1 //===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This is the internal per-function state used for llvm translation. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 15 #define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H 16 17 #include "CGBuilder.h" 18 #include "CGDebugInfo.h" 19 #include "CGLoopInfo.h" 20 #include "CGValue.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "EHScopeStack.h" 24 #include "clang/AST/CharUnits.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/AST/ExprObjC.h" 27 #include "clang/AST/ExprOpenMP.h" 28 #include "clang/AST/Type.h" 29 #include "clang/Basic/ABI.h" 30 #include "clang/Basic/CapturedStmt.h" 31 #include "clang/Basic/OpenMPKinds.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/IR/ValueHandle.h" 38 #include "llvm/Support/Debug.h" 39 40 namespace llvm { 41 class BasicBlock; 42 class LLVMContext; 43 class MDNode; 44 class Module; 45 class SwitchInst; 46 class Twine; 47 class Value; 48 class CallSite; 49 } 50 51 namespace clang { 52 class ASTContext; 53 class BlockDecl; 54 class CXXDestructorDecl; 55 class CXXForRangeStmt; 56 class CXXTryStmt; 57 class Decl; 58 class LabelDecl; 59 class EnumConstantDecl; 60 class FunctionDecl; 61 class FunctionProtoType; 62 class LabelStmt; 63 class ObjCContainerDecl; 64 class ObjCInterfaceDecl; 65 class ObjCIvarDecl; 66 class ObjCMethodDecl; 67 class ObjCImplementationDecl; 68 class ObjCPropertyImplDecl; 69 class TargetInfo; 70 class TargetCodeGenInfo; 71 class VarDecl; 72 class ObjCForCollectionStmt; 73 class ObjCAtTryStmt; 74 class ObjCAtThrowStmt; 75 class ObjCAtSynchronizedStmt; 76 class ObjCAutoreleasePoolStmt; 77 78 namespace CodeGen { 79 class CodeGenTypes; 80 class CGFunctionInfo; 81 class CGRecordLayout; 82 class CGBlockInfo; 83 class CGCXXABI; 84 class BlockByrefHelpers; 85 class BlockByrefInfo; 86 class BlockFlags; 87 class BlockFieldFlags; 88 89 /// The kind of evaluation to perform on values of a particular 90 /// type. Basically, is the code in CGExprScalar, CGExprComplex, or 91 /// CGExprAgg? 92 /// 93 /// TODO: should vectors maybe be split out into their own thing? 94 enum TypeEvaluationKind { 95 TEK_Scalar, 96 TEK_Complex, 97 TEK_Aggregate 98 }; 99 100 /// CodeGenFunction - This class organizes the per-function state that is used 101 /// while generating LLVM code. 102 class CodeGenFunction : public CodeGenTypeCache { 103 CodeGenFunction(const CodeGenFunction &) = delete; 104 void operator=(const CodeGenFunction &) = delete; 105 106 friend class CGCXXABI; 107 public: 108 /// A jump destination is an abstract label, branching to which may 109 /// require a jump out through normal cleanups. 110 struct JumpDest { 111 JumpDest() : Block(nullptr), ScopeDepth(), Index(0) {} 112 JumpDest(llvm::BasicBlock *Block, 113 EHScopeStack::stable_iterator Depth, 114 unsigned Index) 115 : Block(Block), ScopeDepth(Depth), Index(Index) {} 116 117 bool isValid() const { return Block != nullptr; } 118 llvm::BasicBlock *getBlock() const { return Block; } 119 EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; } 120 unsigned getDestIndex() const { return Index; } 121 122 // This should be used cautiously. 123 void setScopeDepth(EHScopeStack::stable_iterator depth) { 124 ScopeDepth = depth; 125 } 126 127 private: 128 llvm::BasicBlock *Block; 129 EHScopeStack::stable_iterator ScopeDepth; 130 unsigned Index; 131 }; 132 133 CodeGenModule &CGM; // Per-module state. 134 const TargetInfo &Target; 135 136 typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy; 137 LoopInfoStack LoopStack; 138 CGBuilderTy Builder; 139 140 /// \brief CGBuilder insert helper. This function is called after an 141 /// instruction is created using Builder. 142 void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name, 143 llvm::BasicBlock *BB, 144 llvm::BasicBlock::iterator InsertPt) const; 145 146 /// CurFuncDecl - Holds the Decl for the current outermost 147 /// non-closure context. 148 const Decl *CurFuncDecl; 149 /// CurCodeDecl - This is the inner-most code context, which includes blocks. 150 const Decl *CurCodeDecl; 151 const CGFunctionInfo *CurFnInfo; 152 QualType FnRetTy; 153 llvm::Function *CurFn; 154 155 /// CurGD - The GlobalDecl for the current function being compiled. 156 GlobalDecl CurGD; 157 158 /// PrologueCleanupDepth - The cleanup depth enclosing all the 159 /// cleanups associated with the parameters. 160 EHScopeStack::stable_iterator PrologueCleanupDepth; 161 162 /// ReturnBlock - Unified return block. 163 JumpDest ReturnBlock; 164 165 /// ReturnValue - The temporary alloca to hold the return 166 /// value. This is invalid iff the function has no return value. 167 Address ReturnValue; 168 169 /// AllocaInsertPoint - This is an instruction in the entry block before which 170 /// we prefer to insert allocas. 171 llvm::AssertingVH<llvm::Instruction> AllocaInsertPt; 172 173 /// \brief API for captured statement code generation. 174 class CGCapturedStmtInfo { 175 public: 176 explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default) 177 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {} 178 explicit CGCapturedStmtInfo(const CapturedStmt &S, 179 CapturedRegionKind K = CR_Default) 180 : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) { 181 182 RecordDecl::field_iterator Field = 183 S.getCapturedRecordDecl()->field_begin(); 184 for (CapturedStmt::const_capture_iterator I = S.capture_begin(), 185 E = S.capture_end(); 186 I != E; ++I, ++Field) { 187 if (I->capturesThis()) 188 CXXThisFieldDecl = *Field; 189 else if (I->capturesVariable()) 190 CaptureFields[I->getCapturedVar()] = *Field; 191 } 192 } 193 194 virtual ~CGCapturedStmtInfo(); 195 196 CapturedRegionKind getKind() const { return Kind; } 197 198 virtual void setContextValue(llvm::Value *V) { ThisValue = V; } 199 // \brief Retrieve the value of the context parameter. 200 virtual llvm::Value *getContextValue() const { return ThisValue; } 201 202 /// \brief Lookup the captured field decl for a variable. 203 virtual const FieldDecl *lookup(const VarDecl *VD) const { 204 return CaptureFields.lookup(VD); 205 } 206 207 bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; } 208 virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; } 209 210 static bool classof(const CGCapturedStmtInfo *) { 211 return true; 212 } 213 214 /// \brief Emit the captured statement body. 215 virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) { 216 CGF.incrementProfileCounter(S); 217 CGF.EmitStmt(S); 218 } 219 220 /// \brief Get the name of the capture helper. 221 virtual StringRef getHelperName() const { return "__captured_stmt"; } 222 223 private: 224 /// \brief The kind of captured statement being generated. 225 CapturedRegionKind Kind; 226 227 /// \brief Keep the map between VarDecl and FieldDecl. 