Home | History | Annotate | Download | only in CodeGen
      1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This is the internal per-function state used for llvm translation.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
     16 
     17 #include "CGBuilder.h"
     18 #include "CGDebugInfo.h"
     19 #include "CGLoopInfo.h"
     20 #include "CGValue.h"
     21 #include "CodeGenModule.h"
     22 #include "CodeGenPGO.h"
     23 #include "EHScopeStack.h"
     24 #include "clang/AST/CharUnits.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/Type.h"
     29 #include "clang/Basic/ABI.h"
     30 #include "clang/Basic/CapturedStmt.h"
     31 #include "clang/Basic/OpenMPKinds.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Frontend/CodeGenOptions.h"
     34 #include "llvm/ADT/ArrayRef.h"
     35 #include "llvm/ADT/DenseMap.h"
     36 #include "llvm/ADT/SmallVector.h"
     37 #include "llvm/IR/ValueHandle.h"
     38 #include "llvm/Support/Debug.h"
     39 
     40 namespace llvm {
     41 class BasicBlock;
     42 class LLVMContext;
     43 class MDNode;
     44 class Module;
     45 class SwitchInst;
     46 class Twine;
     47 class Value;
     48 class CallSite;
     49 }
     50 
     51 namespace clang {
     52 class ASTContext;
     53 class BlockDecl;
     54 class CXXDestructorDecl;
     55 class CXXForRangeStmt;
     56 class CXXTryStmt;
     57 class Decl;
     58 class LabelDecl;
     59 class EnumConstantDecl;
     60 class FunctionDecl;
     61 class FunctionProtoType;
     62 class LabelStmt;
     63 class ObjCContainerDecl;
     64 class ObjCInterfaceDecl;
     65 class ObjCIvarDecl;
     66 class ObjCMethodDecl;
     67 class ObjCImplementationDecl;
     68 class ObjCPropertyImplDecl;
     69 class TargetInfo;
     70 class TargetCodeGenInfo;
     71 class VarDecl;
     72 class ObjCForCollectionStmt;
     73 class ObjCAtTryStmt;
     74 class ObjCAtThrowStmt;
     75 class ObjCAtSynchronizedStmt;
     76 class ObjCAutoreleasePoolStmt;
     77 
     78 namespace CodeGen {
     79 class CodeGenTypes;
     80 class CGFunctionInfo;
     81 class CGRecordLayout;
     82 class CGBlockInfo;
     83 class CGCXXABI;
     84 class BlockByrefHelpers;
     85 class BlockByrefInfo;
     86 class BlockFlags;
     87 class BlockFieldFlags;
     88 
     89 /// The kind of evaluation to perform on values of a particular
     90 /// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
     91 /// CGExprAgg?
     92 ///
     93 /// TODO: should vectors maybe be split out into their own thing?
     94 enum TypeEvaluationKind {
     95   TEK_Scalar,
     96   TEK_Complex,
     97   TEK_Aggregate
     98 };
     99 
    100 /// CodeGenFunction - This class organizes the per-function state that is used
    101 /// while generating LLVM code.
    102 class CodeGenFunction : public CodeGenTypeCache {
    103   CodeGenFunction(const CodeGenFunction &) = delete;
    104   void operator=(const CodeGenFunction &) = delete;
    105 
    106   friend class CGCXXABI;
    107 public:
    108   /// A jump destination is an abstract label, branching to which may
    109   /// require a jump out through normal cleanups.
    110   struct JumpDest {
    111     JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {}
    112     JumpDest(llvm::BasicBlock *Block,
    113              EHScopeStack::stable_iterator Depth,
    114              unsigned Index)
    115       : Block(Block), ScopeDepth(Depth), Index(Index) {}
    116 
    117     bool isValid() const { return Block != nullptr; }
    118     llvm::BasicBlock *getBlock() const { return Block; }
    119     EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
    120     unsigned getDestIndex() const { return Index; }
    121 
    122     // This should be used cautiously.
    123     void setScopeDepth(EHScopeStack::stable_iterator depth) {
    124       ScopeDepth = depth;
    125     }
    126 
    127   private:
    128     llvm::BasicBlock *Block;
    129     EHScopeStack::stable_iterator ScopeDepth;
    130     unsigned Index;
    131   };
    132 
    133   CodeGenModule &CGM;  // Per-module state.
    134   const TargetInfo &Target;
    135 
    136   typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
    137   LoopInfoStack LoopStack;
    138   CGBuilderTy Builder;
    139 
    140   /// \brief CGBuilder insert helper. This function is called after an
    141   /// instruction is created using Builder.
    142   void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
    143                     llvm::BasicBlock *BB,
    144                     llvm::BasicBlock::iterator InsertPt) const;
    145 
    146   /// CurFuncDecl - Holds the Decl for the current outermost
    147   /// non-closure context.
    148   const Decl *CurFuncDecl;
    149   /// CurCodeDecl - This is the inner-most code context, which includes blocks.
    150   const Decl *CurCodeDecl;
    151   const CGFunctionInfo *CurFnInfo;
    152   QualType FnRetTy;
    153   llvm::Function *CurFn;
    154 
    155   /// CurGD - The GlobalDecl for the current function being compiled.
    156   GlobalDecl CurGD;
    157 
    158   /// PrologueCleanupDepth - The cleanup depth enclosing all the
    159   /// cleanups associated with the parameters.
    160   EHScopeStack::stable_iterator PrologueCleanupDepth;
    161 
    162   /// ReturnBlock - Unified return block.
    163   JumpDest ReturnBlock;
    164 
    165   /// ReturnValue - The temporary alloca to hold the return
    166   /// value. This is invalid iff the function has no return value.
    167   Address ReturnValue;
    168 
    169   /// AllocaInsertPoint - This is an instruction in the entry block before which
    170   /// we prefer to insert allocas.
    171   llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
    172 
    173   /// \brief API for captured statement code generation.
    174   class CGCapturedStmtInfo {
    175   public:
    176     explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
    177         : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
    178     explicit CGCapturedStmtInfo(const CapturedStmt &S,
    179                                 CapturedRegionKind K = CR_Default)
    180       : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
    181 
    182       RecordDecl::field_iterator Field =
    183         S.getCapturedRecordDecl()->field_begin();
    184       for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
    185                                                 E = S.capture_end();
    186            I != E; ++I, ++Field) {
    187         if (I->capturesThis())
    188           CXXThisFieldDecl = *Field;
    189         else if (I->capturesVariable())
    190           CaptureFields[I->getCapturedVar()] = *Field;
    191       }
    192     }
    193 
    194     virtual ~CGCapturedStmtInfo();
    195 
    196     CapturedRegionKind getKind() const { return Kind; }
    197 
    198     virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
    199     // \brief Retrieve the value of the context parameter.
    200     virtual llvm::Value *getContextValue() const { return ThisValue; }
    201 
    202     /// \brief Lookup the captured field decl for a variable.
    203     virtual const FieldDecl *lookup(const VarDecl *VD) const {
    204       return CaptureFields.lookup(VD);
    205     }
    206 
    207     bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
    208     virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
    209 
    210     static bool classof(const CGCapturedStmtInfo *) {
    211       return true;
    212     }
    213 
    214     /// \brief Emit the captured statement body.
    215     virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
    216       CGF.incrementProfileCounter(S);
    217       CGF.EmitStmt(S);
    218     }
    219 
    220     /// \brief Get the name of the capture helper.
    221     virtual StringRef getHelperName() const { return "__captured_stmt"; }
    222 
    223   private:
    224     /// \brief The kind of captured statement being generated.
    225     CapturedRegionKind Kind;
    226 
    227     /// \brief Keep the map between VarDecl and FieldDecl.
    228     llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
    229 
    230     /// \brief The base address of the captured record, passed in as the first
    231     /// argument of the parallel region function.
    232     llvm::Value *ThisValue;
    233 
    234     /// \brief Captured 'this' type.
    235     FieldDecl *CXXThisFieldDecl;
    236   };
    237   CGCapturedStmtInfo *CapturedStmtInfo;
    238 
    239   /// \brief RAII for correct setting/restoring of CapturedStmtInfo.
    240   class CGCapturedStmtRAII {
    241   private:
    242     CodeGenFunction &CGF;
    243     CGCapturedStmtInfo *PrevCapturedStmtInfo;
    244   public:
    245     CGCapturedStmtRAII(CodeGenFunction &CGF,
    246                        CGCapturedStmtInfo *NewCapturedStmtInfo)
    247         : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
    248       CGF.CapturedStmtInfo = NewCapturedStmtInfo;
    249     }
    250     ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
    251   };
    252 
    253   /// \brief Sanitizers enabled for this function.
    254   SanitizerSet SanOpts;
    255 
    256   /// \brief True if CodeGen currently emits code implementing sanitizer checks.
    257   bool IsSanitizerScope;
    258 
    259   /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope.
    260   class SanitizerScope {
    261     CodeGenFunction *CGF;
    262   public:
    263     SanitizerScope(CodeGenFunction *CGF);
    264     ~SanitizerScope();
    265   };
    266 
    267   /// In C++, whether we are code generating a thunk.  This controls whether we
    268   /// should emit cleanups.
    269   bool CurFuncIsThunk;
    270 
    271   /// In ARC, whether we should autorelease the return value.
    272   bool AutoreleaseResult;
    273 
    274   /// Whether we processed a Microsoft-style asm block during CodeGen. These can
    275   /// potentially set the return value.
    276   bool SawAsmBlock;
    277 
    278   /// True if the current function is an outlined SEH helper. This can be a
    279   /// finally block or filter expression.
    280   bool IsOutlinedSEHHelper;
    281 
    282   const CodeGen::CGBlockInfo *BlockInfo;
    283   llvm::Value *BlockPointer;
    284 
    285   llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields;
    286   FieldDecl *LambdaThisCaptureField;
    287 
    288   /// \brief A mapping from NRVO variables to the flags used to indicate
    289   /// when the NRVO has been applied to this variable.
    290   llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
    291 
    292   EHScopeStack EHStack;
    293   llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
    294   llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
    295 
    296   llvm::Instruction *CurrentFuncletPad = nullptr;
    297 
    298   /// Header for data within LifetimeExtendedCleanupStack.
    299   struct LifetimeExtendedCleanupHeader {
    300     /// The size of the following cleanup object.
    301     unsigned Size;
    302     /// The kind of cleanup to push: a value from the CleanupKind enumeration.
    303     CleanupKind Kind;
    304 
    305     size_t getSize() const { return Size; }
    306     CleanupKind getKind() const { return Kind; }
    307   };
    308 
    309   /// i32s containing the indexes of the cleanup destinations.
    310   llvm::AllocaInst *NormalCleanupDest;
    311 
    312   unsigned NextCleanupDestIndex;
    313 
    314   /// FirstBlockInfo - The head of a singly-linked-list of block layouts.
    315   CGBlockInfo *FirstBlockInfo;
    316 
    317   /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
    318   llvm::BasicBlock *EHResumeBlock;
    319 
    320   /// The exception slot.  All landing pads write the current exception pointer
    321   /// into this alloca.
    322   llvm::Value *ExceptionSlot;
    323 
    324   /// The selector slot.  Under the MandatoryCleanup model, all landing pads
    325   /// write the current selector value into this alloca.
    326   llvm::AllocaInst *EHSelectorSlot;
    327 
    328   /// A stack of exception code slots. Entering an __except block pushes a slot
    329   /// on the stack and leaving pops one. The __exception_code() intrinsic loads
    330   /// a value from the top of the stack.
    331   SmallVector<Address, 1> SEHCodeSlotStack;
    332 
    333   /// Value returned by __exception_info intrinsic.
    334   llvm::Value *SEHInfo = nullptr;
    335 
    336   /// Emits a landing pad for the current EH stack.
    337   llvm::BasicBlock *EmitLandingPad();
    338 
    339   llvm::BasicBlock *getInvokeDestImpl();
    340 
    341   template <class T>
    342   typename DominatingValue<T>::saved_type saveValueInCond(T value) {
    343     return DominatingValue<T>::save(*this, value);
    344   }
    345 
    346 public:
    347   /// ObjCEHValueStack - Stack of Objective-C exception values, used for
    348   /// rethrows.
    349   SmallVector<llvm::Value*, 8> ObjCEHValueStack;
    350 
    351   /// A class controlling the emission of a finally block.
    352   class FinallyInfo {
    353     /// Where the catchall's edge through the cleanup should go.
    354     JumpDest RethrowDest;
    355 
    356     /// A function to call to enter the catch.
    357     llvm::Constant *BeginCatchFn;
    358 
    359     /// An i1 variable indicating whether or not the @finally is
    360     /// running for an exception.
    361     llvm::AllocaInst *ForEHVar;
    362 
    363     /// An i8* variable into which the exception pointer to rethrow
    364     /// has been saved.
    365     llvm::AllocaInst *SavedExnVar;
    366 
    367   public:
    368     void enter(CodeGenFunction &CGF, const Stmt *Finally,
    369                llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn,
    370                llvm::Constant *rethrowFn);
    371     void exit(CodeGenFunction &CGF);
    372   };
    373 
    374   /// Returns true inside SEH __try blocks.
    375   bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
    376 
    377   /// Returns true while emitting a cleanuppad.
    378   bool isCleanupPadScope() const {
    379     return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
    380   }
    381 
    382   /// pushFullExprCleanup - Push a cleanup to be run at the end of the
    383   /// current full-expression.  Safe against the possibility that
    384   /// we're currently inside a conditionally-evaluated expression.
    385   template <class T, class... As>
    386   void pushFullExprCleanup(CleanupKind kind, As... A) {
    387     // If we're not in a conditional branch, or if none of the
    388     // arguments requires saving, then use the unconditional cleanup.
    389     if (!isInConditionalBranch())
    390       return EHStack.pushCleanup<T>(kind, A...);
    391 
    392     // Stash values in a tuple so we can guarantee the order of saves.
    393     typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
    394     SavedTuple Saved{saveValueInCond(A)...};
    395 
    396     typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
    397     EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
    398     initFullExprCleanup();
    399   }
    400 
    401   /// \brief Queue a cleanup to be pushed after finishing the current
    402   /// full-expression.
    403   template <class T, class... As>
    404   void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
    405     assert(!isInConditionalBranch() && "can't defer conditional cleanup");
    406 
    407     LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind };
    408 
    409     size_t OldSize = LifetimeExtendedCleanupStack.size();
    410     LifetimeExtendedCleanupStack.resize(
    411         LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size);
    412 
    413     static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0,
    414                   "Cleanup will be allocated on misaligned address");
    415     char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
    416     new (Buffer) LifetimeExtendedCleanupHeader(Header);
    417     new (Buffer + sizeof(Header)) T(A...);
    418   }
    419 
    420   /// Set up the last cleaup that was pushed as a conditional
    421   /// full-expression cleanup.
    422   void initFullExprCleanup();
    423 
    424   /// PushDestructorCleanup - Push a cleanup to call the
    425   /// complete-object destructor of an object of the given type at the
    426   /// given address.  Does nothing if T is not a C++ class type with a
    427   /// non-trivial destructor.
    428   void PushDestructorCleanup(QualType T, Address Addr);
    429 
    430   /// PushDestructorCleanup - Push a cleanup to call the
    431   /// complete-object variant of the given destructor on the object at
    432   /// the given address.
    433   void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr);
    434 
    435   /// PopCleanupBlock - Will pop the cleanup entry on the stack and
    436   /// process all branch fixups.
    437   void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
    438 
    439   /// DeactivateCleanupBlock - Deactivates the given cleanup block.
    440   /// The block cannot be reactivated.  Pops it if it's the top of the
    441   /// stack.
    442   ///
    443   /// \param DominatingIP - An instruction which is known to
    444   ///   dominate the current IP (if set) and which lies along
    445   ///   all paths of execution between the current IP and the
    446   ///   the point at which the cleanup comes into scope.
    447   void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    448                               llvm::Instruction *DominatingIP);
    449 
    450   /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
    451   /// Cannot be used to resurrect a deactivated cleanup.
