Home | History | Annotate | Download | only in Analysis
      1 //===- llvm/Analysis/ScalarEvolution.h - Scalar Evolution -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // The ScalarEvolution class is an LLVM pass which can be used to analyze and
     11 // categorize scalar expressions in loops.  It specializes in recognizing
     12 // general induction variables, representing them with the abstract and opaque
     13 // SCEV class.  Given this analysis, trip counts of loops and other important
     14 // properties can be obtained.
     15 //
     16 // This analysis is primarily useful for induction variable substitution and
     17 // strength reduction.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #ifndef LLVM_ANALYSIS_SCALAREVOLUTION_H
     22 #define LLVM_ANALYSIS_SCALAREVOLUTION_H
     23 
     24 #include "llvm/ADT/DenseSet.h"
     25 #include "llvm/ADT/FoldingSet.h"
     26 #include "llvm/IR/ConstantRange.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/PassManager.h"
     31 #include "llvm/IR/ValueHandle.h"
     32 #include "llvm/Pass.h"
     33 #include "llvm/Support/Allocator.h"
     34 #include "llvm/Support/DataTypes.h"
     35 #include <map>
     36 
     37 namespace llvm {
     38   class APInt;
     39   class AssumptionCache;
     40   class Constant;
     41   class ConstantInt;
     42   class DominatorTree;
     43   class Type;
     44   class ScalarEvolution;
     45   class DataLayout;
     46   class TargetLibraryInfo;
     47   class LLVMContext;
     48   class Loop;
     49   class LoopInfo;
     50   class Operator;
     51   class SCEV;
     52   class SCEVAddRecExpr;
     53   class SCEVConstant;
     54   class SCEVExpander;
     55   class SCEVPredicate;
     56   class SCEVUnknown;
     57 
     58   template <> struct FoldingSetTrait<SCEV>;
     59   template <> struct FoldingSetTrait<SCEVPredicate>;
     60 
     61   /// This class represents an analyzed expression in the program.  These are
     62   /// opaque objects that the client is not allowed to do much with directly.
     63   ///
     64   class SCEV : public FoldingSetNode {
     65     friend struct FoldingSetTrait<SCEV>;
     66 
     67     /// A reference to an Interned FoldingSetNodeID for this node.  The
     68     /// ScalarEvolution's BumpPtrAllocator holds the data.
     69     FoldingSetNodeIDRef FastID;
     70 
     71     // The SCEV baseclass this node corresponds to
     72     const unsigned short SCEVType;
     73 
     74   protected:
     75     /// This field is initialized to zero and may be used in subclasses to store
     76     /// miscellaneous information.
     77     unsigned short SubclassData;
     78 
     79   private:
     80     SCEV(const SCEV &) = delete;
     81     void operator=(const SCEV &) = delete;
     82 
     83   public:
     84     /// NoWrapFlags are bitfield indices into SubclassData.
     85     ///
     86     /// Add and Mul expressions may have no-unsigned-wrap <NUW> or
     87     /// no-signed-wrap <NSW> properties, which are derived from the IR
     88     /// operator. NSW is a misnomer that we use to mean no signed overflow or
     89     /// underflow.
     90     ///
     91     /// AddRec expressions may have a no-self-wraparound <NW> property if, in
     92     /// the integer domain, abs(step) * max-iteration(loop) <=
     93     /// unsigned-max(bitwidth).  This means that the recurrence will never reach
     94     /// its start value if the step is non-zero.  Computing the same value on
     95     /// each iteration is not considered wrapping, and recurrences with step = 0
     96     /// are trivially <NW>.  <NW> is independent of the sign of step and the
     97     /// value the add recurrence starts with.
     98     ///
     99     /// Note that NUW and NSW are also valid properties of a recurrence, and
    100     /// either implies NW. For convenience, NW will be set for a recurrence
    101     /// whenever either NUW or NSW are set.
    102     enum NoWrapFlags { FlagAnyWrap = 0,          // No guarantee.
    103                        FlagNW      = (1 << 0),   // No self-wrap.
    104                        FlagNUW     = (1 << 1),   // No unsigned wrap.
    105                        FlagNSW     = (1 << 2),   // No signed wrap.
    106                        NoWrapMask  = (1 << 3) -1 };
    107 
    108     explicit SCEV(const FoldingSetNodeIDRef ID, unsigned SCEVTy) :
    109       FastID(ID), SCEVType(SCEVTy), SubclassData(0) {}
    110 
    111     unsigned getSCEVType() const { return SCEVType; }
    112 
    113     /// Return the LLVM type of this SCEV expression.
    114     ///
    115     Type *getType() const;
    116 
    117     /// Return true if the expression is a constant zero.
    118     ///
    119     bool isZero() const;
    120 
    121     /// Return true if the expression is a constant one.
    122     ///
    123     bool isOne() const;
    124 
    125     /// Return true if the expression is a constant all-ones value.
    126     ///
    127     bool isAllOnesValue() const;
    128 
    129     /// Return true if the specified scev is negated, but not a constant.
    130     bool isNonConstantNegative() const;
    131 
    132     /// Print out the internal representation of this scalar to the specified
    133     /// stream.  This should really only be used for debugging purposes.
    134     void print(raw_ostream &OS) const;
    135 
    136     /// This method is used for debugging.
    137     ///
    138     void dump() const;
    139   };
    140 
    141   // Specialize FoldingSetTrait for SCEV to avoid needing to compute
    142   // temporary FoldingSetNodeID values.
    143   template<> struct FoldingSetTrait<SCEV> : DefaultFoldingSetTrait<SCEV> {
    144     static void Profile(const SCEV &X, FoldingSetNodeID& ID) {
    145       ID = X.FastID;
    146     }
    147     static bool Equals(const SCEV &X, const FoldingSetNodeID &ID,
    148                        unsigned IDHash, FoldingSetNodeID &TempID) {
    149       return ID == X.FastID;
    150     }
    151     static unsigned ComputeHash(const SCEV &X, FoldingSetNodeID &TempID) {
    152       return X.FastID.ComputeHash();
    153     }
    154   };
    155 
    156   inline raw_ostream &operator<<(raw_ostream &OS, const SCEV &S) {
    157     S.print(OS);
    158     return OS;
    159   }
    160 
    161   /// An object of this class is returned by queries that could not be answered.
    162   /// For example, if you ask for the number of iterations of a linked-list
    163   /// traversal loop, you will get one of these.  None of the standard SCEV
    164   /// operations are valid on this class, it is just a marker.
    165   struct SCEVCouldNotCompute : public SCEV {
    166     SCEVCouldNotCompute();
    167 
    168     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    169     static bool classof(const SCEV *S);
    170   };
    171 
    172   /// SCEVPredicate - This class represents an assumption made using SCEV
    173   /// expressions which can be checked at run-time.
    174   class SCEVPredicate : public FoldingSetNode {
    175     friend struct FoldingSetTrait<SCEVPredicate>;
    176 
    177     /// A reference to an Interned FoldingSetNodeID for this node.  The
    178     /// ScalarEvolution's BumpPtrAllocator holds the data.
    179     FoldingSetNodeIDRef FastID;
    180 
    181   public:
    182     enum SCEVPredicateKind { P_Union, P_Equal };
    183 
    184   protected:
    185     SCEVPredicateKind Kind;
    186     ~SCEVPredicate() = default;
    187     SCEVPredicate(const SCEVPredicate&) = default;
    188     SCEVPredicate &operator=(const SCEVPredicate&) = default;
    189 
    190   public:
    191     SCEVPredicate(const FoldingSetNodeIDRef ID, SCEVPredicateKind Kind);
    192 
    193     SCEVPredicateKind getKind() const { return Kind; }
    194 
    195     /// \brief Returns the estimated complexity of this predicate.
    196     /// This is roughly measured in the number of run-time checks required.
    197     virtual unsigned getComplexity() const { return 1; }
    198 
    199     /// \brief Returns true if the predicate is always true. This means that no
    200     /// assumptions were made and nothing needs to be checked at run-time.
    201     virtual bool isAlwaysTrue() const = 0;
    202 
    203     /// \brief Returns true if this predicate implies \p N.
