Home | History | Annotate | Download | only in ec
      1 /* Copyright (c) 2015, Google Inc.
      2  *
      3  * Permission to use, copy, modify, and/or distribute this software for any
      4  * purpose with or without fee is hereby granted, provided that the above
      5  * copyright notice and this permission notice appear in all copies.
      6  *
      7  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
      8  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
      9  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
     10  * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     11  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
     12  * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
     13  * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
     14 
     15 /* A 64-bit implementation of the NIST P-256 elliptic curve point
     16  * multiplication
     17  *
     18  * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c.
     19  * Otherwise based on Emilia's P224 work, which was inspired by my curve25519
     20  * work which got its smarts from Daniel J. Bernstein's work on the same. */
     21 
     22 #include <openssl/base.h>
     23 
     24 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
     25 
     26 #include <openssl/bn.h>
     27 #include <openssl/ec.h>
     28 #include <openssl/err.h>
     29 #include <openssl/mem.h>
     30 #include <openssl/obj.h>
     31 
     32 #include <string.h>
     33 
     34 #include "internal.h"
     35 
     36 
     37 typedef uint8_t u8;
     38 typedef uint64_t u64;
     39 typedef int64_t s64;
     40 typedef __uint128_t uint128_t;
     41 typedef __int128_t int128_t;
     42 
     43 /* The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We
     44  * can serialise an element of this field into 32 bytes. We call this an
     45  * felem_bytearray. */
     46 typedef u8 felem_bytearray[32];
     47 
     48 /* These are the parameters of P256, taken from FIPS 186-3, page 86. These
     49  * values are big-endian. */
     50 static const felem_bytearray nistp256_curve_params[5] = {
     51     {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */
     52      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     53      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff},
     54     {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */
     55      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
     56      0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
     57      0xfc}, /* b */
     58     {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, 0xb3, 0xeb, 0xbd, 0x55,
     59      0x76, 0x98, 0x86, 0xbc, 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6,
     60      0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b},
     61     {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */
     62      0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, 0x77, 0x03, 0x7d, 0x81,
     63      0x2d, 0xeb, 0x33, 0xa0, 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96},
     64     {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */
     65      0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57,
     66      0x6b, 0x31, 0x5e, 0xce, 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5}};
     67 
     68 /* The representation of field elements.
     69  * ------------------------------------
     70  *
     71  * We represent field elements with either four 128-bit values, eight 128-bit
     72  * values, or four 64-bit values. The field element represented is:
     73  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192  (mod p)
     74  * or:
     75  *   v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512  (mod p)
     76  *
     77  * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits
     78  * apart, but are 128-bits wide, the most significant bits of each limb overlap
     79  * with the least significant bits of the next.
     80  *
     81  * A field element with four limbs is an 'felem'. One with eight limbs is a
     82  * 'longfelem'
     83  *
     84  * A field element with four, 64-bit values is called a 'smallfelem'. Small
     85  * values are used as intermediate values before multiplication. */
     86 
     87 #define NLIMBS 4
     88 
     89 typedef uint128_t limb;
     90 typedef limb felem[NLIMBS];
     91 typedef limb longfelem[NLIMBS * 2];
     92 typedef u64 smallfelem[NLIMBS];
     93 
     94 /* This is the value of the prime as four 64-bit words, little-endian. */
     95 static const u64 kPrime[4] = {0xfffffffffffffffful, 0xffffffff, 0,
     96                               0xffffffff00000001ul};
     97 static const u64 bottom63bits = 0x7ffffffffffffffful;
     98 
     99 /* bin32_to_felem takes a little-endian byte array and converts it into felem
    100  * form. This assumes that the CPU is little-endian. */
    101 static void bin32_to_felem(felem out, const u8 in[32]) {
    102   out[0] = *((u64 *)&in[0]);
    103   out[1] = *((u64 *)&in[8]);
    104   out[2] = *((u64 *)&in[16]);
    105   out[3] = *((u64 *)&in[24]);
    106 }
    107 
    108 /* smallfelem_to_bin32 takes a smallfelem and serialises into a little endian,
    109  * 32 byte array. This assumes that the CPU is little-endian. */
    110 static void smallfelem_to_bin32(u8 out[32], const smallfelem in) {
    111   *((u64 *)&out[0]) = in[0];
    112   *((u64 *)&out[8]) = in[1];
    113   *((u64 *)&out[16]) = in[2];
    114   *((u64 *)&out[24]) = in[3];
    115 }
    116 
    117 /* To preserve endianness when using BN_bn2bin and BN_bin2bn. */
    118 static void flip_endian(u8 *out, const u8 *in, unsigned len) {
    119   unsigned i;
    120   for (i = 0; i < len; ++i) {
    121     out[i] = in[len - 1 - i];
    122   }
    123 }
    124 
    125 /* BN_to_felem converts an OpenSSL BIGNUM into an felem. */
    126 static int BN_to_felem(felem out, const BIGNUM *bn) {
    127   if (BN_is_negative(bn)) {
    128     OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
    129     return 0;
    130   }
    131 
    132   felem_bytearray b_out;
    133   /* BN_bn2bin eats leading zeroes */
    134   memset(b_out, 0, sizeof(b_out));
    135   unsigned num_bytes = BN_num_bytes(bn);
    136   if (num_bytes > sizeof(b_out)) {
    137     OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
    138     return 0;
    139   }
    140 
    141   felem_bytearray b_in;
    142   num_bytes = BN_bn2bin(bn, b_in);
    143   flip_endian(b_out, b_in, num_bytes);
    144   bin32_to_felem(out, b_out);
    145   return 1;
    146 }
    147 
    148 /* felem_to_BN converts an felem into an OpenSSL BIGNUM. */
    149 static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) {
    150   felem_bytearray b_in, b_out;
    151   smallfelem_to_bin32(b_in, in);
    152   flip_endian(b_out, b_in, sizeof(b_out));
    153   return BN_bin2bn(b_out, sizeof(b_out), out);
    154 }
    155 
    156 /* Field operations. */
    157 
    158 static void smallfelem_one(smallfelem out) {
    159   out[0] = 1;
    160   out[1] = 0;
    161   out[2] = 0;
    162   out[3] = 0;
    163 }
    164 
    165 static void smallfelem_assign(smallfelem out, const smallfelem in) {
    166   out[0] = in[0];
    167   out[1] = in[1];
    168   out[2] = in[2];
    169   out[3] = in[3];
    170 }
    171 
    172 static void felem_assign(felem out, const felem in) {
    173   out[0] = in[0];
    174   out[1] = in[1];
    175   out[2] = in[2];
    176   out[3] = in[3];
    177 }
    178 
    179 /* felem_sum sets out = out + in. */
    180 static void felem_sum(felem out, const felem in) {
    181   out[0] += in[0];
    182   out[1] += in[1];
    183   out[2] += in[2];
    184   out[3] += in[3];
    185 }
    186 
    187 /* felem_small_sum sets out = out + in. */
    188 static void felem_small_sum(felem out, const smallfelem in) {
    189   out[0] += in[0];
    190   out[1] += in[1];
    191   out[2] += in[2];
    192   out[3] += in[3];
    193 }
    194 
    195 /* felem_scalar sets out = out * scalar */
    196 static void felem_scalar(felem out, const u64 scalar) {
    197   out[0] *= scalar;
    198   out[1] *= scalar;
    199   out[2] *= scalar;
    200   out[3] *= scalar;
    201 }
    202 
    203 /* longfelem_scalar sets out = out * scalar */
    204 static void longfelem_scalar(longfelem out, const u64 scalar) {
    205   out[0] *= scalar;
    206   out[1] *= scalar;
    207   out[2] *= scalar;
    208   out[3] *= scalar;
    209   out[4] *= scalar;
    210   out[5] *= scalar;
    211   out[6] *= scalar;
    212   out[7] *= scalar;
    213 }
    214 
    215 #define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9)
    216 #define two105 (((limb)1) << 105)
    217 #define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9)
    218 
    219 /* zero105 is 0 mod p */
    220 static const felem zero105 = {two105m41m9, two105, two105m41p9, two105m41p9};
    221 
    222 /* smallfelem_neg sets |out| to |-small|
    223  * On exit:
    224  *   out[i] < out[i] + 2^105 */
    225 static void smallfelem_neg(felem out, const smallfelem small) {
    226   /* In order to prevent underflow, we subtract from 0 mod p. */
    227   out[0] = zero105[0] - small[0];
    228   out[1] = zero105[1] - small[1];
    229   out[2] = zero105[2] - small[2];
    230   out[3] = zero105[3] - small[3];
    231 }
    232 
    233 /* felem_diff subtracts |in| from |out|
    234  * On entry:
    235  *   in[i] < 2^104
    236  * On exit:
    237  *   out[i] < out[i] + 2^105. */
    238 static void felem_diff(felem out, const felem in) {
    239   /* In order to prevent underflow, we add 0 mod p before subtracting. */
    240   out[0] += zero105[0];
    241   out[1] += zero105[1];
    242   out[2] += zero105[2];
    243   out[3] += zero105[3];
    244 
    245   out[0] -= in[0];
    246   out[1] -= in[1];
    247   out[2] -= in[2];
    248   out[3] -= in[3];
    249 }
    250 
    251 #define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11)
    252 #define two107 (((limb)1) << 107)
    253 #define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11)
    254 
    255 /* zero107 is 0 mod p */
    256 static const felem zero107 = {two107m43m11, two107, two107m43p11, two107m43p11};
    257 
    258 /* An alternative felem_diff for larger inputs |in|
    259  * felem_diff_zero107 subtracts |in| from |out|
    260  * On entry:
    261  *   in[i] < 2^106
    262  * On exit:
    263  *   out[i] < out[i] + 2^107. */
    264 static void felem_diff_zero107(felem out, const felem in) {
    265   /* In order to prevent underflow, we add 0 mod p before subtracting. */
    266   out[0] += zero107[0];
    267   out[1] += zero107[1];
    268   out[2] += zero107[2];
    269   out[3] += zero107[3];
    270 
    271   out[0] -= in[0];
    272   out[1] -= in[1];
    273   out[2] -= in[2];
    274   out[3] -= in[3];
    275 }
    276 
    277 /* longfelem_diff subtracts |in| from |out|
    278  * On entry:
    279  *   in[i] < 7*2^67
    280  * On exit:
    281  *   out[i] < out[i] + 2^70 + 2^40. */
    282 static void longfelem_diff(longfelem out, const longfelem in) {
    283   static const limb two70m8p6 =
    284       (((limb)1) << 70) - (((limb)1) << 8) + (((limb)1) << 6);
    285   static const limb two70p40 = (((limb)1) << 70) + (((limb)1) << 40);
    286   static const limb two70 = (((limb)1) << 70);
    287   static const limb two70m40m38p6 = (((limb)1) << 70) - (((limb)1) << 40) -
    288                                     (((limb)1) << 38) + (((limb)1) << 6);
    289   static const limb two70m6 = (((limb)1) << 70) - (((limb)1) << 6);
    290 
    291   /* add 0 mod p to avoid underflow */
    292   out[0] += two70m8p6;
    293   out[1] += two70p40;
    294   out[2] += two70;
    295   out[3] += two70m40m38p6;
    296   out[4] += two70m6;
    297   out[5] += two70m6;
    298   out[6] += two70m6;
    299   out[7] += two70m6;
    300 
    301   /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */
    302   out[0] -= in[0];
    303   out[1] -= in[1];
    304   out[2] -= in[2];
    305   out[3] -= in[3];
    306   out[4] -= in[4];
    307   out[5] -= in[5];
    308   out[6] -= in[6];
    309   out[7] -= in[7];
    310 }
    311 
    312 #define two64m0 (((limb)1) << 64) - 1
    313 #define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1
    314 #define two64m46 (((limb)1) << 64) - (((limb)1) << 46)
    315 #define two64m32 (((limb)1) << 64) - (((limb)1) << 32)
    316 
    317 /* zero110 is 0 mod p. */
    318 static const felem zero110 = {two64m0, two110p32m0, two64m46, two64m32};
    319 
    320 /* felem_shrink converts an felem into a smallfelem. The result isn't quite
    321  * minimal as the value may be greater than p.