    452   ///
    453   /// \param DominatingIP - An instruction which is known to
    454   ///   dominate the current IP (if set) and which lies along
    455   ///   all paths of execution between the current IP and the
    456   ///   the point at which the cleanup comes into scope.
    457   void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
    458                             llvm::Instruction *DominatingIP);
    459 
    460   /// \brief Enters a new scope for capturing cleanups, all of which
    461   /// will be executed once the scope is exited.
    462   class RunCleanupsScope {
    463     EHScopeStack::stable_iterator CleanupStackDepth;
    464     size_t LifetimeExtendedCleanupStackSize;
    465     bool OldDidCallStackSave;
    466   protected:
    467     bool PerformCleanup;
    468   private:
    469 
    470     RunCleanupsScope(const RunCleanupsScope &) = delete;
    471     void operator=(const RunCleanupsScope &) = delete;
    472 
    473   protected:
    474     CodeGenFunction& CGF;
    475 
    476   public:
    477     /// \brief Enter a new cleanup scope.
    478     explicit RunCleanupsScope(CodeGenFunction &CGF)
    479       : PerformCleanup(true), CGF(CGF)
    480     {
    481       CleanupStackDepth = CGF.EHStack.stable_begin();
    482       LifetimeExtendedCleanupStackSize =
    483           CGF.LifetimeExtendedCleanupStack.size();
    484       OldDidCallStackSave = CGF.DidCallStackSave;
    485       CGF.DidCallStackSave = false;
    486     }
    487 
    488     /// \brief Exit this cleanup scope, emitting any accumulated
    489     /// cleanups.
    490     ~RunCleanupsScope() {
    491       if (PerformCleanup) {
    492         CGF.DidCallStackSave = OldDidCallStackSave;
    493         CGF.PopCleanupBlocks(CleanupStackDepth,
    494                              LifetimeExtendedCleanupStackSize);
    495       }
    496     }
    497 
    498     /// \brief Determine whether this scope requires any cleanups.
    499     bool requiresCleanups() const {
    500       return CGF.EHStack.stable_begin() != CleanupStackDepth;
    501     }
    502 
    503     /// \brief Force the emission of cleanups now, instead of waiting
    504     /// until this object is destroyed.
    505     void ForceCleanup() {
    506       assert(PerformCleanup && "Already forced cleanup");
    507       CGF.DidCallStackSave = OldDidCallStackSave;
    508       CGF.PopCleanupBlocks(CleanupStackDepth,
    509                            LifetimeExtendedCleanupStackSize);
    510       PerformCleanup = false;
    511     }
    512   };
    513 
    514   class LexicalScope : public RunCleanupsScope {
    515     SourceRange Range;
    516     SmallVector<const LabelDecl*, 4> Labels;
    517     LexicalScope *ParentScope;
    518 
    519     LexicalScope(const LexicalScope &) = delete;
    520     void operator=(const LexicalScope &) = delete;
    521 
    522   public:
    523     /// \brief Enter a new cleanup scope.
    524     explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
    525       : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
    526       CGF.CurLexicalScope = this;
    527       if (CGDebugInfo *DI = CGF.getDebugInfo())
    528         DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
    529     }
    530 
    531     void addLabel(const LabelDecl *label) {
    532       assert(PerformCleanup && "adding label to dead scope?");
    533       Labels.push_back(label);
    534     }
    535 
    536     /// \brief Exit this cleanup scope, emitting any accumulated
    537     /// cleanups.
    538     ~LexicalScope() {
    539       if (CGDebugInfo *DI = CGF.getDebugInfo())
    540         DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
    541 
    542       // If we should perform a cleanup, force them now.  Note that
    543       // this ends the cleanup scope before rescoping any labels.
    544       if (PerformCleanup) {
    545         ApplyDebugLocation DL(CGF, Range.getEnd());
    546         ForceCleanup();
    547       }
    548     }
    549 
    550     /// \brief Force the emission of cleanups now, instead of waiting
    551     /// until this object is destroyed.
    552     void ForceCleanup() {
    553       CGF.CurLexicalScope = ParentScope;
    554       RunCleanupsScope::ForceCleanup();
    555 
    556       if (!Labels.empty())
    557         rescopeLabels();
    558     }
    559 
    560     void rescopeLabels();
    561   };
    562 
    563   typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
    564 
    565   /// \brief The scope used to remap some variables as private in the OpenMP
    566   /// loop body (or other captured region emitted without outlining), and to
    567   /// restore old vars back on exit.
    568   class OMPPrivateScope : public RunCleanupsScope {
    569     DeclMapTy SavedLocals;
    570     DeclMapTy SavedPrivates;
    571 
    572   private:
    573     OMPPrivateScope(const OMPPrivateScope &) = delete;
    574     void operator=(const OMPPrivateScope &) = delete;
    575 
    576   public:
    577     /// \brief Enter a new OpenMP private scope.
    578     explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
    579 
    580     /// \brief Registers \a LocalVD variable as a private and apply \a
    581     /// PrivateGen function for it to generate corresponding private variable.
    582     /// \a PrivateGen returns an address of the generated private variable.
    583     /// \return true if the variable is registered as private, false if it has
    584     /// been privatized already.
    585     bool
    586     addPrivate(const VarDecl *LocalVD,
    587                llvm::function_ref<Address()> PrivateGen) {
    588       assert(PerformCleanup && "adding private to dead scope");
    589 
    590       // Only save it once.
    591       if (SavedLocals.count(LocalVD)) return false;
    592 
    593       // Copy the existing local entry to SavedLocals.
    594       auto it = CGF.LocalDeclMap.find(LocalVD);
    595       if (it != CGF.LocalDeclMap.end()) {
    596         SavedLocals.insert({LocalVD, it->second});
    597       } else {
    598         SavedLocals.insert({LocalVD, Address::invalid()});
    599       }
    600 
    601       // Generate the private entry.
    602       Address Addr = PrivateGen();
    603       QualType VarTy = LocalVD->getType();
    604       if (VarTy->isReferenceType()) {
    605         Address Temp = CGF.CreateMemTemp(VarTy);
    606         CGF.Builder.CreateStore(Addr.getPointer(), Temp);
    607         Addr = Temp;
    608       }
    609       SavedPrivates.insert({LocalVD, Addr});
    610 
    611       return true;
    612     }
    613 
    614     /// \brief Privatizes local variables previously registered as private.
    615     /// Registration is separate from the actual privatization to allow
    616     /// initializers use values of the original variables, not the private one.
    617     /// This is important, for example, if the private variable is a class
    618     /// variable initialized by a constructor that references other private
    619     /// variables. But at initialization original variables must be used, not
    620     /// private copies.
    621     /// \return true if at least one variable was privatized, false otherwise.
    622     bool Privatize() {
    623       copyInto(SavedPrivates, CGF.LocalDeclMap);
    624       SavedPrivates.clear();
    625       return !SavedLocals.empty();
    626     }
    627 
    628     void ForceCleanup() {
    629       RunCleanupsScope::ForceCleanup();
    630       copyInto(SavedLocals, CGF.LocalDeclMap);
    631       SavedLocals.clear();
    632     }
    633 
    634     /// \brief Exit scope - all the mapped variables are restored.
    635     ~OMPPrivateScope() {
    636       if (PerformCleanup)
    637         ForceCleanup();
    638     }
    639 
    640   private:
    641     /// Copy all the entries in the source map over the corresponding
    642     /// entries in the destination, which must exist.
    643     static void copyInto(const DeclMapTy &src, DeclMapTy &dest) {
    644       for (auto &pair : src) {
    645         if (!pair.second.isValid()) {
    646           dest.erase(pair.first);
    647           continue;
    648         }
    649 
    650         auto it = dest.find(pair.first);
    651         if (it != dest.end()) {
    652           it->second = pair.second;
    653         } else {
    654           dest.insert(pair);
    655         }
    656       }
    657     }
    658   };
    659 
    660   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    661   /// that have been added.
    662   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize);
    663 
    664   /// \brief Takes the old cleanup stack size and emits the cleanup blocks
    665   /// that have been added, then adds all lifetime-extended cleanups from
    666   /// the given position to the stack.
    667   void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
    668                         size_t OldLifetimeExtendedStackSize);
    669 
    670   void ResolveBranchFixups(llvm::BasicBlock *Target);
    671 
    672   /// The given basic block lies in the current EH scope, but may be a
    673   /// target of a potentially scope-crossing jump; get a stable handle
    674   /// to which we can perform this jump later.
    675   JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
    676     return JumpDest(Target,
    677                     EHStack.getInnermostNormalCleanup(),
    678                     NextCleanupDestIndex++);
    679   }
    680 
    681   /// The given basic block lies in the current EH scope, but may be a
    682   /// target of a potentially scope-crossing jump; get a stable handle
    683   /// to which we can perform this jump later.
    684   JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
    685     return getJumpDestInCurrentScope(createBasicBlock(Name));
    686   }
    687 
    688   /// EmitBranchThroughCleanup - Emit a branch from the current insert
    689   /// block through the normal cleanup handling code (if any) and then
    690   /// on to \arg Dest.
    691   void EmitBranchThroughCleanup(JumpDest Dest);
    692 
    693   /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
    694   /// specified destination obviously has no cleanups to run.  'false' is always
    695   /// a conservatively correct answer for this method.
    696   bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
    697 
    698   /// popCatchScope - Pops the catch scope at the top of the EHScope
    699   /// stack, emitting any required code (other than the catch handlers
    700   /// themselves).
    701   void popCatchScope();
    702 
    703   llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
    704   llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
    705   llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope);
    706 
    707   /// An object to manage conditionally-evaluated expressions.
    708   class ConditionalEvaluation {
    709     llvm::BasicBlock *StartBB;
    710 
    711   public:
    712     ConditionalEvaluation(CodeGenFunction &CGF)
    713       : StartBB(CGF.Builder.GetInsertBlock()) {}
    714 
    715     void begin(CodeGenFunction &CGF) {
    716       assert(CGF.OutermostConditional != this);
    717       if (!CGF.OutermostConditional)
    718         CGF.OutermostConditional = this;
    719     }
    720 
    721     void end(CodeGenFunction &CGF) {
    722       assert(CGF.OutermostConditional != nullptr);
    723       if (CGF.OutermostConditional == this)
    724         CGF.OutermostConditional = nullptr;
    725     }
    726 
    727     /// Returns a block which will be executed prior to each
    728     /// evaluation of the conditional code.
    729     llvm::BasicBlock *getStartingBlock() const {
    730       return StartBB;
    731     }
    732   };
    733 
    734   /// isInConditionalBranch - Return true if we're currently emitting
    735   /// one branch or the other of a conditional expression.
    736   bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
    737 
    738   void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
    739     assert(isInConditionalBranch());
    740     llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
    741     auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
    742     store->setAlignment(addr.getAlignment().getQuantity());
    743   }
    744 
    745   /// An RAII object to record that we're evaluating a statement
    746   /// expression.
    747   class StmtExprEvaluation {
    748     CodeGenFunction &CGF;
    749 
    750     /// We have to save the outermost conditional: cleanups in a
    751     /// statement expression aren't conditional just because the
    752     /// StmtExpr is.
    753     ConditionalEvaluation *SavedOutermostConditional;
    754 
    755   public:
    756     StmtExprEvaluation(CodeGenFunction &CGF)
    757       : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
    758       CGF.OutermostConditional = nullptr;
    759     }
    760 
    761     ~StmtExprEvaluation() {
    762       CGF.OutermostConditional = SavedOutermostConditional;
    763       CGF.EnsureInsertPoint();
    764     }
    765   };
    766 
    767   /// An object which temporarily prevents a value from being
    768   /// destroyed by aggressive peephole optimizations that assume that
    769   /// all uses of a value have been realized in the IR.
    770   class PeepholeProtection {
    771     llvm::Instruction *Inst;
    772     friend class CodeGenFunction;
    773 
    774   public:
    775     PeepholeProtection() : Inst(nullptr) {}
    776   };
    777 
    778   /// A non-RAII class containing all the information about a bound
    779   /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
    780   /// this which makes individual mappings very simple; using this
    781   /// class directly is useful when you have a variable number of
    782   /// opaque values or don't want the RAII functionality for some
    783   /// reason.
    784   class OpaqueValueMappingData {
    785     const OpaqueValueExpr *OpaqueValue;
    786     bool BoundLValue;
    787     CodeGenFunction::PeepholeProtection Protection;
    788 
    789     OpaqueValueMappingData(const OpaqueValueExpr *ov,
    790                            bool boundLValue)
    791       : OpaqueValue(ov), BoundLValue(boundLValue) {}
    792   public:
    793     OpaqueValueMappingData() : OpaqueValue(nullptr) {}
    794 
    795     static bool shouldBindAsLValue(const Expr *expr) {
    796       // gl-values should be bound as l-values for obvious reasons.
    797       // Records should be bound as l-values because IR generation
    798       // always keeps them in memory.  Expressions of function type
    799       // act exactly like l-values but are formally required to be
    800       // r-values in C.
    801       return expr->isGLValue() ||
    802              expr->getType()->isFunctionType() ||
    803              hasAggregateEvaluationKind(expr->getType());
    804     }
    805 
    806     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    807                                        const OpaqueValueExpr *ov,
    808                                        const Expr *e) {
    809       if (shouldBindAsLValue(ov))
    810         return bind(CGF, ov, CGF.EmitLValue(e));
    811       return bind(CGF, ov, CGF.EmitAnyExpr(e));
    812     }
    813 
    814     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    815                                        const OpaqueValueExpr *ov,
    816                                        const LValue &lv) {
    817       assert(shouldBindAsLValue(ov));
    818       CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
    819       return OpaqueValueMappingData(ov, true);
    820     }
    821 
    822     static OpaqueValueMappingData bind(CodeGenFunction &CGF,
    823                                        const OpaqueValueExpr *ov,
    824                                        const RValue &rv) {
    825       assert(!shouldBindAsLValue(ov));
    826       CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
    827 
    828       OpaqueValueMappingData data(ov, false);
    829 
    830       // Work around an extremely aggressive peephole optimization in
    831       // EmitScalarConversion which assumes that all other uses of a
    832       // value are extant.
    833       data.Protection = CGF.protectFromPeepholes(rv);
    834 
    835       return data;
    836     }
    837 
    838     bool isValid() const { return OpaqueValue != nullptr; }
    839     void clear() { OpaqueValue = nullptr; }
    840 
    841     void unbind(CodeGenFunction &CGF) {
    842       assert(OpaqueValue && "no data to unbind!");
    843 
    844       if (BoundLValue) {
    845         CGF.OpaqueLValues.erase(OpaqueValue);
    846       } else {
    847         CGF.OpaqueRValues.erase(OpaqueValue);
    848         CGF.unprotectFromPeepholes(Protection);
    849       }
    850     }
    851   };
    852 
    853   /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
    854   class OpaqueValueMapping {
    855     CodeGenFunction &CGF;
    856     OpaqueValueMappingData Data;
    857 
    858   public:
    859     static bool shouldBindAsLValue(const Expr *expr) {
    860       return OpaqueValueMappingData::shouldBindAsLValue(expr);
    861     }
    862 
    863     /// Build the opaque value mapping for the given conditional
    864     /// operator if it's the GNU ?: extension.  This is a common
    865     /// enough pattern that the convenience operator is really
    866     /// helpful.
    867     ///
    868     OpaqueValueMapping(CodeGenFunction &CGF,
    869                        const AbstractConditionalOperator *op) : CGF(CGF) {
    870       if (isa<ConditionalOperator>(op))
    871         // Leave Data empty.
    872         return;
    873 
    874       const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
    875       Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
    876                                           e->getCommon());
    877     }
    878 
    879     OpaqueValueMapping(CodeGenFunction &CGF,
    880                        const OpaqueValueExpr *opaqueValue,
    881                        LValue lvalue)
    882       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
    883     }
    884 
    885     OpaqueValueMapping(CodeGenFunction &CGF,
    886                        const OpaqueValueExpr *opaqueValue,
    887                        RValue rvalue)
    888       : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
    889     }
    890 
    891     void pop() {
    892       Data.unbind(CGF);
    893       Data.clear();
    894     }
    895 
    896     ~OpaqueValueMapping() {
    897       if (Data.isValid()) Data.unbind(CGF);
    898     }
    899   };
    900 
    901 private:
    902   CGDebugInfo *DebugInfo;
    903   bool DisableDebugInfo;
    904 
    905   /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
    906   /// calling llvm.stacksave for multiple VLAs in the same scope.
