Home | History | Annotate | Download | only in base
      1 /*
      2  * Copyright (C) 2013 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     18 #define ART_RUNTIME_BASE_HISTOGRAM_INL_H_
     19 
     20 #include <algorithm>
     21 #include <cmath>
     22 #include <limits>
     23 #include <ostream>
     24 
     25 #include "histogram.h"
     26 
     27 #include "base/bit_utils.h"
     28 #include "base/time_utils.h"
     29 #include "utils.h"
     30 
     31 namespace art {
     32 
     33 template <class Value> inline void Histogram<Value>::AddValue(Value value) {
     34   CHECK_GE(value, static_cast<Value>(0));
     35   if (value >= max_) {
     36     Value new_max = ((value + 1) / bucket_width_ + 1) * bucket_width_;
     37     DCHECK_GT(new_max, max_);
     38     GrowBuckets(new_max);
     39   }
     40   BucketiseValue(value);
     41 }
     42 
     43 template <class Value> inline void Histogram<Value>::AdjustAndAddValue(Value value) {
     44   AddValue(value / kAdjust);
     45 }
     46 
     47 template <class Value> inline Histogram<Value>::Histogram(const char* name)
     48     : kAdjust(0),
     49       kInitialBucketCount(0),
     50       name_(name),
     51       max_buckets_(0) {
     52 }
     53 
     54 template <class Value>
     55 inline Histogram<Value>::Histogram(const char* name, Value initial_bucket_width,
     56                                    size_t max_buckets)
     57     : kAdjust(1000),
     58       kInitialBucketCount(8),
     59       name_(name),
     60       max_buckets_(max_buckets),
     61       bucket_width_(initial_bucket_width) {
     62   Reset();
     63 }
     64 
     65 template <class Value>
     66 inline void Histogram<Value>::GrowBuckets(Value new_max) {
     67   while (max_ < new_max) {
     68     // If we have reached the maximum number of buckets, merge buckets together.
     69     if (frequency_.size() >= max_buckets_) {
     70       CHECK_ALIGNED(frequency_.size(), 2);
     71       // We double the width of each bucket to reduce the number of buckets by a factor of 2.
     72       bucket_width_ *= 2;
     73       const size_t limit = frequency_.size() / 2;
     74       // Merge the frequencies by adding each adjacent two together.
     75       for (size_t i = 0; i < limit; ++i) {
     76         frequency_[i] = frequency_[i * 2] + frequency_[i * 2 + 1];
     77       }
     78       // Remove frequencies in the second half of the array which were added to the first half.
     79       while (frequency_.size() > limit) {
     80         frequency_.pop_back();
     81       }
     82     }
     83     max_ += bucket_width_;
     84     frequency_.push_back(0);
     85   }
     86 }
     87 
     88 template <class Value> inline size_t Histogram<Value>::FindBucket(Value val) const {
     89   // Since this is only a linear histogram, bucket index can be found simply with
     90   // dividing the value by the bucket width.
     91   DCHECK_GE(val, min_);
     92   DCHECK_LE(val, max_);
     93   const size_t bucket_idx = static_cast<size_t>((val - min_) / bucket_width_);
     94   DCHECK_GE(bucket_idx, 0ul);
     95   DCHECK_LE(bucket_idx, GetBucketCount());
     96   return bucket_idx;
     97 }
     98 
     99 template <class Value>
    100 inline void Histogram<Value>::BucketiseValue(Value val) {
    101   CHECK_LT(val, max_);
    102   sum_ += val;
    103   sum_of_squares_ += val * val;
    104   ++sample_size_;
    105   ++frequency_[FindBucket(val)];
    106   max_value_added_ = std::max(val, max_value_added_);
    107   min_value_added_ = std::min(val, min_value_added_);
    108 }
    109 
    110 template <class Value> inline void Histogram<Value>::Initialize() {
    111   for (size_t idx = 0; idx < kInitialBucketCount; idx++) {
    112     frequency_.push_back(0);
    113   }
    114   // Cumulative frequency and ranges has a length of 1 over frequency.
    115   max_ = bucket_width_ * GetBucketCount();
    116 }
    117 
    118 template <class Value> inline size_t Histogram<Value>::GetBucketCount() const {
    119   return frequency_.size();
    120 }
    121 
    122 template <class Value> inline void Histogram<Value>::Reset() {
    123   sum_of_squares_ = 0;
    124   sample_size_ = 0;
    125   min_ = 0;
    126   sum_ = 0;
    127   min_value_added_ = std::numeric_limits<Value>::max();
    128   max_value_added_ = std::numeric_limits<Value>::min();
    129   frequency_.clear();
    130   Initialize();
    131 }
    132 
    133 template <class Value> inline Value Histogram<Value>::GetRange(size_t bucket_idx) const {
    134   DCHECK_LE(bucket_idx, GetBucketCount());
    135   return min_ + bucket_idx * bucket_width_;
    136 }
    137 
    138 template <class Value> inline double Histogram<Value>::Mean() const {
    139   DCHECK_GT(sample_size_, 0ull);
    140   return static_cast<double>(sum_) / static_cast<double>(sample_size_);
    141 }
    142 
    143 template <class Value> inline double Histogram<Value>::Variance() const {
    144   DCHECK_GT(sample_size_, 0ull);
    145   // Using algorithms for calculating variance over a population:
    146   // http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    147   Value sum_squared = sum_ * sum_;
    148   double sum_squared_by_n_squared =
    149       static_cast<double>(sum_squared) /
    150       static_cast<double>(sample_size_ * sample_size_);
    151   double sum_of_squares_by_n =
    152       static_cast<double>(sum_of_squares_) / static_cast<double>(sample_size_);
    153   return sum_of_squares_by_n - sum_squared_by_n_squared;
    154 }
    155 
    156 template <class Value>
    157 inline void Histogram<Value>::PrintBins(std::ostream& os, const CumulativeData& data) const {
    158   DCHECK_GT(sample_size_, 0ull);
    159   for (size_t bin_idx = 0; bin_idx < data.freq_.size(); ++bin_idx) {
    160     if (bin_idx > 0 && data.perc_[bin_idx] == data.perc_[bin_idx - 1]) {
    161       bin_idx++;
    162       continue;
    163     }
    164     os << GetRange(bin_idx) << ": " << data.freq_[bin_idx] << "\t"
    165        << data.perc_[bin_idx] * 100.0 << "%\n";
    166   }
    167 }
    168 
    169 template <class Value>
    170 inline void Histogram<Value>::DumpBins(std::ostream& os) const {
    171   DCHECK_GT(sample_size_, 0ull);
    172   bool dumped_one = false;
    173   for (size_t bin_idx = 0; bin_idx < frequency_.size(); ++bin_idx) {
    174     if (frequency_[bin_idx] != 0U) {
    175       if (dumped_one) {
    176         // Prepend a comma if not the first bin.