    322  *
    323  * On entry:
    324  *   in[i] < 2^109
    325  * On exit:
    326  *   out[i] < 2^64. */
    327 static void felem_shrink(smallfelem out, const felem in) {
    328   felem tmp;
    329   u64 a, b, mask;
    330   s64 high, low;
    331   static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */
    332 
    333   /* Carry 2->3 */
    334   tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64));
    335   /* tmp[3] < 2^110 */
    336 
    337   tmp[2] = zero110[2] + (u64)in[2];
    338   tmp[0] = zero110[0] + in[0];
    339   tmp[1] = zero110[1] + in[1];
    340   /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */
    341 
    342   /* We perform two partial reductions where we eliminate the high-word of
    343    * tmp[3]. We don't update the other words till the end. */
    344   a = tmp[3] >> 64; /* a < 2^46 */
    345   tmp[3] = (u64)tmp[3];
    346   tmp[3] -= a;
    347   tmp[3] += ((limb)a) << 32;
    348   /* tmp[3] < 2^79 */
    349 
    350   b = a;
    351   a = tmp[3] >> 64; /* a < 2^15 */
    352   b += a;           /* b < 2^46 + 2^15 < 2^47 */
    353   tmp[3] = (u64)tmp[3];
    354   tmp[3] -= a;
    355   tmp[3] += ((limb)a) << 32;
    356   /* tmp[3] < 2^64 + 2^47 */
    357 
    358   /* This adjusts the other two words to complete the two partial
    359    * reductions. */
    360   tmp[0] += b;
    361   tmp[1] -= (((limb)b) << 32);
    362 
    363   /* In order to make space in tmp[3] for the carry from 2 -> 3, we
    364    * conditionally subtract kPrime if tmp[3] is large enough. */
    365   high = tmp[3] >> 64;
    366   /* As tmp[3] < 2^65, high is either 1 or 0 */
    367   high <<= 63;
    368   high >>= 63;
    369   /* high is:
    370    *   all ones   if the high word of tmp[3] is 1
    371    *   all zeros  if the high word of tmp[3] if 0 */
    372   low = tmp[3];
    373   mask = low >> 63;
    374   /* mask is:
    375    *   all ones   if the MSB of low is 1
    376    *   all zeros  if the MSB of low if 0 */
    377   low &= bottom63bits;
    378   low -= kPrime3Test;
    379   /* if low was greater than kPrime3Test then the MSB is zero */
    380   low = ~low;
    381   low >>= 63;
    382   /* low is:
    383    *   all ones   if low was > kPrime3Test
    384    *   all zeros  if low was <= kPrime3Test */
    385   mask = (mask & low) | high;
    386   tmp[0] -= mask & kPrime[0];
    387   tmp[1] -= mask & kPrime[1];
    388   /* kPrime[2] is zero, so omitted */
    389   tmp[3] -= mask & kPrime[3];
    390   /* tmp[3] < 2**64 - 2**32 + 1 */
    391 
    392   tmp[1] += ((u64)(tmp[0] >> 64));
    393   tmp[0] = (u64)tmp[0];
    394   tmp[2] += ((u64)(tmp[1] >> 64));
    395   tmp[1] = (u64)tmp[1];
    396   tmp[3] += ((u64)(tmp[2] >> 64));
    397   tmp[2] = (u64)tmp[2];
    398   /* tmp[i] < 2^64 */
    399 
    400   out[0] = tmp[0];
    401   out[1] = tmp[1];
    402   out[2] = tmp[2];
    403   out[3] = tmp[3];
    404 }
    405 
    406 /* smallfelem_expand converts a smallfelem to an felem */
    407 static void smallfelem_expand(felem out, const smallfelem in) {
    408   out[0] = in[0];
    409   out[1] = in[1];
    410   out[2] = in[2];
    411   out[3] = in[3];
    412 }
    413 
    414 /* smallfelem_square sets |out| = |small|^2
    415  * On entry:
    416  *   small[i] < 2^64
    417  * On exit:
    418  *   out[i] < 7 * 2^64 < 2^67 */
    419 static void smallfelem_square(longfelem out, const smallfelem small) {
    420   limb a;
    421   u64 high, low;
    422 
    423   a = ((uint128_t)small[0]) * small[0];
    424   low = a;
    425   high = a >> 64;
    426   out[0] = low;
    427   out[1] = high;
    428 
    429   a = ((uint128_t)small[0]) * small[1];
    430   low = a;
    431   high = a >> 64;
    432   out[1] += low;
    433   out[1] += low;
    434   out[2] = high;
    435 
    436   a = ((uint128_t)small[0]) * small[2];
    437   low = a;
    438   high = a >> 64;
    439   out[2] += low;
    440   out[2] *= 2;
    441   out[3] = high;
    442 
    443   a = ((uint128_t)small[0]) * small[3];
    444   low = a;
    445   high = a >> 64;
    446   out[3] += low;
    447   out[4] = high;
    448 
    449   a = ((uint128_t)small[1]) * small[2];
    450   low = a;
    451   high = a >> 64;
    452   out[3] += low;
    453   out[3] *= 2;
    454   out[4] += high;
    455 
    456   a = ((uint128_t)small[1]) * small[1];
    457   low = a;
    458   high = a >> 64;
    459   out[2] += low;
    460   out[3] += high;
    461 
    462   a = ((uint128_t)small[1]) * small[3];
    463   low = a;
    464   high = a >> 64;
    465   out[4] += low;
    466   out[4] *= 2;
    467   out[5] = high;
    468 
    469   a = ((uint128_t)small[2]) * small[3];
    470   low = a;
    471   high = a >> 64;
    472   out[5] += low;
    473   out[5] *= 2;
    474   out[6] = high;
    475   out[6] += high;
    476 
    477   a = ((uint128_t)small[2]) * small[2];
    478   low = a;
    479   high = a >> 64;
    480   out[4] += low;
    481   out[5] += high;
    482 
    483   a = ((uint128_t)small[3]) * small[3];
    484   low = a;
    485   high = a >> 64;
    486   out[6] += low;
    487   out[7] = high;
    488 }
    489 
    490 /*felem_square sets |out| = |in|^2
    491  * On entry:
    492  *   in[i] < 2^109
    493  * On exit:
    494  *   out[i] < 7 * 2^64 < 2^67. */
    495 static void felem_square(longfelem out, const felem in) {
    496   u64 small[4];
    497   felem_shrink(small, in);
    498   smallfelem_square(out, small);
    499 }
    500 
    501 /* smallfelem_mul sets |out| = |small1| * |small2|
    502  * On entry:
    503  *   small1[i] < 2^64
    504  *   small2[i] < 2^64
    505  * On exit:
    506  *   out[i] < 7 * 2^64 < 2^67. */
    507 static void smallfelem_mul(longfelem out, const smallfelem small1,
    508                            const smallfelem small2) {
    509   limb a;
    510   u64 high, low;
    511 
    512   a = ((uint128_t)small1[0]) * small2[0];
    513   low = a;
    514   high = a >> 64;
    515   out[0] = low;
    516   out[1] = high;
    517 
    518   a = ((uint128_t)small1[0]) * small2[1];
    519   low = a;
    520   high = a >> 64;
    521   out[1] += low;
    522   out[2] = high;
    523 
    524   a = ((uint128_t)small1[1]) * small2[0];
    525   low = a;
    526   high = a >> 64;
    527   out[1] += low;
    528   out[2] += high;
    529 
    530   a = ((uint128_t)small1[0]) * small2[2];
    531   low = a;
    532   high = a >> 64;
    533   out[2] += low;
    534   out[3] = high;
    535 
    536   a = ((uint128_t)small1[1]) * small2[1];
    537   low = a;
    538   high = a >> 64;
    539   out[2] += low;
    540   out[3] += high;
    541 
    542   a = ((uint128_t)small1[2]) * small2[0];
    543   low = a;
    544   high = a >> 64;
    545   out[2] += low;
    546   out[3] += high;
    547 
    548   a = ((uint128_t)small1[0]) * small2[3];
    549   low = a;
    550   high = a >> 64;
    551   out[3] += low;
    552   out[4] = high;
    553 
    554   a = ((uint128_t)small1[1]) * small2[2];
    555   low = a;
    556   high = a >> 64;
    557   out[3] += low;
    558   out[4] += high;
    559 
    560   a = ((uint128_t)small1[2]) * small2[1];
    561   low = a;
    562   high = a >> 64;
    563   out[3] += low;
    564   out[4] += high;
    565 
    566   a = ((uint128_t)small1[3]) * small2[0];
    567   low = a;
    568   high = a >> 64;
    569   out[3] += low;
    570   out[4] += high;
    571 
    572   a = ((uint128_t)small1[1]) * small2[3];
    573   low = a;
    574   high = a >> 64;
    575   out[4] += low;
    576   out[5] = high;
    577 
    578   a = ((uint128_t)small1[2]) * small2[2];
    579   low = a;
    580   high = a >> 64;
    581   out[4] += low;
    582   out[5] += high;
    583 
    584   a = ((uint128_t)small1[3]) * small2[1];
    585   low = a;
    586   high = a >> 64;
    587   out[4] += low;
    588   out[5] += high;
    589 
    590   a = ((uint128_t)small1[2]) * small2[3];
    591   low = a;
    592   high = a >> 64;
    593   out[5] += low;
    594   out[6] = high;
    595 
    596   a = ((uint128_t)small1[3]) * small2[2];
    597   low = a;
    598   high = a >> 64;
    599   out[5] += low;
    600   out[6] += high;
    601 
    602   a = ((uint128_t)small1[3]) * small2[3];
    603   low = a;
    604   high = a >> 64;
    605   out[6] += low;
    606   out[7] = high;
    607 }
    608 
    609 /* felem_mul sets |out| = |in1| * |in2|