228 llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields; 229 230 /// \brief The base address of the captured record, passed in as the first 231 /// argument of the parallel region function. 232 llvm::Value *ThisValue; 233 234 /// \brief Captured 'this' type. 235 FieldDecl *CXXThisFieldDecl; 236 }; 237 CGCapturedStmtInfo *CapturedStmtInfo; 238 239 /// \brief RAII for correct setting/restoring of CapturedStmtInfo. 240 class CGCapturedStmtRAII { 241 private: 242 CodeGenFunction &CGF; 243 CGCapturedStmtInfo *PrevCapturedStmtInfo; 244 public: 245 CGCapturedStmtRAII(CodeGenFunction &CGF, 246 CGCapturedStmtInfo *NewCapturedStmtInfo) 247 : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) { 248 CGF.CapturedStmtInfo = NewCapturedStmtInfo; 249 } 250 ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; } 251 }; 252 253 /// \brief Sanitizers enabled for this function. 254 SanitizerSet SanOpts; 255 256 /// \brief True if CodeGen currently emits code implementing sanitizer checks. 257 bool IsSanitizerScope; 258 259 /// \brief RAII object to set/unset CodeGenFunction::IsSanitizerScope. 260 class SanitizerScope { 261 CodeGenFunction *CGF; 262 public: 263 SanitizerScope(CodeGenFunction *CGF); 264 ~SanitizerScope(); 265 }; 266 267 /// In C++, whether we are code generating a thunk. This controls whether we 268 /// should emit cleanups. 269 bool CurFuncIsThunk; 270 271 /// In ARC, whether we should autorelease the return value. 272 bool AutoreleaseResult; 273 274 /// Whether we processed a Microsoft-style asm block during CodeGen. These can 275 /// potentially set the return value. 276 bool SawAsmBlock; 277 278 /// True if the current function is an outlined SEH helper. This can be a 279 /// finally block or filter expression. 280 bool IsOutlinedSEHHelper; 281 282 const CodeGen::CGBlockInfo *BlockInfo; 283 llvm::Value *BlockPointer; 284 285 llvm::DenseMap<const VarDecl *, FieldDecl *> LambdaCaptureFields; 286 FieldDecl *LambdaThisCaptureField; 287 288 /// \brief A mapping from NRVO variables to the flags used to indicate 289 /// when the NRVO has been applied to this variable. 290 llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags; 291 292 EHScopeStack EHStack; 293 llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack; 294 llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack; 295 296 llvm::Instruction *CurrentFuncletPad = nullptr; 297 298 /// Header for data within LifetimeExtendedCleanupStack. 299 struct LifetimeExtendedCleanupHeader { 300 /// The size of the following cleanup object. 301 unsigned Size; 302 /// The kind of cleanup to push: a value from the CleanupKind enumeration. 303 CleanupKind Kind; 304 305 size_t getSize() const { return Size; } 306 CleanupKind getKind() const { return Kind; } 307 }; 308 309 /// i32s containing the indexes of the cleanup destinations. 310 llvm::AllocaInst *NormalCleanupDest; 311 312 unsigned NextCleanupDestIndex; 313 314 /// FirstBlockInfo - The head of a singly-linked-list of block layouts. 315 CGBlockInfo *FirstBlockInfo; 316 317 /// EHResumeBlock - Unified block containing a call to llvm.eh.resume. 318 llvm::BasicBlock *EHResumeBlock; 319 320 /// The exception slot. All landing pads write the current exception pointer 321 /// into this alloca. 322 llvm::Value *ExceptionSlot; 323 324 /// The selector slot. Under the MandatoryCleanup model, all landing pads 325 /// write the current selector value into this alloca. 326 llvm::AllocaInst *EHSelectorSlot; 327 328 /// A stack of exception code slots. Entering an __except block pushes a slot 329 /// on the stack and leaving pops one. The __exception_code() intrinsic loads 330 /// a value from the top of the stack. 331 SmallVector<Address, 1> SEHCodeSlotStack; 332 333 /// Value returned by __exception_info intrinsic. 334 llvm::Value *SEHInfo = nullptr; 335 336 /// Emits a landing pad for the current EH stack. 337 llvm::BasicBlock *EmitLandingPad(); 338 339 llvm::BasicBlock *getInvokeDestImpl(); 340 341 template <class T> 342 typename DominatingValue<T>::saved_type saveValueInCond(T value) { 343 return DominatingValue<T>::save(*this, value); 344 } 345 346 public: 347 /// ObjCEHValueStack - Stack of Objective-C exception values, used for 348 /// rethrows. 349 SmallVector<llvm::Value*, 8> ObjCEHValueStack; 350 351 /// A class controlling the emission of a finally block. 352 class FinallyInfo { 353 /// Where the catchall's edge through the cleanup should go. 354 JumpDest RethrowDest; 355 356 /// A function to call to enter the catch. 357 llvm::Constant *BeginCatchFn; 358 359 /// An i1 variable indicating whether or not the @finally is 360 /// running for an exception. 361 llvm::AllocaInst *ForEHVar; 362 363 /// An i8* variable into which the exception pointer to rethrow 364 /// has been saved. 365 llvm::AllocaInst *SavedExnVar; 366 367 public: 368 void enter(CodeGenFunction &CGF, const Stmt *Finally, 369 llvm::Constant *beginCatchFn, llvm::Constant *endCatchFn, 370 llvm::Constant *rethrowFn); 371 void exit(CodeGenFunction &CGF); 372 }; 373 374 /// Returns true inside SEH __try blocks. 375 bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); } 376 377 /// Returns true while emitting a cleanuppad. 378 bool isCleanupPadScope() const { 379 return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad); 380 } 381 382 /// pushFullExprCleanup - Push a cleanup to be run at the end of the 383 /// current full-expression. Safe against the possibility that 384 /// we're currently inside a conditionally-evaluated expression. 385 template <class T, class... As> 386 void pushFullExprCleanup(CleanupKind kind, As... A) { 387 // If we're not in a conditional branch, or if none of the 388 // arguments requires saving, then use the unconditional cleanup. 389 if (!isInConditionalBranch()) 390 return EHStack.pushCleanup<T>(kind, A...); 391 392 // Stash values in a tuple so we can guarantee the order of saves. 393 typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple; 394 SavedTuple Saved{saveValueInCond(A)...}; 395 396 typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType; 397 EHStack.pushCleanupTuple<CleanupType>(kind, Saved); 398 initFullExprCleanup(); 399 } 400 401 /// \brief Queue a cleanup to be pushed after finishing the current 402 /// full-expression. 403 template <class T, class... As> 404 void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) { 405 assert(!isInConditionalBranch() && "can't defer conditional cleanup"); 406 407 LifetimeExtendedCleanupHeader Header = { sizeof(T), Kind }; 408 409 size_t OldSize = LifetimeExtendedCleanupStack.size(); 410 LifetimeExtendedCleanupStack.resize( 411 LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size); 412 413 static_assert(sizeof(Header) % llvm::AlignOf<T>::Alignment == 0, 414 "Cleanup will be allocated on misaligned address"); 415 char *Buffer = &LifetimeExtendedCleanupStack[OldSize]; 416 new (Buffer) LifetimeExtendedCleanupHeader(Header); 417 new (Buffer + sizeof(Header)) T(A...); 418 } 419 420 /// Set up the last cleaup that was pushed as a conditional 421 /// full-expression cleanup. 