1 // Copyright 2015 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #include "src/compiler/control-equivalence.h" 6 #include "src/compiler/node-properties.h" 7 8 #define TRACE(...) \ 9 do { \ 10 if (FLAG_trace_turbo_ceq) PrintF(__VA_ARGS__); \ 11 } while (false) 12 13 namespace v8 { 14 namespace internal { 15 namespace compiler { 16 17 void ControlEquivalence::Run(Node* exit) { 18 if (GetClass(exit) == kInvalidClass) { 19 DetermineParticipation(exit); 20 RunUndirectedDFS(exit); 21 } 22 } 23 24 25 // static 26 STATIC_CONST_MEMBER_DEFINITION const size_t ControlEquivalence::kInvalidClass; 27 28 29 void ControlEquivalence::VisitPre(Node* node) { 30 TRACE("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); 31 32 // Dispense a new pre-order number. 33 SetNumber(node, NewDFSNumber()); 34 TRACE(" Assigned DFS number is %zu\n", GetNumber(node)); 35 } 36 37 38 void ControlEquivalence::VisitMid(Node* node, DFSDirection direction) { 39 TRACE("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); 40 BracketList& blist = GetBracketList(node); 41 42 // Remove brackets pointing to this node [line:19]. 43 BracketListDelete(blist, node, direction); 44 45 // Potentially introduce artificial dependency from start to end. 46 if (blist.empty()) { 47 DCHECK_EQ(kInputDirection, direction); 48 VisitBackedge(node, graph_->end(), kInputDirection); 49 } 50 51 // Potentially start a new equivalence class [line:37]. 52 BracketListTRACE(blist); 53 Bracket* recent = &blist.back(); 54 if (recent->recent_size != blist.size()) { 55 recent->recent_size = blist.size(); 56 recent->recent_class = NewClassNumber(); 57 } 58 59 // Assign equivalence class to node. 60 SetClass(node, recent->recent_class); 61 TRACE(" Assigned class number is %zu\n", GetClass(node)); 62 } 63 64 65 void ControlEquivalence::VisitPost(Node* node, Node* parent_node, 66 DFSDirection direction) { 67 TRACE("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); 68 BracketList& blist = GetBracketList(node); 69 70 // Remove brackets pointing to this node [line:19]. 71 BracketListDelete(blist, node, direction); 72 73 // Propagate bracket list up the DFS tree [line:13]. 74 if (parent_node != nullptr) { 75 BracketList& parent_blist = GetBracketList(parent_node); 76 parent_blist.splice(parent_blist.end(), blist); 77 } 78 } 79 80 81 void ControlEquivalence::VisitBackedge(Node* from, Node* to, 82 DFSDirection direction) { 83 TRACE("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(), 84 from->op()->mnemonic(), to->id(), to->op()->mnemonic()); 85 86 // Push backedge onto the bracket list [line:25]. 87 Bracket bracket = {direction, kInvalidClass, 0, from, to}; 88 GetBracketList(from).push_back(bracket); 89 } 90 91 92 void ControlEquivalence::RunUndirectedDFS(Node* exit) { 93 ZoneStack<DFSStackEntry> stack(zone_); 94 DFSPush(stack, exit, nullptr, kInputDirection); 95 VisitPre(exit); 96 97 while (!stack.empty()) { // Undirected depth-first backwards traversal. 98 DFSStackEntry& entry = stack.top(); 99 Node* node = entry.node; 100 101 if (entry.direction == kInputDirection) { 102 if (entry.input != node->input_edges().end()) { 103 Edge edge = *entry.input; 104 Node* input = edge.to(); 105 ++(entry.input); 106 if (NodeProperties::IsControlEdge(edge)) { 107 // Visit next control input. 108 if (!GetData(input)->participates) continue; 109 if (GetData(input)->visited) continue; 110 if (GetData(input)->on_stack) { 111 // Found backedge if input is on stack. 112 if (input != entry.parent_node) { 113 VisitBackedge(node, input, kInputDirection); 114 } 115 } else { 116 // Push input onto stack. 