    610  * On entry:
    611  *   in1[i] < 2^109
    612  *   in2[i] < 2^109
    613  * On exit:
    614  *   out[i] < 7 * 2^64 < 2^67 */
    615 static void felem_mul(longfelem out, const felem in1, const felem in2) {
    616   smallfelem small1, small2;
    617   felem_shrink(small1, in1);
    618   felem_shrink(small2, in2);
    619   smallfelem_mul(out, small1, small2);
    620 }
    621 
    622 /* felem_small_mul sets |out| = |small1| * |in2|
    623  * On entry:
    624  *   small1[i] < 2^64
    625  *   in2[i] < 2^109
    626  * On exit:
    627  *   out[i] < 7 * 2^64 < 2^67 */
    628 static void felem_small_mul(longfelem out, const smallfelem small1,
    629                             const felem in2) {
    630   smallfelem small2;
    631   felem_shrink(small2, in2);
    632   smallfelem_mul(out, small1, small2);
    633 }
    634 
    635 #define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4)
    636 #define two100 (((limb)1) << 100)
    637 #define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4)
    638 
    639 /* zero100 is 0 mod p */
    640 static const felem zero100 = {two100m36m4, two100, two100m36p4, two100m36p4};
    641 
    642 /* Internal function for the different flavours of felem_reduce.
    643  * felem_reduce_ reduces the higher coefficients in[4]-in[7].
    644  * On entry:
    645  *   out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7]
    646  *   out[1] >= in[7] + 2^32*in[4]
    647  *   out[2] >= in[5] + 2^32*in[5]
    648  *   out[3] >= in[4] + 2^32*in[5] + 2^32*in[6]
    649  * On exit:
    650  *   out[0] <= out[0] + in[4] + 2^32*in[5]
    651  *   out[1] <= out[1] + in[5] + 2^33*in[6]
    652  *   out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7]
    653  *   out[3] <= out[3] + 2^32*in[4] + 3*in[7] */
    654 static void felem_reduce_(felem out, const longfelem in) {
    655   int128_t c;
    656   /* combine common terms from below */
    657   c = in[4] + (in[5] << 32);
    658   out[0] += c;
    659   out[3] -= c;
    660 
    661   c = in[5] - in[7];
    662   out[1] += c;
    663   out[2] -= c;
    664 
    665   /* the remaining terms */
    666   /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */
    667   out[1] -= (in[4] << 32);
    668   out[3] += (in[4] << 32);
    669 
    670   /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */
    671   out[2] -= (in[5] << 32);
    672 
    673   /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */
    674   out[0] -= in[6];
    675   out[0] -= (in[6] << 32);
    676   out[1] += (in[6] << 33);
    677   out[2] += (in[6] * 2);
    678   out[3] -= (in[6] << 32);
    679 
    680   /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */
    681   out[0] -= in[7];
    682   out[0] -= (in[7] << 32);
    683   out[2] += (in[7] << 33);
    684   out[3] += (in[7] * 3);
    685 }
    686 
    687 /* felem_reduce converts a longfelem into an felem.
    688  * To be called directly after felem_square or felem_mul.
    689  * On entry:
    690  *   in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64
    691  *   in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64
    692  * On exit:
    693  *   out[i] < 2^101 */
    694 static void felem_reduce(felem out, const longfelem in) {
    695   out[0] = zero100[0] + in[0];
    696   out[1] = zero100[1] + in[1];
    697   out[2] = zero100[2] + in[2];
    698   out[3] = zero100[3] + in[3];
    699 
    700   felem_reduce_(out, in);
    701 
    702   /* out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0
    703    * out[1] > 2^100 - 2^64 - 7*2^96 > 0
    704    * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0
    705    * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0
    706    *
    707    * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101
    708    * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101
    709    * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101
    710    * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 */
    711 }
    712 
    713 /* felem_reduce_zero105 converts a larger longfelem into an felem.
    714  * On entry:
    715  *   in[0] < 2^71
    716  * On exit:
    717  *   out[i] < 2^106 */
    718 static void felem_reduce_zero105(felem out, const longfelem in) {
    719     out[0] = zero105[0] + in[0];
    720     out[1] = zero105[1] + in[1];
    721     out[2] = zero105[2] + in[2];
    722     out[3] = zero105[3] + in[3];
    723 
    724     felem_reduce_(out, in);
    725 
    726     /* out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0
    727      * out[1] > 2^105 - 2^71 - 2^103 > 0
    728      * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0
    729      * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0
    730      *
    731      * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
    732      * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106
    733      * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106
    734      * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 */
    735 }
    736 
    737 /* subtract_u64 sets *result = *result - v and *carry to one if the
    738  * subtraction underflowed. */
    739 static void subtract_u64(u64 *result, u64 *carry, u64 v) {
    740   uint128_t r = *result;
    741   r -= v;
    742   *carry = (r >> 64) & 1;
    743   *result = (u64)r;
    744 }
    745 
    746 /* felem_contract converts |in| to its unique, minimal representation. On
    747  * entry: in[i] < 2^109. */
    748 static void felem_contract(smallfelem out, const felem in) {
    749   u64 all_equal_so_far = 0, result = 0;
    750 
    751   felem_shrink(out, in);
    752   /* small is minimal except that the value might be > p */
    753 
    754   all_equal_so_far--;
    755   /* We are doing a constant time test if out >= kPrime. We need to compare
    756    * each u64, from most-significant to least significant. For each one, if
    757    * all words so far have been equal (m is all ones) then a non-equal
    758    * result is the answer. Otherwise we continue. */
    759   unsigned i;
    760   for (i = 3; i < 4; i--) {
    761     u64 equal;
    762     uint128_t a = ((uint128_t)kPrime[i]) - out[i];
    763     /* if out[i] > kPrime[i] then a will underflow and the high 64-bits
    764      * will all be set. */
    765     result |= all_equal_so_far & ((u64)(a >> 64));
    766 
    767     /* if kPrime[i] == out[i] then |equal| will be all zeros and the
    768      * decrement will make it all ones. */
    769     equal = kPrime[i] ^ out[i];
    770     equal--;
    771     equal &= equal << 32;
    772     equal &= equal << 16;
    773     equal &= equal << 8;
    774     equal &= equal << 4;
    775     equal &= equal << 2;
    776     equal &= equal << 1;
    777     equal = ((s64)equal) >> 63;
    778 
    779     all_equal_so_far &= equal;
    780   }
    781 
    782   /* if all_equal_so_far is still all ones then the two values are equal
    783    * and so out >= kPrime is true. */
    784   result |= all_equal_so_far;
    785 
    786   /* if out >= kPrime then we subtract kPrime. */
    787   u64 carry;
    788   subtract_u64(&out[0], &carry, result & kPrime[0]);
    789   subtract_u64(&out[1], &carry, carry);
    790   subtract_u64(&out[2], &carry, carry);
    791   subtract_u64(&out[3], &carry, carry);
    792 
    793   subtract_u64(&out[1], &carry, result & kPrime[1]);
    794   subtract_u64(&out[2], &carry, carry);
    795   subtract_u64(&out[3], &carry, carry);
    796 
    797   subtract_u64(&out[2], &carry, result & kPrime[2]);
    798   subtract_u64(&out[3], &carry, carry);
    799 
    800   subtract_u64(&out[3], &carry, result & kPrime[3]);
    801 }
    802 
    803 static void smallfelem_square_contract(smallfelem out, const smallfelem in) {
    804   longfelem longtmp;
    805   felem tmp;
    806 
    807   smallfelem_square(longtmp, in);
    808   felem_reduce(tmp, longtmp);
    809   felem_contract(out, tmp);
    810 }
    811 
    812 static void smallfelem_mul_contract(smallfelem out, const smallfelem in1,
    813                                     const smallfelem in2) {
    814   longfelem longtmp;
    815   felem tmp;
    816 
    817   smallfelem_mul(longtmp, in1, in2);
    818   felem_reduce(tmp, longtmp);
    819   felem_contract(out, tmp);
    820 }
    821 
    822 /* felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0
    823  * otherwise.