    204     virtual bool implies(const SCEVPredicate *N) const = 0;
    205 
    206     /// \brief Prints a textual representation of this predicate with an
    207     /// indentation of \p Depth.
    208     virtual void print(raw_ostream &OS, unsigned Depth = 0) const = 0;
    209 
    210     /// \brief Returns the SCEV to which this predicate applies, or nullptr
    211     /// if this is a SCEVUnionPredicate.
    212     virtual const SCEV *getExpr() const = 0;
    213   };
    214 
    215   inline raw_ostream &operator<<(raw_ostream &OS, const SCEVPredicate &P) {
    216     P.print(OS);
    217     return OS;
    218   }
    219 
    220   // Specialize FoldingSetTrait for SCEVPredicate to avoid needing to compute
    221   // temporary FoldingSetNodeID values.
    222   template <>
    223   struct FoldingSetTrait<SCEVPredicate>
    224       : DefaultFoldingSetTrait<SCEVPredicate> {
    225 
    226     static void Profile(const SCEVPredicate &X, FoldingSetNodeID &ID) {
    227       ID = X.FastID;
    228     }
    229 
    230     static bool Equals(const SCEVPredicate &X, const FoldingSetNodeID &ID,
    231                        unsigned IDHash, FoldingSetNodeID &TempID) {
    232       return ID == X.FastID;
    233     }
    234     static unsigned ComputeHash(const SCEVPredicate &X,
    235                                 FoldingSetNodeID &TempID) {
    236       return X.FastID.ComputeHash();
    237     }
    238   };
    239 
    240   /// SCEVEqualPredicate - This class represents an assumption that two SCEV
    241   /// expressions are equal, and this can be checked at run-time. We assume
    242   /// that the left hand side is a SCEVUnknown and the right hand side a
    243   /// constant.
    244   class SCEVEqualPredicate final : public SCEVPredicate {
    245     /// We assume that LHS == RHS, where LHS is a SCEVUnknown and RHS a
    246     /// constant.
    247     const SCEVUnknown *LHS;
    248     const SCEVConstant *RHS;
    249 
    250   public:
    251     SCEVEqualPredicate(const FoldingSetNodeIDRef ID, const SCEVUnknown *LHS,
    252                        const SCEVConstant *RHS);
    253 
    254     /// Implementation of the SCEVPredicate interface
    255     bool implies(const SCEVPredicate *N) const override;
    256     void print(raw_ostream &OS, unsigned Depth = 0) const override;
    257     bool isAlwaysTrue() const override;
    258     const SCEV *getExpr() const override;
    259 
    260     /// \brief Returns the left hand side of the equality.
    261     const SCEVUnknown *getLHS() const { return LHS; }
    262 
    263     /// \brief Returns the right hand side of the equality.
    264     const SCEVConstant *getRHS() const { return RHS; }
    265 
    266     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    267     static inline bool classof(const SCEVPredicate *P) {
    268       return P->getKind() == P_Equal;
    269     }
    270   };
    271 
    272   /// SCEVUnionPredicate - This class represents a composition of other
    273   /// SCEV predicates, and is the class that most clients will interact with.
    274   /// This is equivalent to a logical "AND" of all the predicates in the union.
    275   class SCEVUnionPredicate final : public SCEVPredicate {
    276   private:
    277     typedef DenseMap<const SCEV *, SmallVector<const SCEVPredicate *, 4>>
    278         PredicateMap;
    279 
    280     /// Vector with references to all predicates in this union.
    281     SmallVector<const SCEVPredicate *, 16> Preds;
    282     /// Maps SCEVs to predicates for quick look-ups.
    283     PredicateMap SCEVToPreds;
    284 
    285   public:
    286     SCEVUnionPredicate();
    287 
    288     const SmallVectorImpl<const SCEVPredicate *> &getPredicates() const {
    289       return Preds;
    290     }
    291 
    292     /// \brief Adds a predicate to this union.
    293     void add(const SCEVPredicate *N);
    294 
    295     /// \brief Returns a reference to a vector containing all predicates
    296     /// which apply to \p Expr.
    297     ArrayRef<const SCEVPredicate *> getPredicatesForExpr(const SCEV *Expr);
    298 
    299     /// Implementation of the SCEVPredicate interface
    300     bool isAlwaysTrue() const override;
    301     bool implies(const SCEVPredicate *N) const override;
    302     void print(raw_ostream &OS, unsigned Depth) const override;
    303     const SCEV *getExpr() const override;
    304 
    305     /// \brief We estimate the complexity of a union predicate as the size
    306     /// number of predicates in the union.
    307     unsigned getComplexity() const override { return Preds.size(); }
    308 
    309     /// Methods for support type inquiry through isa, cast, and dyn_cast:
    310     static inline bool classof(const SCEVPredicate *P) {
    311       return P->getKind() == P_Union;
    312     }
    313   };
    314 
    315   /// The main scalar evolution driver. Because client code (intentionally)
    316   /// can't do much with the SCEV objects directly, they must ask this class
    317   /// for services.
    318   class ScalarEvolution {
    319   public:
    320     /// An enum describing the relationship between a SCEV and a loop.
    321     enum LoopDisposition {
    322       LoopVariant,    ///< The SCEV is loop-variant (unknown).
    323       LoopInvariant,  ///< The SCEV is loop-invariant.
    324       LoopComputable  ///< The SCEV varies predictably with the loop.
    325     };
    326 
    327     /// An enum describing the relationship between a SCEV and a basic block.
    328     enum BlockDisposition {
    329       DoesNotDominateBlock,  ///< The SCEV does not dominate the block.
    330       DominatesBlock,        ///< The SCEV dominates the block.
    331       ProperlyDominatesBlock ///< The SCEV properly dominates the block.
    332     };
    333 
    334     /// Convenient NoWrapFlags manipulation that hides enum casts and is
    335     /// visible in the ScalarEvolution name space.
    336     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    337     maskFlags(SCEV::NoWrapFlags Flags, int Mask) {
    338       return (SCEV::NoWrapFlags)(Flags & Mask);
    339     }
    340     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    341     setFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OnFlags) {
    342       return (SCEV::NoWrapFlags)(Flags | OnFlags);
    343     }
    344     static SCEV::NoWrapFlags LLVM_ATTRIBUTE_UNUSED_RESULT
    345     clearFlags(SCEV::NoWrapFlags Flags, SCEV::NoWrapFlags OffFlags) {
    346       return (SCEV::NoWrapFlags)(Flags & ~OffFlags);
    347     }
    348 
    349   private:
    350     /// A CallbackVH to arrange for ScalarEvolution to be notified whenever a
    351     /// Value is deleted.
    352     class SCEVCallbackVH final : public CallbackVH {
    353       ScalarEvolution *SE;
    354       void deleted() override;
    355       void allUsesReplacedWith(Value *New) override;
    356     public:
    357       SCEVCallbackVH(Value *V, ScalarEvolution *SE = nullptr);
    358     };
    359 
    360     friend class SCEVCallbackVH;
    361     friend class SCEVExpander;
    362     friend class SCEVUnknown;
    363 
    364     /// The function we are analyzing.
    365     ///
    366     Function &F;
    367 
    368     /// The target library information for the target we are targeting.
    369     ///
    370     TargetLibraryInfo &TLI;
    371 
    372     /// The tracker for @llvm.assume intrinsics in this function.
    373     AssumptionCache &AC;
    374 
    375     /// The dominator tree.
    376     ///
    377     DominatorTree &DT;
    378 
    379     /// The loop information for the function we are currently analyzing.
    380     ///
    381     LoopInfo &LI;
    382 
    383     /// This SCEV is used to represent unknown trip counts and things.
    384     std::unique_ptr<SCEVCouldNotCompute> CouldNotCompute;
    385 
    386     /// The typedef for ValueExprMap.
    387     ///
    388     typedef DenseMap<SCEVCallbackVH, const SCEV *, DenseMapInfo<Value *> >
    389       ValueExprMapType;
    390 
    391     /// This is a cache of the values we have analyzed so far.
    392     ///
    393     ValueExprMapType ValueExprMap;
    394 
    395     /// Mark predicate values currently being processed by isImpliedCond.