422 void initFullExprCleanup(); 423 424 /// PushDestructorCleanup - Push a cleanup to call the 425 /// complete-object destructor of an object of the given type at the 426 /// given address. Does nothing if T is not a C++ class type with a 427 /// non-trivial destructor. 428 void PushDestructorCleanup(QualType T, Address Addr); 429 430 /// PushDestructorCleanup - Push a cleanup to call the 431 /// complete-object variant of the given destructor on the object at 432 /// the given address. 433 void PushDestructorCleanup(const CXXDestructorDecl *Dtor, Address Addr); 434 435 /// PopCleanupBlock - Will pop the cleanup entry on the stack and 436 /// process all branch fixups. 437 void PopCleanupBlock(bool FallThroughIsBranchThrough = false); 438 439 /// DeactivateCleanupBlock - Deactivates the given cleanup block. 440 /// The block cannot be reactivated. Pops it if it's the top of the 441 /// stack. 442 /// 443 /// \param DominatingIP - An instruction which is known to 444 /// dominate the current IP (if set) and which lies along 445 /// all paths of execution between the current IP and the 446 /// the point at which the cleanup comes into scope. 447 void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 448 llvm::Instruction *DominatingIP); 449 450 /// ActivateCleanupBlock - Activates an initially-inactive cleanup. 451 /// Cannot be used to resurrect a deactivated cleanup. 452 /// 453 /// \param DominatingIP - An instruction which is known to 454 /// dominate the current IP (if set) and which lies along 455 /// all paths of execution between the current IP and the 456 /// the point at which the cleanup comes into scope. 457 void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup, 458 llvm::Instruction *DominatingIP); 459 460 /// \brief Enters a new scope for capturing cleanups, all of which 461 /// will be executed once the scope is exited. 462 class RunCleanupsScope { 463 EHScopeStack::stable_iterator CleanupStackDepth; 464 size_t LifetimeExtendedCleanupStackSize; 465 bool OldDidCallStackSave; 466 protected: 467 bool PerformCleanup; 468 private: 469 470 RunCleanupsScope(const RunCleanupsScope &) = delete; 471 void operator=(const RunCleanupsScope &) = delete; 472 473 protected: 474 CodeGenFunction& CGF; 475 476 public: 477 /// \brief Enter a new cleanup scope. 478 explicit RunCleanupsScope(CodeGenFunction &CGF) 479 : PerformCleanup(true), CGF(CGF) 480 { 481 CleanupStackDepth = CGF.EHStack.stable_begin(); 482 LifetimeExtendedCleanupStackSize = 483 CGF.LifetimeExtendedCleanupStack.size(); 484 OldDidCallStackSave = CGF.DidCallStackSave; 485 CGF.DidCallStackSave = false; 486 } 487 488 /// \brief Exit this cleanup scope, emitting any accumulated 489 /// cleanups. 490 ~RunCleanupsScope() { 491 if (PerformCleanup) { 492 CGF.DidCallStackSave = OldDidCallStackSave; 493 CGF.PopCleanupBlocks(CleanupStackDepth, 494 LifetimeExtendedCleanupStackSize); 495 } 496 } 497 498 /// \brief Determine whether this scope requires any cleanups. 499 bool requiresCleanups() const { 500 return CGF.EHStack.stable_begin() != CleanupStackDepth; 501 } 502 503 /// \brief Force the emission of cleanups now, instead of waiting 504 /// until this object is destroyed. 505 void ForceCleanup() { 506 assert(PerformCleanup && "Already forced cleanup"); 507 CGF.DidCallStackSave = OldDidCallStackSave; 508 CGF.PopCleanupBlocks(CleanupStackDepth, 509 LifetimeExtendedCleanupStackSize); 510 PerformCleanup = false; 511 } 512 }; 513 514 class LexicalScope : public RunCleanupsScope { 515 SourceRange Range; 516 SmallVector<const LabelDecl*, 4> Labels; 517 LexicalScope *ParentScope; 518 519 LexicalScope(const LexicalScope &) = delete; 520 void operator=(const LexicalScope &) = delete; 521 522 public: 523 /// \brief Enter a new cleanup scope. 524 explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range) 525 : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) { 526 CGF.CurLexicalScope = this; 527 if (CGDebugInfo *DI = CGF.getDebugInfo()) 528 DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin()); 529 } 530 531 void addLabel(const LabelDecl *label) { 532 assert(PerformCleanup && "adding label to dead scope?"); 533 Labels.push_back(label); 534 } 535 536 /// \brief Exit this cleanup scope, emitting any accumulated 537 /// cleanups. 538 ~LexicalScope() { 539 if (CGDebugInfo *DI = CGF.getDebugInfo()) 540 DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd()); 541 542 // If we should perform a cleanup, force them now. Note that 543 // this ends the cleanup scope before rescoping any labels. 544 if (PerformCleanup) { 545 ApplyDebugLocation DL(CGF, Range.getEnd()); 546 ForceCleanup(); 547 } 548 } 549 550 /// \brief Force the emission of cleanups now, instead of waiting 551 /// until this object is destroyed. 552 void ForceCleanup() { 553 CGF.CurLexicalScope = ParentScope; 554 RunCleanupsScope::ForceCleanup(); 555 556 if (!Labels.empty()) 557 rescopeLabels(); 558 } 559 560 void rescopeLabels(); 561 }; 562 563 typedef llvm::DenseMap<const Decl *, Address> DeclMapTy; 564 565 /// \brief The scope used to remap some variables as private in the OpenMP 566 /// loop body (or other captured region emitted without outlining), and to 567 /// restore old vars back on exit. 568 class OMPPrivateScope : public RunCleanupsScope { 569 DeclMapTy SavedLocals; 570 DeclMapTy SavedPrivates; 571 572 private: 573 OMPPrivateScope(const OMPPrivateScope &) = delete; 574 void operator=(const OMPPrivateScope &) = delete; 575 576 public: 577 /// \brief Enter a new OpenMP private scope. 578 explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {} 579 580 /// \brief Registers \a LocalVD variable as a private and apply \a 581 /// PrivateGen function for it to generate corresponding private variable. 582 /// \a PrivateGen returns an address of the generated private variable. 583 /// \return true if the variable is registered as private, false if it has 584 /// been privatized already. 585 bool 586 addPrivate(const VarDecl *LocalVD, 587 llvm::function_ref<Address()> PrivateGen) { 588 assert(PerformCleanup && "adding private to dead scope"); 589 590 // Only save it once. 591 if (SavedLocals.count(LocalVD)) return false; 592 593 // Copy the existing local entry to SavedLocals. 594 auto it = CGF.LocalDeclMap.find(LocalVD); 595 if (it != CGF.LocalDeclMap.end()) { 596 SavedLocals.insert({LocalVD, it->second}); 597 } else { 598 SavedLocals.insert({LocalVD, Address::invalid()}); 599 } 600 601 // Generate the private entry. 