    824  * On entry:
    825  *   small[i] < 2^64 */
    826 static limb smallfelem_is_zero(const smallfelem small) {
    827   limb result;
    828   u64 is_p;
    829 
    830   u64 is_zero = small[0] | small[1] | small[2] | small[3];
    831   is_zero--;
    832   is_zero &= is_zero << 32;
    833   is_zero &= is_zero << 16;
    834   is_zero &= is_zero << 8;
    835   is_zero &= is_zero << 4;
    836   is_zero &= is_zero << 2;
    837   is_zero &= is_zero << 1;
    838   is_zero = ((s64)is_zero) >> 63;
    839 
    840   is_p = (small[0] ^ kPrime[0]) | (small[1] ^ kPrime[1]) |
    841          (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]);
    842   is_p--;
    843   is_p &= is_p << 32;
    844   is_p &= is_p << 16;
    845   is_p &= is_p << 8;
    846   is_p &= is_p << 4;
    847   is_p &= is_p << 2;
    848   is_p &= is_p << 1;
    849   is_p = ((s64)is_p) >> 63;
    850 
    851   is_zero |= is_p;
    852 
    853   result = is_zero;
    854   result |= ((limb)is_zero) << 64;
    855   return result;
    856 }
    857 
    858 static int smallfelem_is_zero_int(const smallfelem small) {
    859   return (int)(smallfelem_is_zero(small) & ((limb)1));
    860 }
    861 
    862 /* felem_inv calculates |out| = |in|^{-1}
    863  *
    864  * Based on Fermat's Little Theorem:
    865  *   a^p = a (mod p)
    866  *   a^{p-1} = 1 (mod p)
    867  *   a^{p-2} = a^{-1} (mod p) */
    868 static void felem_inv(felem out, const felem in) {
    869   felem ftmp, ftmp2;
    870   /* each e_I will hold |in|^{2^I - 1} */
    871   felem e2, e4, e8, e16, e32, e64;
    872   longfelem tmp;
    873   unsigned i;
    874 
    875   felem_square(tmp, in);
    876   felem_reduce(ftmp, tmp); /* 2^1 */
    877   felem_mul(tmp, in, ftmp);
    878   felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */
    879   felem_assign(e2, ftmp);
    880   felem_square(tmp, ftmp);
    881   felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */
    882   felem_square(tmp, ftmp);
    883   felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */
    884   felem_mul(tmp, ftmp, e2);
    885   felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */
    886   felem_assign(e4, ftmp);
    887   felem_square(tmp, ftmp);
    888   felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */
    889   felem_square(tmp, ftmp);
    890   felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */
    891   felem_square(tmp, ftmp);
    892   felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */
    893   felem_square(tmp, ftmp);
    894   felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */
    895   felem_mul(tmp, ftmp, e4);
    896   felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */
    897   felem_assign(e8, ftmp);
    898   for (i = 0; i < 8; i++) {
    899     felem_square(tmp, ftmp);
    900     felem_reduce(ftmp, tmp);
    901   } /* 2^16 - 2^8 */
    902   felem_mul(tmp, ftmp, e8);
    903   felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */
    904   felem_assign(e16, ftmp);
    905   for (i = 0; i < 16; i++) {
    906     felem_square(tmp, ftmp);
    907     felem_reduce(ftmp, tmp);
    908   } /* 2^32 - 2^16 */
    909   felem_mul(tmp, ftmp, e16);
    910   felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */
    911   felem_assign(e32, ftmp);
    912   for (i = 0; i < 32; i++) {
    913     felem_square(tmp, ftmp);
    914     felem_reduce(ftmp, tmp);
    915   } /* 2^64 - 2^32 */
    916   felem_assign(e64, ftmp);
    917   felem_mul(tmp, ftmp, in);
    918   felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */
    919   for (i = 0; i < 192; i++) {
    920     felem_square(tmp, ftmp);
    921     felem_reduce(ftmp, tmp);
    922   } /* 2^256 - 2^224 + 2^192 */
    923 
    924   felem_mul(tmp, e64, e32);
    925   felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */
    926   for (i = 0; i < 16; i++) {
    927     felem_square(tmp, ftmp2);
    928     felem_reduce(ftmp2, tmp);
    929   } /* 2^80 - 2^16 */
    930   felem_mul(tmp, ftmp2, e16);
    931   felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */
    932   for (i = 0; i < 8; i++) {
    933     felem_square(tmp, ftmp2);
    934     felem_reduce(ftmp2, tmp);
    935   } /* 2^88 - 2^8 */
    936   felem_mul(tmp, ftmp2, e8);
    937   felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */
    938   for (i = 0; i < 4; i++) {
    939     felem_square(tmp, ftmp2);
    940     felem_reduce(ftmp2, tmp);
    941   } /* 2^92 - 2^4 */
    942   felem_mul(tmp, ftmp2, e4);
    943   felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */
    944   felem_square(tmp, ftmp2);
    945   felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */
    946   felem_square(tmp, ftmp2);
    947   felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */
    948   felem_mul(tmp, ftmp2, e2);
    949   felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */
    950   felem_square(tmp, ftmp2);
    951   felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */
    952   felem_square(tmp, ftmp2);
    953   felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */
    954   felem_mul(tmp, ftmp2, in);
    955   felem_reduce(ftmp2, tmp); /* 2^96 - 3 */
    956 
    957   felem_mul(tmp, ftmp2, ftmp);
    958   felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */
    959 }
    960 
    961 static void smallfelem_inv_contract(smallfelem out, const smallfelem in) {
    962   felem tmp;
    963 
    964   smallfelem_expand(tmp, in);
    965   felem_inv(tmp, tmp);
    966   felem_contract(out, tmp);
    967 }
    968 
    969 /* Group operations
    970  * ----------------
    971  *
    972  * Building on top of the field operations we have the operations on the
    973  * elliptic curve group itself. Points on the curve are represented in Jacobian
    974  * coordinates. */
    975 
    976 /* point_double calculates 2*(x_in, y_in, z_in)
    977  *
    978  * The method is taken from:
    979  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b
    980  *
    981  * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed.