    396     DenseSet<Value*> PendingLoopPredicates;
    397 
    398     /// Set to true by isLoopBackedgeGuardedByCond when we're walking the set of
    399     /// conditions dominating the backedge of a loop.
    400     bool WalkingBEDominatingConds;
    401 
    402     /// Set to true by isKnownPredicateViaSplitting when we're trying to prove a
    403     /// predicate by splitting it into a set of independent predicates.
    404     bool ProvingSplitPredicate;
    405 
    406     /// Information about the number of loop iterations for which a loop exit's
    407     /// branch condition evaluates to the not-taken path.  This is a temporary
    408     /// pair of exact and max expressions that are eventually summarized in
    409     /// ExitNotTakenInfo and BackedgeTakenInfo.
    410     struct ExitLimit {
    411       const SCEV *Exact;
    412       const SCEV *Max;
    413 
    414       /*implicit*/ ExitLimit(const SCEV *E) : Exact(E), Max(E) {}
    415 
    416       ExitLimit(const SCEV *E, const SCEV *M) : Exact(E), Max(M) {}
    417 
    418       /// Test whether this ExitLimit contains any computed information, or
    419       /// whether it's all SCEVCouldNotCompute values.
    420       bool hasAnyInfo() const {
    421         return !isa<SCEVCouldNotCompute>(Exact) ||
    422           !isa<SCEVCouldNotCompute>(Max);
    423       }
    424     };
    425 
    426     /// Information about the number of times a particular loop exit may be
    427     /// reached before exiting the loop.
    428     struct ExitNotTakenInfo {
    429       AssertingVH<BasicBlock> ExitingBlock;
    430       const SCEV *ExactNotTaken;
    431       PointerIntPair<ExitNotTakenInfo*, 1> NextExit;
    432 
    433       ExitNotTakenInfo() : ExitingBlock(nullptr), ExactNotTaken(nullptr) {}
    434 
    435       /// Return true if all loop exits are computable.
    436       bool isCompleteList() const {
    437         return NextExit.getInt() == 0;
    438       }
    439 
    440       void setIncomplete() { NextExit.setInt(1); }
    441 
    442       /// Return a pointer to the next exit's not-taken info.
    443       ExitNotTakenInfo *getNextExit() const {
    444         return NextExit.getPointer();
    445       }
    446 
    447       void setNextExit(ExitNotTakenInfo *ENT) { NextExit.setPointer(ENT); }
    448     };
    449 
    450     /// Information about the backedge-taken count of a loop. This currently
    451     /// includes an exact count and a maximum count.
    452     ///
    453     class BackedgeTakenInfo {
    454       /// A list of computable exits and their not-taken counts.  Loops almost
    455       /// never have more than one computable exit.
    456       ExitNotTakenInfo ExitNotTaken;
    457 
    458       /// An expression indicating the least maximum backedge-taken count of the
    459       /// loop that is known, or a SCEVCouldNotCompute.
    460       const SCEV *Max;
    461 
    462     public:
    463       BackedgeTakenInfo() : Max(nullptr) {}
    464 
    465       /// Initialize BackedgeTakenInfo from a list of exact exit counts.
    466       BackedgeTakenInfo(
    467         SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
    468         bool Complete, const SCEV *MaxCount);
    469 
    470       /// Test whether this BackedgeTakenInfo contains any computed information,
    471       /// or whether it's all SCEVCouldNotCompute values.
    472       bool hasAnyInfo() const {
    473         return ExitNotTaken.ExitingBlock || !isa<SCEVCouldNotCompute>(Max);
    474       }
    475 
    476       /// Return an expression indicating the exact backedge-taken count of the
    477       /// loop if it is known, or SCEVCouldNotCompute otherwise. This is the
    478       /// number of times the loop header can be guaranteed to execute, minus
    479       /// one.
    480       const SCEV *getExact(ScalarEvolution *SE) const;
    481 
    482       /// Return the number of times this loop exit may fall through to the back
    483       /// edge, or SCEVCouldNotCompute. The loop is guaranteed not to exit via
    484       /// this block before this number of iterations, but may exit via another
    485       /// block.
    486       const SCEV *getExact(BasicBlock *ExitingBlock, ScalarEvolution *SE) const;
    487 
    488       /// Get the max backedge taken count for the loop.
    489       const SCEV *getMax(ScalarEvolution *SE) const;
    490 
    491       /// Return true if any backedge taken count expressions refer to the given
    492       /// subexpression.
    493       bool hasOperand(const SCEV *S, ScalarEvolution *SE) const;
    494 
    495       /// Invalidate this result and free associated memory.
    496       void clear();
    497     };
    498 
    499     /// Cache the backedge-taken count of the loops for this function as they
    500     /// are computed.
    501     DenseMap<const Loop*, BackedgeTakenInfo> BackedgeTakenCounts;
    502 
    503     /// This map contains entries for all of the PHI instructions that we
    504     /// attempt to compute constant evolutions for.  This allows us to avoid
    505     /// potentially expensive recomputation of these properties.  An instruction
    506     /// maps to null if we are unable to compute its exit value.
    507     DenseMap<PHINode*, Constant*> ConstantEvolutionLoopExitValue;
    508 
    509     /// This map contains entries for all the expressions that we attempt to
    510     /// compute getSCEVAtScope information for, which can be expensive in
    511     /// extreme cases.
    512     DenseMap<const SCEV *,
    513              SmallVector<std::pair<const Loop *, const SCEV *>, 2> > ValuesAtScopes;
    514 
    515     /// Memoized computeLoopDisposition results.
    516     DenseMap<const SCEV *,
    517              SmallVector<PointerIntPair<const Loop *, 2, LoopDisposition>, 2>>
    518         LoopDispositions;
    519 
    520     /// Compute a LoopDisposition value.
    521     LoopDisposition computeLoopDisposition(const SCEV *S, const Loop *L);
    522 
    523     /// Memoized computeBlockDisposition results.
    524     DenseMap<
    525         const SCEV *,
    526         SmallVector<PointerIntPair<const BasicBlock *, 2, BlockDisposition>, 2>>
    527         BlockDispositions;
    528 
    529     /// Compute a BlockDisposition value.
    530     BlockDisposition computeBlockDisposition(const SCEV *S, const BasicBlock *BB);
    531 
    532     /// Memoized results from getRange
    533     DenseMap<const SCEV *, ConstantRange> UnsignedRanges;
    534 
    535     /// Memoized results from getRange
    536     DenseMap<const SCEV *, ConstantRange> SignedRanges;
    537 
    538     /// Used to parameterize getRange
    539     enum RangeSignHint { HINT_RANGE_UNSIGNED, HINT_RANGE_SIGNED };
    540 
    541     /// Set the memoized range for the given SCEV.
    542     const ConstantRange &setRange(const SCEV *S, RangeSignHint Hint,
    543                                   const ConstantRange &CR) {
    544       DenseMap<const SCEV *, ConstantRange> &Cache =
    545           Hint == HINT_RANGE_UNSIGNED ? UnsignedRanges : SignedRanges;
    546 
    547       std::pair<DenseMap<const SCEV *, ConstantRange>::iterator, bool> Pair =
    548           Cache.insert(std::make_pair(S, CR));
    549       if (!Pair.second)
    550         Pair.first->second = CR;
    551       return Pair.first->second;
    552     }
    553 
    554     /// Determine the range for a particular SCEV.
    555     ConstantRange getRange(const SCEV *S, RangeSignHint Hint);
    556 
    557     /// We know that there is no SCEV for the specified value.  Analyze the
    558     /// expression.
    559     const SCEV *createSCEV(Value *V);
    560 
    561     /// Provide the special handling we need to analyze PHI SCEVs.
    562     const SCEV *createNodeForPHI(PHINode *PN);
    563 
    564     /// Helper function called from createNodeForPHI.
    565     const SCEV *createAddRecFromPHI(PHINode *PN);
    566 
    567     /// Helper function called from createNodeForPHI.
    568     const SCEV *createNodeFromSelectLikePHI(PHINode *PN);
    569 
    570     /// Provide special handling for a select-like instruction (currently this
    571     /// is either a select instruction or a phi node).  \p I is the instruction
    572     /// being processed, and it is assumed equivalent to "Cond ? TrueVal :
    573     /// FalseVal".