    907   bool DidCallStackSave;
    908 
    909   /// IndirectBranch - The first time an indirect goto is seen we create a block
    910   /// with an indirect branch.  Every time we see the address of a label taken,
    911   /// we add the label to the indirect goto.  Every subsequent indirect goto is
    912   /// codegen'd as a jump to the IndirectBranch's basic block.
    913   llvm::IndirectBrInst *IndirectBranch;
    914 
    915   /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
    916   /// decls.
    917   DeclMapTy LocalDeclMap;
    918 
    919   /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
    920   /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
    921   /// parameter.
    922   llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
    923       SizeArguments;
    924 
    925   /// Track escaped local variables with auto storage. Used during SEH
    926   /// outlining to produce a call to llvm.localescape.
    927   llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
    928 
    929   /// LabelMap - This keeps track of the LLVM basic block for each C label.
    930   llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
    931 
    932   // BreakContinueStack - This keeps track of where break and continue
    933   // statements should jump to.
    934   struct BreakContinue {
    935     BreakContinue(JumpDest Break, JumpDest Continue)
    936       : BreakBlock(Break), ContinueBlock(Continue) {}
    937 
    938     JumpDest BreakBlock;
    939     JumpDest ContinueBlock;
    940   };
    941   SmallVector<BreakContinue, 8> BreakContinueStack;
    942 
    943   CodeGenPGO PGO;
    944 
    945   /// Calculate branch weights appropriate for PGO data
    946   llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount);
    947   llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights);
    948   llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
    949                                             uint64_t LoopCount);
    950 
    951 public:
    952   /// Increment the profiler's counter for the given statement.
    953   void incrementProfileCounter(const Stmt *S) {
    954     if (CGM.getCodeGenOpts().ProfileInstrGenerate)
    955       PGO.emitCounterIncrement(Builder, S);
    956     PGO.setCurrentStmt(S);
    957   }
    958 
    959   /// Get the profiler's count for the given statement.
    960   uint64_t getProfileCount(const Stmt *S) {
    961     Optional<uint64_t> Count = PGO.getStmtCount(S);
    962     if (!Count.hasValue())
    963       return 0;
    964     return *Count;
    965   }
    966 
    967   /// Set the profiler's current count.
    968   void setCurrentProfileCount(uint64_t Count) {
    969     PGO.setCurrentRegionCount(Count);
    970   }
    971 
    972   /// Get the profiler's current count. This is generally the count for the most
    973   /// recently incremented counter.
    974   uint64_t getCurrentProfileCount() {
    975     return PGO.getCurrentRegionCount();
    976   }
    977 
    978 private:
    979 
    980   /// SwitchInsn - This is nearest current switch instruction. It is null if
    981   /// current context is not in a switch.
    982   llvm::SwitchInst *SwitchInsn;
    983   /// The branch weights of SwitchInsn when doing instrumentation based PGO.
    984   SmallVector<uint64_t, 16> *SwitchWeights;
    985 
    986   /// CaseRangeBlock - This block holds if condition check for last case
    987   /// statement range in current switch instruction.
    988   llvm::BasicBlock *CaseRangeBlock;
    989 
    990   /// OpaqueLValues - Keeps track of the current set of opaque value
    991   /// expressions.
    992   llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
    993   llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
    994 
    995   // VLASizeMap - This keeps track of the associated size for each VLA type.
    996   // We track this by the size expression rather than the type itself because
    997   // in certain situations, like a const qualifier applied to an VLA typedef,
    998   // multiple VLA types can share the same size expression.
    999   // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
   1000   // enter/leave scopes.
   1001   llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
   1002 
   1003   /// A block containing a single 'unreachable' instruction.  Created
   1004   /// lazily by getUnreachableBlock().
   1005   llvm::BasicBlock *UnreachableBlock;
   1006 
   1007   /// Counts of the number return expressions in the function.
   1008   unsigned NumReturnExprs;
   1009 
   1010   /// Count the number of simple (constant) return expressions in the function.
   1011   unsigned NumSimpleReturnExprs;
   1012 
   1013   /// The last regular (non-return) debug location (breakpoint) in the function.
   1014   SourceLocation LastStopPoint;
   1015 
   1016 public:
   1017   /// A scope within which we are constructing the fields of an object which
   1018   /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
   1019   /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
   1020   class FieldConstructionScope {
   1021   public:
   1022     FieldConstructionScope(CodeGenFunction &CGF, Address This)
   1023         : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
   1024       CGF.CXXDefaultInitExprThis = This;
   1025     }
   1026     ~FieldConstructionScope() {
   1027       CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
   1028     }
   1029 
   1030   private:
   1031     CodeGenFunction &CGF;
   1032     Address OldCXXDefaultInitExprThis;
   1033   };
   1034 
   1035   /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
   1036   /// is overridden to be the object under construction.
   1037   class CXXDefaultInitExprScope {
   1038   public:
   1039     CXXDefaultInitExprScope(CodeGenFunction &CGF)
   1040       : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
   1041         OldCXXThisAlignment(CGF.CXXThisAlignment) {
   1042       CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
   1043       CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
   1044     }
   1045     ~CXXDefaultInitExprScope() {
   1046       CGF.CXXThisValue = OldCXXThisValue;
   1047       CGF.CXXThisAlignment = OldCXXThisAlignment;
   1048     }
   1049 
   1050   public:
   1051     CodeGenFunction &CGF;
   1052     llvm::Value *OldCXXThisValue;
   1053     CharUnits OldCXXThisAlignment;
   1054   };
   1055 
   1056 private:
   1057   /// CXXThisDecl - When generating code for a C++ member function,
   1058   /// this will hold the implicit 'this' declaration.
   1059   ImplicitParamDecl *CXXABIThisDecl;
   1060   llvm::Value *CXXABIThisValue;
   1061   llvm::Value *CXXThisValue;
   1062   CharUnits CXXABIThisAlignment;
   1063   CharUnits CXXThisAlignment;
   1064 
   1065   /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
   1066   /// this expression.
   1067   Address CXXDefaultInitExprThis = Address::invalid();
   1068 
   1069   /// CXXStructorImplicitParamDecl - When generating code for a constructor or
   1070   /// destructor, this will hold the implicit argument (e.g. VTT).
   1071   ImplicitParamDecl *CXXStructorImplicitParamDecl;
   1072   llvm::Value *CXXStructorImplicitParamValue;
   1073 
   1074   /// OutermostConditional - Points to the outermost active
   1075   /// conditional control.  This is used so that we know if a
   1076   /// temporary should be destroyed conditionally.
   1077   ConditionalEvaluation *OutermostConditional;
   1078 
   1079   /// The current lexical scope.
   1080   LexicalScope *CurLexicalScope;
   1081 
   1082   /// The current source location that should be used for exception
   1083   /// handling code.
   1084   SourceLocation CurEHLocation;
   1085 
   1086   /// BlockByrefInfos - For each __block variable, contains
   1087   /// information about the layout of the variable.
   1088   llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
   1089 
   1090   llvm::BasicBlock *TerminateLandingPad;
   1091   llvm::BasicBlock *TerminateHandler;
   1092   llvm::BasicBlock *TrapBB;
   1093 
   1094   /// Add a kernel metadata node to the named metadata node 'opencl.kernels'.
   1095   /// In the kernel metadata node, reference the kernel function and metadata
   1096   /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2):
   1097   /// - A node for the vec_type_hint(<type>) qualifier contains string
   1098   ///   "vec_type_hint", an undefined value of the <type> data type,
   1099   ///   and a Boolean that is true if the <type> is integer and signed.
   1100   /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string
   1101   ///   "work_group_size_hint", and three 32-bit integers X, Y and Z.
   1102   /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string
   1103   ///   "reqd_work_group_size", and three 32-bit integers X, Y and Z.
   1104   void EmitOpenCLKernelMetadata(const FunctionDecl *FD,
   1105                                 llvm::Function *Fn);
   1106 
   1107 public:
   1108   CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
   1109   ~CodeGenFunction();
   1110 
   1111   CodeGenTypes &getTypes() const { return CGM.getTypes(); }
   1112   ASTContext &getContext() const { return CGM.getContext(); }
   1113   CGDebugInfo *getDebugInfo() {
   1114     if (DisableDebugInfo)
   1115       return nullptr;
   1116     return DebugInfo;
   1117   }
   1118   void disableDebugInfo() { DisableDebugInfo = true; }
   1119   void enableDebugInfo() { DisableDebugInfo = false; }
   1120 
   1121   bool shouldUseFusedARCCalls() {
   1122     return CGM.getCodeGenOpts().OptimizationLevel == 0;
   1123   }
   1124 
   1125   const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
   1126 
   1127   /// Returns a pointer to the function's exception object and selector slot,
   1128   /// which is assigned in every landing pad.
   1129   Address getExceptionSlot();
   1130   Address getEHSelectorSlot();
   1131 
   1132   /// Returns the contents of the function's exception object and selector
   1133   /// slots.
   1134   llvm::Value *getExceptionFromSlot();
   1135   llvm::Value *getSelectorFromSlot();
   1136 
   1137   Address getNormalCleanupDestSlot();
   1138 
   1139   llvm::BasicBlock *getUnreachableBlock() {
   1140     if (!UnreachableBlock) {
   1141       UnreachableBlock = createBasicBlock("unreachable");
   1142       new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
   1143     }
   1144     return UnreachableBlock;
   1145   }
   1146 
   1147   llvm::BasicBlock *getInvokeDest() {
   1148     if (!EHStack.requiresLandingPad()) return nullptr;
   1149     return getInvokeDestImpl();
   1150   }
   1151 
   1152   bool currentFunctionUsesSEHTry() const {
   1153     const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl);
   1154     return FD && FD->usesSEHTry();
   1155   }
   1156 
   1157   const TargetInfo &getTarget() const { return Target; }
   1158   llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
   1159 
   1160   //===--------------------------------------------------------------------===//
   1161   //                                  Cleanups
   1162   //===--------------------------------------------------------------------===//
   1163 
   1164   typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
   1165 
   1166   void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
   1167                                         Address arrayEndPointer,
   1168                                         QualType elementType,
   1169                                         CharUnits elementAlignment,
   1170                                         Destroyer *destroyer);
   1171   void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
   1172                                       llvm::Value *arrayEnd,
   1173                                       QualType elementType,
   1174                                       CharUnits elementAlignment,
   1175                                       Destroyer *destroyer);
   1176 
   1177   void pushDestroy(QualType::DestructionKind dtorKind,
   1178                    Address addr, QualType type);
   1179   void pushEHDestroy(QualType::DestructionKind dtorKind,
   1180                      Address addr, QualType type);
   1181   void pushDestroy(CleanupKind kind, Address addr, QualType type,
   1182                    Destroyer *destroyer, bool useEHCleanupForArray);
   1183   void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
   1184                                    QualType type, Destroyer *destroyer,
   1185                                    bool useEHCleanupForArray);
   1186   void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
   1187                                    llvm::Value *CompletePtr,
   1188                                    QualType ElementType);
   1189   void pushStackRestore(CleanupKind kind, Address SPMem);
   1190   void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
   1191                    bool useEHCleanupForArray);
   1192   llvm::Function *generateDestroyHelper(Address addr, QualType type,
   1193                                         Destroyer *destroyer,
   1194                                         bool useEHCleanupForArray,
   1195                                         const VarDecl *VD);
   1196   void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
   1197                         QualType elementType, CharUnits elementAlign,
   1198                         Destroyer *destroyer,
   1199                         bool checkZeroLength, bool useEHCleanup);
   1200 
   1201   Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
   1202 
   1203   /// Determines whether an EH cleanup is required to destroy a type
   1204   /// with the given destruction kind.
   1205   bool needsEHCleanup(QualType::DestructionKind kind) {
   1206     switch (kind) {
   1207     case QualType::DK_none:
   1208       return false;
   1209     case QualType::DK_cxx_destructor:
   1210     case QualType::DK_objc_weak_lifetime:
   1211       return getLangOpts().Exceptions;
   1212     case QualType::DK_objc_strong_lifetime:
   1213       return getLangOpts().Exceptions &&
   1214              CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
   1215     }
   1216     llvm_unreachable("bad destruction kind");
   1217   }
   1218 
   1219   CleanupKind getCleanupKind(QualType::DestructionKind kind) {
   1220     return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
   1221   }
   1222 
   1223   //===--------------------------------------------------------------------===//
   1224   //                                  Objective-C
   1225   //===--------------------------------------------------------------------===//
   1226 
   1227   void GenerateObjCMethod(const ObjCMethodDecl *OMD);
   1228 
   1229   void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
   1230 
   1231   /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
   1232   void GenerateObjCGetter(ObjCImplementationDecl *IMP,
   1233                           const ObjCPropertyImplDecl *PID);
   1234   void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
   1235                               const ObjCPropertyImplDecl *propImpl,
   1236                               const ObjCMethodDecl *GetterMothodDecl,
   1237                               llvm::Constant *AtomicHelperFn);
   1238 
   1239   void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
   1240                                   ObjCMethodDecl *MD, bool ctor);
   1241 
   1242   /// GenerateObjCSetter - Synthesize an Objective-C property setter function
   1243   /// for the given property.
   1244   void GenerateObjCSetter(ObjCImplementationDecl *IMP,
   1245                           const ObjCPropertyImplDecl *PID);
   1246   void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
   1247                               const ObjCPropertyImplDecl *propImpl,
   1248                               llvm::Constant *AtomicHelperFn);
   1249 
   1250   //===--------------------------------------------------------------------===//
   1251   //                                  Block Bits
   1252   //===--------------------------------------------------------------------===//
   1253 
   1254   llvm::Value *EmitBlockLiteral(const BlockExpr *);
   1255   llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
   1256   static void destroyBlockInfos(CGBlockInfo *info);
   1257 
   1258   llvm::Function *GenerateBlockFunction(GlobalDecl GD,
   1259                                         const CGBlockInfo &Info,
   1260                                         const DeclMapTy &ldm,
   1261                                         bool IsLambdaConversionToBlock);
   1262 
   1263   llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
   1264   llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
   1265   llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
   1266                                              const ObjCPropertyImplDecl *PID);
   1267   llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
   1268                                              const ObjCPropertyImplDecl *PID);
   1269   llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
   1270 
   1271   void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags);
   1272 
   1273   class AutoVarEmission;
   1274 
   1275   void emitByrefStructureInit(const AutoVarEmission &emission);
   1276   void enterByrefCleanup(const AutoVarEmission &emission);
   1277 
   1278   void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
   1279                                 llvm::Value *ptr);
   1280 
   1281   Address LoadBlockStruct();
   1282   Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef);
   1283 
   1284   /// BuildBlockByrefAddress - Computes the location of the
   1285   /// data in a variable which is declared as __block.
   1286   Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
   1287                                 bool followForward = true);
   1288   Address emitBlockByrefAddress(Address baseAddr,
   1289                                 const BlockByrefInfo &info,
   1290                                 bool followForward,
   1291                                 const llvm::Twine &name);
   1292 
   1293   const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
   1294 
   1295   void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
   1296                     const CGFunctionInfo &FnInfo);
   1297   /// \brief Emit code for the start of a function.
   1298   /// \param Loc       The location to be associated with the function.
   1299   /// \param StartLoc  The location of the function body.
   1300   void StartFunction(GlobalDecl GD,
   1301                      QualType RetTy,
   1302                      llvm::Function *Fn,
   1303                      const CGFunctionInfo &FnInfo,
   1304                      const FunctionArgList &Args,
   1305                      SourceLocation Loc = SourceLocation(),
   1306                      SourceLocation StartLoc = SourceLocation());
   1307 
   1308   void EmitConstructorBody(FunctionArgList &Args);
   1309   void EmitDestructorBody(FunctionArgList &Args);
   1310   void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
   1311   void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body);
   1312   void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
   1313 
   1314   void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
   1315                                   CallArgList &CallArgs);
   1316   void EmitLambdaToBlockPointerBody(FunctionArgList &Args);
   1317   void EmitLambdaBlockInvokeBody();
   1318   void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD);
   1319   void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD);
   1320   void EmitAsanPrologueOrEpilogue(bool Prologue);
   1321 
   1322   /// \brief Emit the unified return block, trying to avoid its emission when
   1323   /// possible.