602 Address Addr = PrivateGen(); 603 QualType VarTy = LocalVD->getType(); 604 if (VarTy->isReferenceType()) { 605 Address Temp = CGF.CreateMemTemp(VarTy); 606 CGF.Builder.CreateStore(Addr.getPointer(), Temp); 607 Addr = Temp; 608 } 609 SavedPrivates.insert({LocalVD, Addr}); 610 611 return true; 612 } 613 614 /// \brief Privatizes local variables previously registered as private. 615 /// Registration is separate from the actual privatization to allow 616 /// initializers use values of the original variables, not the private one. 617 /// This is important, for example, if the private variable is a class 618 /// variable initialized by a constructor that references other private 619 /// variables. But at initialization original variables must be used, not 620 /// private copies. 621 /// \return true if at least one variable was privatized, false otherwise. 622 bool Privatize() { 623 copyInto(SavedPrivates, CGF.LocalDeclMap); 624 SavedPrivates.clear(); 625 return !SavedLocals.empty(); 626 } 627 628 void ForceCleanup() { 629 RunCleanupsScope::ForceCleanup(); 630 copyInto(SavedLocals, CGF.LocalDeclMap); 631 SavedLocals.clear(); 632 } 633 634 /// \brief Exit scope - all the mapped variables are restored. 635 ~OMPPrivateScope() { 636 if (PerformCleanup) 637 ForceCleanup(); 638 } 639 640 private: 641 /// Copy all the entries in the source map over the corresponding 642 /// entries in the destination, which must exist. 643 static void copyInto(const DeclMapTy &src, DeclMapTy &dest) { 644 for (auto &pair : src) { 645 if (!pair.second.isValid()) { 646 dest.erase(pair.first); 647 continue; 648 } 649 650 auto it = dest.find(pair.first); 651 if (it != dest.end()) { 652 it->second = pair.second; 653 } else { 654 dest.insert(pair); 655 } 656 } 657 } 658 }; 659 660 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 661 /// that have been added. 662 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize); 663 664 /// \brief Takes the old cleanup stack size and emits the cleanup blocks 665 /// that have been added, then adds all lifetime-extended cleanups from 666 /// the given position to the stack. 667 void PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize, 668 size_t OldLifetimeExtendedStackSize); 669 670 void ResolveBranchFixups(llvm::BasicBlock *Target); 671 672 /// The given basic block lies in the current EH scope, but may be a 673 /// target of a potentially scope-crossing jump; get a stable handle 674 /// to which we can perform this jump later. 675 JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) { 676 return JumpDest(Target, 677 EHStack.getInnermostNormalCleanup(), 678 NextCleanupDestIndex++); 679 } 680 681 /// The given basic block lies in the current EH scope, but may be a 682 /// target of a potentially scope-crossing jump; get a stable handle 683 /// to which we can perform this jump later. 684 JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) { 685 return getJumpDestInCurrentScope(createBasicBlock(Name)); 686 } 687 688 /// EmitBranchThroughCleanup - Emit a branch from the current insert 689 /// block through the normal cleanup handling code (if any) and then 690 /// on to \arg Dest. 691 void EmitBranchThroughCleanup(JumpDest Dest); 692 693 /// isObviouslyBranchWithoutCleanups - Return true if a branch to the 694 /// specified destination obviously has no cleanups to run. 'false' is always 695 /// a conservatively correct answer for this method. 696 bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const; 697 698 /// popCatchScope - Pops the catch scope at the top of the EHScope 699 /// stack, emitting any required code (other than the catch handlers 700 /// themselves). 701 void popCatchScope(); 702 703 llvm::BasicBlock *getEHResumeBlock(bool isCleanup); 704 llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope); 705 llvm::BasicBlock *getMSVCDispatchBlock(EHScopeStack::stable_iterator scope); 706 707 /// An object to manage conditionally-evaluated expressions. 708 class ConditionalEvaluation { 709 llvm::BasicBlock *StartBB; 710 711 public: 712 ConditionalEvaluation(CodeGenFunction &CGF) 713 : StartBB(CGF.Builder.GetInsertBlock()) {} 714 715 void begin(CodeGenFunction &CGF) { 716 assert(CGF.OutermostConditional != this); 717 if (!CGF.OutermostConditional) 718 CGF.OutermostConditional = this; 719 } 720 721 void end(CodeGenFunction &CGF) { 722 assert(CGF.OutermostConditional != nullptr); 723 if (CGF.OutermostConditional == this) 724 CGF.OutermostConditional = nullptr; 725 } 726 727 /// Returns a block which will be executed prior to each 728 /// evaluation of the conditional code. 729 llvm::BasicBlock *getStartingBlock() const { 730 return StartBB; 731 } 732 }; 733 734 /// isInConditionalBranch - Return true if we're currently emitting 735 /// one branch or the other of a conditional expression. 736 bool isInConditionalBranch() const { return OutermostConditional != nullptr; } 737 738 void setBeforeOutermostConditional(llvm::Value *value, Address addr) { 739 assert(isInConditionalBranch()); 740 llvm::BasicBlock *block = OutermostConditional->getStartingBlock(); 741 auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back()); 742 store->setAlignment(addr.getAlignment().getQuantity()); 743 } 744 745 /// An RAII object to record that we're evaluating a statement 746 /// expression. 747 class StmtExprEvaluation { 748 CodeGenFunction &CGF; 749 750 /// We have to save the outermost conditional: cleanups in a 751 /// statement expression aren't conditional just because the 752 /// StmtExpr is. 753 ConditionalEvaluation *SavedOutermostConditional; 754 755 public: 756 StmtExprEvaluation(CodeGenFunction &CGF) 757 : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) { 758 CGF.OutermostConditional = nullptr; 759 } 760 761 ~StmtExprEvaluation() { 762 CGF.OutermostConditional = SavedOutermostConditional; 763 CGF.EnsureInsertPoint(); 764 } 765 }; 766 767 /// An object which temporarily prevents a value from being 768 /// destroyed by aggressive peephole optimizations that assume that 769 /// all uses of a value have been realized in the IR. 770 class PeepholeProtection { 771 llvm::Instruction *Inst; 772 friend class CodeGenFunction; 773 774 public: 775 PeepholeProtection() : Inst(nullptr) {} 776 }; 777 778 /// A non-RAII class containing all the information about a bound 779 /// opaque value. OpaqueValueMapping, below, is a RAII wrapper for 780 /// this which makes individual mappings very simple; using this 781 /// class directly is useful when you have a variable number of 782 /// opaque values or don't want the RAII functionality for some 783 /// reason. 