117 DFSPush(stack, input, node, kInputDirection); 118 VisitPre(input); 119 } 120 } 121 continue; 122 } 123 if (entry.use != node->use_edges().end()) { 124 // Switch direction to uses. 125 entry.direction = kUseDirection; 126 VisitMid(node, kInputDirection); 127 continue; 128 } 129 } 130 131 if (entry.direction == kUseDirection) { 132 if (entry.use != node->use_edges().end()) { 133 Edge edge = *entry.use; 134 Node* use = edge.from(); 135 ++(entry.use); 136 if (NodeProperties::IsControlEdge(edge)) { 137 // Visit next control use. 138 if (!GetData(use)->participates) continue; 139 if (GetData(use)->visited) continue; 140 if (GetData(use)->on_stack) { 141 // Found backedge if use is on stack. 142 if (use != entry.parent_node) { 143 VisitBackedge(node, use, kUseDirection); 144 } 145 } else { 146 // Push use onto stack. 147 DFSPush(stack, use, node, kUseDirection); 148 VisitPre(use); 149 } 150 } 151 continue; 152 } 153 if (entry.input != node->input_edges().end()) { 154 // Switch direction to inputs. 155 entry.direction = kInputDirection; 156 VisitMid(node, kUseDirection); 157 continue; 158 } 159 } 160 161 // Pop node from stack when done with all inputs and uses. 162 DCHECK(entry.input == node->input_edges().end()); 163 DCHECK(entry.use == node->use_edges().end()); 164 DFSPop(stack, node); 165 VisitPost(node, entry.parent_node, entry.direction); 166 } 167 } 168 169 void ControlEquivalence::DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, 170 Node* node) { 171 if (!GetData(node)->participates) { 172 GetData(node)->participates = true; 173 queue.push(node); 174 } 175 } 176 177 178 void ControlEquivalence::DetermineParticipation(Node* exit) { 179 ZoneQueue<Node*> queue(zone_); 180 DetermineParticipationEnqueue(queue, exit); 181 while (!queue.empty()) { // Breadth-first backwards traversal. 182 Node* node = queue.front(); 183 queue.pop(); 184 int max = NodeProperties::PastControlIndex(node); 185 for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { 186 DetermineParticipationEnqueue(queue, node->InputAt(i)); 187 } 188 } 189 } 190 191 192 void ControlEquivalence::DFSPush(DFSStack& stack, Node* node, Node* from, 193 DFSDirection dir) { 194 DCHECK(GetData(node)->participates); 195 DCHECK(!GetData(node)->visited); 196 GetData(node)->on_stack = true; 197 Node::InputEdges::iterator input = node->input_edges().begin(); 198 Node::UseEdges::iterator use = node->use_edges().begin(); 199 stack.push({dir, input, use, from, node}); 200 } 201 202 203 void ControlEquivalence::DFSPop(DFSStack& stack, Node* node) { 204 DCHECK_EQ(stack.top().node, node); 205 GetData(node)->on_stack = false; 206 GetData(node)->visited = true; 207 stack.pop(); 208 } 209 210 211 void ControlEquivalence::BracketListDelete(BracketList& blist, Node* to, 212 DFSDirection direction) { 213 // TODO(mstarzinger): Optimize this to avoid linear search. 214 for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) { 215 if (i->to == to && i->direction != direction) { 216 TRACE(" BList erased: {%d->%d}\n", i->from->id(), i->to->id()); 217 i = blist.erase(i); 218 } else { 219 ++i; 220 } 221 } 222 } 223 224 225 void ControlEquivalence::BracketListTRACE(BracketList& blist) { 226 if (FLAG_trace_turbo_ceq) { 227 TRACE(" BList: "); 228 for (Bracket bracket : blist) { 229 TRACE("{%d->%d} ", bracket.from->id(), bracket.to->id()); 230 } 231 TRACE("\n"); 232 } 233 } 234 235 } // namespace compiler 236 } // namespace internal 237 } // namespace v8 238