   1324   /// \return The debug location of the user written return statement if the
   1325   /// return block is is avoided.
   1326   llvm::DebugLoc EmitReturnBlock();
   1327 
   1328   /// FinishFunction - Complete IR generation of the current function. It is
   1329   /// legal to call this function even if there is no current insertion point.
   1330   void FinishFunction(SourceLocation EndLoc=SourceLocation());
   1331 
   1332   void StartThunk(llvm::Function *Fn, GlobalDecl GD,
   1333                   const CGFunctionInfo &FnInfo);
   1334 
   1335   void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk);
   1336 
   1337   void FinishThunk();
   1338 
   1339   /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
   1340   void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr,
   1341                          llvm::Value *Callee);
   1342 
   1343   /// Generate a thunk for the given method.
   1344   void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
   1345                      GlobalDecl GD, const ThunkInfo &Thunk);
   1346 
   1347   llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
   1348                                        const CGFunctionInfo &FnInfo,
   1349                                        GlobalDecl GD, const ThunkInfo &Thunk);
   1350 
   1351   void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
   1352                         FunctionArgList &Args);
   1353 
   1354   void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init,
   1355                                ArrayRef<VarDecl *> ArrayIndexes);
   1356 
   1357   /// Struct with all informations about dynamic [sub]class needed to set vptr.
   1358   struct VPtr {
   1359     BaseSubobject Base;
   1360     const CXXRecordDecl *NearestVBase;
   1361     CharUnits OffsetFromNearestVBase;
   1362     const CXXRecordDecl *VTableClass;
   1363   };
   1364 
   1365   /// Initialize the vtable pointer of the given subobject.
   1366   void InitializeVTablePointer(const VPtr &vptr);
   1367 
   1368   typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
   1369 
   1370   typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
   1371   VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
   1372 
   1373   void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
   1374                          CharUnits OffsetFromNearestVBase,
   1375                          bool BaseIsNonVirtualPrimaryBase,
   1376                          const CXXRecordDecl *VTableClass,
   1377                          VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
   1378 
   1379   void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
   1380 
   1381   /// GetVTablePtr - Return the Value of the vtable pointer member pointed
   1382   /// to by This.
   1383   llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
   1384                             const CXXRecordDecl *VTableClass);
   1385 
   1386   enum CFITypeCheckKind {
   1387     CFITCK_VCall,
   1388     CFITCK_NVCall,
   1389     CFITCK_DerivedCast,
   1390     CFITCK_UnrelatedCast,
   1391   };
   1392 
   1393   /// \brief Derived is the presumed address of an object of type T after a
   1394   /// cast. If T is a polymorphic class type, emit a check that the virtual
   1395   /// table for Derived belongs to a class derived from T.
   1396   void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived,
   1397                                  bool MayBeNull, CFITypeCheckKind TCK,
   1398                                  SourceLocation Loc);
   1399 
   1400   /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
   1401   /// If vptr CFI is enabled, emit a check that VTable is valid.
   1402   void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable,
   1403                                  CFITypeCheckKind TCK, SourceLocation Loc);
   1404 
   1405   /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
   1406   /// RD using llvm.bitset.test.
   1407   void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
   1408                           CFITypeCheckKind TCK, SourceLocation Loc);
   1409 
   1410   /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given
   1411   /// expr can be devirtualized.
   1412   bool CanDevirtualizeMemberFunctionCall(const Expr *Base,
   1413                                          const CXXMethodDecl *MD);
   1414 
   1415   /// EnterDtorCleanups - Enter the cleanups necessary to complete the
   1416   /// given phase of destruction for a destructor.  The end result
   1417   /// should call destructors on members and base classes in reverse
   1418   /// order of their construction.
   1419   void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
   1420 
   1421   /// ShouldInstrumentFunction - Return true if the current function should be
   1422   /// instrumented with __cyg_profile_func_* calls
   1423   bool ShouldInstrumentFunction();
   1424 
   1425   /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
   1426   /// instrumentation function with the current function and the call site, if
   1427   /// function instrumentation is enabled.
   1428   void EmitFunctionInstrumentation(const char *Fn);
   1429 
   1430   /// EmitMCountInstrumentation - Emit call to .mcount.
   1431   void EmitMCountInstrumentation();
   1432 
   1433   /// EmitFunctionProlog - Emit the target specific LLVM code to load the
   1434   /// arguments for the given function. This is also responsible for naming the
   1435   /// LLVM function arguments.
   1436   void EmitFunctionProlog(const CGFunctionInfo &FI,
   1437                           llvm::Function *Fn,
   1438                           const FunctionArgList &Args);
   1439 
   1440   /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
   1441   /// given temporary.
   1442   void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
   1443                           SourceLocation EndLoc);
   1444 
   1445   /// EmitStartEHSpec - Emit the start of the exception spec.
   1446   void EmitStartEHSpec(const Decl *D);
   1447 
   1448   /// EmitEndEHSpec - Emit the end of the exception spec.
   1449   void EmitEndEHSpec(const Decl *D);
   1450 
   1451   /// getTerminateLandingPad - Return a landing pad that just calls terminate.
   1452   llvm::BasicBlock *getTerminateLandingPad();
   1453 
   1454   /// getTerminateHandler - Return a handler (not a landing pad, just
   1455   /// a catch handler) that just calls terminate.  This is used when
   1456   /// a terminate scope encloses a try.
   1457   llvm::BasicBlock *getTerminateHandler();
   1458 
   1459   llvm::Type *ConvertTypeForMem(QualType T);
   1460   llvm::Type *ConvertType(QualType T);
   1461   llvm::Type *ConvertType(const TypeDecl *T) {
   1462     return ConvertType(getContext().getTypeDeclType(T));
   1463   }
   1464 
   1465   /// LoadObjCSelf - Load the value of self. This function is only valid while
   1466   /// generating code for an Objective-C method.
   1467   llvm::Value *LoadObjCSelf();
   1468 
   1469   /// TypeOfSelfObject - Return type of object that this self represents.
   1470   QualType TypeOfSelfObject();
   1471 
   1472   /// hasAggregateLLVMType - Return true if the specified AST type will map into
   1473   /// an aggregate LLVM type or is void.
   1474   static TypeEvaluationKind getEvaluationKind(QualType T);
   1475 
   1476   static bool hasScalarEvaluationKind(QualType T) {
   1477     return getEvaluationKind(T) == TEK_Scalar;
   1478   }
   1479 
   1480   static bool hasAggregateEvaluationKind(QualType T) {
   1481     return getEvaluationKind(T) == TEK_Aggregate;
   1482   }
   1483 
   1484   /// createBasicBlock - Create an LLVM basic block.
   1485   llvm::BasicBlock *createBasicBlock(const Twine &name = "",
   1486                                      llvm::Function *parent = nullptr,
   1487                                      llvm::BasicBlock *before = nullptr) {
   1488 #ifdef NDEBUG
   1489     return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before);
   1490 #else
   1491     return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
   1492 #endif
   1493   }
   1494 
   1495   /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
   1496   /// label maps to.
   1497   JumpDest getJumpDestForLabel(const LabelDecl *S);
   1498 
   1499   /// SimplifyForwardingBlocks - If the given basic block is only a branch to
   1500   /// another basic block, simplify it. This assumes that no other code could
   1501   /// potentially reference the basic block.
   1502   void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
   1503 
   1504   /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
   1505   /// adding a fall-through branch from the current insert block if
   1506   /// necessary. It is legal to call this function even if there is no current
   1507   /// insertion point.
   1508   ///
   1509   /// IsFinished - If true, indicates that the caller has finished emitting
   1510   /// branches to the given block and does not expect to emit code into it. This
   1511   /// means the block can be ignored if it is unreachable.
   1512   void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
   1513 
   1514   /// EmitBlockAfterUses - Emit the given block somewhere hopefully
   1515   /// near its uses, and leave the insertion point in it.
   1516   void EmitBlockAfterUses(llvm::BasicBlock *BB);
   1517 
   1518   /// EmitBranch - Emit a branch to the specified basic block from the current
   1519   /// insert block, taking care to avoid creation of branches from dummy
   1520   /// blocks. It is legal to call this function even if there is no current
   1521   /// insertion point.
   1522   ///
   1523   /// This function clears the current insertion point. The caller should follow
   1524   /// calls to this function with calls to Emit*Block prior to generation new
   1525   /// code.
   1526   void EmitBranch(llvm::BasicBlock *Block);
   1527 
   1528   /// HaveInsertPoint - True if an insertion point is defined. If not, this
   1529   /// indicates that the current code being emitted is unreachable.
   1530   bool HaveInsertPoint() const {
   1531     return Builder.GetInsertBlock() != nullptr;
   1532   }
   1533 
   1534   /// EnsureInsertPoint - Ensure that an insertion point is defined so that
   1535   /// emitted IR has a place to go. Note that by definition, if this function
   1536   /// creates a block then that block is unreachable; callers may do better to
   1537   /// detect when no insertion point is defined and simply skip IR generation.
   1538   void EnsureInsertPoint() {
   1539     if (!HaveInsertPoint())
   1540       EmitBlock(createBasicBlock());
   1541   }
   1542 
   1543   /// ErrorUnsupported - Print out an error that codegen doesn't support the
   1544   /// specified stmt yet.
   1545   void ErrorUnsupported(const Stmt *S, const char *Type);
   1546 
   1547   //===--------------------------------------------------------------------===//
   1548   //                                  Helpers
   1549   //===--------------------------------------------------------------------===//
   1550 
   1551   LValue MakeAddrLValue(Address Addr, QualType T,
   1552                         AlignmentSource AlignSource = AlignmentSource::Type) {
   1553     return LValue::MakeAddr(Addr, T, getContext(), AlignSource,
   1554                             CGM.getTBAAInfo(T));
   1555   }
   1556 
   1557   LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
   1558                         AlignmentSource AlignSource = AlignmentSource::Type) {
   1559     return LValue::MakeAddr(Address(V, Alignment), T, getContext(),
   1560                             AlignSource, CGM.getTBAAInfo(T));
   1561   }
   1562 
   1563   LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
   1564   LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
   1565   CharUnits getNaturalTypeAlignment(QualType T,
   1566                                     AlignmentSource *Source = nullptr,
   1567                                     bool forPointeeType = false);
   1568   CharUnits getNaturalPointeeTypeAlignment(QualType T,
   1569                                            AlignmentSource *Source = nullptr);
   1570 
   1571   Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy,
   1572                               AlignmentSource *Source = nullptr);
   1573   LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy);
   1574 
   1575   /// CreateTempAlloca - This creates a alloca and inserts it into the entry
   1576   /// block. The caller is responsible for setting an appropriate alignment on
   1577   /// the alloca.
   1578   llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty,
   1579                                      const Twine &Name = "tmp");
   1580   Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
   1581                            const Twine &Name = "tmp");
   1582 
   1583   /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
   1584   /// default ABI alignment of the given LLVM type.
   1585   ///
   1586   /// IMPORTANT NOTE: This is *not* generally the right alignment for
   1587   /// any given AST type that happens to have been lowered to the
   1588   /// given IR type.  This should only ever be used for function-local,
   1589   /// IR-driven manipulations like saving and restoring a value.  Do
   1590   /// not hand this address off to arbitrary IRGen routines, and especially
   1591   /// do not pass it as an argument to a function that might expect a
   1592   /// properly ABI-aligned value.
   1593   Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
   1594                                        const Twine &Name = "tmp");
   1595 
   1596   /// InitTempAlloca - Provide an initial value for the given alloca which
   1597   /// will be observable at all locations in the function.
   1598   ///
   1599   /// The address should be something that was returned from one of
   1600   /// the CreateTempAlloca or CreateMemTemp routines, and the
   1601   /// initializer must be valid in the entry block (i.e. it must
   1602   /// either be a constant or an argument value).
   1603   void InitTempAlloca(Address Alloca, llvm::Value *Value);
   1604 
   1605   /// CreateIRTemp - Create a temporary IR object of the given type, with
   1606   /// appropriate alignment. This routine should only be used when an temporary
   1607   /// value needs to be stored into an alloca (for example, to avoid explicit
   1608   /// PHI construction), but the type is the IR type, not the type appropriate
   1609   /// for storing in memory.
   1610   ///
   1611   /// That is, this is exactly equivalent to CreateMemTemp, but calling
   1612   /// ConvertType instead of ConvertTypeForMem.
   1613   Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
   1614 
   1615   /// CreateMemTemp - Create a temporary memory object of the given type, with
   1616   /// appropriate alignment.
   1617   Address CreateMemTemp(QualType T, const Twine &Name = "tmp");
   1618   Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp");
   1619 
   1620   /// CreateAggTemp - Create a temporary memory object for the given
   1621   /// aggregate type.
   1622   AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") {
   1623     return AggValueSlot::forAddr(CreateMemTemp(T, Name),
   1624                                  T.getQualifiers(),
   1625                                  AggValueSlot::IsNotDestructed,
   1626                                  AggValueSlot::DoesNotNeedGCBarriers,
   1627                                  AggValueSlot::IsNotAliased);
   1628   }
   1629 
   1630   /// Emit a cast to void* in the appropriate address space.
   1631   llvm::Value *EmitCastToVoidPtr(llvm::Value *value);
   1632 
   1633   /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
   1634   /// expression and compare the result against zero, returning an Int1Ty value.
   1635   llvm::Value *EvaluateExprAsBool(const Expr *E);
   1636 
   1637   /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
   1638   void EmitIgnoredExpr(const Expr *E);
   1639 
   1640   /// EmitAnyExpr - Emit code to compute the specified expression which can have
   1641   /// any type.  The result is returned as an RValue struct.  If this is an
   1642   /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
   1643   /// the result should be returned.
   1644   ///
   1645   /// \param ignoreResult True if the resulting value isn't used.
   1646   RValue EmitAnyExpr(const Expr *E,
   1647                      AggValueSlot aggSlot = AggValueSlot::ignored(),
   1648                      bool ignoreResult = false);
   1649 
   1650   // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
   1651   // or the value of the expression, depending on how va_list is defined.
   1652   Address EmitVAListRef(const Expr *E);
   1653 
   1654   /// Emit a "reference" to a __builtin_ms_va_list; this is
   1655   /// always the value of the expression, because a __builtin_ms_va_list is a
   1656   /// pointer to a char.
   1657   Address EmitMSVAListRef(const Expr *E);
   1658 
   1659   /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will
   1660   /// always be accessible even if no aggregate location is provided.
   1661   RValue EmitAnyExprToTemp(const Expr *E);
   1662 
   1663   /// EmitAnyExprToMem - Emits the code necessary to evaluate an
   1664   /// arbitrary expression into the given memory location.
   1665   void EmitAnyExprToMem(const Expr *E, Address Location,
   1666                         Qualifiers Quals, bool IsInitializer);
   1667 
   1668   void EmitAnyExprToExn(const Expr *E, Address Addr);
   1669 
   1670   /// EmitExprAsInit - Emits the code necessary to initialize a
   1671   /// location in memory with the given initializer.
   1672   void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   1673                       bool capturedByInit);
   1674 
   1675   /// hasVolatileMember - returns true if aggregate type has a volatile
   1676   /// member.
   1677   bool hasVolatileMember(QualType T) {
   1678     if (const RecordType *RT = T->getAs<RecordType>()) {
   1679       const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
   1680       return RD->hasVolatileMember();
   1681     }
   1682     return false;
   1683   }
   1684   /// EmitAggregateCopy - Emit an aggregate assignment.
   1685   ///
   1686   /// The difference to EmitAggregateCopy is that tail padding is not copied.
   1687   /// This is required for correctness when assigning non-POD structures in C++.