    982  * while x_out == y_in is not (maybe this works, but it's not tested). */
    983 static void point_double(felem x_out, felem y_out, felem z_out,
    984                          const felem x_in, const felem y_in, const felem z_in) {
    985   longfelem tmp, tmp2;
    986   felem delta, gamma, beta, alpha, ftmp, ftmp2;
    987   smallfelem small1, small2;
    988 
    989   felem_assign(ftmp, x_in);
    990   /* ftmp[i] < 2^106 */
    991   felem_assign(ftmp2, x_in);
    992   /* ftmp2[i] < 2^106 */
    993 
    994   /* delta = z^2 */
    995   felem_square(tmp, z_in);
    996   felem_reduce(delta, tmp);
    997   /* delta[i] < 2^101 */
    998 
    999   /* gamma = y^2 */
   1000   felem_square(tmp, y_in);
   1001   felem_reduce(gamma, tmp);
   1002   /* gamma[i] < 2^101 */
   1003   felem_shrink(small1, gamma);
   1004 
   1005   /* beta = x*gamma */
   1006   felem_small_mul(tmp, small1, x_in);
   1007   felem_reduce(beta, tmp);
   1008   /* beta[i] < 2^101 */
   1009 
   1010   /* alpha = 3*(x-delta)*(x+delta) */
   1011   felem_diff(ftmp, delta);
   1012   /* ftmp[i] < 2^105 + 2^106 < 2^107 */
   1013   felem_sum(ftmp2, delta);
   1014   /* ftmp2[i] < 2^105 + 2^106 < 2^107 */
   1015   felem_scalar(ftmp2, 3);
   1016   /* ftmp2[i] < 3 * 2^107 < 2^109 */
   1017   felem_mul(tmp, ftmp, ftmp2);
   1018   felem_reduce(alpha, tmp);
   1019   /* alpha[i] < 2^101 */
   1020   felem_shrink(small2, alpha);
   1021 
   1022   /* x' = alpha^2 - 8*beta */
   1023   smallfelem_square(tmp, small2);
   1024   felem_reduce(x_out, tmp);
   1025   felem_assign(ftmp, beta);
   1026   felem_scalar(ftmp, 8);
   1027   /* ftmp[i] < 8 * 2^101 = 2^104 */
   1028   felem_diff(x_out, ftmp);
   1029   /* x_out[i] < 2^105 + 2^101 < 2^106 */
   1030 
   1031   /* z' = (y + z)^2 - gamma - delta */
   1032   felem_sum(delta, gamma);
   1033   /* delta[i] < 2^101 + 2^101 = 2^102 */
   1034   felem_assign(ftmp, y_in);
   1035   felem_sum(ftmp, z_in);
   1036   /* ftmp[i] < 2^106 + 2^106 = 2^107 */
   1037   felem_square(tmp, ftmp);
   1038   felem_reduce(z_out, tmp);
   1039   felem_diff(z_out, delta);
   1040   /* z_out[i] < 2^105 + 2^101 < 2^106 */
   1041 
   1042   /* y' = alpha*(4*beta - x') - 8*gamma^2 */
   1043   felem_scalar(beta, 4);
   1044   /* beta[i] < 4 * 2^101 = 2^103 */
   1045   felem_diff_zero107(beta, x_out);
   1046   /* beta[i] < 2^107 + 2^103 < 2^108 */
   1047   felem_small_mul(tmp, small2, beta);
   1048   /* tmp[i] < 7 * 2^64 < 2^67 */
   1049   smallfelem_square(tmp2, small1);
   1050   /* tmp2[i] < 7 * 2^64 */
   1051   longfelem_scalar(tmp2, 8);
   1052   /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */
   1053   longfelem_diff(tmp, tmp2);
   1054   /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
   1055   felem_reduce_zero105(y_out, tmp);
   1056   /* y_out[i] < 2^106 */
   1057 }
   1058 
   1059 /* point_double_small is the same as point_double, except that it operates on
   1060  * smallfelems. */
   1061 static void point_double_small(smallfelem x_out, smallfelem y_out,
   1062                                smallfelem z_out, const smallfelem x_in,
   1063                                const smallfelem y_in, const smallfelem z_in) {
   1064   felem felem_x_out, felem_y_out, felem_z_out;
   1065   felem felem_x_in, felem_y_in, felem_z_in;
   1066 
   1067   smallfelem_expand(felem_x_in, x_in);
   1068   smallfelem_expand(felem_y_in, y_in);
   1069   smallfelem_expand(felem_z_in, z_in);
   1070   point_double(felem_x_out, felem_y_out, felem_z_out, felem_x_in, felem_y_in,
   1071                felem_z_in);
   1072   felem_shrink(x_out, felem_x_out);
   1073   felem_shrink(y_out, felem_y_out);
   1074   felem_shrink(z_out, felem_z_out);
   1075 }
   1076 
   1077 /* copy_conditional copies in to out iff mask is all ones. */
   1078 static void copy_conditional(felem out, const felem in, limb mask) {
   1079   unsigned i;
   1080   for (i = 0; i < NLIMBS; ++i) {
   1081     const limb tmp = mask & (in[i] ^ out[i]);
   1082     out[i] ^= tmp;
   1083   }
   1084 }
   1085 
   1086 /* copy_small_conditional copies in to out iff mask is all ones. */
   1087 static void copy_small_conditional(felem out, const smallfelem in, limb mask) {
   1088   unsigned i;
   1089   const u64 mask64 = mask;
   1090   for (i = 0; i < NLIMBS; ++i) {
   1091     out[i] = ((limb)(in[i] & mask64)) | (out[i] & ~mask);
   1092   }
   1093 }
   1094 
   1095 /* point_add calcuates (x1, y1, z1) + (x2, y2, z2)
   1096  *
   1097  * The method is taken from:
   1098  *   http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl,
   1099  * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity).
   1100  *
   1101  * This function includes a branch for checking whether the two input points
   1102  * are equal, (while not equal to the point at infinity). This case never
   1103  * happens during single point multiplication, so there is no timing leak for
   1104  * ECDH or ECDSA signing. */
   1105 static void point_add(felem x3, felem y3, felem z3, const felem x1,
   1106                       const felem y1, const felem z1, const int mixed,
   1107                       const smallfelem x2, const smallfelem y2,
   1108                       const smallfelem z2) {
   1109   felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out;
   1110   longfelem tmp, tmp2;
   1111   smallfelem small1, small2, small3, small4, small5;
   1112   limb x_equal, y_equal, z1_is_zero, z2_is_zero;
   1113 
   1114   felem_shrink(small3, z1);
   1115 
   1116   z1_is_zero = smallfelem_is_zero(small3);
   1117   z2_is_zero = smallfelem_is_zero(z2);
   1118 
   1119   /* ftmp = z1z1 = z1**2 */
   1120   smallfelem_square(tmp, small3);
   1121   felem_reduce(ftmp, tmp);
   1122   /* ftmp[i] < 2^101 */
   1123   felem_shrink(small1, ftmp);
   1124 
   1125   if (!mixed) {
   1126     /* ftmp2 = z2z2 = z2**2 */
   1127     smallfelem_square(tmp, z2);
   1128     felem_reduce(ftmp2, tmp);
   1129     /* ftmp2[i] < 2^101 */
   1130     felem_shrink(small2, ftmp2);
   1131 
   1132     felem_shrink(small5, x1);
   1133 
   1134     /* u1 = ftmp3 = x1*z2z2 */
   1135     smallfelem_mul(tmp, small5, small2);
   1136     felem_reduce(ftmp3, tmp);
   1137     /* ftmp3[i] < 2^101 */
   1138 
   1139     /* ftmp5 = z1 + z2 */
   1140     felem_assign(ftmp5, z1);
   1141     felem_small_sum(ftmp5, z2);
   1142     /* ftmp5[i] < 2^107 */
   1143 
   1144     /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */
   1145     felem_square(tmp, ftmp5);
   1146     felem_reduce(ftmp5, tmp);
   1147     /* ftmp2 = z2z2 + z1z1 */
   1148     felem_sum(ftmp2, ftmp);
   1149     /* ftmp2[i] < 2^101 + 2^101 = 2^102 */
   1150     felem_diff(ftmp5, ftmp2);
   1151     /* ftmp5[i] < 2^105 + 2^101 < 2^106 */
   1152 
   1153     /* ftmp2 = z2 * z2z2 */
   1154     smallfelem_mul(tmp, small2, z2);
   1155     felem_reduce(ftmp2, tmp);
   1156 
   1157     /* s1 = ftmp2 = y1 * z2**3 */
   1158     felem_mul(tmp, y1, ftmp2);
   1159     felem_reduce(ftmp6, tmp);
   1160     /* ftmp6[i] < 2^101 */
   1161   } else {
   1162     /* We'll assume z2 = 1 (special case z2 = 0 is handled later). */
   1163 
   1164     /* u1 = ftmp3 = x1*z2z2 */
   1165     felem_assign(ftmp3, x1);
   1166     /* ftmp3[i] < 2^106 */
   1167 
   1168     /* ftmp5 = 2z1z2 */
   1169     felem_assign(ftmp5, z1);
   1170     felem_scalar(ftmp5, 2);
   1171     /* ftmp5[i] < 2*2^106 = 2^107 */
   1172 
   1173     /* s1 = ftmp2 = y1 * z2**3 */
   1174     felem_assign(ftmp6, y1);
   1175     /* ftmp6[i] < 2^106 */
   1176   }
   1177 
   1178   /* u2 = x2*z1z1 */
   1179   smallfelem_mul(tmp, x2, small1);
   1180   felem_reduce(ftmp4, tmp);
   1181 
   1182   /* h = ftmp4 = u2 - u1 */
   1183   felem_diff_zero107(ftmp4, ftmp3);
   1184   /* ftmp4[i] < 2^107 + 2^101 < 2^108 */
   1185   felem_shrink(small4, ftmp4);
   1186 
   1187   x_equal = smallfelem_is_zero(small4);
   1188 
   1189   /* z_out = ftmp5 * h */
   1190   felem_small_mul(tmp, small4, ftmp5);
   1191   felem_reduce(z_out, tmp);
   1192   /* z_out[i] < 2^101 */
   1193 
   1194   /* ftmp = z1 * z1z1 */
   1195   smallfelem_mul(tmp, small1, small3);
   1196   felem_reduce(ftmp, tmp);
   1197 
   1198   /* s2 = tmp = y2 * z1**3 */
   1199   felem_small_mul(tmp, y2, ftmp);
   1200   felem_reduce(ftmp5, tmp);
   1201 
   1202   /* r = ftmp5 = (s2 - s1)*2 */
   1203   felem_diff_zero107(ftmp5, ftmp6);
   1204   /* ftmp5[i] < 2^107 + 2^107 = 2^108 */
   1205   felem_scalar(ftmp5, 2);
   1206   /* ftmp5[i] < 2^109 */
   1207   felem_shrink(small1, ftmp5);
   1208   y_equal = smallfelem_is_zero(small1);
   1209 
   1210   if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
   1211     point_double(x3, y3, z3, x1, y1, z1);
   1212     return;
   1213   }
   1214 
   1215   /* I = ftmp = (2h)**2 */
   1216   felem_assign(ftmp, ftmp4);
   1217   felem_scalar(ftmp, 2);
   1218   /* ftmp[i] < 2*2^108 = 2^109 */
   1219   felem_square(tmp, ftmp);
   1220   felem_reduce(ftmp, tmp);
   1221 
   1222   /* J = ftmp2 = h * I */
   1223   felem_mul(tmp, ftmp4, ftmp);
   1224   felem_reduce(ftmp2, tmp);
   1225 
   1226   /* V = ftmp4 = U1 * I */
   1227   felem_mul(tmp, ftmp3, ftmp);
   1228   felem_reduce(ftmp4, tmp);
   1229 
   1230   /* x_out = r**2 - J - 2V */
   1231   smallfelem_square(tmp, small1);
   1232   felem_reduce(x_out, tmp);
   1233   felem_assign(ftmp3, ftmp4);
   1234   felem_scalar(ftmp4, 2);
   1235   felem_sum(ftmp4, ftmp2);
   1236   /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */
   1237   felem_diff(x_out, ftmp4);
   1238   /* x_out[i] < 2^105 + 2^101 */
   1239 
   1240   /* y_out = r(V-x_out) - 2 * s1 * J */
   1241   felem_diff_zero107(ftmp3, x_out);
   1242   /* ftmp3[i] < 2^107 + 2^101 < 2^108 */
   1243   felem_small_mul(tmp, small1, ftmp3);
   1244   felem_mul(tmp2, ftmp6, ftmp2);
   1245   longfelem_scalar(tmp2, 2);
   1246   /* tmp2[i] < 2*2^67 = 2^68 */
   1247   longfelem_diff(tmp, tmp2);
   1248   /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */
   1249   felem_reduce_zero105(y_out, tmp);
   1250   /* y_out[i] < 2^106 */
   1251 
   1252   copy_small_conditional(x_out, x2, z1_is_zero);
   1253   copy_conditional(x_out, x1, z2_is_zero);
   1254   copy_small_conditional(y_out, y2, z1_is_zero);
   1255   copy_conditional(y_out, y1, z2_is_zero);
   1256   copy_small_conditional(z_out, z2, z1_is_zero);
   1257   copy_conditional(z_out, z1, z2_is_zero);
   1258   felem_assign(x3, x_out);
   1259   felem_assign(y3, y_out);
   1260   felem_assign(z3, z_out);
   1261 }
   1262 
   1263 /* point_add_small is the same as point_add, except that it operates on
   1264  * smallfelems. */
   1265 static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3,
   1266                             smallfelem x1, smallfelem y1, smallfelem z1,
   1267                             smallfelem x2, smallfelem y2, smallfelem z2) {
   1268   felem felem_x3, felem_y3, felem_z3;
