }
    771   Value *CreateNSWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
    772     return CreateAdd(LHS, RHS, Name, false, true);
    773   }
    774   Value *CreateNUWAdd(Value *LHS, Value *RHS, const Twine &Name = "") {
    775     return CreateAdd(LHS, RHS, Name, true, false);
    776   }
    777   Value *CreateFAdd(Value *LHS, Value *RHS, const Twine &Name = "",
    778                     MDNode *FPMathTag = nullptr) {
    779     if (Constant *LC = dyn_cast<Constant>(LHS))
    780       if (Constant *RC = dyn_cast<Constant>(RHS))
    781         return Insert(Folder.CreateFAdd(LC, RC), Name);
    782     return Insert(AddFPMathAttributes(BinaryOperator::CreateFAdd(LHS, RHS),
    783                                       FPMathTag, FMF), Name);
    784   }
    785   Value *CreateSub(Value *LHS, Value *RHS, const Twine &Name = "",
    786                    bool HasNUW = false, bool HasNSW = false) {
    787     if (Constant *LC = dyn_cast<Constant>(LHS))
    788       if (Constant *RC = dyn_cast<Constant>(RHS))
    789         return Insert(Folder.CreateSub(LC, RC, HasNUW, HasNSW), Name);
    790     return CreateInsertNUWNSWBinOp(Instruction::Sub, LHS, RHS, Name,
    791                                    HasNUW, HasNSW);
    792   }
    793   Value *CreateNSWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
    794     return CreateSub(LHS, RHS, Name, false, true);
    795   }
    796   Value *CreateNUWSub(Value *LHS, Value *RHS, const Twine &Name = "") {
    797     return CreateSub(LHS, RHS, Name, true, false);
    798   }
    799   Value *CreateFSub(Value *LHS, Value *RHS, const Twine &Name = "",
    800                     MDNode *FPMathTag = nullptr) {
    801     if (Constant *LC = dyn_cast<Constant>(LHS))
    802       if (Constant *RC = dyn_cast<Constant>(RHS))
    803         return Insert(Folder.CreateFSub(LC, RC), Name);
    804     return Insert(AddFPMathAttributes(BinaryOperator::CreateFSub(LHS, RHS),
    805                                       FPMathTag, FMF), Name);
    806   }
    807   Value *CreateMul(Value *LHS, Value *RHS, const Twine &Name = "",
    808                    bool HasNUW = false, bool HasNSW = false) {
    809     if (Constant *LC = dyn_cast<Constant>(LHS))
    810       if (Constant *RC = dyn_cast<Constant>(RHS))
    811         return Insert(Folder.CreateMul(LC, RC, HasNUW, HasNSW), Name);
    812     return CreateInsertNUWNSWBinOp(Instruction::Mul, LHS, RHS, Name,
    813                                    HasNUW, HasNSW);
    814   }
    815   Value *CreateNSWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
    816     return CreateMul(LHS, RHS, Name, false, true);
    817   }
    818   Value *CreateNUWMul(Value *LHS, Value *RHS, const Twine &Name = "") {
    819     return CreateMul(LHS, RHS, Name, true, false);
    820   }
    821   Value *CreateFMul(Value *LHS, Value *RHS, const Twine &Name = "",
    822                     MDNode *FPMathTag = nullptr) {
    823     if (Constant *LC = dyn_cast<Constant>(LHS))
    824       if (Constant *RC = dyn_cast<Constant>(RHS))
    825         return Insert(Folder.CreateFMul(LC, RC), Name);
    826     return Insert(AddFPMathAttributes(BinaryOperator::CreateFMul(LHS, RHS),
    827                                       FPMathTag, FMF), Name);
    828   }
    829   Value *CreateUDiv(Value *LHS, Value *RHS, const Twine &Name = "",
    830                     bool isExact = false) {
    831     if (Constant *LC = dyn_cast<Constant>(LHS))
    832       if (Constant *RC = dyn_cast<Constant>(RHS))
    833         return Insert(Folder.CreateUDiv(LC, RC, isExact), Name);
    834     if (!isExact)
    835       return Insert(BinaryOperator::CreateUDiv(LHS, RHS), Name);
    836     return Insert(BinaryOperator::CreateExactUDiv(LHS, RHS), Name);
    837   }
    838   Value *CreateExactUDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
    839     return CreateUDiv(LHS, RHS, Name, true);
    840   }
    841   Value *CreateSDiv(Value *LHS, Value *RHS, const Twine &Name = "",
    842                     bool isExact = false) {
    843     if (Constant *LC = dyn_cast<Constant>(LHS))
    844       if (Constant *RC = dyn_cast<Constant>(RHS))
    845         return Insert(Folder.CreateSDiv(LC, RC, isExact), Name);
    846     if (!isExact)
    847       return Insert(BinaryOperator::CreateSDiv(LHS, RHS), Name);
    848     return Insert(BinaryOperator::CreateExactSDiv(LHS, RHS), Name);
    849   }
    850   Value *CreateExactSDiv(Value *LHS, Value *RHS, const Twine &Name = "") {
    851     return CreateSDiv(LHS, RHS, Name, true);
    852   }
    853   Value *CreateFDiv(Value *LHS, Value *RHS, const Twine &Name = "",
    854                     MDNode *FPMathTag = nullptr) {
    855     if (Constant *LC = dyn_cast<Constant>(LHS))
    856       if (Constant *RC = dyn_cast<Constant>(RHS))
    857         return Insert(Folder.CreateFDiv(LC, RC), Name);
    858     return Insert(AddFPMathAttributes(BinaryOperator::CreateFDiv(LHS, RHS),
    859                                       FPMathTag, FMF), Name);
    860   }
    861   Value *CreateURem(Value *LHS, Value *RHS, const Twine &Name = "") {
    862     if (Constant *LC = dyn_cast<Constant>(LHS))
    863       if (Constant *RC = dyn_cast<Constant>(RHS))
    864         return Insert(Folder.CreateURem(LC, RC), Name);
    865     return Insert(BinaryOperator::CreateURem(LHS, RHS), Name);
    866   }
    867   Value *CreateSRem(Value *LHS, Value *RHS, const Twine &Name = "") {
    868     if (Constant *LC = dyn_cast<Constant>(LHS))
    869       if (Constant *RC = dyn_cast<Constant>(RHS))
    870         return Insert(Folder.CreateSRem(LC, RC), Name);
    871     return Insert(BinaryOperator::CreateSRem(LHS, RHS), Name);
    872   }
    873   Value *CreateFRem(Value *LHS, Value *RHS, const Twine &Name = "",
    874                     MDNode *FPMathTag = nullptr) {
    875     if (Constant *LC = dyn_cast<Constant>(LHS))
    876       if (Constant *RC = dyn_cast<Constant>(RHS))
    877         return Insert(Folder.CreateFRem(LC, RC), Name);
    878     return Insert(AddFPMathAttributes(BinaryOperator::CreateFRem(LHS, RHS),
    879                                       FPMathTag, FMF), Name);
    880   }
    881 
    882   Value *CreateShl(Value *LHS, Value *RHS, const Twine &Name = "",
    883                    bool HasNUW = false, bool HasNSW = false) {
    884     if (Constant *LC = dyn_cast<Constant>(LHS))
    885       if (Constant *RC = dyn_cast<Constant>(RHS))
    886         return Insert(Folder.CreateShl(LC, RC, HasNUW, HasNSW), Name);
    887     return CreateInsertNUWNSWBinOp(Instruction::Shl, LHS, RHS, Name,
    888                                    HasNUW, HasNSW);
    889   }
    890   Value *CreateShl(Value *LHS, const APInt &RHS, const Twine &Name = "",
    891                    bool HasNUW = false, bool HasNSW = false) {
    892     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
    893                      HasNUW, HasNSW);
    894   }