784 class OpaqueValueMappingData { 785 const OpaqueValueExpr *OpaqueValue; 786 bool BoundLValue; 787 CodeGenFunction::PeepholeProtection Protection; 788 789 OpaqueValueMappingData(const OpaqueValueExpr *ov, 790 bool boundLValue) 791 : OpaqueValue(ov), BoundLValue(boundLValue) {} 792 public: 793 OpaqueValueMappingData() : OpaqueValue(nullptr) {} 794 795 static bool shouldBindAsLValue(const Expr *expr) { 796 // gl-values should be bound as l-values for obvious reasons. 797 // Records should be bound as l-values because IR generation 798 // always keeps them in memory. Expressions of function type 799 // act exactly like l-values but are formally required to be 800 // r-values in C. 801 return expr->isGLValue() || 802 expr->getType()->isFunctionType() || 803 hasAggregateEvaluationKind(expr->getType()); 804 } 805 806 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 807 const OpaqueValueExpr *ov, 808 const Expr *e) { 809 if (shouldBindAsLValue(ov)) 810 return bind(CGF, ov, CGF.EmitLValue(e)); 811 return bind(CGF, ov, CGF.EmitAnyExpr(e)); 812 } 813 814 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 815 const OpaqueValueExpr *ov, 816 const LValue &lv) { 817 assert(shouldBindAsLValue(ov)); 818 CGF.OpaqueLValues.insert(std::make_pair(ov, lv)); 819 return OpaqueValueMappingData(ov, true); 820 } 821 822 static OpaqueValueMappingData bind(CodeGenFunction &CGF, 823 const OpaqueValueExpr *ov, 824 const RValue &rv) { 825 assert(!shouldBindAsLValue(ov)); 826 CGF.OpaqueRValues.insert(std::make_pair(ov, rv)); 827 828 OpaqueValueMappingData data(ov, false); 829 830 // Work around an extremely aggressive peephole optimization in 831 // EmitScalarConversion which assumes that all other uses of a 832 // value are extant. 833 data.Protection = CGF.protectFromPeepholes(rv); 834 835 return data; 836 } 837 838 bool isValid() const { return OpaqueValue != nullptr; } 839 void clear() { OpaqueValue = nullptr; } 840 841 void unbind(CodeGenFunction &CGF) { 842 assert(OpaqueValue && "no data to unbind!"); 843 844 if (BoundLValue) { 845 CGF.OpaqueLValues.erase(OpaqueValue); 846 } else { 847 CGF.OpaqueRValues.erase(OpaqueValue); 848 CGF.unprotectFromPeepholes(Protection); 849 } 850 } 851 }; 852 853 /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr. 854 class OpaqueValueMapping { 855 CodeGenFunction &CGF; 856 OpaqueValueMappingData Data; 857 858 public: 859 static bool shouldBindAsLValue(const Expr *expr) { 860 return OpaqueValueMappingData::shouldBindAsLValue(expr); 861 } 862 863 /// Build the opaque value mapping for the given conditional 864 /// operator if it's the GNU ?: extension. This is a common 865 /// enough pattern that the convenience operator is really 866 /// helpful. 867 /// 868 OpaqueValueMapping(CodeGenFunction &CGF, 869 const AbstractConditionalOperator *op) : CGF(CGF) { 870 if (isa<ConditionalOperator>(op)) 871 // Leave Data empty. 872 return; 873 874 const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op); 875 Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(), 876 e->getCommon()); 877 } 878 879 OpaqueValueMapping(CodeGenFunction &CGF, 880 const OpaqueValueExpr *opaqueValue, 881 LValue lvalue) 882 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) { 883 } 884 885 OpaqueValueMapping(CodeGenFunction &CGF, 886 const OpaqueValueExpr *opaqueValue, 887 RValue rvalue) 888 : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) { 889 } 890 891 void pop() { 892 Data.unbind(CGF); 893 Data.clear(); 894 } 895 896 ~OpaqueValueMapping() { 897 if (Data.isValid()) Data.unbind(CGF); 898 } 899 }; 900 901 private: 902 CGDebugInfo *DebugInfo; 903 bool DisableDebugInfo; 904 905 /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid 906 /// calling llvm.stacksave for multiple VLAs in the same scope. 907 bool DidCallStackSave; 908 909 /// IndirectBranch - The first time an indirect goto is seen we create a block 910 /// with an indirect branch. Every time we see the address of a label taken, 911 /// we add the label to the indirect goto. Every subsequent indirect goto is 912 /// codegen'd as a jump to the IndirectBranch's basic block. 913 llvm::IndirectBrInst *IndirectBranch; 914 915 /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C 916 /// decls. 917 DeclMapTy LocalDeclMap; 918 919 /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this 920 /// will contain a mapping from said ParmVarDecl to its implicit "object_size" 921 /// parameter. 922 llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2> 923 SizeArguments; 924 925 /// Track escaped local variables with auto storage. Used during SEH 926 /// outlining to produce a call to llvm.localescape. 927 llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals; 928 929 /// LabelMap - This keeps track of the LLVM basic block for each C label. 930 llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap; 931 932 // BreakContinueStack - This keeps track of where break and continue 933 // statements should jump to. 934 struct BreakContinue { 935 BreakContinue(JumpDest Break, JumpDest Continue) 936 : BreakBlock(Break), ContinueBlock(Continue) {} 937 938 JumpDest BreakBlock; 939 JumpDest ContinueBlock; 940 }; 941 SmallVector<BreakContinue, 8> BreakContinueStack; 942 943 CodeGenPGO PGO; 944 945 /// Calculate branch weights appropriate for PGO data 946 llvm::MDNode *createProfileWeights(uint64_t TrueCount, uint64_t FalseCount); 947 llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights); 948 llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond, 949 uint64_t LoopCount); 950 951 public: 952 /// Increment the profiler's counter for the given statement. 953 void incrementProfileCounter(const Stmt *S) { 954 if (CGM.getCodeGenOpts().ProfileInstrGenerate) 955 PGO.emitCounterIncrement(Builder, S); 956 PGO.setCurrentStmt(S); 957 } 958 959 /// Get the profiler's count for the given statement. 960 uint64_t getProfileCount(const Stmt *S) { 961 Optional<uint64_t> Count = PGO.getStmtCount(S); 962 if (!Count.hasValue()) 963 return 0; 964 return *Count; 965 } 966 967 /// Set the profiler's current count. 968 void setCurrentProfileCount(uint64_t Count) { 969 PGO.setCurrentRegionCount(Count); 970 } 971 972 /// Get the profiler's current count. This is generally the count for the most 973 /// recently incremented counter. 974 uint64_t getCurrentProfileCount() { 975 return PGO.getCurrentRegionCount(); 976 } 977 978 private: 979 980 /// SwitchInsn - This is nearest current switch instruction. It is null if 981 /// current context is not in a switch. 982 llvm::SwitchInst *SwitchInsn; 983 /// The branch weights of SwitchInsn when doing instrumentation based PGO. 984 SmallVector<uint64_t, 16> *SwitchWeights; 985 986 /// CaseRangeBlock - This block holds if condition check for last case 987 /// statement range in current switch instruction. 