   1688   void EmitAggregateAssign(Address DestPtr, Address SrcPtr,
   1689                            QualType EltTy) {
   1690     bool IsVolatile = hasVolatileMember(EltTy);
   1691     EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true);
   1692   }
   1693 
   1694   void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr,
   1695                              QualType DestTy, QualType SrcTy) {
   1696     EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false,
   1697                       /*IsAssignment=*/false);
   1698   }
   1699 
   1700   /// EmitAggregateCopy - Emit an aggregate copy.
   1701   ///
   1702   /// \param isVolatile - True iff either the source or the destination is
   1703   /// volatile.
   1704   /// \param isAssignment - If false, allow padding to be copied.  This often
   1705   /// yields more efficient.
   1706   void EmitAggregateCopy(Address DestPtr, Address SrcPtr,
   1707                          QualType EltTy, bool isVolatile=false,
   1708                          bool isAssignment = false);
   1709 
   1710   /// GetAddrOfLocalVar - Return the address of a local variable.
   1711   Address GetAddrOfLocalVar(const VarDecl *VD) {
   1712     auto it = LocalDeclMap.find(VD);
   1713     assert(it != LocalDeclMap.end() &&
   1714            "Invalid argument to GetAddrOfLocalVar(), no decl!");
   1715     return it->second;
   1716   }
   1717 
   1718   /// getOpaqueLValueMapping - Given an opaque value expression (which
   1719   /// must be mapped to an l-value), return its mapping.
   1720   const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) {
   1721     assert(OpaqueValueMapping::shouldBindAsLValue(e));
   1722 
   1723     llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
   1724       it = OpaqueLValues.find(e);
   1725     assert(it != OpaqueLValues.end() && "no mapping for opaque value!");
   1726     return it->second;
   1727   }
   1728 
   1729   /// getOpaqueRValueMapping - Given an opaque value expression (which
   1730   /// must be mapped to an r-value), return its mapping.
   1731   const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) {
   1732     assert(!OpaqueValueMapping::shouldBindAsLValue(e));
   1733 
   1734     llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
   1735       it = OpaqueRValues.find(e);
   1736     assert(it != OpaqueRValues.end() && "no mapping for opaque value!");
   1737     return it->second;
   1738   }
   1739 
   1740   /// getAccessedFieldNo - Given an encoded value and a result number, return
   1741   /// the input field number being accessed.
   1742   static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
   1743 
   1744   llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
   1745   llvm::BasicBlock *GetIndirectGotoBlock();
   1746 
   1747   /// EmitNullInitialization - Generate code to set a value of the given type to
   1748   /// null, If the type contains data member pointers, they will be initialized
   1749   /// to -1 in accordance with the Itanium C++ ABI.
   1750   void EmitNullInitialization(Address DestPtr, QualType Ty);
   1751 
   1752   /// Emits a call to an LLVM variable-argument intrinsic, either
   1753   /// \c llvm.va_start or \c llvm.va_end.
   1754   /// \param ArgValue A reference to the \c va_list as emitted by either
   1755   /// \c EmitVAListRef or \c EmitMSVAListRef.
   1756   /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
   1757   /// calls \c llvm.va_end.
   1758   llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
   1759 
   1760   /// Generate code to get an argument from the passed in pointer
   1761   /// and update it accordingly.
   1762   /// \param VE The \c VAArgExpr for which to generate code.
   1763   /// \param VAListAddr Receives a reference to the \c va_list as emitted by
   1764   /// either \c EmitVAListRef or \c EmitMSVAListRef.
   1765   /// \returns A pointer to the argument.
   1766   // FIXME: We should be able to get rid of this method and use the va_arg
   1767   // instruction in LLVM instead once it works well enough.
   1768   Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
   1769 
   1770   /// emitArrayLength - Compute the length of an array, even if it's a
   1771   /// VLA, and drill down to the base element type.
   1772   llvm::Value *emitArrayLength(const ArrayType *arrayType,
   1773                                QualType &baseType,
   1774                                Address &addr);
   1775 
   1776   /// EmitVLASize - Capture all the sizes for the VLA expressions in
   1777   /// the given variably-modified type and store them in the VLASizeMap.
   1778   ///
   1779   /// This function can be called with a null (unreachable) insert point.
   1780   void EmitVariablyModifiedType(QualType Ty);
   1781 
   1782   /// getVLASize - Returns an LLVM value that corresponds to the size,
   1783   /// in non-variably-sized elements, of a variable length array type,
   1784   /// plus that largest non-variably-sized element type.  Assumes that
   1785   /// the type has already been emitted with EmitVariablyModifiedType.
   1786   std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla);
   1787   std::pair<llvm::Value*,QualType> getVLASize(QualType vla);
   1788 
   1789   /// LoadCXXThis - Load the value of 'this'. This function is only valid while
   1790   /// generating code for an C++ member function.
   1791   llvm::Value *LoadCXXThis() {
   1792     assert(CXXThisValue && "no 'this' value for this function");
   1793     return CXXThisValue;
   1794   }
   1795   Address LoadCXXThisAddress();
   1796 
   1797   /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
   1798   /// virtual bases.
   1799   // FIXME: Every place that calls LoadCXXVTT is something
   1800   // that needs to be abstracted properly.
   1801   llvm::Value *LoadCXXVTT() {
   1802     assert(CXXStructorImplicitParamValue && "no VTT value for this function");
   1803     return CXXStructorImplicitParamValue;
   1804   }
   1805 
   1806   /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
   1807   /// complete class to the given direct base.
   1808   Address
   1809   GetAddressOfDirectBaseInCompleteClass(Address Value,
   1810                                         const CXXRecordDecl *Derived,
   1811                                         const CXXRecordDecl *Base,
   1812                                         bool BaseIsVirtual);
   1813 
   1814   static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
   1815 
   1816   /// GetAddressOfBaseClass - This function will add the necessary delta to the
   1817   /// load of 'this' and returns address of the base class.
   1818   Address GetAddressOfBaseClass(Address Value,
   1819                                 const CXXRecordDecl *Derived,
   1820                                 CastExpr::path_const_iterator PathBegin,
   1821                                 CastExpr::path_const_iterator PathEnd,
   1822                                 bool NullCheckValue, SourceLocation Loc);
   1823 
   1824   Address GetAddressOfDerivedClass(Address Value,
   1825                                    const CXXRecordDecl *Derived,
   1826                                    CastExpr::path_const_iterator PathBegin,
   1827                                    CastExpr::path_const_iterator PathEnd,
   1828                                    bool NullCheckValue);
   1829 
   1830   /// GetVTTParameter - Return the VTT parameter that should be passed to a
   1831   /// base constructor/destructor with virtual bases.
   1832   /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
   1833   /// to ItaniumCXXABI.cpp together with all the references to VTT.
   1834   llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
   1835                                bool Delegating);
   1836 
   1837   void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1838                                       CXXCtorType CtorType,
   1839                                       const FunctionArgList &Args,
   1840                                       SourceLocation Loc);
   1841   // It's important not to confuse this and the previous function. Delegating
   1842   // constructors are the C++0x feature. The constructor delegate optimization
   1843   // is used to reduce duplication in the base and complete consturctors where
   1844   // they are substantially the same.
   1845   void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
   1846                                         const FunctionArgList &Args);
   1847 
   1848   void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
   1849                               bool ForVirtualBase, bool Delegating,
   1850                               Address This, const CXXConstructExpr *E);
   1851 
   1852   /// Emit assumption load for all bases. Requires to be be called only on
   1853   /// most-derived class and not under construction of the object.
   1854   void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
   1855 
   1856   /// Emit assumption that vptr load == global vtable.
   1857   void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
   1858 
   1859   void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
   1860                                       Address This, Address Src,
   1861                                       const CXXConstructExpr *E);
   1862 
   1863   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1864                                   const ConstantArrayType *ArrayTy,
   1865                                   Address ArrayPtr,
   1866                                   const CXXConstructExpr *E,
   1867                                   bool ZeroInitialization = false);
   1868 
   1869   void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
   1870                                   llvm::Value *NumElements,
   1871                                   Address ArrayPtr,
   1872                                   const CXXConstructExpr *E,
   1873                                   bool ZeroInitialization = false);
   1874 
   1875   static Destroyer destroyCXXObject;
   1876 
   1877   void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
   1878                              bool ForVirtualBase, bool Delegating,
   1879                              Address This);
   1880 
   1881   void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
   1882                                llvm::Type *ElementTy, Address NewPtr,
   1883                                llvm::Value *NumElements,
   1884                                llvm::Value *AllocSizeWithoutCookie);
   1885 
   1886   void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
   1887                         Address Ptr);
   1888 
   1889   llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr);
   1890   void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
   1891 
   1892   llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
   1893   void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
   1894 
   1895   void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
   1896                       QualType DeleteTy);
   1897 
   1898   RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
   1899                                   const Expr *Arg, bool IsDelete);
   1900 
   1901   llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
   1902   llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
   1903   Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
   1904 
   1905   /// \brief Situations in which we might emit a check for the suitability of a
   1906   ///        pointer or glvalue.
   1907   enum TypeCheckKind {
   1908     /// Checking the operand of a load. Must be suitably sized and aligned.
   1909     TCK_Load,
   1910     /// Checking the destination of a store. Must be suitably sized and aligned.
   1911     TCK_Store,
   1912     /// Checking the bound value in a reference binding. Must be suitably sized
   1913     /// and aligned, but is not required to refer to an object (until the
   1914     /// reference is used), per core issue 453.
   1915     TCK_ReferenceBinding,
   1916     /// Checking the object expression in a non-static data member access. Must
   1917     /// be an object within its lifetime.
   1918     TCK_MemberAccess,
   1919     /// Checking the 'this' pointer for a call to a non-static member function.
   1920     /// Must be an object within its lifetime.
   1921     TCK_MemberCall,
   1922     /// Checking the 'this' pointer for a constructor call.
   1923     TCK_ConstructorCall,
   1924     /// Checking the operand of a static_cast to a derived pointer type. Must be
   1925     /// null or an object within its lifetime.
   1926     TCK_DowncastPointer,
   1927     /// Checking the operand of a static_cast to a derived reference type. Must
   1928     /// be an object within its lifetime.
   1929     TCK_DowncastReference,
   1930     /// Checking the operand of a cast to a base object. Must be suitably sized
   1931     /// and aligned.
   1932     TCK_Upcast,
   1933     /// Checking the operand of a cast to a virtual base object. Must be an
   1934     /// object within its lifetime.
   1935     TCK_UpcastToVirtualBase
   1936   };
   1937 
   1938   /// \brief Whether any type-checking sanitizers are enabled. If \c false,
   1939   /// calls to EmitTypeCheck can be skipped.
   1940   bool sanitizePerformTypeCheck() const;
   1941 
   1942   /// \brief Emit a check that \p V is the address of storage of the
   1943   /// appropriate size and alignment for an object of type \p Type.
   1944   void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
   1945                      QualType Type, CharUnits Alignment = CharUnits::Zero(),
   1946                      bool SkipNullCheck = false);
   1947 
   1948   /// \brief Emit a check that \p Base points into an array object, which
   1949   /// we can access at index \p Index. \p Accessed should be \c false if we
   1950   /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
   1951   void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
   1952                        QualType IndexType, bool Accessed);
   1953 
   1954   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
   1955                                        bool isInc, bool isPre);
   1956   ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
   1957                                          bool isInc, bool isPre);
   1958 
   1959   void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment,
   1960                                llvm::Value *OffsetValue = nullptr) {
   1961     Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment,
   1962                                       OffsetValue);
   1963   }
   1964 
   1965   //===--------------------------------------------------------------------===//
   1966   //                            Declaration Emission
   1967   //===--------------------------------------------------------------------===//
   1968 
   1969   /// EmitDecl - Emit a declaration.
   1970   ///
   1971   /// This function can be called with a null (unreachable) insert point.
   1972   void EmitDecl(const Decl &D);
   1973 
   1974   /// EmitVarDecl - Emit a local variable declaration.
   1975   ///
   1976   /// This function can be called with a null (unreachable) insert point.
   1977   void EmitVarDecl(const VarDecl &D);
   1978 
   1979   void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
   1980                       bool capturedByInit);
   1981   void EmitScalarInit(llvm::Value *init, LValue lvalue);
   1982 
   1983   typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
   1984                              llvm::Value *Address);
   1985 
   1986   /// \brief Determine whether the given initializer is trivial in the sense
   1987   /// that it requires no code to be generated.
   1988   bool isTrivialInitializer(const Expr *Init);
   1989 
   1990   /// EmitAutoVarDecl - Emit an auto variable declaration.
   1991   ///
   1992   /// This function can be called with a null (unreachable) insert point.
   1993   void EmitAutoVarDecl(const VarDecl &D);
   1994 
   1995   class AutoVarEmission {
   1996     friend class CodeGenFunction;
   1997 
   1998     const VarDecl *Variable;
   1999 
   2000     /// The address of the alloca.  Invalid if the variable was emitted
   2001     /// as a global constant.
   2002     Address Addr;
   2003 
   2004     llvm::Value *NRVOFlag;
   2005 
   2006     /// True if the variable is a __block variable.
   2007     bool IsByRef;
   2008 
   2009     /// True if the variable is of aggregate type and has a constant
   2010     /// initializer.
   2011     bool IsConstantAggregate;
   2012 
   2013     /// Non-null if we should use lifetime annotations.
   2014     llvm::Value *SizeForLifetimeMarkers;
   2015 
   2016     struct Invalid {};
   2017     AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {}
   2018 
   2019     AutoVarEmission(const VarDecl &variable)
   2020       : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
   2021         IsByRef(false), IsConstantAggregate(false),
   2022         SizeForLifetimeMarkers(nullptr) {}
   2023 
   2024     bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
   2025 
   2026   public:
   2027     static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
   2028 
   2029     bool useLifetimeMarkers() const {
   2030       return SizeForLifetimeMarkers != nullptr;
   2031     }
   2032     llvm::Value *getSizeForLifetimeMarkers() const {
   2033       assert(useLifetimeMarkers());
   2034       return SizeForLifetimeMarkers;
   2035     }
   2036 
   2037     /// Returns the raw, allocated address, which is not necessarily
   2038     /// the address of the object itself.
   2039     Address getAllocatedAddress() const {
   2040       return Addr;
   2041     }
   2042 
   2043     /// Returns the address of the object within this declaration.
   2044     /// Note that this does not chase the forwarding pointer for
   2045     /// __block decls.
   2046     Address getObjectAddress(CodeGenFunction &CGF) const {
   2047       if (!IsByRef) return Addr;
   2048 
   2049       return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
   2050     }
   2051   };
   2052   AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
   2053   void EmitAutoVarInit(const AutoVarEmission &emission);
   2054   void EmitAutoVarCleanups(const AutoVarEmission &emission);
   2055   void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
   2056                               QualType::DestructionKind dtorKind);
   2057 
   2058   void EmitStaticVarDecl(const VarDecl &D,
   2059                          llvm::GlobalValue::LinkageTypes Linkage);
   2060 
   2061   class ParamValue {
   2062     llvm::Value *Value;
   2063     unsigned Alignment;
   2064     ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {}
   2065   public:
   2066     static ParamValue forDirect(llvm::Value *value) {
   2067       return ParamValue(value, 0);
   2068     }
   2069     static ParamValue forIndirect(Address addr) {
   2070       assert(!addr.getAlignment().isZero());
   2071       return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity());
   2072     }
   2073 
   2074     bool isIndirect() const { return Alignment != 0; }
   2075     llvm::Value *getAnyValue() const { return Value; }
   2076 
   2077     llvm::Value *getDirectValue() const {
   2078       assert(!isIndirect());
   2079       return Value;
   2080     }
   2081 
   2082     Address getIndirectAddress() const {
   2083       assert(isIndirect());
   2084       return Address(Value, CharUnits::fromQuantity(Alignment));
   2085     }
   2086   };
   2087 
   2088   /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
   2089   void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
   2090 
   2091   /// protectFromPeepholes - Protect a value that we're intending to
   2092   /// store to the side, but which will probably be used later, from
   2093   /// aggressive peepholing optimizations that might delete it.