    895   Value *CreateShl(Value *LHS, uint64_t RHS, const Twine &Name = "",
    896                    bool HasNUW = false, bool HasNSW = false) {
    897     return CreateShl(LHS, ConstantInt::get(LHS->getType(), RHS), Name,
    898                      HasNUW, HasNSW);
    899   }
    900 
    901   Value *CreateLShr(Value *LHS, Value *RHS, const Twine &Name = "",
    902                     bool isExact = false) {
    903     if (Constant *LC = dyn_cast<Constant>(LHS))
    904       if (Constant *RC = dyn_cast<Constant>(RHS))
    905         return Insert(Folder.CreateLShr(LC, RC, isExact), Name);
    906     if (!isExact)
    907       return Insert(BinaryOperator::CreateLShr(LHS, RHS), Name);
    908     return Insert(BinaryOperator::CreateExactLShr(LHS, RHS), Name);
    909   }
    910   Value *CreateLShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
    911                     bool isExact = false) {
    912     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
    913   }
    914   Value *CreateLShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
    915                     bool isExact = false) {
    916     return CreateLShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
    917   }
    918 
    919   Value *CreateAShr(Value *LHS, Value *RHS, const Twine &Name = "",
    920                     bool isExact = false) {
    921     if (Constant *LC = dyn_cast<Constant>(LHS))
    922       if (Constant *RC = dyn_cast<Constant>(RHS))
    923         return Insert(Folder.CreateAShr(LC, RC, isExact), Name);
    924     if (!isExact)
    925       return Insert(BinaryOperator::CreateAShr(LHS, RHS), Name);
    926     return Insert(BinaryOperator::CreateExactAShr(LHS, RHS), Name);
    927   }
    928   Value *CreateAShr(Value *LHS, const APInt &RHS, const Twine &Name = "",
    929                     bool isExact = false) {
    930     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
    931   }
    932   Value *CreateAShr(Value *LHS, uint64_t RHS, const Twine &Name = "",
    933                     bool isExact = false) {
    934     return CreateAShr(LHS, ConstantInt::get(LHS->getType(), RHS), Name,isExact);
    935   }
    936 
    937   Value *CreateAnd(Value *LHS, Value *RHS, const Twine &Name = "") {
    938     if (Constant *RC = dyn_cast<Constant>(RHS)) {
    939       if (isa<ConstantInt>(RC) && cast<ConstantInt>(RC)->isAllOnesValue())
    940         return LHS;  // LHS & -1 -> LHS
    941       if (Constant *LC = dyn_cast<Constant>(LHS))
    942         return Insert(Folder.CreateAnd(LC, RC), Name);
    943     }
    944     return Insert(BinaryOperator::CreateAnd(LHS, RHS), Name);
    945   }
    946   Value *CreateAnd(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    947     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    948   }
    949   Value *CreateAnd(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    950     return CreateAnd(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    951   }
    952 
    953   Value *CreateOr(Value *LHS, Value *RHS, const Twine &Name = "") {
    954     if (Constant *RC = dyn_cast<Constant>(RHS)) {
    955       if (RC->isNullValue())
    956         return LHS;  // LHS | 0 -> LHS
    957       if (Constant *LC = dyn_cast<Constant>(LHS))
    958         return Insert(Folder.CreateOr(LC, RC), Name);
    959     }
    960     return Insert(BinaryOperator::CreateOr(LHS, RHS), Name);
    961   }
    962   Value *CreateOr(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    963     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    964   }
    965   Value *CreateOr(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    966     return CreateOr(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    967   }
    968 
    969   Value *CreateXor(Value *LHS, Value *RHS, const Twine &Name = "") {
    970     if (Constant *LC = dyn_cast<Constant>(LHS))
    971       if (Constant *RC = dyn_cast<Constant>(RHS))
    972         return Insert(Folder.CreateXor(LC, RC), Name);
    973     return Insert(BinaryOperator::CreateXor(LHS, RHS), Name);
    974   }
    975   Value *CreateXor(Value *LHS, const APInt &RHS, const Twine &Name = "") {
    976     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    977   }
    978   Value *CreateXor(Value *LHS, uint64_t RHS, const Twine &Name = "") {
    979     return CreateXor(LHS, ConstantInt::get(LHS->getType(), RHS), Name);
    980   }
    981 
    982   Value *CreateBinOp(Instruction::BinaryOps Opc,
    983                      Value *LHS, Value *RHS, const Twine &Name = "",
    984                      MDNode *FPMathTag = nullptr) {
    985     if (Constant *LC = dyn_cast<Constant>(LHS))
    986       if (Constant *RC = dyn_cast<Constant>(RHS))
    987         return Insert(Folder.CreateBinOp(Opc, LC, RC), Name);
    988     llvm::Instruction *BinOp = BinaryOperator::Create(Opc, LHS, RHS);
    989     if (isa<FPMathOperator>(BinOp))
    990       BinOp = AddFPMathAttributes(BinOp, FPMathTag, FMF);
    991     return Insert(BinOp, Name);
    992   }
    993 
    994   Value *CreateNeg(Value *V, const Twine &Name = "",
    995                    bool HasNUW = false, bool HasNSW = false) {
    996     if (Constant *VC = dyn_cast<Constant>(V))
    997       return Insert(Folder.CreateNeg(VC, HasNUW, HasNSW), Name);
    998     BinaryOperator *BO = Insert(BinaryOperator::CreateNeg(V), Name);
    999     if (HasNUW) BO->setHasNoUnsignedWrap();
   1000     if (HasNSW) BO->setHasNoSignedWrap();
   1001     return BO;
   1002   }
   1003   Value *CreateNSWNeg(Value *V, const Twine &Name = "") {
   1004     return CreateNeg(V, Name, false, true);
   1005   }
   1006   Value *CreateNUWNeg(Value *V, const Twine &Name = "") {
   1007     return CreateNeg(V, Name, true, false);
   1008   }
   1009   Value *CreateFNeg(Value *V, const Twine &Name = "",
   1010                     MDNode *FPMathTag = nullptr) {
   1011     if (Constant *VC = dyn_cast<Constant>(V))
   1012       return Insert(Folder.CreateFNeg(VC), Name);
   1013     return Insert(AddFPMathAttributes(BinaryOperator::CreateFNeg(V),
   1014                                       FPMathTag, FMF), Name);
   1015   }
   1016   Value *CreateNot(Value *V, const Twine &Name = "") {
   1017     if (Constant *VC = dyn_cast<Constant>(V))
   1018       return Insert(Folder.CreateNot(VC), Name);
   1019     return Insert(BinaryOperator::CreateNot(V), Name);
   1020   }
   1021 
   1022   //===--------------------------------------------------------------------===//
   1023   // Instruction creation methods: Memory Instructions
   1024   //===--------------------------------------------------------------------===//
   1025 
   1026   AllocaInst *CreateAlloca(Type *Ty, Value *ArraySize = nullptr,
   1027                            const Twine &Name = "") {
   1028     return Insert(new AllocaInst(Ty, ArraySize), Name);
   1029   }
   1030   // \brief Provided to resolve 'CreateLoad(Ptr, "...")' correctly, instead of
   1031   // converting the string to 'bool' for the isVolatile parameter.