988 llvm::BasicBlock *CaseRangeBlock; 989 990 /// OpaqueLValues - Keeps track of the current set of opaque value 991 /// expressions. 992 llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues; 993 llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues; 994 995 // VLASizeMap - This keeps track of the associated size for each VLA type. 996 // We track this by the size expression rather than the type itself because 997 // in certain situations, like a const qualifier applied to an VLA typedef, 998 // multiple VLA types can share the same size expression. 999 // FIXME: Maybe this could be a stack of maps that is pushed/popped as we 1000 // enter/leave scopes. 1001 llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap; 1002 1003 /// A block containing a single 'unreachable' instruction. Created 1004 /// lazily by getUnreachableBlock(). 1005 llvm::BasicBlock *UnreachableBlock; 1006 1007 /// Counts of the number return expressions in the function. 1008 unsigned NumReturnExprs; 1009 1010 /// Count the number of simple (constant) return expressions in the function. 1011 unsigned NumSimpleReturnExprs; 1012 1013 /// The last regular (non-return) debug location (breakpoint) in the function. 1014 SourceLocation LastStopPoint; 1015 1016 public: 1017 /// A scope within which we are constructing the fields of an object which 1018 /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use 1019 /// if we need to evaluate a CXXDefaultInitExpr within the evaluation. 1020 class FieldConstructionScope { 1021 public: 1022 FieldConstructionScope(CodeGenFunction &CGF, Address This) 1023 : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) { 1024 CGF.CXXDefaultInitExprThis = This; 1025 } 1026 ~FieldConstructionScope() { 1027 CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis; 1028 } 1029 1030 private: 1031 CodeGenFunction &CGF; 1032 Address OldCXXDefaultInitExprThis; 1033 }; 1034 1035 /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this' 1036 /// is overridden to be the object under construction. 1037 class CXXDefaultInitExprScope { 1038 public: 1039 CXXDefaultInitExprScope(CodeGenFunction &CGF) 1040 : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue), 1041 OldCXXThisAlignment(CGF.CXXThisAlignment) { 1042 CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer(); 1043 CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment(); 1044 } 1045 ~CXXDefaultInitExprScope() { 1046 CGF.CXXThisValue = OldCXXThisValue; 1047 CGF.CXXThisAlignment = OldCXXThisAlignment; 1048 } 1049 1050 public: 1051 CodeGenFunction &CGF; 1052 llvm::Value *OldCXXThisValue; 1053 CharUnits OldCXXThisAlignment; 1054 }; 1055 1056 private: 1057 /// CXXThisDecl - When generating code for a C++ member function, 1058 /// this will hold the implicit 'this' declaration. 1059 ImplicitParamDecl *CXXABIThisDecl; 1060 llvm::Value *CXXABIThisValue; 1061 llvm::Value *CXXThisValue; 1062 CharUnits CXXABIThisAlignment; 1063 CharUnits CXXThisAlignment; 1064 1065 /// The value of 'this' to use when evaluating CXXDefaultInitExprs within 1066 /// this expression. 1067 Address CXXDefaultInitExprThis = Address::invalid(); 1068 1069 /// CXXStructorImplicitParamDecl - When generating code for a constructor or 1070 /// destructor, this will hold the implicit argument (e.g. VTT). 1071 ImplicitParamDecl *CXXStructorImplicitParamDecl; 1072 llvm::Value *CXXStructorImplicitParamValue; 1073 1074 /// OutermostConditional - Points to the outermost active 1075 /// conditional control. This is used so that we know if a 1076 /// temporary should be destroyed conditionally. 1077 ConditionalEvaluation *OutermostConditional; 1078 1079 /// The current lexical scope. 1080 LexicalScope *CurLexicalScope; 1081 1082 /// The current source location that should be used for exception 1083 /// handling code. 1084 SourceLocation CurEHLocation; 1085 1086 /// BlockByrefInfos - For each __block variable, contains 1087 /// information about the layout of the variable. 1088 llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos; 1089 1090 llvm::BasicBlock *TerminateLandingPad; 1091 llvm::BasicBlock *TerminateHandler; 1092 llvm::BasicBlock *TrapBB; 1093 1094 /// Add a kernel metadata node to the named metadata node 'opencl.kernels'. 1095 /// In the kernel metadata node, reference the kernel function and metadata 1096 /// nodes for its optional attribute qualifiers (OpenCL 1.1 6.7.2): 1097 /// - A node for the vec_type_hint(<type>) qualifier contains string 1098 /// "vec_type_hint", an undefined value of the <type> data type, 1099 /// and a Boolean that is true if the <type> is integer and signed. 1100 /// - A node for the work_group_size_hint(X,Y,Z) qualifier contains string 1101 /// "work_group_size_hint", and three 32-bit integers X, Y and Z. 1102 /// - A node for the reqd_work_group_size(X,Y,Z) qualifier contains string 1103 /// "reqd_work_group_size", and three 32-bit integers X, Y and Z. 1104 void EmitOpenCLKernelMetadata(const FunctionDecl *FD, 1105 llvm::Function *Fn); 1106 1107 public: 1108 CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false); 1109 ~CodeGenFunction(); 1110 1111 CodeGenTypes &getTypes() const { return CGM.getTypes(); } 1112 ASTContext &getContext() const { return CGM.getContext(); } 1113 CGDebugInfo *getDebugInfo() { 1114 if (DisableDebugInfo) 1115 return nullptr; 1116 return DebugInfo; 1117 } 1118 void disableDebugInfo() { DisableDebugInfo = true; } 1119 void enableDebugInfo() { DisableDebugInfo = false; } 1120 1121 bool shouldUseFusedARCCalls() { 1122 return CGM.getCodeGenOpts().OptimizationLevel == 0; 1123 } 1124 1125 const LangOptions &getLangOpts() const { return CGM.getLangOpts(); } 1126 1127 /// Returns a pointer to the function's exception object and selector slot, 1128 /// which is assigned in every landing pad. 1129 Address getExceptionSlot(); 1130 Address getEHSelectorSlot(); 1131 1132 /// Returns the contents of the function's exception object and selector 1133 /// slots. 