   2094   ///
   2095   /// Pass the result to unprotectFromPeepholes to declare that
   2096   /// protection is no longer required.
   2097   ///
   2098   /// There's no particular reason why this shouldn't apply to
   2099   /// l-values, it's just that no existing peepholes work on pointers.
   2100   PeepholeProtection protectFromPeepholes(RValue rvalue);
   2101   void unprotectFromPeepholes(PeepholeProtection protection);
   2102 
   2103   //===--------------------------------------------------------------------===//
   2104   //                             Statement Emission
   2105   //===--------------------------------------------------------------------===//
   2106 
   2107   /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
   2108   void EmitStopPoint(const Stmt *S);
   2109 
   2110   /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
   2111   /// this function even if there is no current insertion point.
   2112   ///
   2113   /// This function may clear the current insertion point; callers should use
   2114   /// EnsureInsertPoint if they wish to subsequently generate code without first
   2115   /// calling EmitBlock, EmitBranch, or EmitStmt.
   2116   void EmitStmt(const Stmt *S);
   2117 
   2118   /// EmitSimpleStmt - Try to emit a "simple" statement which does not
   2119   /// necessarily require an insertion point or debug information; typically
   2120   /// because the statement amounts to a jump or a container of other
   2121   /// statements.
   2122   ///
   2123   /// \return True if the statement was handled.
   2124   bool EmitSimpleStmt(const Stmt *S);
   2125 
   2126   Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
   2127                            AggValueSlot AVS = AggValueSlot::ignored());
   2128   Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
   2129                                        bool GetLast = false,
   2130                                        AggValueSlot AVS =
   2131                                                 AggValueSlot::ignored());
   2132 
   2133   /// EmitLabel - Emit the block for the given label. It is legal to call this
   2134   /// function even if there is no current insertion point.
   2135   void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
   2136 
   2137   void EmitLabelStmt(const LabelStmt &S);
   2138   void EmitAttributedStmt(const AttributedStmt &S);
   2139   void EmitGotoStmt(const GotoStmt &S);
   2140   void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
   2141   void EmitIfStmt(const IfStmt &S);
   2142 
   2143   void EmitWhileStmt(const WhileStmt &S,
   2144                      ArrayRef<const Attr *> Attrs = None);
   2145   void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None);
   2146   void EmitForStmt(const ForStmt &S,
   2147                    ArrayRef<const Attr *> Attrs = None);
   2148   void EmitReturnStmt(const ReturnStmt &S);
   2149   void EmitDeclStmt(const DeclStmt &S);
   2150   void EmitBreakStmt(const BreakStmt &S);
   2151   void EmitContinueStmt(const ContinueStmt &S);
   2152   void EmitSwitchStmt(const SwitchStmt &S);
   2153   void EmitDefaultStmt(const DefaultStmt &S);
   2154   void EmitCaseStmt(const CaseStmt &S);
   2155   void EmitCaseStmtRange(const CaseStmt &S);
   2156   void EmitAsmStmt(const AsmStmt &S);
   2157 
   2158   void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
   2159   void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
   2160   void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
   2161   void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
   2162   void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
   2163 
   2164   void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2165   void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
   2166 
   2167   void EmitCXXTryStmt(const CXXTryStmt &S);
   2168   void EmitSEHTryStmt(const SEHTryStmt &S);
   2169   void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
   2170   void EnterSEHTryStmt(const SEHTryStmt &S);
   2171   void ExitSEHTryStmt(const SEHTryStmt &S);
   2172 
   2173   void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
   2174                               const Stmt *OutlinedStmt);
   2175 
   2176   llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
   2177                                             const SEHExceptStmt &Except);
   2178 
   2179   llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
   2180                                              const SEHFinallyStmt &Finally);
   2181 
   2182   void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
   2183                                 llvm::Value *ParentFP,
   2184                                 llvm::Value *EntryEBP);
   2185   llvm::Value *EmitSEHExceptionCode();
   2186   llvm::Value *EmitSEHExceptionInfo();
   2187   llvm::Value *EmitSEHAbnormalTermination();
   2188 
   2189   /// Scan the outlined statement for captures from the parent function. For
   2190   /// each capture, mark the capture as escaped and emit a call to
   2191   /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
   2192   void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
   2193                           bool IsFilter);
   2194 
   2195   /// Recovers the address of a local in a parent function. ParentVar is the
   2196   /// address of the variable used in the immediate parent function. It can
   2197   /// either be an alloca or a call to llvm.localrecover if there are nested
   2198   /// outlined functions. ParentFP is the frame pointer of the outermost parent
   2199   /// frame.
   2200   Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
   2201                                     Address ParentVar,
   2202                                     llvm::Value *ParentFP);
   2203 
   2204   void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
   2205                            ArrayRef<const Attr *> Attrs = None);
   2206 
   2207   LValue InitCapturedStruct(const CapturedStmt &S);
   2208   llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
   2209   llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
   2210   Address GenerateCapturedStmtArgument(const CapturedStmt &S);
   2211   llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S);
   2212   void GenerateOpenMPCapturedVars(const CapturedStmt &S,
   2213                                   SmallVectorImpl<llvm::Value *> &CapturedVars);
   2214   /// \brief Perform element by element copying of arrays with type \a
   2215   /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
   2216   /// generated by \a CopyGen.
   2217   ///
   2218   /// \param DestAddr Address of the destination array.
   2219   /// \param SrcAddr Address of the source array.
   2220   /// \param OriginalType Type of destination and source arrays.
   2221   /// \param CopyGen Copying procedure that copies value of single array element
   2222   /// to another single array element.
   2223   void EmitOMPAggregateAssign(
   2224       Address DestAddr, Address SrcAddr, QualType OriginalType,
   2225       const llvm::function_ref<void(Address, Address)> &CopyGen);
   2226   /// \brief Emit proper copying of data from one variable to another.
   2227   ///
   2228   /// \param OriginalType Original type of the copied variables.
   2229   /// \param DestAddr Destination address.
   2230   /// \param SrcAddr Source address.
   2231   /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
   2232   /// type of the base array element).
   2233   /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
   2234   /// the base array element).
   2235   /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
   2236   /// DestVD.
   2237   void EmitOMPCopy(QualType OriginalType,
   2238                    Address DestAddr, Address SrcAddr,
   2239                    const VarDecl *DestVD, const VarDecl *SrcVD,
   2240                    const Expr *Copy);
   2241   /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or
   2242   /// \a X = \a E \a BO \a E.
   2243   ///
   2244   /// \param X Value to be updated.
   2245   /// \param E Update value.
   2246   /// \param BO Binary operation for update operation.
   2247   /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
   2248   /// expression, false otherwise.
   2249   /// \param AO Atomic ordering of the generated atomic instructions.
   2250   /// \param CommonGen Code generator for complex expressions that cannot be
   2251   /// expressed through atomicrmw instruction.
   2252   /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
   2253   /// generated, <false, RValue::get(nullptr)> otherwise.
   2254   std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
   2255       LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
   2256       llvm::AtomicOrdering AO, SourceLocation Loc,
   2257       const llvm::function_ref<RValue(RValue)> &CommonGen);
   2258   bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
   2259                                  OMPPrivateScope &PrivateScope);
   2260   void EmitOMPPrivateClause(const OMPExecutableDirective &D,
   2261                             OMPPrivateScope &PrivateScope);
   2262   /// \brief Emit code for copyin clause in \a D directive. The next code is
   2263   /// generated at the start of outlined functions for directives:
   2264   /// \code
   2265   /// threadprivate_var1 = master_threadprivate_var1;
   2266   /// operator=(threadprivate_var2, master_threadprivate_var2);
   2267   /// ...
   2268   /// __kmpc_barrier(&loc, global_tid);
   2269   /// \endcode
   2270   ///
   2271   /// \param D OpenMP directive possibly with 'copyin' clause(s).
   2272   /// \returns true if at least one copyin variable is found, false otherwise.
   2273   bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
   2274   /// \brief Emit initial code for lastprivate variables. If some variable is
   2275   /// not also firstprivate, then the default initialization is used. Otherwise
   2276   /// initialization of this variable is performed by EmitOMPFirstprivateClause
   2277   /// method.
   2278   ///
   2279   /// \param D Directive that may have 'lastprivate' directives.
   2280   /// \param PrivateScope Private scope for capturing lastprivate variables for
   2281   /// proper codegen in internal captured statement.
   2282   ///
   2283   /// \returns true if there is at least one lastprivate variable, false
   2284   /// otherwise.
   2285   bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
   2286                                     OMPPrivateScope &PrivateScope);
   2287   /// \brief Emit final copying of lastprivate values to original variables at
   2288   /// the end of the worksharing or simd directive.
   2289   ///
   2290   /// \param D Directive that has at least one 'lastprivate' directives.
   2291   /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
   2292   /// it is the last iteration of the loop code in associated directive, or to
   2293   /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
   2294   void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
   2295                                      llvm::Value *IsLastIterCond = nullptr);
   2296   /// \brief Emit initial code for reduction variables. Creates reduction copies
   2297   /// and initializes them with the values according to OpenMP standard.
   2298   ///
   2299   /// \param D Directive (possibly) with the 'reduction' clause.
   2300   /// \param PrivateScope Private scope for capturing reduction variables for
   2301   /// proper codegen in internal captured statement.
   2302   ///
   2303   void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
   2304                                   OMPPrivateScope &PrivateScope);
   2305   /// \brief Emit final update of reduction values to original variables at
   2306   /// the end of the directive.
   2307   ///
   2308   /// \param D Directive that has at least one 'reduction' directives.
   2309   void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D);
   2310   /// \brief Emit initial code for linear variables. Creates private copies
   2311   /// and initializes them with the values according to OpenMP standard.
   2312   ///
   2313   /// \param D Directive (possibly) with the 'linear' clause.
   2314   void EmitOMPLinearClauseInit(const OMPLoopDirective &D);
   2315 
   2316   void EmitOMPParallelDirective(const OMPParallelDirective &S);
   2317   void EmitOMPSimdDirective(const OMPSimdDirective &S);
   2318   void EmitOMPForDirective(const OMPForDirective &S);
   2319   void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
   2320   void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
   2321   void EmitOMPSectionDirective(const OMPSectionDirective &S);
   2322   void EmitOMPSingleDirective(const OMPSingleDirective &S);
   2323   void EmitOMPMasterDirective(const OMPMasterDirective &S);
   2324   void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
   2325   void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
   2326   void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
   2327   void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
   2328   void EmitOMPTaskDirective(const OMPTaskDirective &S);
   2329   void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
   2330   void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
   2331   void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
   2332   void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
   2333   void EmitOMPFlushDirective(const OMPFlushDirective &S);
   2334   void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
   2335   void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
   2336   void EmitOMPTargetDirective(const OMPTargetDirective &S);
   2337   void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
   2338   void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
   2339   void
   2340   EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
   2341   void EmitOMPCancelDirective(const OMPCancelDirective &S);
   2342   void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
   2343   void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
   2344   void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
   2345 
   2346   /// \brief Emit inner loop of the worksharing/simd construct.
   2347   ///
   2348   /// \param S Directive, for which the inner loop must be emitted.
   2349   /// \param RequiresCleanup true, if directive has some associated private
   2350   /// variables.
   2351   /// \param LoopCond Bollean condition for loop continuation.
   2352   /// \param IncExpr Increment expression for loop control variable.
   2353   /// \param BodyGen Generator for the inner body of the inner loop.
   2354   /// \param PostIncGen Genrator for post-increment code (required for ordered
   2355   /// loop directvies).
   2356   void EmitOMPInnerLoop(
   2357       const Stmt &S, bool RequiresCleanup, const Expr *LoopCond,
   2358       const Expr *IncExpr,
   2359       const llvm::function_ref<void(CodeGenFunction &)> &BodyGen,
   2360       const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen);
   2361 
   2362   JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
   2363 
   2364 private:
   2365 
   2366   /// Helpers for the OpenMP loop directives.
   2367   void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
   2368   void EmitOMPSimdInit(const OMPLoopDirective &D);
   2369   void EmitOMPSimdFinal(const OMPLoopDirective &D);
   2370   /// \brief Emit code for the worksharing loop-based directive.
   2371   /// \return true, if this construct has any lastprivate clause, false -
   2372   /// otherwise.
   2373   bool EmitOMPWorksharingLoop(const OMPLoopDirective &S);
   2374   void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind,
   2375                            const OMPLoopDirective &S,
   2376                            OMPPrivateScope &LoopScope, bool Ordered,
   2377                            Address LB, Address UB, Address ST,
   2378                            Address IL, llvm::Value *Chunk);
   2379   /// \brief Emit code for sections directive.
   2380   OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S);
   2381 
   2382 public:
   2383 
   2384   //===--------------------------------------------------------------------===//
   2385   //                         LValue Expression Emission
   2386   //===--------------------------------------------------------------------===//
   2387 
   2388   /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
   2389   RValue GetUndefRValue(QualType Ty);
   2390 
   2391   /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
   2392   /// and issue an ErrorUnsupported style diagnostic (using the
   2393   /// provided Name).
   2394   RValue EmitUnsupportedRValue(const Expr *E,
   2395                                const char *Name);
   2396 
   2397   /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
   2398   /// an ErrorUnsupported style diagnostic (using the provided Name).
   2399   LValue EmitUnsupportedLValue(const Expr *E,
   2400                                const char *Name);
   2401 
   2402   /// EmitLValue - Emit code to compute a designator that specifies the location
   2403   /// of the expression.
   2404   ///
   2405   /// This can return one of two things: a simple address or a bitfield
   2406   /// reference.  In either case, the LLVM Value* in the LValue structure is
   2407   /// guaranteed to be an LLVM pointer type.
   2408   ///
   2409   /// If this returns a bitfield reference, nothing about the pointee type of
   2410   /// the LLVM value is known: For example, it may not be a pointer to an
   2411   /// integer.
   2412   ///
   2413   /// If this returns a normal address, and if the lvalue's C type is fixed
   2414   /// size, this method guarantees that the returned pointer type will point to
   2415   /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
   2416   /// variable length type, this is not possible.
   2417   ///
   2418   LValue EmitLValue(const Expr *E);
   2419 
   2420   /// \brief Same as EmitLValue but additionally we generate checking code to
   2421   /// guard against undefined behavior.  This is only suitable when we know
   2422   /// that the address will be used to access the object.
   2423   LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
   2424 
   2425   RValue convertTempToRValue(Address addr, QualType type,
   2426                              SourceLocation Loc);
   2427 
   2428   void EmitAtomicInit(Expr *E, LValue lvalue);
   2429 
   2430   bool LValueIsSuitableForInlineAtomic(LValue Src);
   2431   bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const;
   2432 
   2433   RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
   2434                         AggValueSlot Slot = AggValueSlot::ignored());
   2435 
   2436   RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
   2437                         llvm::AtomicOrdering AO, bool IsVolatile = false,
   2438                         AggValueSlot slot = AggValueSlot::ignored());
   2439 
   2440   void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
   2441 
   2442   void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
   2443                        bool IsVolatile, bool isInit);
   2444 
   2445   std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
   2446       LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
   2447       llvm::AtomicOrdering Success = llvm::SequentiallyConsistent,
   2448       llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent,
   2449       bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
   2450 
   2451   void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
   2452                         const llvm::function_ref<RValue(RValue)> &UpdateOp,
   2453                         bool IsVolatile);
   2454 
   2455   /// EmitToMemory - Change a scalar value from its value
   2456   /// representation to its in-memory representation.
   2457   llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
   2458 
   2459   /// EmitFromMemory - Change a scalar value from its memory
   2460   /// representation to its value representation.
   2461   llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
   2462 
   2463   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2464   /// care to appropriately convert from the memory representation to
   2465   /// the LLVM value representation.
   2466   llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
   2467                                 SourceLocation Loc,
   2468                                 AlignmentSource AlignSource =
   2469                                   AlignmentSource::Type,
   2470                                 llvm::MDNode *TBAAInfo = nullptr,
   2471                                 QualType TBAABaseTy = QualType(),
   2472                                 uint64_t TBAAOffset = 0,
   2473                                 bool isNontemporal = false);
   2474 
   2475   /// EmitLoadOfScalar - Load a scalar value from an address, taking
   2476   /// care to appropriately convert from the memory representation to
   2477   /// the LLVM value representation.  The l-value must be a simple
   2478   /// l-value.