   1032   LoadInst *CreateLoad(Value *Ptr, const char *Name) {
   1033     return Insert(new LoadInst(Ptr), Name);
   1034   }
   1035   LoadInst *CreateLoad(Value *Ptr, const Twine &Name = "") {
   1036     return Insert(new LoadInst(Ptr), Name);
   1037   }
   1038   LoadInst *CreateLoad(Type *Ty, Value *Ptr, const Twine &Name = "") {
   1039     return Insert(new LoadInst(Ty, Ptr), Name);
   1040   }
   1041   LoadInst *CreateLoad(Value *Ptr, bool isVolatile, const Twine &Name = "") {
   1042     return Insert(new LoadInst(Ptr, nullptr, isVolatile), Name);
   1043   }
   1044   StoreInst *CreateStore(Value *Val, Value *Ptr, bool isVolatile = false) {
   1045     return Insert(new StoreInst(Val, Ptr, isVolatile));
   1046   }
   1047   // \brief Provided to resolve 'CreateAlignedLoad(Ptr, Align, "...")'
   1048   // correctly, instead of converting the string to 'bool' for the isVolatile
   1049   // parameter.
   1050   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, const char *Name) {
   1051     LoadInst *LI = CreateLoad(Ptr, Name);
   1052     LI->setAlignment(Align);
   1053     return LI;
   1054   }
   1055   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align,
   1056                               const Twine &Name = "") {
   1057     LoadInst *LI = CreateLoad(Ptr, Name);
   1058     LI->setAlignment(Align);
   1059     return LI;
   1060   }
   1061   LoadInst *CreateAlignedLoad(Value *Ptr, unsigned Align, bool isVolatile,
   1062                               const Twine &Name = "") {
   1063     LoadInst *LI = CreateLoad(Ptr, isVolatile, Name);
   1064     LI->setAlignment(Align);
   1065     return LI;
   1066   }
   1067   StoreInst *CreateAlignedStore(Value *Val, Value *Ptr, unsigned Align,
   1068                                 bool isVolatile = false) {
   1069     StoreInst *SI = CreateStore(Val, Ptr, isVolatile);
   1070     SI->setAlignment(Align);
   1071     return SI;
   1072   }
   1073   FenceInst *CreateFence(AtomicOrdering Ordering,
   1074                          SynchronizationScope SynchScope = CrossThread,
   1075                          const Twine &Name = "") {
   1076     return Insert(new FenceInst(Context, Ordering, SynchScope), Name);
   1077   }
   1078   AtomicCmpXchgInst *
   1079   CreateAtomicCmpXchg(Value *Ptr, Value *Cmp, Value *New,
   1080                       AtomicOrdering SuccessOrdering,
   1081                       AtomicOrdering FailureOrdering,
   1082                       SynchronizationScope SynchScope = CrossThread) {
   1083     return Insert(new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering,
   1084                                         FailureOrdering, SynchScope));
   1085   }
   1086   AtomicRMWInst *CreateAtomicRMW(AtomicRMWInst::BinOp Op, Value *Ptr, Value *Val,
   1087                                  AtomicOrdering Ordering,
   1088                                SynchronizationScope SynchScope = CrossThread) {
   1089     return Insert(new AtomicRMWInst(Op, Ptr, Val, Ordering, SynchScope));
   1090   }
   1091   Value *CreateGEP(Value *Ptr, ArrayRef<Value *> IdxList,
   1092                    const Twine &Name = "") {
   1093     return CreateGEP(nullptr, Ptr, IdxList, Name);
   1094   }
   1095   Value *CreateGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
   1096                    const Twine &Name = "") {
   1097     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
   1098       // Every index must be constant.
   1099       size_t i, e;
   1100       for (i = 0, e = IdxList.size(); i != e; ++i)
   1101         if (!isa<Constant>(IdxList[i]))
   1102           break;
   1103       if (i == e)
   1104         return Insert(Folder.CreateGetElementPtr(Ty, PC, IdxList), Name);
   1105     }
   1106     return Insert(GetElementPtrInst::Create(Ty, Ptr, IdxList), Name);
   1107   }
   1108   Value *CreateInBoundsGEP(Value *Ptr, ArrayRef<Value *> IdxList,
   1109                            const Twine &Name = "") {
   1110     return CreateInBoundsGEP(nullptr, Ptr, IdxList, Name);
   1111   }
   1112   Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, ArrayRef<Value *> IdxList,
   1113                            const Twine &Name = "") {
   1114     if (Constant *PC = dyn_cast<Constant>(Ptr)) {
   1115       // Every index must be constant.