   1269   felem felem_x1, felem_y1, felem_z1;
   1270   smallfelem_expand(felem_x1, x1);
   1271   smallfelem_expand(felem_y1, y1);
   1272   smallfelem_expand(felem_z1, z1);
   1273   point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, x2,
   1274             y2, z2);
   1275   felem_shrink(x3, felem_x3);
   1276   felem_shrink(y3, felem_y3);
   1277   felem_shrink(z3, felem_z3);
   1278 }
   1279 
   1280 /* Base point pre computation
   1281  * --------------------------
   1282  *
   1283  * Two different sorts of precomputed tables are used in the following code.
   1284  * Each contain various points on the curve, where each point is three field
   1285  * elements (x, y, z).
   1286  *
   1287  * For the base point table, z is usually 1 (0 for the point at infinity).
   1288  * This table has 2 * 16 elements, starting with the following:
   1289  * index | bits    | point
   1290  * ------+---------+------------------------------
   1291  *     0 | 0 0 0 0 | 0G
   1292  *     1 | 0 0 0 1 | 1G
   1293  *     2 | 0 0 1 0 | 2^64G
   1294  *     3 | 0 0 1 1 | (2^64 + 1)G
   1295  *     4 | 0 1 0 0 | 2^128G
   1296  *     5 | 0 1 0 1 | (2^128 + 1)G
   1297  *     6 | 0 1 1 0 | (2^128 + 2^64)G
   1298  *     7 | 0 1 1 1 | (2^128 + 2^64 + 1)G
   1299  *     8 | 1 0 0 0 | 2^192G
   1300  *     9 | 1 0 0 1 | (2^192 + 1)G
   1301  *    10 | 1 0 1 0 | (2^192 + 2^64)G
   1302  *    11 | 1 0 1 1 | (2^192 + 2^64 + 1)G
   1303  *    12 | 1 1 0 0 | (2^192 + 2^128)G
   1304  *    13 | 1 1 0 1 | (2^192 + 2^128 + 1)G
   1305  *    14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G
   1306  *    15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G
   1307  * followed by a copy of this with each element multiplied by 2^32.
   1308  *
   1309  * The reason for this is so that we can clock bits into four different
   1310  * locations when doing simple scalar multiplies against the base point,
   1311  * and then another four locations using the second 16 elements.
   1312  *
   1313  * Tables for other points have table[i] = iG for i in 0 .. 16. */
   1314 
   1315 /* g_pre_comp is the table of precomputed base points */
   1316 static const smallfelem g_pre_comp[2][16][3] = {
   1317     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
   1318      {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2,
   1319        0x6b17d1f2e12c4247},
   1320       {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16,
   1321        0x4fe342e2fe1a7f9b},
   1322       {1, 0, 0, 0}},
   1323      {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de,
   1324        0x0fa822bc2811aaa5},
   1325       {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b,
   1326        0xbff44ae8f5dba80d},
   1327       {1, 0, 0, 0}},
   1328      {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789,
   1329        0x300a4bbc89d6726f},
   1330       {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f,
   1331        0x72aac7e0d09b4644},
   1332       {1, 0, 0, 0}},
   1333      {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e,
   1334        0x447d739beedb5e67},
   1335       {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7,
   1336        0x2d4825ab834131ee},
   1337       {1, 0, 0, 0}},
   1338      {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60,
   1339        0xef9519328a9c72ff},
   1340       {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c,
   1341        0x611e9fc37dbb2c9b},
   1342       {1, 0, 0, 0}},
   1343      {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf,
   1344        0x550663797b51f5d8},
   1345       {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5,
   1346        0x157164848aecb851},
   1347       {1, 0, 0, 0}},
   1348      {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391,
   1349        0xeb5d7745b21141ea},
   1350       {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee,
   1351        0xeafd72ebdbecc17b},
   1352       {1, 0, 0, 0}},
   1353      {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5,
   1354        0xa6d39677a7849276},
   1355       {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf,
   1356        0x674f84749b0b8816},
   1357       {1, 0, 0, 0}},
   1358      {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb,
   1359        0x4e769e7672c9ddad},
   1360       {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281,
   1361        0x42b99082de830663},
   1362       {1, 0, 0, 0}},
   1363      {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478,
   1364        0x78878ef61c6ce04d},
   1365       {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def,
   1366        0xb6cb3f5d7b72c321},
   1367       {1, 0, 0, 0}},
   1368      {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae,
   1369        0x0c88bc4d716b1287},
   1370       {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa,
   1371        0xdd5ddea3f3901dc6},
   1372       {1, 0, 0, 0}},
   1373      {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3,
   1374        0x68f344af6b317466},
   1375       {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3,
   1376        0x31b9c405f8540a20},
   1377       {1, 0, 0, 0}},
   1378      {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0,
   1379        0x4052bf4b6f461db9},
   1380       {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8,
   1381        0xfecf4d5190b0fc61},
   1382       {1, 0, 0, 0}},
   1383      {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a,
   1384        0x1eddbae2c802e41a},
   1385       {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0,
   1386        0x43104d86560ebcfc},
   1387       {1, 0, 0, 0}},
   1388      {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a,
   1389        0xb48e26b484f7a21c},
   1390       {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668,
   1391        0xfac015404d4d3dab},
   1392       {1, 0, 0, 0}}},
   1393     {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
   1394      {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da,
   1395        0x7fe36b40af22af89},
   1396       {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1,
   1397        0xe697d45825b63624},
   1398       {1, 0, 0, 0}},
   1399      {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902,
   1400        0x4a5b506612a677a6},
   1401       {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40,
   1402        0xeb13461ceac089f1},
   1403       {1, 0, 0, 0}},
   1404      {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857,
   1405        0x0781b8291c6a220a},
   1406       {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434,
   1407        0x690cde8df0151593},
   1408       {1, 0, 0, 0}},
   1409      {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326,
   1410        0x8a535f566ec73617},
   1411       {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf,
   1412        0x0455c08468b08bd7},
   1413       {1, 0, 0, 0}},
   1414      {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279,
   1415        0x06bada7ab77f8276},
   1416       {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70,
   1417        0x5b476dfd0e6cb18a},
   1418       {1, 0, 0, 0}},
   1419      {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8,
   1420        0x3e29864e8a2ec908},
   1421       {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed,
   1422        0x239b90ea3dc31e7e},
   1423       {1, 0, 0, 0}},
   1424      {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4,
   1425        0x820f4dd949f72ff7},
   1426       {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3,
   1427        0x140406ec783a05ec},
   1428       {1, 0, 0, 0}},
   1429      {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe,
   1430        0x68f6b8542783dfee},
   1431       {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028,
   1432        0xcbe1feba92e40ce6},
   1433       {1, 0, 0, 0}},
   1434      {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927,
   1435        0xd0b2f94d2f420109},
   1436       {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a,
   1437        0x971459828b0719e5},
   1438       {1, 0, 0, 0}},
   1439      {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687,
   1440        0x961610004a866aba},
   1441       {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c,
   1442        0x7acb9fadcee75e44},
   1443       {1, 0, 0, 0}},
   1444      {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea,
   1445        0x24eb9acca333bf5b},
   1446       {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d,
   1447        0x69f891c5acd079cc},
   1448       {1, 0, 0, 0}},
   1449      {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514,
   1450        0xe51f547c5972a107},
   1451       {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06,
   1452        0x1c309a2b25bb1387},
   1453       {1, 0, 0, 0}},
   1454      {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828,
   1455        0x20b87b8aa2c4e503},
   1456       {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044,
   1457        0xf5c6fa49919776be},
   1458       {1, 0, 0, 0}},
   1459      {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56,
   1460        0x1ed7d1b9332010b9},
   1461       {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24,
   1462        0x3a2b03f03217257a},
   1463       {1, 0, 0, 0}},
   1464      {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b,
   1465        0x15fee545c78dd9f6},
   1466       {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb,
   1467        0x4ab5b6b2b8753f81},
   1468       {1, 0, 0, 0}}}};
   1469 
   1470 /* select_point selects the |idx|th point from a precomputation table and
   1471  * copies it to out. */
   1472 static void select_point(const u64 idx, unsigned int size,
   1473                          const smallfelem pre_comp[16][3], smallfelem out[3]) {
   1474   unsigned i, j;
   1475   u64 *outlimbs = &out[0][0];
   1476   memset(outlimbs, 0, 3 * sizeof(smallfelem));
   1477 
   1478   for (i = 0; i < size; i++) {
   1479     const u64 *inlimbs = (u64 *)&pre_comp[i][0][0];
   1480     u64 mask = i ^ idx;
   1481     mask |= mask >> 4;
   1482     mask |= mask >> 2;
   1483     mask |= mask >> 1;
   1484     mask &= 1;
   1485     mask--;
   1486     for (j = 0; j < NLIMBS * 3; j++) {
   1487       outlimbs[j] |= inlimbs[j] & mask;
   1488     }
   1489   }
   1490 }
   1491 
   1492 /* get_bit returns the |i|th bit in |in| */
   1493 static char get_bit(const felem_bytearray in, int i) {
   1494   if (i < 0 || i >= 256) {
   1495     return 0;
   1496   }
   1497   return (in[i >> 3] >> (i & 7)) & 1;
   1498 }
   1499 
   1500 /* Interleaved point multiplication using precomputed point multiples: The
   1501  * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars
   1502  * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the
   1503  * generator, using certain (large) precomputed multiples in g_pre_comp.