   2479   llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
   2480 
   2481   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2482   /// care to appropriately convert from the memory representation to
   2483   /// the LLVM value representation.
   2484   void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
   2485                          bool Volatile, QualType Ty,
   2486                          AlignmentSource AlignSource = AlignmentSource::Type,
   2487                          llvm::MDNode *TBAAInfo = nullptr, bool isInit = false,
   2488                          QualType TBAABaseTy = QualType(),
   2489                          uint64_t TBAAOffset = 0, bool isNontemporal = false);
   2490 
   2491   /// EmitStoreOfScalar - Store a scalar value to an address, taking
   2492   /// care to appropriately convert from the memory representation to
   2493   /// the LLVM value representation.  The l-value must be a simple
   2494   /// l-value.  The isInit flag indicates whether this is an initialization.
   2495   /// If so, atomic qualifiers are ignored and the store is always non-atomic.
   2496   void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
   2497 
   2498   /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
   2499   /// this method emits the address of the lvalue, then loads the result as an
   2500   /// rvalue, returning the rvalue.
   2501   RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
   2502   RValue EmitLoadOfExtVectorElementLValue(LValue V);
   2503   RValue EmitLoadOfBitfieldLValue(LValue LV);
   2504   RValue EmitLoadOfGlobalRegLValue(LValue LV);
   2505 
   2506   /// EmitStoreThroughLValue - Store the specified rvalue into the specified
   2507   /// lvalue, where both are guaranteed to the have the same type, and that type
   2508   /// is 'Ty'.
   2509   void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
   2510   void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
   2511   void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
   2512 
   2513   /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
   2514   /// as EmitStoreThroughLValue.
   2515   ///
   2516   /// \param Result [out] - If non-null, this will be set to a Value* for the
   2517   /// bit-field contents after the store, appropriate for use as the result of
   2518   /// an assignment to the bit-field.
   2519   void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
   2520                                       llvm::Value **Result=nullptr);
   2521 
   2522   /// Emit an l-value for an assignment (simple or compound) of complex type.
   2523   LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
   2524   LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2525   LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
   2526                                              llvm::Value *&Result);
   2527 
   2528   // Note: only available for agg return types
   2529   LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
   2530   LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
   2531   // Note: only available for agg return types
   2532   LValue EmitCallExprLValue(const CallExpr *E);
   2533   // Note: only available for agg return types
   2534   LValue EmitVAArgExprLValue(const VAArgExpr *E);
   2535   LValue EmitDeclRefLValue(const DeclRefExpr *E);
   2536   LValue EmitStringLiteralLValue(const StringLiteral *E);
   2537   LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
   2538   LValue EmitPredefinedLValue(const PredefinedExpr *E);
   2539   LValue EmitUnaryOpLValue(const UnaryOperator *E);
   2540   LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
   2541                                 bool Accessed = false);
   2542   LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
   2543                                  bool IsLowerBound = true);
   2544   LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
   2545   LValue EmitMemberExpr(const MemberExpr *E);
   2546   LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
   2547   LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
   2548   LValue EmitInitListLValue(const InitListExpr *E);
   2549   LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
   2550   LValue EmitCastLValue(const CastExpr *E);
   2551   LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
   2552   LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
   2553 
   2554   Address EmitExtVectorElementLValue(LValue V);
   2555 
   2556   RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
   2557 
   2558   Address EmitArrayToPointerDecay(const Expr *Array,
   2559                                   AlignmentSource *AlignSource = nullptr);
   2560 
   2561   class ConstantEmission {
   2562     llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
   2563     ConstantEmission(llvm::Constant *C, bool isReference)
   2564       : ValueAndIsReference(C, isReference) {}
   2565   public:
   2566     ConstantEmission() {}
   2567     static ConstantEmission forReference(llvm::Constant *C) {
   2568       return ConstantEmission(C, true);
   2569     }
   2570     static ConstantEmission forValue(llvm::Constant *C) {
   2571       return ConstantEmission(C, false);
   2572     }
   2573 
   2574     explicit operator bool() const {
   2575       return ValueAndIsReference.getOpaqueValue() != nullptr;
   2576     }
   2577 
   2578     bool isReference() const { return ValueAndIsReference.getInt(); }
   2579     LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
   2580       assert(isReference());
   2581       return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
   2582                                             refExpr->getType());
   2583     }
   2584 
   2585     llvm::Constant *getValue() const {
   2586       assert(!isReference());
   2587       return ValueAndIsReference.getPointer();
   2588     }
   2589   };
   2590 
   2591   ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
   2592 
   2593   RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
   2594                                 AggValueSlot slot = AggValueSlot::ignored());
   2595   LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
   2596 
   2597   llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
   2598                               const ObjCIvarDecl *Ivar);
   2599   LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
   2600   LValue EmitLValueForLambdaField(const FieldDecl *Field);
   2601 
   2602   /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
   2603   /// if the Field is a reference, this will return the address of the reference
   2604   /// and not the address of the value stored in the reference.
   2605   LValue EmitLValueForFieldInitialization(LValue Base,
   2606                                           const FieldDecl* Field);
   2607 
   2608   LValue EmitLValueForIvar(QualType ObjectTy,
   2609                            llvm::Value* Base, const ObjCIvarDecl *Ivar,
   2610                            unsigned CVRQualifiers);
   2611 
   2612   LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
   2613   LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
   2614   LValue EmitLambdaLValue(const LambdaExpr *E);
   2615   LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
   2616   LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
   2617 
   2618   LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
   2619   LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
   2620   LValue EmitStmtExprLValue(const StmtExpr *E);
   2621   LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
   2622   LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
   2623   void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init);
   2624 
   2625   //===--------------------------------------------------------------------===//
   2626   //                         Scalar Expression Emission
   2627   //===--------------------------------------------------------------------===//
   2628 
   2629   /// EmitCall - Generate a call of the given function, expecting the given
   2630   /// result type, and using the given argument list which specifies both the
   2631   /// LLVM arguments and the types they were derived from.
   2632   RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee,
   2633                   ReturnValueSlot ReturnValue, const CallArgList &Args,
   2634                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
   2635                   llvm::Instruction **callOrInvoke = nullptr);
   2636 
   2637   RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E,
   2638                   ReturnValueSlot ReturnValue,
   2639                   CGCalleeInfo CalleeInfo = CGCalleeInfo(),
   2640                   llvm::Value *Chain = nullptr);
   2641   RValue EmitCallExpr(const CallExpr *E,
   2642                       ReturnValueSlot ReturnValue = ReturnValueSlot());
   2643 
   2644   void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
   2645 
   2646   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2647                                   const Twine &name = "");
   2648   llvm::CallInst *EmitRuntimeCall(llvm::Value *callee,
   2649                                   ArrayRef<llvm::Value*> args,
   2650                                   const Twine &name = "");
   2651   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2652                                           const Twine &name = "");
   2653   llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee,
   2654                                           ArrayRef<llvm::Value*> args,
   2655                                           const Twine &name = "");
   2656 
   2657   llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee,
   2658                                   ArrayRef<llvm::Value *> Args,
   2659                                   const Twine &Name = "");
   2660   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2661                                          ArrayRef<llvm::Value*> args,
   2662                                          const Twine &name = "");
   2663   llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee,
   2664                                          const Twine &name = "");
   2665   void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee,
   2666                                        ArrayRef<llvm::Value*> args);
   2667 
   2668   llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
   2669                                          NestedNameSpecifier *Qual,
   2670                                          llvm::Type *Ty);
   2671 
   2672   llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
   2673                                                    CXXDtorType Type,
   2674                                                    const CXXRecordDecl *RD);
   2675 
   2676   RValue
   2677   EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
   2678                               ReturnValueSlot ReturnValue, llvm::Value *This,
   2679                               llvm::Value *ImplicitParam,
   2680                               QualType ImplicitParamTy, const CallExpr *E);
   2681   RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee,
   2682                              ReturnValueSlot ReturnValue, llvm::Value *This,
   2683                              llvm::Value *ImplicitParam,
   2684                              QualType ImplicitParamTy, const CallExpr *E,
   2685                              StructorType Type);
   2686   RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
   2687                                ReturnValueSlot ReturnValue);
   2688   RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
   2689                                                const CXXMethodDecl *MD,
   2690                                                ReturnValueSlot ReturnValue,
   2691                                                bool HasQualifier,
   2692                                                NestedNameSpecifier *Qualifier,
   2693                                                bool IsArrow, const Expr *Base);
   2694   // Compute the object pointer.
   2695   Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
   2696                                           llvm::Value *memberPtr,
   2697                                           const MemberPointerType *memberPtrType,
   2698                                           AlignmentSource *AlignSource = nullptr);
   2699   RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
   2700                                       ReturnValueSlot ReturnValue);
   2701 
   2702   RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
   2703                                        const CXXMethodDecl *MD,
   2704                                        ReturnValueSlot ReturnValue);
   2705 
   2706   RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
   2707                                 ReturnValueSlot ReturnValue);
   2708 
   2709 
   2710   RValue EmitBuiltinExpr(const FunctionDecl *FD,
   2711                          unsigned BuiltinID, const CallExpr *E,
   2712                          ReturnValueSlot ReturnValue);
   2713 
   2714   RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
   2715 
   2716   /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
   2717   /// is unhandled by the current target.
   2718   llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2719 
   2720   llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
   2721                                              const llvm::CmpInst::Predicate Fp,
   2722                                              const llvm::CmpInst::Predicate Ip,
   2723                                              const llvm::Twine &Name = "");
   2724   llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2725 
   2726   llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
   2727                                          unsigned LLVMIntrinsic,
   2728                                          unsigned AltLLVMIntrinsic,
   2729                                          const char *NameHint,
   2730                                          unsigned Modifier,
   2731                                          const CallExpr *E,
   2732                                          SmallVectorImpl<llvm::Value *> &Ops,
   2733                                          Address PtrOp0, Address PtrOp1);
   2734   llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
   2735                                           unsigned Modifier, llvm::Type *ArgTy,
   2736                                           const CallExpr *E);
   2737   llvm::Value *EmitNeonCall(llvm::Function *F,
   2738                             SmallVectorImpl<llvm::Value*> &O,
   2739                             const char *name,
   2740                             unsigned shift = 0, bool rightshift = false);
   2741   llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
   2742   llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
   2743                                    bool negateForRightShift);
   2744   llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
   2745                                  llvm::Type *Ty, bool usgn, const char *name);
   2746   llvm::Value *vectorWrapScalar16(llvm::Value *Op);
   2747   llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2748 
   2749   llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
   2750   llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2751   llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2752   llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2753   llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2754   llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
   2755   llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
   2756                                           const CallExpr *E);
   2757 
   2758   llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
   2759   llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
   2760   llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
   2761   llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
   2762   llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
   2763   llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
   2764                                 const ObjCMethodDecl *MethodWithObjects);
   2765   llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
   2766   RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
   2767                              ReturnValueSlot Return = ReturnValueSlot());
   2768 
   2769   /// Retrieves the default cleanup kind for an ARC cleanup.
   2770   /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
   2771   CleanupKind getARCCleanupKind() {
   2772     return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
   2773              ? NormalAndEHCleanup : NormalCleanup;
   2774   }
   2775 
   2776   // ARC primitives.
   2777   void EmitARCInitWeak(Address addr, llvm::Value *value);
   2778   void EmitARCDestroyWeak(Address addr);
   2779   llvm::Value *EmitARCLoadWeak(Address addr);
   2780   llvm::Value *EmitARCLoadWeakRetained(Address addr);
   2781   llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
   2782   void EmitARCCopyWeak(Address dst, Address src);
   2783   void EmitARCMoveWeak(Address dst, Address src);
   2784   llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
   2785   llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
   2786   llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
   2787                                   bool resultIgnored);
   2788   llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
   2789                                       bool resultIgnored);
   2790   llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
   2791   llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
   2792   llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
   2793   void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
   2794   void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
   2795   llvm::Value *EmitARCAutorelease(llvm::Value *value);
   2796   llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
   2797   llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
   2798   llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
   2799 
   2800   std::pair<LValue,llvm::Value*>
   2801   EmitARCStoreAutoreleasing(const BinaryOperator *e);
   2802   std::pair<LValue,llvm::Value*>
   2803   EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
   2804 
   2805   llvm::Value *EmitObjCThrowOperand(const Expr *expr);
   2806   llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
   2807   llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
   2808 
   2809   llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
   2810   llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
   2811   llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
   2812 
   2813   void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
   2814 
   2815   static Destroyer destroyARCStrongImprecise;
   2816   static Destroyer destroyARCStrongPrecise;
   2817   static Destroyer destroyARCWeak;
   2818 
   2819   void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
   2820   llvm::Value *EmitObjCAutoreleasePoolPush();
   2821   llvm::Value *EmitObjCMRRAutoreleasePoolPush();
   2822   void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
   2823   void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
   2824 
   2825   /// \brief Emits a reference binding to the passed in expression.
   2826   RValue EmitReferenceBindingToExpr(const Expr *E);
   2827 
   2828   //===--------------------------------------------------------------------===//
   2829   //                           Expression Emission
   2830   //===--------------------------------------------------------------------===//
   2831 
   2832   // Expressions are broken into three classes: scalar, complex, aggregate.
   2833 
   2834   /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
   2835   /// scalar type, returning the result.
   2836   llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
   2837 
   2838   /// Emit a conversion from the specified type to the specified destination
   2839   /// type, both of which are LLVM scalar types.
   2840   llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
   2841                                     QualType DstTy, SourceLocation Loc);
   2842 
   2843   /// Emit a conversion from the specified complex type to the specified
   2844   /// destination type, where the destination type is an LLVM scalar type.
   2845   llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
   2846                                              QualType DstTy,
   2847                                              SourceLocation Loc);
   2848 
   2849   /// EmitAggExpr - Emit the computation of the specified expression
   2850   /// of aggregate type.  The result is computed into the given slot,
   2851   /// which may be null to indicate that the value is not needed.
   2852   void EmitAggExpr(const Expr *E, AggValueSlot AS);
   2853 
   2854   /// EmitAggExprToLValue - Emit the computation of the specified expression of
   2855   /// aggregate type into a temporary LValue.
   2856   LValue EmitAggExprToLValue(const Expr *E);
   2857 
   2858   /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
   2859   /// make sure it survives garbage collection until this point.
   2860   void EmitExtendGCLifetime(llvm::Value *object);
   2861 
   2862   /// EmitComplexExpr - Emit the computation of the specified expression of
   2863   /// complex type, returning the result.
   2864   ComplexPairTy EmitComplexExpr(const Expr *E,
   2865                                 bool IgnoreReal = false,
   2866                                 bool IgnoreImag = false);
   2867 
   2868   /// EmitComplexExprIntoLValue - Emit the given expression of complex
   2869   /// type and place its result into the specified l-value.
   2870   void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
   2871 
   2872   /// EmitStoreOfComplex - Store a complex number into the specified l-value.
   2873   void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
   2874 
   2875   /// EmitLoadOfComplex - Load a complex number from the specified l-value.
   2876   ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
   2877 
   2878   Address emitAddrOfRealComponent(Address complex, QualType complexType);
   2879   Address emitAddrOfImagComponent(Address complex, QualType complexType);
   2880 
   2881   /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
   2882   /// global variable that has already been created for it.  If the initializer
   2883   /// has a different type than GV does, this may free GV and return a different
   2884   /// one.  Otherwise it just returns GV.
   2885   llvm::GlobalVariable *
   2886   AddInitializerToStaticVarDecl(const VarDecl &D,
   2887                                 llvm::GlobalVariable *GV);
   2888 
   2889 
   2890   /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
   2891   /// variable with global storage.
   2892   void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr,
   2893                                 bool PerformInit);
   2894 
   2895   llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor,
   2896                                    llvm::Constant *Addr);
   2897 
   2898   /// Call atexit() with a function that passes the given argument to
   2899   /// the given function.