   1116       size_t i, e;
   1117       for (i = 0, e = IdxList.size(); i != e; ++i)
   1118         if (!isa<Constant>(IdxList[i]))
   1119           break;
   1120       if (i == e)
   1121         return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IdxList),
   1122                       Name);
   1123     }
   1124     return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, IdxList), Name);
   1125   }
   1126   Value *CreateGEP(Value *Ptr, Value *Idx, const Twine &Name = "") {
   1127     return CreateGEP(nullptr, Ptr, Idx, Name);
   1128   }
   1129   Value *CreateGEP(Type *Ty, Value *Ptr, Value *Idx, const Twine &Name = "") {
   1130     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1131       if (Constant *IC = dyn_cast<Constant>(Idx))
   1132         return Insert(Folder.CreateGetElementPtr(Ty, PC, IC), Name);
   1133     return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
   1134   }
   1135   Value *CreateInBoundsGEP(Type *Ty, Value *Ptr, Value *Idx,
   1136                            const Twine &Name = "") {
   1137     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1138       if (Constant *IC = dyn_cast<Constant>(Idx))
   1139         return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, IC), Name);
   1140     return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
   1141   }
   1142   Value *CreateConstGEP1_32(Value *Ptr, unsigned Idx0, const Twine &Name = "") {
   1143     return CreateConstGEP1_32(nullptr, Ptr, Idx0, Name);
   1144   }
   1145   Value *CreateConstGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
   1146                             const Twine &Name = "") {
   1147     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
   1148 
   1149     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1150       return Insert(Folder.CreateGetElementPtr(Ty, PC, Idx), Name);
   1151 
   1152     return Insert(GetElementPtrInst::Create(Ty, Ptr, Idx), Name);
   1153   }
   1154   Value *CreateConstInBoundsGEP1_32(Type *Ty, Value *Ptr, unsigned Idx0,
   1155                                     const Twine &Name = "") {
   1156     Value *Idx = ConstantInt::get(Type::getInt32Ty(Context), Idx0);
   1157 
   1158     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1159       return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idx), Name);
   1160 
   1161     return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idx), Name);
   1162   }
   1163   Value *CreateConstGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0, unsigned Idx1,
   1164                             const Twine &Name = "") {
   1165     Value *Idxs[] = {
   1166       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
   1167       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
   1168     };
   1169 
   1170     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1171       return Insert(Folder.CreateGetElementPtr(Ty, PC, Idxs), Name);
   1172 
   1173     return Insert(GetElementPtrInst::Create(Ty, Ptr, Idxs), Name);
   1174   }
   1175   Value *CreateConstInBoundsGEP2_32(Type *Ty, Value *Ptr, unsigned Idx0,
   1176                                     unsigned Idx1, const Twine &Name = "") {
   1177     Value *Idxs[] = {
   1178       ConstantInt::get(Type::getInt32Ty(Context), Idx0),
   1179       ConstantInt::get(Type::getInt32Ty(Context), Idx1)
   1180     };
   1181 
   1182     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1183       return Insert(Folder.CreateInBoundsGetElementPtr(Ty, PC, Idxs), Name);
   1184 
   1185     return Insert(GetElementPtrInst::CreateInBounds(Ty, Ptr, Idxs), Name);
   1186   }
   1187   Value *CreateConstGEP1_64(Value *Ptr, uint64_t Idx0, const Twine &Name = "") {
   1188     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
   1189 
   1190     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1191       return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idx), Name);
   1192 
   1193     return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idx), Name);
   1194   }
   1195   Value *CreateConstInBoundsGEP1_64(Value *Ptr, uint64_t Idx0,
   1196                                     const Twine &Name = "") {
   1197     Value *Idx = ConstantInt::get(Type::getInt64Ty(Context), Idx0);
   1198 
   1199     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1200       return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idx), Name);
   1201 
   1202     return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idx), Name);
   1203   }
   1204   Value *CreateConstGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
   1205                     const Twine &Name = "") {
   1206     Value *Idxs[] = {
   1207       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
   1208       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
   1209     };
   1210 
   1211     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1212       return Insert(Folder.CreateGetElementPtr(nullptr, PC, Idxs), Name);
   1213 
   1214     return Insert(GetElementPtrInst::Create(nullptr, Ptr, Idxs), Name);
   1215   }
   1216   Value *CreateConstInBoundsGEP2_64(Value *Ptr, uint64_t Idx0, uint64_t Idx1,
   1217                                     const Twine &Name = "") {
   1218     Value *Idxs[] = {
   1219       ConstantInt::get(Type::getInt64Ty(Context), Idx0),
   1220       ConstantInt::get(Type::getInt64Ty(Context), Idx1)
   1221     };
   1222 
   1223     if (Constant *PC = dyn_cast<Constant>(Ptr))
   1224       return Insert(Folder.CreateInBoundsGetElementPtr(nullptr, PC, Idxs),
   1225                     Name);
   1226 
   1227     return Insert(GetElementPtrInst::CreateInBounds(nullptr, Ptr, Idxs), Name);
   1228   }
   1229   Value *CreateStructGEP(Type *Ty, Value *Ptr, unsigned Idx,
   1230                          const Twine &Name = "") {
   1231     return CreateConstInBoundsGEP2_32(Ty, Ptr, 0, Idx, Name);
   1232   }
   1233 
   1234   /// \brief Same as CreateGlobalString, but return a pointer with "i8*" type
   1235   /// instead of a pointer to array of i8.
   1236   Value *CreateGlobalStringPtr(StringRef Str, const Twine &Name = "",
   1237                                unsigned AddressSpace = 0) {
   1238     GlobalVariable *gv = CreateGlobalString(Str, Name, AddressSpace);
   1239     Value *zero = ConstantInt::get(Type::getInt32Ty(Context), 0);
   1240     Value *Args[] = { zero, zero };
   1241     return CreateInBoundsGEP(gv->getValueType(), gv, Args, Name);
   1242   }
   1243 
   1244   //===--------------------------------------------------------------------===//
   1245   // Instruction creation methods: Cast/Conversion Operators
   1246   //===--------------------------------------------------------------------===//
   1247 
   1248   Value *CreateTrunc(Value *V, Type *DestTy, const Twine &Name = "") {
   1249     return CreateCast(Instruction::Trunc, V, DestTy, Name);
   1250   }
   1251   Value *CreateZExt(Value *V, Type *DestTy, const Twine &Name = "") {
   1252     return CreateCast(Instruction::ZExt, V, DestTy, Name);
   1253   }
   1254   Value *CreateSExt(Value *V, Type *DestTy, const Twine &Name = "") {
   1255     return CreateCast(Instruction::SExt, V, DestTy, Name);
   1256   }
   1257   /// \brief Create a ZExt or Trunc from the integer value V to DestTy. Return
   1258   /// the value untouched if the type of V is already DestTy.
   1259   Value *CreateZExtOrTrunc(Value *V, Type *DestTy,
   1260                            const Twine &Name = "") {
   1261     assert(V->getType()->isIntOrIntVectorTy() &&
   1262            DestTy->isIntOrIntVectorTy() &&
   1263            "Can only zero extend/truncate integers!");
   1264     Type *VTy = V->getType();
   1265     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
   1266       return CreateZExt(V, DestTy, Name);
   1267     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
   1268       return CreateTrunc(V, DestTy, Name);
   1269     return V;
   1270   }
   1271   /// \brief Create a SExt or Trunc from the integer value V to DestTy. Return
   1272   /// the value untouched if the type of V is already DestTy.