   1504  * Output point (X, Y, Z) is stored in x_out, y_out, z_out. */
   1505 static void batch_mul(felem x_out, felem y_out, felem z_out,
   1506                       const felem_bytearray scalars[],
   1507                       const unsigned num_points, const u8 *g_scalar,
   1508                       const int mixed, const smallfelem pre_comp[][17][3]) {
   1509   int i, skip;
   1510   unsigned num, gen_mul = (g_scalar != NULL);
   1511   felem nq[3], ftmp;
   1512   smallfelem tmp[3];
   1513   u64 bits;
   1514   u8 sign, digit;
   1515 
   1516   /* set nq to the point at infinity */
   1517   memset(nq, 0, 3 * sizeof(felem));
   1518 
   1519   /* Loop over all scalars msb-to-lsb, interleaving additions of multiples
   1520    * of the generator (two in each of the last 32 rounds) and additions of
   1521    * other points multiples (every 5th round). */
   1522 
   1523   skip = 1; /* save two point operations in the first
   1524              * round */
   1525   for (i = (num_points ? 255 : 31); i >= 0; --i) {
   1526     /* double */
   1527     if (!skip) {
   1528       point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
   1529     }
   1530 
   1531     /* add multiples of the generator */
   1532     if (gen_mul && i <= 31) {
   1533       /* first, look 32 bits upwards */
   1534       bits = get_bit(g_scalar, i + 224) << 3;
   1535       bits |= get_bit(g_scalar, i + 160) << 2;
   1536       bits |= get_bit(g_scalar, i + 96) << 1;
   1537       bits |= get_bit(g_scalar, i + 32);
   1538       /* select the point to add, in constant time */
   1539       select_point(bits, 16, g_pre_comp[1], tmp);
   1540 
   1541       if (!skip) {
   1542         /* Arg 1 below is for "mixed" */
   1543         point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
   1544                   tmp[2]);
   1545       } else {
   1546         smallfelem_expand(nq[0], tmp[0]);
   1547         smallfelem_expand(nq[1], tmp[1]);
   1548         smallfelem_expand(nq[2], tmp[2]);
   1549         skip = 0;
   1550       }
   1551 
   1552       /* second, look at the current position */
   1553       bits = get_bit(g_scalar, i + 192) << 3;
   1554       bits |= get_bit(g_scalar, i + 128) << 2;
   1555       bits |= get_bit(g_scalar, i + 64) << 1;
   1556       bits |= get_bit(g_scalar, i);
   1557       /* select the point to add, in constant time */
   1558       select_point(bits, 16, g_pre_comp[0], tmp);
   1559       /* Arg 1 below is for "mixed" */
   1560       point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1, tmp[0], tmp[1],
   1561                 tmp[2]);
   1562     }
   1563 
   1564     /* do other additions every 5 doublings */
   1565     if (num_points && (i % 5 == 0)) {
   1566       /* loop over all scalars */
   1567       for (num = 0; num < num_points; ++num) {
   1568         bits = get_bit(scalars[num], i + 4) << 5;
   1569         bits |= get_bit(scalars[num], i + 3) << 4;
   1570         bits |= get_bit(scalars[num], i + 2) << 3;
   1571         bits |= get_bit(scalars[num], i + 1) << 2;
   1572         bits |= get_bit(scalars[num], i) << 1;
   1573         bits |= get_bit(scalars[num], i - 1);
   1574         ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
   1575 
   1576         /* select the point to add or subtract, in constant time. */
   1577         select_point(digit, 17, pre_comp[num], tmp);
   1578         smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative
   1579                                        * point */
   1580         copy_small_conditional(ftmp, tmp[1], (((limb)sign) - 1));
   1581         felem_contract(tmp[1], ftmp);
   1582 
   1583         if (!skip) {
   1584           point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
   1585                     tmp[1], tmp[2]);
   1586         } else {
   1587           smallfelem_expand(nq[0], tmp[0]);
   1588           smallfelem_expand(nq[1], tmp[1]);
   1589           smallfelem_expand(nq[2], tmp[2]);
   1590           skip = 0;
   1591         }
   1592       }
   1593     }
   1594   }
   1595   felem_assign(x_out, nq[0]);
   1596   felem_assign(y_out, nq[1]);
   1597   felem_assign(z_out, nq[2]);
   1598 }
   1599 
   1600 /******************************************************************************/
   1601 /*
   1602  * OPENSSL EC_METHOD FUNCTIONS
   1603  */
   1604 
   1605 int ec_GFp_nistp256_group_init(EC_GROUP *group) {
   1606   int ret = ec_GFp_simple_group_init(group);
   1607   group->a_is_minus3 = 1;
   1608   return ret;
   1609 }
   1610 
   1611 int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p,
   1612                                     const BIGNUM *a, const BIGNUM *b,
   1613                                     BN_CTX *ctx) {
   1614   int ret = 0;
   1615   BN_CTX *new_ctx = NULL;
   1616   BIGNUM *curve_p, *curve_a, *curve_b;
   1617 
   1618   if (ctx == NULL) {
   1619     if ((ctx = new_ctx = BN_CTX_new()) == NULL) {
   1620       return 0;
   1621     }
   1622   }
   1623   BN_CTX_start(ctx);
   1624   if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
   1625       ((curve_a = BN_CTX_get(ctx)) == NULL) ||
   1626       ((curve_b = BN_CTX_get(ctx)) == NULL)) {
   1627     goto err;
   1628   }
   1629   BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p);
   1630   BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a);
   1631   BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b);
   1632   if (BN_cmp(curve_p, p) ||
   1633       BN_cmp(curve_a, a) ||
   1634       BN_cmp(curve_b, b)) {
   1635     OPENSSL_PUT_ERROR(EC, EC_R_WRONG_CURVE_PARAMETERS);
   1636     goto err;
   1637   }
   1638   ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
   1639 
   1640 err:
   1641   BN_CTX_end(ctx);
   1642   BN_CTX_free(new_ctx);
   1643   return ret;
   1644 }
   1645 
   1646 /* Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') =
   1647  * (X/Z^2, Y/Z^3). */
   1648 int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group,
   1649                                                  const EC_POINT *point,
   1650                                                  BIGNUM *x, BIGNUM *y,
   1651                                                  BN_CTX *ctx) {
   1652   felem z1, z2, x_in, y_in;
   1653   smallfelem x_out, y_out;
   1654   longfelem tmp;
   1655 
   1656   if (EC_POINT_is_at_infinity(group, point)) {
   1657     OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
   1658     return 0;
   1659   }
   1660   if (!BN_to_felem(x_in, &point->X) ||
   1661       !BN_to_felem(y_in, &point->Y) ||
   1662       !BN_to_felem(z1, &point->Z)) {
   1663     return 0;
   1664   }
   1665   felem_inv(z2, z1);
   1666   felem_square(tmp, z2);
   1667   felem_reduce(z1, tmp);
   1668   felem_mul(tmp, x_in, z1);
   1669   felem_reduce(x_in, tmp);
   1670   felem_contract(x_out, x_in);
   1671   if (x != NULL && !smallfelem_to_BN(x, x_out)) {
   1672     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1673     return 0;
   1674   }
   1675   felem_mul(tmp, z1, z2);
   1676   felem_reduce(z1, tmp);
   1677   felem_mul(tmp, y_in, z1);
   1678   felem_reduce(y_in, tmp);
   1679   felem_contract(y_out, y_in);
   1680   if (y != NULL && !smallfelem_to_BN(y, y_out)) {
   1681     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1682     return 0;
   1683   }
   1684   return 1;
   1685 }
   1686 
   1687 /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */
   1688 static void make_points_affine(size_t num, smallfelem points[][3],
   1689                                smallfelem tmp_smallfelems[]) {
   1690   /* Runs in constant time, unless an input is the point at infinity (which
   1691    * normally shouldn't happen). */
   1692   ec_GFp_nistp_points_make_affine_internal(
   1693       num, points, sizeof(smallfelem), tmp_smallfelems,
   1694       (void (*)(void *))smallfelem_one,
   1695       (int (*)(const void *))smallfelem_is_zero_int,