   2900   void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn,
   2901                                     llvm::Constant *addr);
   2902 
   2903   /// Emit code in this function to perform a guarded variable
   2904   /// initialization.  Guarded initializations are used when it's not
   2905   /// possible to prove that an initialization will be done exactly
   2906   /// once, e.g. with a static local variable or a static data member
   2907   /// of a class template.
   2908   void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
   2909                           bool PerformInit);
   2910 
   2911   /// GenerateCXXGlobalInitFunc - Generates code for initializing global
   2912   /// variables.
   2913   void GenerateCXXGlobalInitFunc(llvm::Function *Fn,
   2914                                  ArrayRef<llvm::Function *> CXXThreadLocals,
   2915                                  Address Guard = Address::invalid());
   2916 
   2917   /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global
   2918   /// variables.
   2919   void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn,
   2920                                   const std::vector<std::pair<llvm::WeakVH,
   2921                                   llvm::Constant*> > &DtorsAndObjects);
   2922 
   2923   void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
   2924                                         const VarDecl *D,
   2925                                         llvm::GlobalVariable *Addr,
   2926                                         bool PerformInit);
   2927 
   2928   void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
   2929 
   2930   void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
   2931 
   2932   void enterFullExpression(const ExprWithCleanups *E) {
   2933     if (E->getNumObjects() == 0) return;
   2934     enterNonTrivialFullExpression(E);
   2935   }
   2936   void enterNonTrivialFullExpression(const ExprWithCleanups *E);
   2937 
   2938   void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
   2939 
   2940   void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest);
   2941 
   2942   RValue EmitAtomicExpr(AtomicExpr *E);
   2943 
   2944   //===--------------------------------------------------------------------===//
   2945   //                         Annotations Emission
   2946   //===--------------------------------------------------------------------===//
   2947 
   2948   /// Emit an annotation call (intrinsic or builtin).
   2949   llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn,
   2950                                   llvm::Value *AnnotatedVal,
   2951                                   StringRef AnnotationStr,
   2952                                   SourceLocation Location);
   2953 
   2954   /// Emit local annotations for the local variable V, declared by D.
   2955   void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
   2956 
   2957   /// Emit field annotations for the given field & value. Returns the
   2958   /// annotation result.
   2959   Address EmitFieldAnnotations(const FieldDecl *D, Address V);
   2960 
   2961   //===--------------------------------------------------------------------===//
   2962   //                             Internal Helpers
   2963   //===--------------------------------------------------------------------===//
   2964 
   2965   /// ContainsLabel - Return true if the statement contains a label in it.  If
   2966   /// this statement is not executed normally, it not containing a label means
   2967   /// that we can just remove the code.
   2968   static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
   2969 
   2970   /// containsBreak - Return true if the statement contains a break out of it.
   2971   /// If the statement (recursively) contains a switch or loop with a break
   2972   /// inside of it, this is fine.
   2973   static bool containsBreak(const Stmt *S);
   2974 
   2975   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2976   /// to a constant, or if it does but contains a label, return false.  If it
   2977   /// constant folds return true and set the boolean result in Result.
   2978   bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result);
   2979 
   2980   /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
   2981   /// to a constant, or if it does but contains a label, return false.  If it
   2982   /// constant folds return true and set the folded value.
   2983   bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result);
   2984 
   2985   /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
   2986   /// if statement) to the specified blocks.  Based on the condition, this might
   2987   /// try to simplify the codegen of the conditional based on the branch.
   2988   /// TrueCount should be the number of times we expect the condition to
   2989   /// evaluate to true based on PGO data.
   2990   void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
   2991                             llvm::BasicBlock *FalseBlock, uint64_t TrueCount);
   2992 
   2993   /// \brief Emit a description of a type in a format suitable for passing to
   2994   /// a runtime sanitizer handler.
   2995   llvm::Constant *EmitCheckTypeDescriptor(QualType T);
   2996 
   2997   /// \brief Convert a value into a format suitable for passing to a runtime
   2998   /// sanitizer handler.
   2999   llvm::Value *EmitCheckValue(llvm::Value *V);
   3000 
   3001   /// \brief Emit a description of a source location in a format suitable for
   3002   /// passing to a runtime sanitizer handler.
   3003   llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
   3004 
   3005   /// \brief Create a basic block that will call a handler function in a
   3006   /// sanitizer runtime with the provided arguments, and create a conditional
   3007   /// branch to it.
   3008   void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
   3009                  StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs,
   3010                  ArrayRef<llvm::Value *> DynamicArgs);
   3011 
   3012   /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
   3013   /// if Cond if false.
   3014   void EmitCfiSlowPathCheck(llvm::Value *Cond, llvm::ConstantInt *TypeId,
   3015                             llvm::Value *Ptr);
   3016 
   3017   /// \brief Create a basic block that will call the trap intrinsic, and emit a
   3018   /// conditional branch to it, for the -ftrapv checks.
   3019   void EmitTrapCheck(llvm::Value *Checked);
   3020 
   3021   /// \brief Emit a call to trap or debugtrap and attach function attribute
   3022   /// "trap-func-name" if specified.
   3023   llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
   3024 
   3025   /// \brief Create a check for a function parameter that may potentially be
   3026   /// declared as non-null.
   3027   void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
   3028                            const FunctionDecl *FD, unsigned ParmNum);
   3029 
   3030   /// EmitCallArg - Emit a single call argument.
   3031   void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
   3032 
   3033   /// EmitDelegateCallArg - We are performing a delegate call; that
   3034   /// is, the current function is delegating to another one.  Produce
   3035   /// a r-value suitable for passing the given parameter.
   3036   void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
   3037                            SourceLocation loc);
   3038 
   3039   /// SetFPAccuracy - Set the minimum required accuracy of the given floating
   3040   /// point operation, expressed as the maximum relative error in ulp.
   3041   void SetFPAccuracy(llvm::Value *Val, float Accuracy);
   3042 
   3043 private:
   3044   llvm::MDNode *getRangeForLoadFromType(QualType Ty);
   3045   void EmitReturnOfRValue(RValue RV, QualType Ty);
   3046 
   3047   void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
   3048 
   3049   llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4>
   3050   DeferredReplacements;
   3051 
   3052   /// Set the address of a local variable.
   3053   void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
   3054     assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
   3055     LocalDeclMap.insert({VD, Addr});
   3056   }
   3057 
   3058   /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
   3059   /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
   3060   ///
   3061   /// \param AI - The first function argument of the expansion.
   3062   void ExpandTypeFromArgs(QualType Ty, LValue Dst,
   3063                           SmallVectorImpl<llvm::Argument *>::iterator &AI);
   3064 
   3065   /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg
   3066   /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
   3067   /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
   3068   void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy,
   3069                         SmallVectorImpl<llvm::Value *> &IRCallArgs,
   3070                         unsigned &IRCallArgPos);
   3071 
   3072   llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info,
   3073                             const Expr *InputExpr, std::string &ConstraintStr);
   3074 
   3075   llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
   3076                                   LValue InputValue, QualType InputType,
   3077                                   std::string &ConstraintStr,
   3078                                   SourceLocation Loc);
   3079 
   3080   /// \brief Attempts to statically evaluate the object size of E. If that
   3081   /// fails, emits code to figure the size of E out for us. This is
   3082   /// pass_object_size aware.
   3083   llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
   3084                                                llvm::IntegerType *ResType);
   3085 
   3086   /// \brief Emits the size of E, as required by __builtin_object_size. This
   3087   /// function is aware of pass_object_size parameters, and will act accordingly
   3088   /// if E is a parameter with the pass_object_size attribute.
   3089   llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
   3090                                      llvm::IntegerType *ResType);
   3091 
   3092 public:
   3093 #ifndef NDEBUG
   3094   // Determine whether the given argument is an Objective-C method
   3095   // that may have type parameters in its signature.
   3096   static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) {
   3097     const DeclContext *dc = method->getDeclContext();
   3098     if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) {
   3099       return classDecl->getTypeParamListAsWritten();
   3100     }
   3101 
   3102     if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) {
   3103       return catDecl->getTypeParamList();
   3104     }
   3105 
   3106     return false;
   3107   }
   3108 
   3109   template<typename T>
   3110   static bool isObjCMethodWithTypeParams(const T *) { return false; }
   3111 #endif
   3112 
   3113   /// EmitCallArgs - Emit call arguments for a function.
   3114   template <typename T>
   3115   void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo,
   3116                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
   3117                     const FunctionDecl *CalleeDecl = nullptr,
   3118                     unsigned ParamsToSkip = 0) {
   3119     SmallVector<QualType, 16> ArgTypes;
   3120     CallExpr::const_arg_iterator Arg = ArgRange.begin();
   3121 
   3122     assert((ParamsToSkip == 0 || CallArgTypeInfo) &&
   3123            "Can't skip parameters if type info is not provided");
   3124     if (CallArgTypeInfo) {
   3125 #ifndef NDEBUG
   3126       bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo);
   3127 #endif
   3128 
   3129       // First, use the argument types that the type info knows about
   3130       for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip,
   3131                 E = CallArgTypeInfo->param_type_end();
   3132            I != E; ++I, ++Arg) {
   3133         assert(Arg != ArgRange.end() && "Running over edge of argument list!");
   3134         assert((isGenericMethod ||
   3135                 ((*I)->isVariablyModifiedType() ||
   3136                  (*I).getNonReferenceType()->isObjCRetainableType() ||
   3137                  getContext()
   3138                          .getCanonicalType((*I).getNonReferenceType())
   3139                          .getTypePtr() ==
   3140                      getContext()
   3141                          .getCanonicalType((*Arg)->getType())
   3142                          .getTypePtr())) &&
   3143                "type mismatch in call argument!");
   3144         ArgTypes.push_back(*I);
   3145       }
   3146     }
   3147 
   3148     // Either we've emitted all the call args, or we have a call to variadic
   3149     // function.
   3150     assert((Arg == ArgRange.end() || !CallArgTypeInfo ||
   3151             CallArgTypeInfo->isVariadic()) &&
   3152            "Extra arguments in non-variadic function!");
   3153 
   3154     // If we still have any arguments, emit them using the type of the argument.
   3155     for (auto *A : llvm::make_range(Arg, ArgRange.end()))
   3156       ArgTypes.push_back(getVarArgType(A));
   3157 
   3158     EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip);
   3159   }
   3160 
   3161   void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes,
   3162                     llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
   3163                     const FunctionDecl *CalleeDecl = nullptr,
   3164                     unsigned ParamsToSkip = 0);
   3165 
   3166   /// EmitPointerWithAlignment - Given an expression with a pointer
   3167   /// type, emit the value and compute our best estimate of the
   3168   /// alignment of the pointee.
   3169   ///
   3170   /// Note that this function will conservatively fall back on the type
   3171   /// when it doesn't
   3172   ///
   3173   /// \param Source - If non-null, this will be initialized with
   3174   ///   information about the source of the alignment.  Note that this
   3175   ///   function will conservatively fall back on the type when it
   3176   ///   doesn't recognize the expression, which means that sometimes
   3177   ///
   3178   ///   a worst-case One
   3179   ///   reasonable way to use this information is when there's a
   3180   ///   language guarantee that the pointer must be aligned to some
   3181   ///   stricter value, and we're simply trying to ensure that
   3182   ///   sufficiently obvious uses of under-aligned objects don't get
   3183   ///   miscompiled; for example, a placement new into the address of
   3184   ///   a local variable.  In such a case, it's quite reasonable to
   3185   ///   just ignore the returned alignment when it isn't from an
   3186   ///   explicit source.
   3187   Address EmitPointerWithAlignment(const Expr *Addr,
   3188                                    AlignmentSource *Source = nullptr);
   3189 
   3190 private:
   3191   QualType getVarArgType(const Expr *Arg);
   3192 
   3193   const TargetCodeGenInfo &getTargetHooks() const {
   3194     return CGM.getTargetCodeGenInfo();
   3195   }
   3196 
   3197   void EmitDeclMetadata();
   3198 
   3199   BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
   3200                                   const AutoVarEmission &emission);
   3201 
   3202   void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
   3203 
   3204   llvm::Value *GetValueForARMHint(unsigned BuiltinID);
   3205 };
   3206 
   3207 /// Helper class with most of the code for saving a value for a
   3208 /// conditional expression cleanup.
   3209 struct DominatingLLVMValue {
   3210   typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
   3211 
   3212   /// Answer whether the given value needs extra work to be saved.
   3213   static bool needsSaving(llvm::Value *value) {
   3214     // If it's not an instruction, we don't need to save.
   3215     if (!isa<llvm::Instruction>(value)) return false;
   3216 
   3217     // If it's an instruction in the entry block, we don't need to save.
   3218     llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
   3219     return (block != &block->getParent()->getEntryBlock());
   3220   }
   3221 
   3222   /// Try to save the given value.
   3223   static saved_type save(CodeGenFunction &CGF, llvm::Value *value) {
   3224     if (!needsSaving(value)) return saved_type(value, false);
   3225 
   3226     // Otherwise, we need an alloca.
   3227     auto align = CharUnits::fromQuantity(
   3228               CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType()));
   3229     Address alloca =
   3230       CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
   3231     CGF.Builder.CreateStore(value, alloca);
   3232 
   3233     return saved_type(alloca.getPointer(), true);
   3234   }
   3235 
   3236   static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) {
   3237     // If the value says it wasn't saved, trust that it's still dominating.
   3238     if (!value.getInt()) return value.getPointer();
   3239 
   3240     // Otherwise, it should be an alloca instruction, as set up in save().
   3241     auto alloca = cast<llvm::AllocaInst>(value.getPointer());
   3242     return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment());
   3243   }
   3244 };
   3245 
   3246 /// A partial specialization of DominatingValue for llvm::Values that
   3247 /// might be llvm::Instructions.
   3248 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
   3249   typedef T *type;
   3250   static type restore(CodeGenFunction &CGF, saved_type value) {
   3251     return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
   3252   }
   3253 };
   3254 
   3255 /// A specialization of DominatingValue for Address.
   3256 template <> struct DominatingValue<Address> {
   3257   typedef Address type;
   3258 
   3259   struct saved_type {
   3260     DominatingLLVMValue::saved_type SavedValue;
   3261     CharUnits Alignment;
   3262   };
   3263 
   3264   static bool needsSaving(type value) {
   3265     return DominatingLLVMValue::needsSaving(value.getPointer());
   3266   }
   3267   static saved_type save(CodeGenFunction &CGF, type value) {
   3268     return { DominatingLLVMValue::save(CGF, value.getPointer()),
   3269              value.getAlignment() };
   3270   }
   3271   static type restore(CodeGenFunction &CGF, saved_type value) {
   3272     return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
   3273                    value.Alignment);
   3274   }
   3275 };
   3276 
   3277 /// A specialization of DominatingValue for RValue.
   3278 template <> struct DominatingValue<RValue> {
   3279   typedef RValue type;
   3280   class saved_type {
   3281     enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
   3282                 AggregateAddress, ComplexAddress };
   3283 
   3284     llvm::Value *Value;
   3285     unsigned K : 3;
   3286     unsigned Align : 29;
   3287     saved_type(llvm::Value *v, Kind k, unsigned a = 0)
   3288       : Value(v), K(k), Align(a) {}
   3289 
   3290   public:
   3291     static bool needsSaving(RValue value);
   3292     static saved_type save(CodeGenFunction &CGF, RValue value);
   3293     RValue restore(CodeGenFunction &CGF);
   3294 
   3295     // implementations in CGCleanup.cpp
   3296   };
   3297 
   3298   static bool needsSaving(type value) {
   3299     return saved_type::needsSaving(value);
   3300   }
   3301   static saved_type save(CodeGenFunction &CGF, type value) {
   3302     return saved_type::save(CGF, value);
   3303   }
   3304   static type restore(CodeGenFunction &CGF, saved_type value) {
   3305     return value.restore(CGF);
   3306   }
   3307 };
   3308 
   3309 }  // end namespace CodeGen
   3310 }  // end namespace clang
   3311 
   3312 #endif
   3313