   1273   Value *CreateSExtOrTrunc(Value *V, Type *DestTy,
   1274                            const Twine &Name = "") {
   1275     assert(V->getType()->isIntOrIntVectorTy() &&
   1276            DestTy->isIntOrIntVectorTy() &&
   1277            "Can only sign extend/truncate integers!");
   1278     Type *VTy = V->getType();
   1279     if (VTy->getScalarSizeInBits() < DestTy->getScalarSizeInBits())
   1280       return CreateSExt(V, DestTy, Name);
   1281     if (VTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits())
   1282       return CreateTrunc(V, DestTy, Name);
   1283     return V;
   1284   }
   1285   Value *CreateFPToUI(Value *V, Type *DestTy, const Twine &Name = ""){
   1286     return CreateCast(Instruction::FPToUI, V, DestTy, Name);
   1287   }
   1288   Value *CreateFPToSI(Value *V, Type *DestTy, const Twine &Name = ""){
   1289     return CreateCast(Instruction::FPToSI, V, DestTy, Name);
   1290   }
   1291   Value *CreateUIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
   1292     return CreateCast(Instruction::UIToFP, V, DestTy, Name);
   1293   }
   1294   Value *CreateSIToFP(Value *V, Type *DestTy, const Twine &Name = ""){
   1295     return CreateCast(Instruction::SIToFP, V, DestTy, Name);
   1296   }
   1297   Value *CreateFPTrunc(Value *V, Type *DestTy,
   1298                        const Twine &Name = "") {
   1299     return CreateCast(Instruction::FPTrunc, V, DestTy, Name);
   1300   }
   1301   Value *CreateFPExt(Value *V, Type *DestTy, const Twine &Name = "") {
   1302     return CreateCast(Instruction::FPExt, V, DestTy, Name);
   1303   }
   1304   Value *CreatePtrToInt(Value *V, Type *DestTy,
   1305                         const Twine &Name = "") {
   1306     return CreateCast(Instruction::PtrToInt, V, DestTy, Name);
   1307   }
   1308   Value *CreateIntToPtr(Value *V, Type *DestTy,
   1309                         const Twine &Name = "") {
   1310     return CreateCast(Instruction::IntToPtr, V, DestTy, Name);
   1311   }
   1312   Value *CreateBitCast(Value *V, Type *DestTy,
   1313                        const Twine &Name = "") {
   1314     return CreateCast(Instruction::BitCast, V, DestTy, Name);
   1315   }
   1316   Value *CreateAddrSpaceCast(Value *V, Type *DestTy,
   1317                              const Twine &Name = "") {
   1318     return CreateCast(Instruction::AddrSpaceCast, V, DestTy, Name);
   1319   }
   1320   Value *CreateZExtOrBitCast(Value *V, Type *DestTy,
   1321                              const Twine &Name = "") {
   1322     if (V->getType() == DestTy)
   1323       return V;
   1324     if (Constant *VC = dyn_cast<Constant>(V))
   1325       return Insert(Folder.CreateZExtOrBitCast(VC, DestTy), Name);
   1326     return Insert(CastInst::CreateZExtOrBitCast(V, DestTy), Name);
   1327   }
   1328   Value *CreateSExtOrBitCast(Value *V, Type *DestTy,
   1329                              const Twine &Name = "") {
   1330     if (V->getType() == DestTy)
   1331       return V;
   1332     if (Constant *VC = dyn_cast<Constant>(V))
   1333       return Insert(Folder.CreateSExtOrBitCast(VC, DestTy), Name);
   1334     return Insert(CastInst::CreateSExtOrBitCast(V, DestTy), Name);
   1335   }
   1336   Value *CreateTruncOrBitCast(Value *V, Type *DestTy,
   1337                               const Twine &Name = "") {
   1338     if (V->getType() == DestTy)
   1339       return V;
   1340     if (Constant *VC = dyn_cast<Constant>(V))
   1341       return Insert(Folder.CreateTruncOrBitCast(VC, DestTy), Name);
   1342     return Insert(CastInst::CreateTruncOrBitCast(V, DestTy), Name);
   1343   }
   1344   Value *CreateCast(Instruction::CastOps Op, Value *V, Type *DestTy,
   1345                     const Twine &Name = "") {
   1346     if (V->getType() == DestTy)
   1347       return V;
   1348     if (Constant *VC = dyn_cast<Constant>(V))
   1349       return Insert(Folder.CreateCast(Op, VC, DestTy), Name);
   1350     return Insert(CastInst::Create(Op, V, DestTy), Name);
   1351   }
   1352   Value *CreatePointerCast(Value *V, Type *DestTy,
   1353                            const Twine &Name = "") {
   1354     if (V->getType() == DestTy)
   1355       return V;
   1356     if (Constant *VC = dyn_cast<Constant>(V))
   1357       return Insert(Folder.CreatePointerCast(VC, DestTy), Name);
   1358     return Insert(CastInst::CreatePointerCast(V, DestTy), Name);
   1359   }
   1360 
   1361   Value *CreatePointerBitCastOrAddrSpaceCast(Value *V, Type *DestTy,
   1362                                              const Twine &Name = "") {
   1363     if (V->getType() == DestTy)
   1364       return V;
   1365 
   1366     if (Constant *VC = dyn_cast<Constant>(V)) {
   1367       return Insert(Folder.CreatePointerBitCastOrAddrSpaceCast(VC, DestTy),
   1368                     Name);
   1369     }
   1370 
   1371     return Insert(CastInst::CreatePointerBitCastOrAddrSpaceCast(V, DestTy),
   1372                   Name);
   1373   }
   1374 
   1375   Value *CreateIntCast(Value *V, Type *DestTy, bool isSigned,
   1376                        const Twine &Name = "") {
   1377     if (V->getType() == DestTy)
   1378       return V;
   1379     if (Constant *VC = dyn_cast<Constant>(V))
   1380       return Insert(Folder.CreateIntCast(VC, DestTy, isSigned), Name);
   1381     return Insert(CastInst::CreateIntegerCast(V, DestTy, isSigned), Name);
   1382   }
   1383 
   1384   Value *CreateBitOrPointerCast(Value *V, Type *DestTy,
   1385                                 const Twine &Name = "") {
   1386     if (V->getType() == DestTy)
   1387       return V;
   1388     if (V->getType()->getScalarType()->isPointerTy() &&
   1389         DestTy->getScalarType()->isIntegerTy())
   1390       return CreatePtrToInt(V, DestTy, Name);
   1391     if (V->getType()->getScalarType()->isIntegerTy() &&
   1392         DestTy->getScalarType()->isPointerTy())
   1393       return CreateIntToPtr(V, DestTy, Name);
   1394 
   1395     return CreateBitCast(V, DestTy, Name);
   1396   }
   1397 
   1398 private:
   1399   // \brief Provided to resolve 'CreateIntCast(Ptr, Ptr, "...")', giving a
   1400   // compile time error, instead of converting the string to bool for the
   1401   // isSigned parameter.