    574     const SCEV *createNodeForSelectOrPHI(Instruction *I, Value *Cond,
    575                                          Value *TrueVal, Value *FalseVal);
    576 
    577     /// Provide the special handling we need to analyze GEP SCEVs.
    578     const SCEV *createNodeForGEP(GEPOperator *GEP);
    579 
    580     /// Implementation code for getSCEVAtScope; called at most once for each
    581     /// SCEV+Loop pair.
    582     ///
    583     const SCEV *computeSCEVAtScope(const SCEV *S, const Loop *L);
    584 
    585     /// This looks up computed SCEV values for all instructions that depend on
    586     /// the given instruction and removes them from the ValueExprMap map if they
    587     /// reference SymName. This is used during PHI resolution.
    588     void ForgetSymbolicName(Instruction *I, const SCEV *SymName);
    589 
    590     /// Return the BackedgeTakenInfo for the given loop, lazily computing new
    591     /// values if the loop hasn't been analyzed yet.
    592     const BackedgeTakenInfo &getBackedgeTakenInfo(const Loop *L);
    593 
    594     /// Compute the number of times the specified loop will iterate.
    595     BackedgeTakenInfo computeBackedgeTakenCount(const Loop *L);
    596 
    597     /// Compute the number of times the backedge of the specified loop will
    598     /// execute if it exits via the specified block.
    599     ExitLimit computeExitLimit(const Loop *L, BasicBlock *ExitingBlock);
    600 
    601     /// Compute the number of times the backedge of the specified loop will
    602     /// execute if its exit condition were a conditional branch of ExitCond,
    603     /// TBB, and FBB.
    604     ExitLimit computeExitLimitFromCond(const Loop *L,
    605                                        Value *ExitCond,
    606                                        BasicBlock *TBB,
    607                                        BasicBlock *FBB,
    608                                        bool IsSubExpr);
    609 
    610     /// Compute the number of times the backedge of the specified loop will
    611     /// execute if its exit condition were a conditional branch of the ICmpInst
    612     /// ExitCond, TBB, and FBB.
    613     ExitLimit computeExitLimitFromICmp(const Loop *L,
    614                                        ICmpInst *ExitCond,
    615                                        BasicBlock *TBB,
    616                                        BasicBlock *FBB,
    617                                        bool IsSubExpr);
    618 
    619     /// Compute the number of times the backedge of the specified loop will
    620     /// execute if its exit condition were a switch with a single exiting case
    621     /// to ExitingBB.
    622     ExitLimit
    623     computeExitLimitFromSingleExitSwitch(const Loop *L, SwitchInst *Switch,
    624                                BasicBlock *ExitingBB, bool IsSubExpr);
    625 
    626     /// Given an exit condition of 'icmp op load X, cst', try to see if we can
    627     /// compute the backedge-taken count.
    628     ExitLimit computeLoadConstantCompareExitLimit(LoadInst *LI,
    629                                                   Constant *RHS,
    630                                                   const Loop *L,
    631                                                   ICmpInst::Predicate p);
    632 
    633     /// Compute the exit limit of a loop that is controlled by a
    634     /// "(IV >> 1) != 0" type comparison.  We cannot compute the exact trip
    635     /// count in these cases (since SCEV has no way of expressing them), but we
    636     /// can still sometimes compute an upper bound.
    637     ///
    638     /// Return an ExitLimit for a loop whose backedge is guarded by `LHS Pred
    639     /// RHS`.
    640     ExitLimit computeShiftCompareExitLimit(Value *LHS, Value *RHS,
    641                                            const Loop *L,
    642                                            ICmpInst::Predicate Pred);
    643 
    644     /// If the loop is known to execute a constant number of times (the
    645     /// condition evolves only from constants), try to evaluate a few iterations
    646     /// of the loop until we get the exit condition gets a value of ExitWhen
    647     /// (true or false).  If we cannot evaluate the exit count of the loop,
    648     /// return CouldNotCompute.
    649     const SCEV *computeExitCountExhaustively(const Loop *L,
    650                                              Value *Cond,
    651                                              bool ExitWhen);
    652 
    653     /// Return the number of times an exit condition comparing the specified
    654     /// value to zero will execute.  If not computable, return CouldNotCompute.
    655     ExitLimit HowFarToZero(const SCEV *V, const Loop *L, bool IsSubExpr);
    656 
    657     /// Return the number of times an exit condition checking the specified
    658     /// value for nonzero will execute.  If not computable, return
    659     /// CouldNotCompute.
    660     ExitLimit HowFarToNonZero(const SCEV *V, const Loop *L);
    661 
    662     /// Return the number of times an exit condition containing the specified
    663     /// less-than comparison will execute.  If not computable, return
    664     /// CouldNotCompute. isSigned specifies whether the less-than is signed.
    665     ExitLimit HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
    666                                const Loop *L, bool isSigned, bool IsSubExpr);
    667     ExitLimit HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
    668                                   const Loop *L, bool isSigned, bool IsSubExpr);
    669 
    670     /// Return a predecessor of BB (which may not be an immediate predecessor)
    671     /// which has exactly one successor from which BB is reachable, or null if
    672     /// no such block is found.
    673     std::pair<BasicBlock *, BasicBlock *>
    674     getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB);
    675 
    676     /// Test whether the condition described by Pred, LHS, and RHS is true
    677     /// whenever the given FoundCondValue value evaluates to true.
    678     bool isImpliedCond(ICmpInst::Predicate Pred,
    679                        const SCEV *LHS, const SCEV *RHS,
    680                        Value *FoundCondValue,
    681                        bool Inverse);
    682 
    683     /// Test whether the condition described by Pred, LHS, and RHS is true
    684     /// whenever the condition described by FoundPred, FoundLHS, FoundRHS is
    685     /// true.
    686     bool isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
    687                        const SCEV *RHS, ICmpInst::Predicate FoundPred,
    688                        const SCEV *FoundLHS, const SCEV *FoundRHS);
    689 
    690     /// Test whether the condition described by Pred, LHS, and RHS is true
    691     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    692     /// true.
    693     bool isImpliedCondOperands(ICmpInst::Predicate Pred,
    694                                const SCEV *LHS, const SCEV *RHS,
    695                                const SCEV *FoundLHS, const SCEV *FoundRHS);
    696 
    697     /// Test whether the condition described by Pred, LHS, and RHS is true
    698     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    699     /// true.
    700     bool isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
    701                                      const SCEV *LHS, const SCEV *RHS,
    702                                      const SCEV *FoundLHS,
    703                                      const SCEV *FoundRHS);
    704 
    705     /// Test whether the condition described by Pred, LHS, and RHS is true
    706     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    707     /// true.  Utility function used by isImpliedCondOperands.
    708     bool isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
    709                                         const SCEV *LHS, const SCEV *RHS,
    710                                         const SCEV *FoundLHS,
    711                                         const SCEV *FoundRHS);
    712 
    713     /// Test whether the condition described by Pred, LHS, and RHS is true
    714     /// whenever the condition described by Pred, FoundLHS, and FoundRHS is
    715     /// true.
    716     ///
    717     /// This routine tries to rule out certain kinds of integer overflow, and
    718     /// then tries to reason about arithmetic properties of the predicates.
    719     bool isImpliedCondOperandsViaNoOverflow(ICmpInst::Predicate Pred,
    720                                             const SCEV *LHS, const SCEV *RHS,
    721                                             const SCEV *FoundLHS,
    722                                             const SCEV *FoundRHS);
    723 
    724     /// If we know that the specified Phi is in the header of its containing
    725     /// loop, we know the loop executes a constant number of times, and the PHI
    726     /// node is just a recurrence involving constants, fold it.
    727     Constant *getConstantEvolutionLoopExitValue(PHINode *PN, const APInt& BEs,
    728                                                 const Loop *L);
    729 
    730     /// Test if the given expression is known to satisfy the condition described
    731     /// by Pred and the known constant ranges of LHS and RHS.