1134 llvm::Value *getExceptionFromSlot(); 1135 llvm::Value *getSelectorFromSlot(); 1136 1137 Address getNormalCleanupDestSlot(); 1138 1139 llvm::BasicBlock *getUnreachableBlock() { 1140 if (!UnreachableBlock) { 1141 UnreachableBlock = createBasicBlock("unreachable"); 1142 new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock); 1143 } 1144 return UnreachableBlock; 1145 } 1146 1147 llvm::BasicBlock *getInvokeDest() { 1148 if (!EHStack.requiresLandingPad()) return nullptr; 1149 return getInvokeDestImpl(); 1150 } 1151 1152 bool currentFunctionUsesSEHTry() const { 1153 const auto *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); 1154 return FD && FD->usesSEHTry(); 1155 } 1156 1157 const TargetInfo &getTarget() const { return Target; } 1158 llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); } 1159 1160 //===--------------------------------------------------------------------===// 1161 // Cleanups 1162 //===--------------------------------------------------------------------===// 1163 1164 typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty); 1165 1166 void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, 1167 Address arrayEndPointer, 1168 QualType elementType, 1169 CharUnits elementAlignment, 1170 Destroyer *destroyer); 1171 void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, 1172 llvm::Value *arrayEnd, 1173 QualType elementType, 1174 CharUnits elementAlignment, 1175 Destroyer *destroyer); 1176 1177 void pushDestroy(QualType::DestructionKind dtorKind, 1178 Address addr, QualType type); 1179 void pushEHDestroy(QualType::DestructionKind dtorKind, 1180 Address addr, QualType type); 1181 void pushDestroy(CleanupKind kind, Address addr, QualType type, 1182 Destroyer *destroyer, bool useEHCleanupForArray); 1183 void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr, 1184 QualType type, Destroyer *destroyer, 1185 bool useEHCleanupForArray); 1186 void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete, 1187 llvm::Value *CompletePtr, 1188 QualType ElementType); 1189 void pushStackRestore(CleanupKind kind, Address SPMem); 1190 void emitDestroy(Address addr, QualType type, Destroyer *destroyer, 1191 bool useEHCleanupForArray); 1192 llvm::Function *generateDestroyHelper(Address addr, QualType type, 1193 Destroyer *destroyer, 1194 bool useEHCleanupForArray, 1195 const VarDecl *VD); 1196 void emitArrayDestroy(llvm::Value *begin, llvm::Value *end, 1197 QualType elementType, CharUnits elementAlign, 1198 Destroyer *destroyer, 1199 bool checkZeroLength, bool useEHCleanup); 1200 1201 Destroyer *getDestroyer(QualType::DestructionKind destructionKind); 1202 1203 /// Determines whether an EH cleanup is required to destroy a type 1204 /// with the given destruction kind. 1205 bool needsEHCleanup(QualType::DestructionKind kind) { 1206 switch (kind) { 1207 case QualType::DK_none: 1208 return false; 1209 case QualType::DK_cxx_destructor: 1210 case QualType::DK_objc_weak_lifetime: 1211 return getLangOpts().Exceptions; 1212 case QualType::DK_objc_strong_lifetime: 1213 return getLangOpts().Exceptions && 1214 CGM.getCodeGenOpts().ObjCAutoRefCountExceptions; 1215 } 1216 llvm_unreachable("bad destruction kind"); 1217 } 1218 1219 CleanupKind getCleanupKind(QualType::DestructionKind kind) { 1220 return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup); 1221 } 1222 1223 //===--------------------------------------------------------------------===// 1224 // Objective-C 1225 //===--------------------------------------------------------------------===// 1226 1227 void GenerateObjCMethod(const ObjCMethodDecl *OMD); 1228 1229 void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD); 1230 1231 /// GenerateObjCGetter - Synthesize an Objective-C property getter function. 1232 void GenerateObjCGetter(ObjCImplementationDecl *IMP, 1233 const ObjCPropertyImplDecl *PID); 1234 void generateObjCGetterBody(const ObjCImplementationDecl *classImpl, 1235 const ObjCPropertyImplDecl *propImpl, 1236 const ObjCMethodDecl *GetterMothodDecl, 1237 llvm::Constant *AtomicHelperFn); 1238 1239 void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP, 1240 ObjCMethodDecl *MD, bool ctor); 1241 1242 /// GenerateObjCSetter - Synthesize an Objective-C property setter function 1243 /// for the given property. 1244 void GenerateObjCSetter(ObjCImplementationDecl *IMP, 1245 const ObjCPropertyImplDecl *PID); 1246 void generateObjCSetterBody(const ObjCImplementationDecl *classImpl, 1247 const ObjCPropertyImplDecl *propImpl, 1248 llvm::Constant *AtomicHelperFn); 1249 1250 //===--------------------------------------------------------------------===// 1251 // Block Bits 1252 //===--------------------------------------------------------------------===// 1253 1254 llvm::Value *EmitBlockLiteral(const BlockExpr *); 1255 llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info); 1256 static void destroyBlockInfos(CGBlockInfo *info); 1257 1258 llvm::Function *GenerateBlockFunction(GlobalDecl GD, 1259 const CGBlockInfo &Info, 1260 const DeclMapTy &ldm, 1261 bool IsLambdaConversionToBlock); 1262 1263 llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo); 1264 llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo); 1265 llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction( 1266 const ObjCPropertyImplDecl *PID); 1267 llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction( 1268 const ObjCPropertyImplDecl *PID); 1269 llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty); 1270 1271 void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags); 1272 1273 class AutoVarEmission; 1274 1275 void emitByrefStructureInit(const AutoVarEmission &emission); 1276 void enterByrefCleanup(const AutoVarEmission &emission); 1277 1278 void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum, 1279 llvm::Value *ptr); 1280 1281 Address LoadBlockStruct(); 1282 Address GetAddrOfBlockDecl(const VarDecl *var, bool ByRef); 1283 1284 /// BuildBlockByrefAddress - Computes the location of the 1285 /// data in a variable which is declared as __block. 1286 Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V, 1287 bool followForward = true); 1288 Address emitBlockByrefAddress(Address baseAddr, 1289 const BlockByrefInfo &info, 1290 bool followForward, 1291 const llvm::Twine &name); 1292 1293 const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var); 1294 1295 void GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1296 const CGFunctionInfo &FnInfo); 1297 /// \brief Emit code for the start of a function. 1298 /// \param Loc The location to be associated with the function. 1299 /// \param StartLoc The location of the function body. 1300 void StartFunction(GlobalDecl GD, 1301 QualType RetTy, 1302 llvm::Function *Fn, 1303 const CGFunctionInfo &FnInfo, 1304 const FunctionArgList &Args, 1305 SourceLocation Loc = SourceLocation(), 1306 SourceLocation StartLoc = SourceLocation()); 1307 1308 void EmitConstructorBody(FunctionArgList &Args); 1309 void EmitDestructorBody(FunctionArgList &Args); 1310 void emitImplicitAssignmentOperatorBody(FunctionArgList &Args); 1311 void EmitFunctionBody(FunctionArgList &Args, const Stmt *Body); 1312 void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S); 1313 1314 void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator, 1315 CallArgList &CallArgs); 1316 void EmitLambdaToBlockPointerBody(FunctionArgList &Args); 1317 void EmitLambdaBlockInvokeBody(); 1318 void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD); 1319 void EmitLambdaStaticInvokeFunction(const CXXMethodDecl *MD); 1320 void EmitAsanPrologueOrEpilogue(bool Prologue); 1321 1322 /// \brief Emit the unified return block, trying to avoid its emission when 1323 /// possible. 