   1402   Value *CreateIntCast(Value *, Type *, const char *) = delete;
   1403 
   1404 public:
   1405   Value *CreateFPCast(Value *V, Type *DestTy, const Twine &Name = "") {
   1406     if (V->getType() == DestTy)
   1407       return V;
   1408     if (Constant *VC = dyn_cast<Constant>(V))
   1409       return Insert(Folder.CreateFPCast(VC, DestTy), Name);
   1410     return Insert(CastInst::CreateFPCast(V, DestTy), Name);
   1411   }
   1412 
   1413   //===--------------------------------------------------------------------===//
   1414   // Instruction creation methods: Compare Instructions
   1415   //===--------------------------------------------------------------------===//
   1416 
   1417   Value *CreateICmpEQ(Value *LHS, Value *RHS, const Twine &Name = "") {
   1418     return CreateICmp(ICmpInst::ICMP_EQ, LHS, RHS, Name);
   1419   }
   1420   Value *CreateICmpNE(Value *LHS, Value *RHS, const Twine &Name = "") {
   1421     return CreateICmp(ICmpInst::ICMP_NE, LHS, RHS, Name);
   1422   }
   1423   Value *CreateICmpUGT(Value *LHS, Value *RHS, const Twine &Name = "") {
   1424     return CreateICmp(ICmpInst::ICMP_UGT, LHS, RHS, Name);
   1425   }
   1426   Value *CreateICmpUGE(Value *LHS, Value *RHS, const Twine &Name = "") {
   1427     return CreateICmp(ICmpInst::ICMP_UGE, LHS, RHS, Name);
   1428   }
   1429   Value *CreateICmpULT(Value *LHS, Value *RHS, const Twine &Name = "") {
   1430     return CreateICmp(ICmpInst::ICMP_ULT, LHS, RHS, Name);
   1431   }
   1432   Value *CreateICmpULE(Value *LHS, Value *RHS, const Twine &Name = "") {
   1433     return CreateICmp(ICmpInst::ICMP_ULE, LHS, RHS, Name);
   1434   }
   1435   Value *CreateICmpSGT(Value *LHS, Value *RHS, const Twine &Name = "") {
   1436     return CreateICmp(ICmpInst::ICMP_SGT, LHS, RHS, Name);
   1437   }
   1438   Value *CreateICmpSGE(Value *LHS, Value *RHS, const Twine &Name = "") {
   1439     return CreateICmp(ICmpInst::ICMP_SGE, LHS, RHS, Name);
   1440   }
   1441   Value *CreateICmpSLT(Value *LHS, Value *RHS, const Twine &Name = "") {
   1442     return CreateICmp(ICmpInst::ICMP_SLT, LHS, RHS, Name);
   1443   }
   1444   Value *CreateICmpSLE(Value *LHS, Value *RHS, const Twine &Name = "") {
   1445     return CreateICmp(ICmpInst::ICMP_SLE, LHS, RHS, Name);
   1446   }
   1447 
   1448   Value *CreateFCmpOEQ(Value *LHS, Value *RHS, const Twine &Name = "",
   1449                        MDNode *FPMathTag = nullptr) {
   1450     return CreateFCmp(FCmpInst::FCMP_OEQ, LHS, RHS, Name, FPMathTag);
   1451   }
   1452   Value *CreateFCmpOGT(Value *LHS, Value *RHS, const Twine &Name = "",
   1453                        MDNode *FPMathTag = nullptr) {
   1454     return CreateFCmp(FCmpInst::FCMP_OGT, LHS, RHS, Name, FPMathTag);
   1455   }
   1456   Value *CreateFCmpOGE(Value *LHS, Value *RHS, const Twine &Name = "",
   1457                        MDNode *FPMathTag = nullptr) {
   1458     return CreateFCmp(FCmpInst::FCMP_OGE, LHS, RHS, Name, FPMathTag);
   1459   }
   1460   Value *CreateFCmpOLT(Value *LHS, Value *RHS, const Twine &Name = "",
   1461                        MDNode *FPMathTag = nullptr) {
   1462     return CreateFCmp(FCmpInst::FCMP_OLT, LHS, RHS, Name, FPMathTag);
   1463   }
   1464   Value *CreateFCmpOLE(Value *LHS, Value *RHS, const Twine &Name = "",
   1465                        MDNode *FPMathTag = nullptr) {
   1466     return CreateFCmp(FCmpInst::FCMP_OLE, LHS, RHS, Name, FPMathTag);
   1467   }
   1468   Value *CreateFCmpONE(Value *LHS, Value *RHS, const Twine &Name = "",
   1469                        MDNode *FPMathTag = nullptr) {
   1470     return CreateFCmp(FCmpInst::FCMP_ONE, LHS, RHS, Name, FPMathTag);
   1471   }
   1472   Value *CreateFCmpORD(Value *LHS, Value *RHS, const Twine &Name = "",
   1473                        MDNode *FPMathTag = nullptr) {
   1474     return CreateFCmp(FCmpInst::FCMP_ORD, LHS, RHS, Name, FPMathTag);
   1475   }
   1476   Value *CreateFCmpUNO(Value *LHS, Value *RHS, const Twine &Name = "",
   1477                        MDNode *FPMathTag = nullptr) {
   1478     return CreateFCmp(FCmpInst::FCMP_UNO, LHS, RHS, Name, FPMathTag);
   1479   }
   1480   Value *CreateFCmpUEQ(Value *LHS, Value *RHS, const Twine &Name = "",
   1481                        MDNode *FPMathTag = nullptr) {
   1482     return CreateFCmp(FCmpInst::FCMP_UEQ, LHS, RHS, Name, FPMathTag);
   1483   }
   1484   Value *CreateFCmpUGT(Value *LHS, Value *RHS, const Twine &Name = "",
   1485                        MDNode *FPMathTag = nullptr) {
   1486     return CreateFCmp(FCmpInst::FCMP_UGT, LHS, RHS, Name, FPMathTag);
   1487   }
   1488   Value *CreateFCmpUGE(Value *LHS, Value *RHS, const Twine &Name = "",
   1489                        MDNode *FPMathTag = nullptr) {
   1490     return CreateFCmp(FCmpInst::FCMP_UGE, LHS, RHS, Name, FPMathTag);
   1491   }
   1492   Value *CreateFCmpULT(Value *LHS, Value *RHS, const Twine &Name = "",
   1493                        MDNode *FPMathTag = nullptr) {
   1494     return CreateFCmp(FCmpInst::FCMP_ULT, LHS, RHS, Name, FPMathTag);
   1495   }
   1496   Value *CreateFCmpULE(Value *LHS, Value *RHS, const Twine &Name = "",
   1497                        MDNode *FPMathTag = nullptr) {
   1498     return CreateFCmp(FCmpInst::FCMP_ULE, LHS, RHS, Name, FPMathTag);
   1499   }
   1500   Value *CreateFCmpUNE(Value *LHS, Value *RHS, const Twine &Name = "",
   1501                        MDNode *FPMathTag = nullptr) {
   1502     return CreateFCmp(FCmpInst::FCMP_UNE, LHS, RHS, Name, FPMathTag);
   1503   }
   1504 
   1505   Value *CreateICmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
   1506                     const Twine &Name = "") {
   1507     if (Constant *LC = dyn_cast<Constant>(LHS))
   1508       if (Constant *RC = dyn_cast<Constant>(RHS))
   1509         return Insert(Folder.CreateICmp(P, LC, RC), Name);
   1510     return Insert(new ICmpInst(P, LHS, RHS), Name);
   1511   }
   1512   Value *CreateFCmp(CmpInst::Predicate P, Value *LHS, Value *RHS,
   1513                     const Twine &Name = "", MDNode *FPMathTag = nullptr) {
   1514     if (Constant *LC = dyn_cast<Constant>(LHS))
   1515       if (Constant *RC = dyn_cast<Constant>(RHS))
   1516         return Insert(Folder.CreateFCmp(P, LC, RC), Name);
   1517     return Insert(AddFPMathAttributes(new FCmpInst(P, LHS, RHS),
   1518                                       FPMathTag, FMF), Name);
   1519   }
   1520 
   1521   //===--------------------------------------------------------------------===//
   1522   // Instruction creation methods: Other Instructions
