Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: mierle (at) gmail.com (Keir Mierle)
     30 //         sameeragarwal (at) google.com (Sameer Agarwal)
     31 //         thadh (at) gmail.com (Thad Hughes)
     32 //
     33 // This numeric diff implementation differs from the one found in
     34 // numeric_diff_cost_function.h by supporting numericdiff on cost
     35 // functions with variable numbers of parameters with variable
     36 // sizes. With the other implementation, all the sizes (both the
     37 // number of parameter blocks and the size of each block) must be
     38 // fixed at compile time.
     39 //
     40 // The functor API differs slightly from the API for fixed size
     41 // numeric diff; the expected interface for the cost functors is:
     42 //
     43 //   struct MyCostFunctor {
     44 //     template<typename T>
     45 //     bool operator()(double const* const* parameters, double* residuals) const {
     46 //       // Use parameters[i] to access the i'th parameter block.
     47 //     }
     48 //   }
     49 //
     50 // Since the sizing of the parameters is done at runtime, you must
     51 // also specify the sizes after creating the
     52 // DynamicNumericDiffCostFunction. For example:
     53 //
     54 //   DynamicAutoDiffCostFunction<MyCostFunctor, CENTRAL> cost_function(
     55 //       new MyCostFunctor());
     56 //   cost_function.AddParameterBlock(5);
     57 //   cost_function.AddParameterBlock(10);
     58 //   cost_function.SetNumResiduals(21);
     59 
     60 #ifndef CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
     61 #define CERES_PUBLIC_DYNAMIC_NUMERIC_DIFF_COST_FUNCTION_H_
     62 
     63 #include <cmath>
     64 #include <numeric>
     65 #include <vector>
     66 
     67 #include "ceres/cost_function.h"
     68 #include "ceres/internal/scoped_ptr.h"
     69 #include "ceres/internal/eigen.h"
     70 #include "ceres/internal/numeric_diff.h"
     71 #include "glog/logging.h"
     72 
     73 namespace ceres {
     74 
     75 template <typename CostFunctor, NumericDiffMethod method = CENTRAL>
     76 class DynamicNumericDiffCostFunction : public CostFunction {
     77  public:
     78   explicit DynamicNumericDiffCostFunction(const CostFunctor* functor,
     79                                           Ownership ownership = TAKE_OWNERSHIP,
     80                                           double relative_step_size = 1e-6)
     81       : functor_(functor),
     82         ownership_(ownership),
     83         relative_step_size_(relative_step_size) {
     84   }
     85 
     86   virtual ~DynamicNumericDiffCostFunction() {
     87     if (ownership_ != TAKE_OWNERSHIP) {
     88       functor_.release();
     89     }
     90   }
     91 
     92   void AddParameterBlock(int size) {
     93     mutable_parameter_block_sizes()->push_back(size);
     94   }
     95 
     96   void SetNumResiduals(int num_residuals) {
     97     set_num_residuals(num_residuals);
     98   }
     99 
    100   virtual bool Evaluate(double const* const* parameters,
    101                         double* residuals,
    102                         double** jacobians) const {
    103     CHECK_GT(num_residuals(), 0)
    104         << "You must call DynamicNumericDiffCostFunction::SetNumResiduals() "
    105         << "before DynamicNumericDiffCostFunction::Evaluate().";
    106 
    107     const vector<int32>& block_sizes = parameter_block_sizes();
    108     CHECK(!block_sizes.empty())
    109         << "You must call DynamicNumericDiffCostFunction::AddParameterBlock() "
    110         << "before DynamicNumericDiffCostFunction::Evaluate().";
    111 
    112     const bool status = EvaluateCostFunctor(parameters, residuals);
    113     if (jacobians == NULL || !status) {
    114       return status;
    115     }
    116 
    117     // Create local space for a copy of the parameters which will get mutated.
    118     int parameters_size = accumulate(block_sizes.begin(), block_sizes.end(), 0);
    119     vector<double> parameters_copy(parameters_size);
    120     vector<double*> parameters_references_copy(block_sizes.size());
    121     parameters_references_copy[0] = &parameters_copy[0];
    122     for (int block = 1; block < block_sizes.size(); ++block) {
    123       parameters_references_copy[block] = parameters_references_copy[block - 1]
    124           + block_sizes[block - 1];
    125     }
    126 
    127     // Copy the parameters into the local temp space.