    177         os << ",";
    178       } else {
    179         dumped_one = true;
    180       }
    181       os << GetRange(bin_idx) << ":" << frequency_[bin_idx];
    182     }
    183   }
    184 }
    185 
    186 template <class Value>
    187 inline void Histogram<Value>::PrintConfidenceIntervals(std::ostream &os, double interval,
    188                                                        const CumulativeData& data) const {
    189   static constexpr size_t kFractionalDigits = 3;
    190   DCHECK_GT(interval, 0);
    191   DCHECK_LT(interval, 1.0);
    192   const double per_0 = (1.0 - interval) / 2.0;
    193   const double per_1 = per_0 + interval;
    194   const TimeUnit unit = GetAppropriateTimeUnit(Mean() * kAdjust);
    195   os << Name() << ":\tSum: " << PrettyDuration(Sum() * kAdjust) << " "
    196      << (interval * 100) << "% C.I. " << FormatDuration(Percentile(per_0, data) * kAdjust, unit,
    197                                                         kFractionalDigits)
    198      << "-" << FormatDuration(Percentile(per_1, data) * kAdjust, unit, kFractionalDigits) << " "
    199      << "Avg: " << FormatDuration(Mean() * kAdjust, unit, kFractionalDigits) << " Max: "
    200      << FormatDuration(Max() * kAdjust, unit, kFractionalDigits) << "\n";
    201 }
    202 
    203 template <class Value>
    204 inline void Histogram<Value>::PrintMemoryUse(std::ostream &os) const {
    205   os << Name()
    206      << ": Avg: " << PrettySize(Mean()) << " Max: "
    207      << PrettySize(Max()) << " Min: " << PrettySize(Min()) << "\n";
    208 }
    209 
    210 template <class Value>
    211 inline void Histogram<Value>::CreateHistogram(CumulativeData* out_data) const {
    212   DCHECK_GT(sample_size_, 0ull);
    213   out_data->freq_.clear();
    214   out_data->perc_.clear();
    215   uint64_t accumulated = 0;
    216   out_data->freq_.push_back(accumulated);
    217   out_data->perc_.push_back(0.0);
    218   for (size_t idx = 0; idx < frequency_.size(); idx++) {
    219     accumulated += frequency_[idx];
    220     out_data->freq_.push_back(accumulated);
    221     out_data->perc_.push_back(static_cast<double>(accumulated) / static_cast<double>(sample_size_));
    222   }
    223   DCHECK_EQ(out_data->freq_.back(), sample_size_);
    224   DCHECK_LE(std::abs(out_data->perc_.back() - 1.0), 0.001);
    225 }
    226 
    227 #if defined(__clang__)
    228 #pragma clang diagnostic push
    229 #pragma clang diagnostic ignored "-Wfloat-equal"
    230 #endif
    231 
    232 template <class Value>
    233 inline double Histogram<Value>::Percentile(double per, const CumulativeData& data) const {
    234   DCHECK_GT(data.perc_.size(), 0ull);
    235   size_t upper_idx = 0, lower_idx = 0;
    236   for (size_t idx = 0; idx < data.perc_.size(); idx++) {
    237     if (per <= data.perc_[idx]) {
    238       upper_idx = idx;
    239       break;
    240     }
    241 
    242     if (per >= data.perc_[idx] && idx != 0 && data.perc_[idx] != data.perc_[idx - 1]) {
    243       lower_idx = idx;
    244     }
    245   }
    246 
    247   const double lower_perc = data.perc_[lower_idx];
    248   const double lower_value = static_cast<double>(GetRange(lower_idx));
    249   if (per == lower_perc) {
    250     return lower_value;
    251   }
    252 
    253   const double upper_perc = data.perc_[upper_idx];
    254   const double upper_value = static_cast<double>(GetRange(upper_idx));
    255   if (per == upper_perc) {
    256     return upper_value;
    257   }
    258   DCHECK_GT(upper_perc, lower_perc);
    259 
    260   double value = lower_value + (upper_value - lower_value) *
    261                                (per - lower_perc) / (upper_perc - lower_perc);
    262 
    263   if (value < min_value_added_) {
    264     value = min_value_added_;
    265   } else if (value > max_value_added_) {
    266     value = max_value_added_;
    267   }
    268 
    269   return value;
    270 }
    271 
    272 #if defined(__clang__)
    273 #pragma clang diagnostic pop
    274 #endif
    275 
    276 }  // namespace art
    277 #endif  // ART_RUNTIME_BASE_HISTOGRAM_INL_H_
    278