   1523   //===--------------------------------------------------------------------===//
   1524 
   1525   PHINode *CreatePHI(Type *Ty, unsigned NumReservedValues,
   1526                      const Twine &Name = "") {
   1527     return Insert(PHINode::Create(Ty, NumReservedValues), Name);
   1528   }
   1529 
   1530   CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args = None,
   1531                        ArrayRef<OperandBundleDef> OpBundles = None,
   1532                        const Twine &Name = "") {
   1533     return Insert(CallInst::Create(Callee, Args, OpBundles), Name);
   1534   }
   1535 
   1536   CallInst *CreateCall(Value *Callee, ArrayRef<Value *> Args,
   1537                        const Twine &Name, MDNode *FPMathTag = nullptr) {
   1538     PointerType *PTy = cast<PointerType>(Callee->getType());
   1539     FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1540     return CreateCall(FTy, Callee, Args, Name, FPMathTag);
   1541   }
   1542 
   1543   CallInst *CreateCall(llvm::FunctionType *FTy, Value *Callee,
   1544                        ArrayRef<Value *> Args, const Twine &Name = "",
   1545                        MDNode *FPMathTag = nullptr) {
   1546     CallInst *CI = CallInst::Create(FTy, Callee, Args);
   1547     if (isa<FPMathOperator>(CI))
   1548       CI = cast<CallInst>(AddFPMathAttributes(CI, FPMathTag, FMF));
   1549     return Insert(CI, Name);
   1550   }
   1551 
   1552   CallInst *CreateCall(Function *Callee, ArrayRef<Value *> Args,
   1553                        const Twine &Name = "", MDNode *FPMathTag = nullptr) {
   1554     return CreateCall(Callee->getFunctionType(), Callee, Args, Name, FPMathTag);
   1555   }
   1556 
   1557   Value *CreateSelect(Value *C, Value *True, Value *False,
   1558                       const Twine &Name = "") {
   1559     if (Constant *CC = dyn_cast<Constant>(C))
   1560       if (Constant *TC = dyn_cast<Constant>(True))
   1561         if (Constant *FC = dyn_cast<Constant>(False))
   1562           return Insert(Folder.CreateSelect(CC, TC, FC), Name);
   1563     return Insert(SelectInst::Create(C, True, False), Name);
   1564   }
   1565 
   1566   VAArgInst *CreateVAArg(Value *List, Type *Ty, const Twine &Name = "") {
   1567     return Insert(new VAArgInst(List, Ty), Name);
   1568   }
   1569 
   1570   Value *CreateExtractElement(Value *Vec, Value *Idx,
   1571                               const Twine &Name = "") {
   1572     if (Constant *VC = dyn_cast<Constant>(Vec))
   1573       if (Constant *IC = dyn_cast<Constant>(Idx))
   1574         return Insert(Folder.CreateExtractElement(VC, IC), Name);
   1575     return Insert(ExtractElementInst::Create(Vec, Idx), Name);
   1576   }
   1577 
   1578   Value *CreateExtractElement(Value *Vec, uint64_t Idx,
   1579                               const Twine &Name = "") {
   1580     return CreateExtractElement(Vec, getInt64(Idx), Name);
   1581   }
   1582 
   1583   Value *CreateInsertElement(Value *Vec, Value *NewElt, Value *Idx,
   1584                              const Twine &Name = "") {
   1585     if (Constant *VC = dyn_cast<Constant>(Vec))
   1586       if (Constant *NC = dyn_cast<Constant>(NewElt))
   1587         if (Constant *IC = dyn_cast<Constant>(Idx))
   1588           return Insert(Folder.CreateInsertElement(VC, NC, IC), Name);
   1589     return Insert(InsertElementInst::Create(Vec, NewElt, Idx), Name);
   1590   }
   1591 
   1592   Value *CreateInsertElement(Value *Vec, Value *NewElt, uint64_t Idx,
   1593                              const Twine &Name = "") {
   1594     return CreateInsertElement(Vec, NewElt, getInt64(Idx), Name);
   1595   }
   1596 
   1597   Value *CreateShuffleVector(Value *V1, Value *V2, Value *Mask,
   1598                              const Twine &Name = "") {
   1599     if (Constant *V1C = dyn_cast<Constant>(V1))
   1600       if (Constant *V2C = dyn_cast<Constant>(V2))
   1601         if (Constant *MC = dyn_cast<Constant>(Mask))
   1602           return Insert(Folder.CreateShuffleVector(V1C, V2C, MC), Name);
   1603     return Insert(new ShuffleVectorInst(V1, V2, Mask), Name);
   1604   }
   1605 
   1606   Value *CreateShuffleVector(Value *V1, Value *V2, ArrayRef<int> IntMask,
   1607                              const Twine &Name = "") {
   1608     size_t MaskSize = IntMask.size();
   1609     SmallVector<Constant*, 8> MaskVec(MaskSize);
   1610     for (size_t i = 0; i != MaskSize; ++i)
   1611       MaskVec[i] = getInt32(IntMask[i]);
   1612     Value *Mask = ConstantVector::get(MaskVec);
   1613     return CreateShuffleVector(V1, V2, Mask, Name);
   1614   }
   1615 
   1616   Value *CreateExtractValue(Value *Agg,
   1617                             ArrayRef<unsigned> Idxs,
   1618                             const Twine &Name = "") {
   1619     if (Constant *AggC = dyn_cast<Constant>(Agg))
   1620       return Insert(Folder.CreateExtractValue(AggC, Idxs), Name);
   1621     return Insert(ExtractValueInst::Create(Agg, Idxs), Name);
   1622   }
   1623 
   1624   Value *CreateInsertValue(Value *Agg, Value *Val,
   1625                            ArrayRef<unsigned> Idxs,
   1626                            const Twine &Name = "") {
   1627     if (Constant *AggC = dyn_cast<Constant>(Agg))
   1628       if (Constant *ValC = dyn_cast<Constant>(Val))
   1629         return Insert(Folder.CreateInsertValue(AggC, ValC, Idxs), Name);
   1630     return Insert(InsertValueInst::Create(Agg, Val, Idxs), Name);
   1631   }
   1632 
   1633   LandingPadInst *CreateLandingPad(Type *Ty, unsigned NumClauses,
   1634                                    const Twine &Name = "") {
   1635     return Insert(LandingPadInst::Create(Ty, NumClauses), Name);
   1636   }
   1637 
   1638   //===--------------------------------------------------------------------===//
   1639   // Utility creation methods
   1640   //===--------------------------------------------------------------------===//
   1641 
   1642   /// \brief Return an i1 value testing if \p Arg is null.
   1643   Value *CreateIsNull(Value *Arg, const Twine &Name = "") {
   1644     return CreateICmpEQ(Arg, Constant::getNullValue(Arg->getType()),
   1645                         Name);
   1646   }
   1647 
   1648   /// \brief Return an i1 value testing if \p Arg is not null.
   1649   Value *CreateIsNotNull(Value *Arg, const Twine &Name = "") {
   1650     return CreateICmpNE(Arg, Constant::getNullValue(Arg->getType()),
   1651                         Name);
   1652   }
   1653 
   1654   /// \brief Return the i64 difference between two pointer values, dividing out
   1655   /// the size of the pointed-to objects.