   1696       (void (*)(void *, const void *))smallfelem_assign,
   1697       (void (*)(void *, const void *))smallfelem_square_contract,
   1698       (void (*)(void *, const void *, const void *))smallfelem_mul_contract,
   1699       (void (*)(void *, const void *))smallfelem_inv_contract,
   1700       /* nothing to contract */
   1701       (void (*)(void *, const void *))smallfelem_assign);
   1702 }
   1703 
   1704 int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r,
   1705                                const BIGNUM *g_scalar, const EC_POINT *p_,
   1706                                const BIGNUM *p_scalar_, BN_CTX *ctx) {
   1707   /* TODO: This function used to take |points| and |scalars| as arrays of
   1708    * |num| elements. The code below should be simplified to work in terms of |p|
   1709    * and |p_scalar|. */
   1710   size_t num = p_ != NULL ? 1 : 0;
   1711   const EC_POINT **points = p_ != NULL ? &p_ : NULL;
   1712   BIGNUM const *const *scalars = p_ != NULL ? &p_scalar_ : NULL;
   1713 
   1714   int ret = 0;
   1715   int j;
   1716   int mixed = 0;
   1717   BN_CTX *new_ctx = NULL;
   1718   BIGNUM *x, *y, *z, *tmp_scalar;
   1719   felem_bytearray g_secret;
   1720   felem_bytearray *secrets = NULL;
   1721   smallfelem(*pre_comp)[17][3] = NULL;
   1722   smallfelem *tmp_smallfelems = NULL;
   1723   felem_bytearray tmp;
   1724   unsigned i, num_bytes;
   1725   size_t num_points = num;
   1726   smallfelem x_in, y_in, z_in;
   1727   felem x_out, y_out, z_out;
   1728   const EC_POINT *p = NULL;
   1729   const BIGNUM *p_scalar = NULL;
   1730 
   1731   if (ctx == NULL) {
   1732     ctx = new_ctx = BN_CTX_new();
   1733     if (ctx == NULL) {
   1734       return 0;
   1735     }
   1736   }
   1737 
   1738   BN_CTX_start(ctx);
   1739   if ((x = BN_CTX_get(ctx)) == NULL ||
   1740       (y = BN_CTX_get(ctx)) == NULL ||
   1741       (z = BN_CTX_get(ctx)) == NULL ||
   1742       (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
   1743     goto err;
   1744   }
   1745 
   1746   if (num_points > 0) {
   1747     if (num_points >= 3) {
   1748       /* unless we precompute multiples for just one or two points,
   1749        * converting those into affine form is time well spent */
   1750       mixed = 1;
   1751     }
   1752     secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
   1753     pre_comp = OPENSSL_malloc(num_points * sizeof(smallfelem[17][3]));
   1754     if (mixed) {
   1755       tmp_smallfelems =
   1756           OPENSSL_malloc((num_points * 17 + 1) * sizeof(smallfelem));
   1757     }
   1758     if (secrets == NULL || pre_comp == NULL ||
   1759         (mixed && tmp_smallfelems == NULL)) {
   1760       OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
   1761       goto err;
   1762     }
   1763 
   1764     /* we treat NULL scalars as 0, and NULL points as points at infinity,
   1765      * i.e., they contribute nothing to the linear combination. */
   1766     memset(secrets, 0, num_points * sizeof(felem_bytearray));
   1767     memset(pre_comp, 0, num_points * 17 * 3 * sizeof(smallfelem));
   1768     for (i = 0; i < num_points; ++i) {
   1769       if (i == num) {
   1770         /* we didn't have a valid precomputation, so we pick the generator. */
   1771         p = EC_GROUP_get0_generator(group);
   1772         p_scalar = g_scalar;
   1773       } else {
   1774         /* the i^th point */
   1775         p = points[i];
   1776         p_scalar = scalars[i];
   1777       }
   1778       if (p_scalar != NULL && p != NULL) {
   1779         /* reduce g_scalar to 0 <= g_scalar < 2^256 */
   1780         if (BN_num_bits(p_scalar) > 256 || BN_is_negative(p_scalar)) {
   1781           /* this is an unusual input, and we don't guarantee
   1782            * constant-timeness. */
   1783           if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
   1784             OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1785             goto err;
   1786           }
   1787           num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1788         } else {
   1789           num_bytes = BN_bn2bin(p_scalar, tmp);
   1790         }
   1791         flip_endian(secrets[i], tmp, num_bytes);
   1792         /* precompute multiples */
   1793         if (!BN_to_felem(x_out, &p->X) ||
   1794             !BN_to_felem(y_out, &p->Y) ||
   1795             !BN_to_felem(z_out, &p->Z)) {
   1796           goto err;
   1797         }
   1798         felem_shrink(pre_comp[i][1][0], x_out);
   1799         felem_shrink(pre_comp[i][1][1], y_out);
   1800         felem_shrink(pre_comp[i][1][2], z_out);
   1801         for (j = 2; j <= 16; ++j) {
   1802           if (j & 1) {
   1803             point_add_small(pre_comp[i][j][0], pre_comp[i][j][1],
   1804                             pre_comp[i][j][2], pre_comp[i][1][0],
   1805                             pre_comp[i][1][1], pre_comp[i][1][2],
   1806                             pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
   1807                             pre_comp[i][j - 1][2]);
   1808           } else {
   1809             point_double_small(pre_comp[i][j][0], pre_comp[i][j][1],
   1810                                pre_comp[i][j][2], pre_comp[i][j / 2][0],
   1811                                pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
   1812           }
   1813         }
   1814       }
   1815     }
   1816     if (mixed) {
   1817       make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems);
   1818     }
   1819   }
   1820 
   1821   if (g_scalar != NULL) {
   1822     memset(g_secret, 0, sizeof(g_secret));
   1823     /* reduce g_scalar to 0 <= g_scalar < 2^256 */
   1824     if (BN_num_bits(g_scalar) > 256 || BN_is_negative(g_scalar)) {
   1825       /* this is an unusual input, and we don't guarantee
   1826        * constant-timeness. */
   1827       if (!BN_nnmod(tmp_scalar, g_scalar, &group->order, ctx)) {
   1828         OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1829         goto err;
   1830       }
   1831       num_bytes = BN_bn2bin(tmp_scalar, tmp);
   1832     } else {
   1833       num_bytes = BN_bn2bin(g_scalar, tmp);
   1834     }
   1835     flip_endian(g_secret, tmp, num_bytes);
   1836   }
   1837   batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
   1838             num_points, g_scalar != NULL ? g_secret : NULL, mixed,
   1839             (const smallfelem(*)[17][3])pre_comp);
   1840 
   1841   /* reduce the output to its unique minimal representation */
   1842   felem_contract(x_in, x_out);
   1843   felem_contract(y_in, y_out);
   1844   felem_contract(z_in, z_out);
   1845   if (!smallfelem_to_BN(x, x_in) ||
   1846       !smallfelem_to_BN(y, y_in) ||
   1847       !smallfelem_to_BN(z, z_in)) {
   1848     OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
   1849     goto err;
   1850   }
   1851   ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
   1852 
   1853 err:
   1854   BN_CTX_end(ctx);
   1855   BN_CTX_free(new_ctx);
   1856   OPENSSL_free(secrets);
   1857   OPENSSL_free(pre_comp);
   1858   OPENSSL_free(tmp_smallfelems);
   1859   return ret;
   1860 }
   1861 
   1862 const EC_METHOD *EC_GFp_nistp256_method(void) {
   1863   static const EC_METHOD ret = {
   1864       ec_GFp_nistp256_group_init,
   1865       ec_GFp_simple_group_finish,
   1866       ec_GFp_simple_group_clear_finish,
   1867       ec_GFp_simple_group_copy, ec_GFp_nistp256_group_set_curve,
   1868       ec_GFp_nistp256_point_get_affine_coordinates,
   1869       ec_GFp_nistp256_points_mul,
   1870       0 /* check_pub_key_order */,
   1871       ec_GFp_simple_field_mul, ec_GFp_simple_field_sqr,
   1872       0 /* field_encode */, 0 /* field_decode */, 0 /* field_set_to_one */
   1873   };
   1874 
   1875   return &ret;
   1876 }
   1877 
   1878 #endif  /* 64_BIT && !WINDOWS */
   1879