    732     ///
    733     bool isKnownPredicateWithRanges(ICmpInst::Predicate Pred,
    734                                     const SCEV *LHS, const SCEV *RHS);
    735 
    736     /// Try to prove the condition described by "LHS Pred RHS" by ruling out
    737     /// integer overflow.
    738     ///
    739     /// For instance, this will return true for "A s< (A + C)<nsw>" if C is
    740     /// positive.
    741     bool isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
    742                                        const SCEV *LHS, const SCEV *RHS);
    743 
    744     /// Try to split Pred LHS RHS into logical conjunctions (and's) and try to
    745     /// prove them individually.
    746     bool isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, const SCEV *LHS,
    747                                       const SCEV *RHS);
    748 
    749     /// Try to match the Expr as "(L + R)<Flags>".
    750     bool splitBinaryAdd(const SCEV *Expr, const SCEV *&L, const SCEV *&R,
    751                         SCEV::NoWrapFlags &Flags);
    752 
    753     /// Return true if More == (Less + C), where C is a constant.  This is
    754     /// intended to be used as a cheaper substitute for full SCEV subtraction.
    755     bool computeConstantDifference(const SCEV *Less, const SCEV *More,
    756                                    APInt &C);
    757 
    758     /// Drop memoized information computed for S.
    759     void forgetMemoizedResults(const SCEV *S);
    760 
    761     /// Return an existing SCEV for V if there is one, otherwise return nullptr.
    762     const SCEV *getExistingSCEV(Value *V);
    763 
    764     /// Return false iff given SCEV contains a SCEVUnknown with NULL value-
    765     /// pointer.
    766     bool checkValidity(const SCEV *S) const;
    767 
    768     /// Return true if `ExtendOpTy`({`Start`,+,`Step`}) can be proved to be
    769     /// equal to {`ExtendOpTy`(`Start`),+,`ExtendOpTy`(`Step`)}.  This is
    770     /// equivalent to proving no signed (resp. unsigned) wrap in
    771     /// {`Start`,+,`Step`} if `ExtendOpTy` is `SCEVSignExtendExpr`
    772     /// (resp. `SCEVZeroExtendExpr`).
    773     ///
    774     template<typename ExtendOpTy>
    775     bool proveNoWrapByVaryingStart(const SCEV *Start, const SCEV *Step,
    776                                    const Loop *L);
    777 
    778     bool isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
    779                                   ICmpInst::Predicate Pred, bool &Increasing);
    780 
    781     /// Return true if, for all loop invariant X, the predicate "LHS `Pred` X"
    782     /// is monotonically increasing or decreasing.  In the former case set
    783     /// `Increasing` to true and in the latter case set `Increasing` to false.
    784     ///
    785     /// A predicate is said to be monotonically increasing if may go from being
    786     /// false to being true as the loop iterates, but never the other way
    787     /// around.  A predicate is said to be monotonically decreasing if may go
    788     /// from being true to being false as the loop iterates, but never the other
    789     /// way around.
    790     bool isMonotonicPredicate(const SCEVAddRecExpr *LHS,
    791                               ICmpInst::Predicate Pred, bool &Increasing);
    792 
    793     // Return SCEV no-wrap flags that can be proven based on reasoning
    794     // about how poison produced from no-wrap flags on this value
    795     // (e.g. a nuw add) would trigger undefined behavior on overflow.
    796     SCEV::NoWrapFlags getNoWrapFlagsFromUB(const Value *V);
    797 
    798   public:
    799     ScalarEvolution(Function &F, TargetLibraryInfo &TLI, AssumptionCache &AC,
    800                     DominatorTree &DT, LoopInfo &LI);
    801     ~ScalarEvolution();
    802     ScalarEvolution(ScalarEvolution &&Arg);
    803 
    804     LLVMContext &getContext() const { return F.getContext(); }
    805 
    806     /// Test if values of the given type are analyzable within the SCEV
    807     /// framework. This primarily includes integer types, and it can optionally
    808     /// include pointer types if the ScalarEvolution class has access to
    809     /// target-specific information.
    810     bool isSCEVable(Type *Ty) const;
    811 
    812     /// Return the size in bits of the specified type, for which isSCEVable must
    813     /// return true.
    814     uint64_t getTypeSizeInBits(Type *Ty) const;
    815 
    816     /// Return a type with the same bitwidth as the given type and which
    817     /// represents how SCEV will treat the given type, for which isSCEVable must
    818     /// return true. For pointer types, this is the pointer-sized integer type.
    819     Type *getEffectiveSCEVType(Type *Ty) const;
    820 
    821     /// Return a SCEV expression for the full generality of the specified
    822     /// expression.
    823     const SCEV *getSCEV(Value *V);
    824 
    825     const SCEV *getConstant(ConstantInt *V);
    826     const SCEV *getConstant(const APInt& Val);
    827     const SCEV *getConstant(Type *Ty, uint64_t V, bool isSigned = false);
    828     const SCEV *getTruncateExpr(const SCEV *Op, Type *Ty);
    829     const SCEV *getZeroExtendExpr(const SCEV *Op, Type *Ty);
    830     const SCEV *getSignExtendExpr(const SCEV *Op, Type *Ty);
    831     const SCEV *getAnyExtendExpr(const SCEV *Op, Type *Ty);
    832     const SCEV *getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
    833                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    834     const SCEV *getAddExpr(const SCEV *LHS, const SCEV *RHS,
    835                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    836       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    837       return getAddExpr(Ops, Flags);
    838     }
    839     const SCEV *getAddExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    840                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    841       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    842       return getAddExpr(Ops, Flags);
    843     }
    844     const SCEV *getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
    845                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    846     const SCEV *getMulExpr(const SCEV *LHS, const SCEV *RHS,
    847                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    848       SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
    849       return getMulExpr(Ops, Flags);
    850     }
    851     const SCEV *getMulExpr(const SCEV *Op0, const SCEV *Op1, const SCEV *Op2,
    852                            SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap) {
    853       SmallVector<const SCEV *, 3> Ops = {Op0, Op1, Op2};
    854       return getMulExpr(Ops, Flags);
    855     }
    856     const SCEV *getUDivExpr(const SCEV *LHS, const SCEV *RHS);
    857     const SCEV *getUDivExactExpr(const SCEV *LHS, const SCEV *RHS);
    858     const SCEV *getAddRecExpr(const SCEV *Start, const SCEV *Step,
    859                               const Loop *L, SCEV::NoWrapFlags Flags);
    860     const SCEV *getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
    861                               const Loop *L, SCEV::NoWrapFlags Flags);
    862     const SCEV *getAddRecExpr(const SmallVectorImpl<const SCEV *> &Operands,
    863                               const Loop *L, SCEV::NoWrapFlags Flags) {
    864       SmallVector<const SCEV *, 4> NewOp(Operands.begin(), Operands.end());
    865       return getAddRecExpr(NewOp, L, Flags);
    866     }
    867     /// \brief Returns an expression for a GEP
    868     ///
    869     /// \p PointeeType The type used as the basis for the pointer arithmetics
    870     /// \p BaseExpr The expression for the pointer operand.
    871     /// \p IndexExprs The expressions for the indices.
    872     /// \p InBounds Whether the GEP is in bounds.
    873     const SCEV *getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
    874                            const SmallVectorImpl<const SCEV *> &IndexExprs,
    875                            bool InBounds = false);
    876     const SCEV *getSMaxExpr(const SCEV *LHS, const SCEV *RHS);
    877     const SCEV *getSMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    878     const SCEV *getUMaxExpr(const SCEV *LHS, const SCEV *RHS);
    879     const SCEV *getUMaxExpr(SmallVectorImpl<const SCEV *> &Operands);
    880     const SCEV *getSMinExpr(const SCEV *LHS, const SCEV *RHS);
    881     const SCEV *getUMinExpr(const SCEV *LHS, const SCEV *RHS);
    882     const SCEV *getUnknown(Value *V);
    883     const SCEV *getCouldNotCompute();
    884 
    885     /// \brief Return a SCEV for the constant 0 of a specific type.
    886     const SCEV *getZero(Type *Ty) { return getConstant(Ty, 0); }
    887 
    888     /// \brief Return a SCEV for the constant 1 of a specific type.