   1656   ///
   1657   /// This is intended to implement C-style pointer subtraction. As such, the
   1658   /// pointers must be appropriately aligned for their element types and
   1659   /// pointing into the same object.
   1660   Value *CreatePtrDiff(Value *LHS, Value *RHS, const Twine &Name = "") {
   1661     assert(LHS->getType() == RHS->getType() &&
   1662            "Pointer subtraction operand types must match!");
   1663     PointerType *ArgType = cast<PointerType>(LHS->getType());
   1664     Value *LHS_int = CreatePtrToInt(LHS, Type::getInt64Ty(Context));
   1665     Value *RHS_int = CreatePtrToInt(RHS, Type::getInt64Ty(Context));
   1666     Value *Difference = CreateSub(LHS_int, RHS_int);
   1667     return CreateExactSDiv(Difference,
   1668                            ConstantExpr::getSizeOf(ArgType->getElementType()),
   1669                            Name);
   1670   }
   1671 
   1672   /// \brief Create an invariant.group.barrier intrinsic call, that stops
   1673   /// optimizer to propagate equality using invariant.group metadata.
   1674   /// If Ptr type is different from i8*, it's casted to i8* before call
   1675   /// and casted back to Ptr type after call.
   1676   Value *CreateInvariantGroupBarrier(Value *Ptr) {
   1677     Module *M = BB->getParent()->getParent();
   1678     Function *FnInvariantGroupBarrier = Intrinsic::getDeclaration(M,
   1679             Intrinsic::invariant_group_barrier);
   1680 
   1681     Type *ArgumentAndReturnType = FnInvariantGroupBarrier->getReturnType();
   1682     assert(ArgumentAndReturnType ==
   1683         FnInvariantGroupBarrier->getFunctionType()->getParamType(0) &&
   1684         "InvariantGroupBarrier should take and return the same type");
   1685     Type *PtrType = Ptr->getType();
   1686 
   1687     bool PtrTypeConversionNeeded = PtrType != ArgumentAndReturnType;
   1688     if (PtrTypeConversionNeeded)
   1689       Ptr = CreateBitCast(Ptr, ArgumentAndReturnType);
   1690 
   1691     CallInst *Fn = CreateCall(FnInvariantGroupBarrier, {Ptr});
   1692 
   1693     if (PtrTypeConversionNeeded)
   1694       return CreateBitCast(Fn, PtrType);
   1695     return Fn;
   1696   }
   1697 
   1698   /// \brief Return a vector value that contains \arg V broadcasted to \p
   1699   /// NumElts elements.
   1700   Value *CreateVectorSplat(unsigned NumElts, Value *V, const Twine &Name = "") {
   1701     assert(NumElts > 0 && "Cannot splat to an empty vector!");
   1702 
   1703     // First insert it into an undef vector so we can shuffle it.
   1704     Type *I32Ty = getInt32Ty();
   1705     Value *Undef = UndefValue::get(VectorType::get(V->getType(), NumElts));
   1706     V = CreateInsertElement(Undef, V, ConstantInt::get(I32Ty, 0),
   1707                             Name + ".splatinsert");
   1708 
   1709     // Shuffle the value across the desired number of elements.
   1710     Value *Zeros = ConstantAggregateZero::get(VectorType::get(I32Ty, NumElts));
   1711     return CreateShuffleVector(V, Undef, Zeros, Name + ".splat");
   1712   }
   1713 
   1714   /// \brief Return a value that has been extracted from a larger integer type.
   1715   Value *CreateExtractInteger(const DataLayout &DL, Value *From,
   1716                               IntegerType *ExtractedTy, uint64_t Offset,
   1717                               const Twine &Name) {
   1718     IntegerType *IntTy = cast<IntegerType>(From->getType());
   1719     assert(DL.getTypeStoreSize(ExtractedTy) + Offset <=
   1720                DL.getTypeStoreSize(IntTy) &&
   1721            "Element extends past full value");
   1722     uint64_t ShAmt = 8 * Offset;
   1723     Value *V = From;
   1724     if (DL.isBigEndian())
   1725       ShAmt = 8 * (DL.getTypeStoreSize(IntTy) -
   1726                    DL.getTypeStoreSize(ExtractedTy) - Offset);
   1727     if (ShAmt) {
   1728       V = CreateLShr(V, ShAmt, Name + ".shift");
   1729     }
   1730     assert(ExtractedTy->getBitWidth() <= IntTy->getBitWidth() &&
   1731            "Cannot extract to a larger integer!");
   1732     if (ExtractedTy != IntTy) {
   1733       V = CreateTrunc(V, ExtractedTy, Name + ".trunc");
   1734     }
   1735     return V;
   1736   }
   1737 
   1738   /// \brief Create an assume intrinsic call that represents an alignment
   1739   /// assumption on the provided pointer.
   1740   ///
   1741   /// An optional offset can be provided, and if it is provided, the offset
   1742   /// must be subtracted from the provided pointer to get the pointer with the
   1743   /// specified alignment.
   1744   CallInst *CreateAlignmentAssumption(const DataLayout &DL, Value *PtrValue,
   1745                                       unsigned Alignment,
   1746                                       Value *OffsetValue = nullptr) {
   1747     assert(isa<PointerType>(PtrValue->getType()) &&
   1748            "trying to create an alignment assumption on a non-pointer?");
   1749 
   1750     PointerType *PtrTy = cast<PointerType>(PtrValue->getType());
   1751     Type *IntPtrTy = getIntPtrTy(DL, PtrTy->getAddressSpace());
   1752     Value *PtrIntValue = CreatePtrToInt(PtrValue, IntPtrTy, "ptrint");
   1753 
   1754     Value *Mask = ConstantInt::get(IntPtrTy,
   1755       Alignment > 0 ? Alignment - 1 : 0);
   1756     if (OffsetValue) {
   1757       bool IsOffsetZero = false;
   1758       if (ConstantInt *CI = dyn_cast<ConstantInt>(OffsetValue))
   1759         IsOffsetZero = CI->isZero();
   1760 
   1761       if (!IsOffsetZero) {
   1762         if (OffsetValue->getType() != IntPtrTy)
   1763           OffsetValue = CreateIntCast(OffsetValue, IntPtrTy, /*isSigned*/ true,
   1764                                       "offsetcast");
   1765         PtrIntValue = CreateSub(PtrIntValue, OffsetValue, "offsetptr");
   1766       }
   1767     }
   1768 
   1769     Value *Zero = ConstantInt::get(IntPtrTy, 0);
   1770     Value *MaskedPtr = CreateAnd(PtrIntValue, Mask, "maskedptr");
   1771     Value *InvCond = CreateICmpEQ(MaskedPtr, Zero, "maskcond");
   1772 
   1773     return CreateAssumption(InvCond);
   1774   }
   1775 };
   1776 
   1777 // Create wrappers for C Binding types (see CBindingWrapping.h).
   1778 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(IRBuilder<>, LLVMBuilderRef)
   1779 
   1780 } // end namespace llvm
   1781 
   1782 #endif // LLVM_IR_IRBUILDER_H
   1783