    128     for (int block = 0; block < block_sizes.size(); ++block) {
    129       memcpy(parameters_references_copy[block],
    130              parameters[block],
    131              block_sizes[block] * sizeof(*parameters[block]));
    132     }
    133 
    134     for (int block = 0; block < block_sizes.size(); ++block) {
    135       if (jacobians[block] != NULL &&
    136           !EvaluateJacobianForParameterBlock(block_sizes[block],
    137                                              block,
    138                                              relative_step_size_,
    139                                              residuals,
    140                                              &parameters_references_copy[0],
    141                                              jacobians)) {
    142         return false;
    143       }
    144     }
    145     return true;
    146   }
    147 
    148  private:
    149   bool EvaluateJacobianForParameterBlock(const int parameter_block_size,
    150                                          const int parameter_block,
    151                                          const double relative_step_size,
    152                                          double const* residuals_at_eval_point,
    153                                          double** parameters,
    154                                          double** jacobians) const {
    155     using Eigen::Map;
    156     using Eigen::Matrix;
    157     using Eigen::Dynamic;
    158     using Eigen::RowMajor;
    159 
    160     typedef Matrix<double, Dynamic, 1> ResidualVector;
    161     typedef Matrix<double, Dynamic, 1> ParameterVector;
    162     typedef Matrix<double, Dynamic, Dynamic, RowMajor> JacobianMatrix;
    163 
    164     int num_residuals = this->num_residuals();
    165 
    166     Map<JacobianMatrix> parameter_jacobian(jacobians[parameter_block],
    167                                            num_residuals,
    168                                            parameter_block_size);
    169 
    170     // Mutate one element at a time and then restore.
    171     Map<ParameterVector> x_plus_delta(parameters[parameter_block],
    172                                       parameter_block_size);
    173     ParameterVector x(x_plus_delta);
    174     ParameterVector step_size = x.array().abs() * relative_step_size;
    175 
    176     // To handle cases where a paremeter is exactly zero, instead use
    177     // the mean step_size for the other dimensions.
    178     double fallback_step_size = step_size.sum() / step_size.rows();
    179     if (fallback_step_size == 0.0) {
    180       // If all the parameters are zero, there's no good answer. Use the given
    181       // relative step_size as absolute step_size and hope for the best.
    182       fallback_step_size = relative_step_size;
    183     }
    184 
    185     // For each parameter in the parameter block, use finite
    186     // differences to compute the derivative for that parameter.
    187     for (int j = 0; j < parameter_block_size; ++j) {
    188       if (step_size(j) == 0.0) {
    189         // The parameter is exactly zero, so compromise and use the
    190         // mean step_size from the other parameters. This can break in
    191         // many cases, but it's hard to pick a good number without
    192         // problem specific knowledge.
    193         step_size(j) = fallback_step_size;
    194       }
    195       x_plus_delta(j) = x(j) + step_size(j);
    196 
    197       ResidualVector residuals(num_residuals);
    198       if (!EvaluateCostFunctor(parameters, &residuals[0])) {
    199         // Something went wrong; bail.
    200         return false;
    201       }
    202 
    203       // Compute this column of the jacobian in 3 steps:
    204       // 1. Store residuals for the forward part.
    205       // 2. Subtract residuals for the backward (or 0) part.
    206       // 3. Divide out the run.
    207       parameter_jacobian.col(j).matrix() = residuals;
    208 
    209       double one_over_h = 1 / step_size(j);
    210       if (method == CENTRAL) {
    211         // Compute the function on the other side of x(j).
    212         x_plus_delta(j) = x(j) - step_size(j);
    213 
    214         if (!EvaluateCostFunctor(parameters, &residuals[0])) {
    215           // Something went wrong; bail.
    216           return false;
    217         }
    218 
    219         parameter_jacobian.col(j) -= residuals;
    220         one_over_h /= 2;
    221       } else {
    222         // Forward difference only; reuse existing residuals evaluation.
    223         parameter_jacobian.col(j) -=
    224             Map<const ResidualVector>(residuals_at_eval_point, num_residuals);
    225       }
    226       x_plus_delta(j) = x(j);  // Restore x_plus_delta.
    227 
    228       // Divide out the run to get slope.
    229       parameter_jacobian.col(j) *= one_over_h;
    230     }
    231     return true;
    232   }
    233 
    234   bool EvaluateCostFunctor(double const* const* parameters,
    235                            double* residuals) const {
    236     return EvaluateCostFunctorImpl(functor_.get(),
    237                                    parameters,
    238                                    residuals,
    239                                    functor_.get());
    240   }
    241 
    242   // Helper templates to allow evaluation of a functor or a
    243   // CostFunction.
    244   bool EvaluateCostFunctorImpl(const CostFunctor* functor,
    245                                double const* const* parameters,
    246                                double* residuals,
    247                                const void* /* NOT USED */) const {
    248     return (*functor)(parameters, residuals);
    249   }
    250 
    251   bool EvaluateCostFunctorImpl(const CostFunctor* functor,
    252                                double const* const* parameters,
    253                                double* residuals,
    254                                const CostFunction* /* NOT USED */) const {
    255     return functor->Evaluate(parameters, residuals, NULL);
    256   }
    257 
    258   internal::scoped_ptr<const CostFunctor> functor_;
    259   Ownership ownership_;
    260   const double relative_step_size_;
    261 };
    262 
    263 }  // namespace ceres
    264 
    265 #endif  // CERES_PUBLIC_DYNAMIC_AUTODIFF_COST_FUNCTION_H_
    266