    889     const SCEV *getOne(Type *Ty) { return getConstant(Ty, 1); }
    890 
    891     /// Return an expression for sizeof AllocTy that is type IntTy
    892     ///
    893     const SCEV *getSizeOfExpr(Type *IntTy, Type *AllocTy);
    894 
    895     /// Return an expression for offsetof on the given field with type IntTy
    896     ///
    897     const SCEV *getOffsetOfExpr(Type *IntTy, StructType *STy, unsigned FieldNo);
    898 
    899     /// Return the SCEV object corresponding to -V.
    900     ///
    901     const SCEV *getNegativeSCEV(const SCEV *V,
    902                                 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    903 
    904     /// Return the SCEV object corresponding to ~V.
    905     ///
    906     const SCEV *getNotSCEV(const SCEV *V);
    907 
    908     /// Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
    909     const SCEV *getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
    910                              SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap);
    911 
    912     /// Return a SCEV corresponding to a conversion of the input value to the
    913     /// specified type.  If the type must be extended, it is zero extended.
    914     const SCEV *getTruncateOrZeroExtend(const SCEV *V, Type *Ty);
    915 
    916     /// Return a SCEV corresponding to a conversion of the input value to the
    917     /// specified type.  If the type must be extended, it is sign extended.
    918     const SCEV *getTruncateOrSignExtend(const SCEV *V, Type *Ty);
    919 
    920     /// Return a SCEV corresponding to a conversion of the input value to the
    921     /// specified type.  If the type must be extended, it is zero extended.  The
    922     /// conversion must not be narrowing.
    923     const SCEV *getNoopOrZeroExtend(const SCEV *V, Type *Ty);
    924 
    925     /// Return a SCEV corresponding to a conversion of the input value to the
    926     /// specified type.  If the type must be extended, it is sign extended.  The
    927     /// conversion must not be narrowing.
    928     const SCEV *getNoopOrSignExtend(const SCEV *V, Type *Ty);
    929 
    930     /// Return a SCEV corresponding to a conversion of the input value to the
    931     /// specified type. If the type must be extended, it is extended with
    932     /// unspecified bits. The conversion must not be narrowing.
    933     const SCEV *getNoopOrAnyExtend(const SCEV *V, Type *Ty);
    934 
    935     /// Return a SCEV corresponding to a conversion of the input value to the
    936     /// specified type.  The conversion must not be widening.
    937     const SCEV *getTruncateOrNoop(const SCEV *V, Type *Ty);
    938 
    939     /// Promote the operands to the wider of the types using zero-extension, and
    940     /// then perform a umax operation with them.
    941     const SCEV *getUMaxFromMismatchedTypes(const SCEV *LHS,
    942                                            const SCEV *RHS);
    943 
    944     /// Promote the operands to the wider of the types using zero-extension, and
    945     /// then perform a umin operation with them.
    946     const SCEV *getUMinFromMismatchedTypes(const SCEV *LHS,
    947                                            const SCEV *RHS);
    948 
    949     /// Transitively follow the chain of pointer-type operands until reaching a
    950     /// SCEV that does not have a single pointer operand. This returns a
    951     /// SCEVUnknown pointer for well-formed pointer-type expressions, but corner
    952     /// cases do exist.
    953     const SCEV *getPointerBase(const SCEV *V);
    954 
    955     /// Return a SCEV expression for the specified value at the specified scope
    956     /// in the program.  The L value specifies a loop nest to evaluate the
    957     /// expression at, where null is the top-level or a specified loop is
    958     /// immediately inside of the loop.
    959     ///
    960     /// This method can be used to compute the exit value for a variable defined
    961     /// in a loop by querying what the value will hold in the parent loop.
    962     ///
    963     /// In the case that a relevant loop exit value cannot be computed, the
    964     /// original value V is returned.
    965     const SCEV *getSCEVAtScope(const SCEV *S, const Loop *L);
    966 
    967     /// This is a convenience function which does getSCEVAtScope(getSCEV(V), L).
    968     const SCEV *getSCEVAtScope(Value *V, const Loop *L);
    969 
    970     /// Test whether entry to the loop is protected by a conditional between LHS
    971     /// and RHS.  This is used to help avoid max expressions in loop trip
    972     /// counts, and to eliminate casts.
    973     bool isLoopEntryGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    974                                   const SCEV *LHS, const SCEV *RHS);
    975 
    976     /// Test whether the backedge of the loop is protected by a conditional
    977     /// between LHS and RHS.  This is used to to eliminate casts.
    978     bool isLoopBackedgeGuardedByCond(const Loop *L, ICmpInst::Predicate Pred,
    979                                      const SCEV *LHS, const SCEV *RHS);
    980 
    981     /// \brief Returns the maximum trip count of the loop if it is a single-exit
    982     /// loop and we can compute a small maximum for that loop.
    983     ///
    984     /// Implemented in terms of the \c getSmallConstantTripCount overload with
    985     /// the single exiting block passed to it. See that routine for details.
    986     unsigned getSmallConstantTripCount(Loop *L);
    987 
    988     /// Returns the maximum trip count of this loop as a normal unsigned
    989     /// value. Returns 0 if the trip count is unknown or not constant. This
    990     /// "trip count" assumes that control exits via ExitingBlock. More
    991     /// precisely, it is the number of times that control may reach ExitingBlock
    992     /// before taking the branch. For loops with multiple exits, it may not be
    993     /// the number times that the loop header executes if the loop exits
    994     /// prematurely via another branch.
    995     unsigned getSmallConstantTripCount(Loop *L, BasicBlock *ExitingBlock);
    996 
    997     /// \brief Returns the largest constant divisor of the trip count of the
    998     /// loop if it is a single-exit loop and we can compute a small maximum for
    999     /// that loop.
   1000     ///
   1001     /// Implemented in terms of the \c getSmallConstantTripMultiple overload with
   1002     /// the single exiting block passed to it. See that routine for details.
   1003     unsigned getSmallConstantTripMultiple(Loop *L);
   1004 
   1005     /// Returns the largest constant divisor of the trip count of this loop as a
   1006     /// normal unsigned value, if possible. This means that the actual trip
   1007     /// count is always a multiple of the returned value (don't forget the trip
   1008     /// count could very well be zero as well!). As explained in the comments
   1009     /// for getSmallConstantTripCount, this assumes that control exits the loop
   1010     /// via ExitingBlock.
   1011     unsigned getSmallConstantTripMultiple(Loop *L, BasicBlock *ExitingBlock);
   1012 
   1013     /// Get the expression for the number of loop iterations for which this loop
   1014     /// is guaranteed not to exit via ExitingBlock. Otherwise return
   1015     /// SCEVCouldNotCompute.
   1016     const SCEV *getExitCount(Loop *L, BasicBlock *ExitingBlock);
   1017 
   1018     /// If the specified loop has a predictable backedge-taken count, return it,
   1019     /// otherwise return a SCEVCouldNotCompute object. The backedge-taken count
   1020     /// is the number of times the loop header will be branched to from within
   1021     /// the loop. This is one less than the trip count of the loop, since it
   1022     /// doesn't count the first iteration, when the header is branched to from
   1023     /// outside the loop.
   1024     ///
   1025     /// Note that it is not valid to call this method on a loop without a
   1026     /// loop-invariant backedge-taken count (see
   1027     /// hasLoopInvariantBackedgeTakenCount).
   1028     ///
   1029     const SCEV *getBackedgeTakenCount(const Loop *L);
   1030 
   1031     /// Similar to getBackedgeTakenCount, except return the least SCEV value
   1032     /// that is known never to be less than the actual backedge taken count.
   1033     const SCEV *getMaxBackedgeTakenCount(const Loop *L);
   1034 
   1035     /// Return true if the specified loop has an analyzable loop-invariant
   1036     /// backedge-taken count.
   1037     bool hasLoopInvariantBackedgeTakenCount(const Loop *L);
   1038 
   1039     /// This method should be called by the client when it has changed a loop in
   1040     /// a way that may effect ScalarEvolution's ability to compute a trip count,
   1041     /// or if the loop is deleted.  This call is potentially expensive for large
   1042     /// loop bodies.
   1043     void forgetLoop(const Loop *L);
   1044 
   1045     /// This method should be called by the client when it has changed a value
   1046     /// in a way that may effect its value, or which may disconnect it from a
   1047     /// def-use chain linking it to a loop.
   1048     void forgetValue(Value *V);
   1049 
   1050     /// \brief Called when the client has changed the disposition of values in
   1051     /// this loop.
   1052     ///
   1053     /// We don't have a way to invalidate per-loop dispositions. Clear and
   1054     /// recompute is simpler.
   1055     void forgetLoopDispositions(const Loop *L) { LoopDispositions.clear(); }
   1056 
   1057     /// Determine the minimum number of zero bits that S is guaranteed to end in
   1058     /// (at every loop iteration).  It is, at the same time, the minimum number
   1059     /// of times S is divisible by 2.  For example, given {4,+,8} it returns 2.
   1060     /// If S is guaranteed to be 0, it returns the bitwidth of S.
   1061     uint32_t GetMinTrailingZeros(const SCEV *S);
   1062 
   1063     /// Determine the unsigned range for a particular SCEV.
   1064     ///
   1065     ConstantRange getUnsignedRange(const SCEV *S) {
   1066       return getRange(S, HINT_RANGE_UNSIGNED);
   1067     }
   1068 
   1069     /// Determine the signed range for a particular SCEV.
   1070     ///
   1071     ConstantRange getSignedRange(const SCEV *S) {
   1072       return getRange(S, HINT_RANGE_SIGNED);
   1073     }
   1074 
   1075     /// Test if the given expression is known to be negative.
   1076     ///
   1077     bool isKnownNegative(const SCEV *S);
   1078 
   1079     /// Test if the given expression is known to be positive.
   1080     ///
   1081     bool isKnownPositive(const SCEV *S);
   1082 
   1083     /// Test if the given expression is known to be non-negative.
   1084     ///
   1085     bool isKnownNonNegative(const SCEV *S);
   1086 
   1087     /// Test if the given expression is known to be non-positive.
   1088     ///
   1089     bool isKnownNonPositive(const SCEV *S);
   1090 
   1091     /// Test if the given expression is known to be non-zero.
   1092     ///
   1093     bool isKnownNonZero(const SCEV *S);
   1094 
   1095     /// Test if the given expression is known to satisfy the condition described
   1096     /// by Pred, LHS, and RHS.
   1097     ///
   1098     bool isKnownPredicate(ICmpInst::Predicate Pred,
   1099                           const SCEV *LHS, const SCEV *RHS);
   1100 
   1101     /// Return true if the result of the predicate LHS `Pred` RHS is loop
   1102     /// invariant with respect to L.  Set InvariantPred, InvariantLHS and
   1103     /// InvariantLHS so that InvariantLHS `InvariantPred` InvariantRHS is the
   1104     /// loop invariant form of LHS `Pred` RHS.
   1105     bool isLoopInvariantPredicate(ICmpInst::Predicate Pred, const SCEV *LHS,
   1106                                   const SCEV *RHS, const Loop *L,
   1107                                   ICmpInst::Predicate &InvariantPred,
   1108                                   const SCEV *&InvariantLHS,
   1109                                   const SCEV *&InvariantRHS);
   1110 
   1111     /// Simplify LHS and RHS in a comparison with predicate Pred. Return true
   1112     /// iff any changes were made. If the operands are provably equal or
   1113     /// unequal, LHS and RHS are set to the same value and Pred is set to either
   1114     /// ICMP_EQ or ICMP_NE.
   1115     ///
   1116     bool SimplifyICmpOperands(ICmpInst::Predicate &Pred,
   1117                               const SCEV *&LHS,
   1118                               const SCEV *&RHS,
   1119                               unsigned Depth = 0);
   1120 
   1121     /// Return the "disposition" of the given SCEV with respect to the given
   1122     /// loop.
   1123     LoopDisposition getLoopDisposition(const SCEV *S, const Loop *L);
   1124 
   1125     /// Return true if the value of the given SCEV is unchanging in the
   1126     /// specified loop.
   1127     bool isLoopInvariant(const SCEV *S, const Loop *L);
   1128 
   1129     /// Return true if the given SCEV changes value in a known way in the
   1130     /// specified loop.  This property being true implies that the value is
   1131     /// variant in the loop AND that we can emit an expression to compute the
   1132     /// value of the expression at any particular loop iteration.
   1133     bool hasComputableLoopEvolution(const SCEV *S, const Loop *L);
   1134 
   1135     /// Return the "disposition" of the given SCEV with respect to the given
   1136     /// block.
   1137     BlockDisposition getBlockDisposition(const SCEV *S, const BasicBlock *BB);
   1138 
   1139     /// Return true if elements that makes up the given SCEV dominate the
   1140     /// specified basic block.
   1141     bool dominates(const SCEV *S, const BasicBlock *BB);
   1142 
   1143     /// Return true if elements that makes up the given SCEV properly dominate
   1144     /// the specified basic block.
   1145     bool properlyDominates(const SCEV *S, const BasicBlock *BB);
   1146 
   1147     /// Test whether the given SCEV has Op as a direct or indirect operand.
   1148     bool hasOperand(const SCEV *S, const SCEV *Op) const;
   1149 
   1150     /// Return the size of an element read or written by Inst.
   1151     const SCEV *getElementSize(Instruction *Inst);
   1152 
   1153     /// Compute the array dimensions Sizes from the set of Terms extracted from
   1154     /// the memory access function of this SCEVAddRecExpr.
   1155     void findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
   1156                              SmallVectorImpl<const SCEV *> &Sizes,
   1157                              const SCEV *ElementSize) const;
   1158 
   1159     void print(raw_ostream &OS) const;
   1160     void verify() const;
   1161 
   1162     /// Collect parametric terms occurring in step expressions.
   1163     void collectParametricTerms(const SCEV *Expr,
   1164                                 SmallVectorImpl<const SCEV *> &Terms);
   1165 
   1166 
   1167 
   1168     /// Return in Subscripts the access functions for each dimension in Sizes.
   1169     void computeAccessFunctions(const SCEV *Expr,
   1170                                 SmallVectorImpl<const SCEV *> &Subscripts,
   1171                                 SmallVectorImpl<const SCEV *> &Sizes);
   1172 
   1173     /// Split this SCEVAddRecExpr into two vectors of SCEVs representing the
   1174     /// subscripts and sizes of an array access.
   1175     ///
   1176     /// The delinearization is a 3 step process: the first two steps compute the
   1177     /// sizes of each subscript and the third step computes the access functions
   1178     /// for the delinearized array:
   1179     ///
   1180     /// 1. Find the terms in the step functions
   1181     /// 2. Compute the array size
   1182     /// 3. Compute the access function: divide the SCEV by the array size
   1183     ///    starting with the innermost dimensions found in step 2. The Quotient
   1184     ///    is the SCEV to be divided in the next step of the recursion. The
   1185     ///    Remainder is the subscript of the innermost dimension. Loop over all
   1186     ///    array dimensions computed in step 2.
   1187     ///
   1188     /// To compute a uniform array size for several memory accesses to the same
   1189     /// object, one can collect in step 1 all the step terms for all the memory
   1190     /// accesses, and compute in step 2 a unique array shape. This guarantees
   1191     /// that the array shape will be the same across all memory accesses.
   1192     ///
   1193     /// FIXME: We could derive the result of steps 1 and 2 from a description of
   1194     /// the array shape given in metadata.
   1195     ///
   1196     /// Example:
   1197     ///
   1198     /// A[][n][m]
   1199     ///
   1200     /// for i
   1201     ///   for j
   1202     ///     for k
   1203     ///       A[j+k][2i][5i] =
   1204     ///
   1205     /// The initial SCEV:
   1206     ///
   1207     /// A[{{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k]
   1208     ///
   1209     /// 1. Find the different terms in the step functions:
   1210     /// -> [2*m, 5, n*m, n*m]
   1211     ///
   1212     /// 2. Compute the array size: sort and unique them
   1213     /// -> [n*m, 2*m, 5]
   1214     /// find the GCD of all the terms = 1
   1215     /// divide by the GCD and erase constant terms
   1216     /// -> [n*m, 2*m]
   1217     /// GCD = m
   1218     /// divide by GCD -> [n, 2]
   1219     /// remove constant terms
   1220     /// -> [n]
   1221     /// size of the array is A[unknown][n][m]
   1222     ///
   1223     /// 3. Compute the access function
   1224     /// a. Divide {{{0,+,2*m+5}_i, +, n*m}_j, +, n*m}_k by the innermost size m
   1225     /// Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k
   1226     /// Remainder: {{{0,+,5}_i, +, 0}_j, +, 0}_k
   1227     /// The remainder is the subscript of the innermost array dimension: [5i].
   1228     ///
   1229     /// b. Divide Quotient: {{{0,+,2}_i, +, n}_j, +, n}_k by next outer size n
   1230     /// Quotient: {{{0,+,0}_i, +, 1}_j, +, 1}_k
   1231     /// Remainder: {{{0,+,2}_i, +, 0}_j, +, 0}_k
   1232     /// The Remainder is the subscript of the next array dimension: [2i].
   1233     ///
   1234     /// The subscript of the outermost dimension is the Quotient: [j+k].
   1235     ///
   1236     /// Overall, we have: A[][n][m], and the access function: A[j+k][2i][5i].
   1237     void delinearize(const SCEV *Expr,
   1238                      SmallVectorImpl<const SCEV *> &Subscripts,
   1239                      SmallVectorImpl<const SCEV *> &Sizes,
   1240                      const SCEV *ElementSize);
   1241 
   1242     /// Return the DataLayout associated with the module this SCEV instance is
   1243     /// operating on.
   1244     const DataLayout &getDataLayout() const {
   1245       return F.getParent()->getDataLayout();
   1246     }
   1247 
   1248     const SCEVPredicate *getEqualPredicate(const SCEVUnknown *LHS,
   1249                                            const SCEVConstant *RHS);
   1250 
   1251     /// Re-writes the SCEV according to the Predicates in \p Preds.
   1252     const SCEV *rewriteUsingPredicate(const SCEV *Scev, SCEVUnionPredicate &A);
   1253 
   1254   private:
   1255     /// Compute the backedge taken count knowing the interval difference, the
   1256     /// stride and presence of the equality in the comparison.
   1257     const SCEV *computeBECount(const SCEV *Delta, const SCEV *Stride,
   1258                                bool Equality);
   1259 
   1260     /// Verify if an linear IV with positive stride can overflow when in a
   1261     /// less-than comparison, knowing the invariant term of the comparison,
   1262     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1263     bool doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
   1264                             bool IsSigned, bool NoWrap);
   1265 
   1266     /// Verify if an linear IV with negative stride can overflow when in a
   1267     /// greater-than comparison, knowing the invariant term of the comparison,
   1268     /// the stride and the knowledge of NSW/NUW flags on the recurrence.
   1269     bool doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
   1270                             bool IsSigned, bool NoWrap);
   1271 
   1272   private:
   1273     FoldingSet<SCEV> UniqueSCEVs;
   1274     FoldingSet<SCEVPredicate> UniquePreds;
   1275     BumpPtrAllocator SCEVAllocator;
   1276 
   1277     /// The head of a linked list of all SCEVUnknown values that have been
   1278     /// allocated. This is used by releaseMemory to locate them all and call
   1279     /// their destructors.
   1280     SCEVUnknown *FirstUnknown;
   1281   };
   1282 
   1283   /// \brief Analysis pass that exposes the \c ScalarEvolution for a function.
   1284   class ScalarEvolutionAnalysis {
   1285     static char PassID;
   1286 
   1287   public:
   1288     typedef ScalarEvolution Result;
   1289 
   1290     /// \brief Opaque, unique identifier for this analysis pass.
   1291     static void *ID() { return (void *)&PassID; }
   1292 
   1293     /// \brief Provide a name for the analysis for debugging and logging.
   1294     static StringRef name() { return "ScalarEvolutionAnalysis"; }
   1295 
   1296     ScalarEvolution run(Function &F, AnalysisManager<Function> *AM);
   1297   };
   1298 
   1299   /// \brief Printer pass for the \c ScalarEvolutionAnalysis results.
   1300   class ScalarEvolutionPrinterPass {
   1301     raw_ostream &OS;
   1302 
   1303   public:
   1304     explicit ScalarEvolutionPrinterPass(raw_ostream &OS) : OS(OS) {}
   1305     PreservedAnalyses run(Function &F, AnalysisManager<Function> *AM);
   1306 
   1307     static StringRef name() { return "ScalarEvolutionPrinterPass"; }
   1308   };
   1309 
   1310   class ScalarEvolutionWrapperPass : public FunctionPass {
   1311     std::unique_ptr<ScalarEvolution> SE;
   1312 
   1313   public:
   1314     static char ID;
   1315 
   1316     ScalarEvolutionWrapperPass();
   1317 
   1318     ScalarEvolution &getSE() { return *SE; }
   1319     const ScalarEvolution &getSE() const { return *SE; }
   1320 
   1321     bool runOnFunction(Function &F) override;
   1322     void releaseMemory() override;
   1323     void getAnalysisUsage(AnalysisUsage &AU) const override;
   1324     void print(raw_ostream &OS, const Module * = nullptr) const override;
   1325     void verifyAnalysis() const override;
   1326   };
   1327 
   1328   /// An interface layer with SCEV used to manage how we see SCEV expressions
   1329   /// for values in the context of existing predicates. We can add new
   1330   /// predicates, but we cannot remove them.
   1331   ///
   1332   /// This layer has multiple purposes:
   1333   ///   - provides a simple interface for SCEV versioning.
   1334   ///   - guarantees that the order of transformations applied on a SCEV
   1335   ///     expression for a single Value is consistent across two different
   1336   ///     getSCEV calls. This means that, for example, once we've obtained
   1337   ///     an AddRec expression for a certain value through expression
   1338   ///     rewriting, we will continue to get an AddRec expression for that
   1339   ///     Value.
   1340   ///   - lowers the number of expression rewrites.
   1341   class PredicatedScalarEvolution {
   1342   public:
   1343     PredicatedScalarEvolution(ScalarEvolution &SE);
   1344     const SCEVUnionPredicate &getUnionPredicate() const;
   1345     /// \brief Returns the SCEV expression of V, in the context of the current
   1346     /// SCEV predicate.
   1347     /// The order of transformations applied on the expression of V returned
   1348     /// by ScalarEvolution is guaranteed to be preserved, even when adding new
   1349     /// predicates.
   1350     const SCEV *getSCEV(Value *V);
   1351     /// \brief Adds a new predicate.
   1352     void addPredicate(const SCEVPredicate &Pred);
   1353     /// \brief Returns the ScalarEvolution analysis used.
   1354     ScalarEvolution *getSE() const { return &SE; }
   1355 
   1356   private:
   1357     /// \brief Increments the version number of the predicate.
   1358     /// This needs to be called every time the SCEV predicate changes.
   1359     void updateGeneration();
   1360     /// Holds a SCEV and the version number of the SCEV predicate used to
   1361     /// perform the rewrite of the expression.
   1362     typedef std::pair<unsigned, const SCEV *> RewriteEntry;
   1363     /// Maps a SCEV to the rewrite result of that SCEV at a certain version
   1364     /// number. If this number doesn't match the current Generation, we will
   1365     /// need to do a rewrite. To preserve the transformation order of previous
   1366     /// rewrites, we will rewrite the previous result instead of the original
   1367     /// SCEV.
   1368     DenseMap<const SCEV *, RewriteEntry> RewriteMap;
   1369     /// The ScalarEvolution analysis.
   1370     ScalarEvolution &SE;
   1371     /// The SCEVPredicate that forms our context. We will rewrite all
   1372     /// expressions assuming that this predicate true.
   1373     SCEVUnionPredicate Preds;
   1374     /// Marks the version of the SCEV predicate used. When rewriting a SCEV
   1375     /// expression we mark it with the version of the predicate. We use this to
   1376     /// figure out if the predicate has changed from the last rewrite of the
   1377     /// SCEV. If so, we need to perform a new rewrite.
   1378     unsigned Generation;
   1379   };
   1380 }
   1381 
   1382 #endif
   1383