1324 /// \return The debug location of the user written return statement if the 1325 /// return block is is avoided. 1326 llvm::DebugLoc EmitReturnBlock(); 1327 1328 /// FinishFunction - Complete IR generation of the current function. It is 1329 /// legal to call this function even if there is no current insertion point. 1330 void FinishFunction(SourceLocation EndLoc=SourceLocation()); 1331 1332 void StartThunk(llvm::Function *Fn, GlobalDecl GD, 1333 const CGFunctionInfo &FnInfo); 1334 1335 void EmitCallAndReturnForThunk(llvm::Value *Callee, const ThunkInfo *Thunk); 1336 1337 void FinishThunk(); 1338 1339 /// Emit a musttail call for a thunk with a potentially adjusted this pointer. 1340 void EmitMustTailThunk(const CXXMethodDecl *MD, llvm::Value *AdjustedThisPtr, 1341 llvm::Value *Callee); 1342 1343 /// Generate a thunk for the given method. 1344 void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo, 1345 GlobalDecl GD, const ThunkInfo &Thunk); 1346 1347 llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn, 1348 const CGFunctionInfo &FnInfo, 1349 GlobalDecl GD, const ThunkInfo &Thunk); 1350 1351 void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type, 1352 FunctionArgList &Args); 1353 1354 void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init, 1355 ArrayRef<VarDecl *> ArrayIndexes); 1356 1357 /// Struct with all informations about dynamic [sub]class needed to set vptr. 1358 struct VPtr { 1359 BaseSubobject Base; 1360 const CXXRecordDecl *NearestVBase; 1361 CharUnits OffsetFromNearestVBase; 1362 const CXXRecordDecl *VTableClass; 1363 }; 1364 1365 /// Initialize the vtable pointer of the given subobject. 1366 void InitializeVTablePointer(const VPtr &vptr); 1367 1368 typedef llvm::SmallVector<VPtr, 4> VPtrsVector; 1369 1370 typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy; 1371 VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass); 1372 1373 void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase, 1374 CharUnits OffsetFromNearestVBase, 1375 bool BaseIsNonVirtualPrimaryBase, 1376 const CXXRecordDecl *VTableClass, 1377 VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs); 1378 1379 void InitializeVTablePointers(const CXXRecordDecl *ClassDecl); 1380 1381 /// GetVTablePtr - Return the Value of the vtable pointer member pointed 1382 /// to by This. 1383 llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy, 1384 const CXXRecordDecl *VTableClass); 1385 1386 enum CFITypeCheckKind { 1387 CFITCK_VCall, 1388 CFITCK_NVCall, 1389 CFITCK_DerivedCast, 1390 CFITCK_UnrelatedCast, 1391 }; 1392 1393 /// \brief Derived is the presumed address of an object of type T after a 1394 /// cast. If T is a polymorphic class type, emit a check that the virtual 1395 /// table for Derived belongs to a class derived from T. 1396 void EmitVTablePtrCheckForCast(QualType T, llvm::Value *Derived, 1397 bool MayBeNull, CFITypeCheckKind TCK, 1398 SourceLocation Loc); 1399 1400 /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable. 1401 /// If vptr CFI is enabled, emit a check that VTable is valid. 1402 void EmitVTablePtrCheckForCall(const CXXMethodDecl *MD, llvm::Value *VTable, 1403 CFITypeCheckKind TCK, SourceLocation Loc); 1404 1405 /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for 1406 /// RD using llvm.bitset.test. 1407 void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable, 1408 CFITypeCheckKind TCK, SourceLocation Loc); 1409 1410 /// CanDevirtualizeMemberFunctionCalls - Checks whether virtual calls on given 1411 /// expr can be devirtualized. 1412 bool CanDevirtualizeMemberFunctionCall(const Expr *Base, 1413 const CXXMethodDecl *MD); 1414 1415 /// EnterDtorCleanups - Enter the cleanups necessary to complete the 1416 /// given phase of destruction for a destructor. The end result 1417 /// should call destructors on members and base classes in reverse 1418 /// order of their construction. 1419 void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type); 1420 1421 /// ShouldInstrumentFunction - Return true if the current function should be 1422 /// instrumented with __cyg_profile_func_* calls 1423 bool ShouldInstrumentFunction(); 1424 1425 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 1426 /// instrumentation function with the current function and the call site, if 1427 /// function instrumentation is enabled. 1428 void EmitFunctionInstrumentation(const char *Fn); 1429 1430 /// EmitMCountInstrumentation - Emit call to .mcount. 1431 void EmitMCountInstrumentation(); 1432 1433 /// EmitFunctionProlog - Emit the target specific LLVM code to load the 1434 /// arguments for the given function. This is also responsible for naming the 1435 /// LLVM function arguments. 1436 void EmitFunctionProlog(const CGFunctionInfo &FI, 1437 llvm::Function *Fn, 1438 const FunctionArgList &Args); 1439 1440 /// EmitFunctionEpilog - Emit the target specific LLVM code to return the 1441 /// given temporary. 1442 void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc, 1443 SourceLocation EndLoc); 1444 1445 /// EmitStartEHSpec - Emit the start of the exception spec. 1446 void EmitStartEHSpec(const Decl *D); 1447 1448 /// EmitEndEHSpec - Emit the end of the exception spec. 1449 void EmitEndEHSpec(const Decl *D); 1450 1451 /// getTerminateLandingPad - Return a landing pad that just calls terminate. 1452 llvm::BasicBlock *getTerminateLandingPad(); 1453 1454 /// getTerminateHandler - Return a handler (not a landing pad, just 1455 /// a catch handler) that just calls terminate. This is used when 1456 /// a terminate scope encloses a try. 1457 llvm::BasicBlock *getTerminateHandler(); 1458 1459 llvm::Type *ConvertTypeForMem(QualType T); 1460 llvm::Type *ConvertType(QualType T); 1461 llvm::Type *ConvertType(const TypeDecl *T) { 1462 return ConvertType(getContext().getTypeDeclType(T)); 1463 } 1464 1465 /// LoadObjCSelf - Load the value of self. This function is only valid while 1466 /// generating code for an Objective-C method. 1467 llvm::Value *LoadObjCSelf(); 1468 1469 /// TypeOfSelfObject - Return type of object that this self represents. 1470 QualType TypeOfSelfObject(); 1471 1472 /// hasAggregateLLVMType - Return true if the specified AST type will map into 1473 /// an aggregate LLVM type or is void. 1474 static TypeEvaluationKind getEvaluationKind(QualType T); 1475 1476 static bool hasScalarEvaluationKind(QualType T) { 1477 return getEvaluationKind(T) == TEK_Scalar; 1478 } 1479 1480 static bool hasAggregateEvaluationKind(QualType T) { 1481 return getEvaluationKind(T) == TEK_Aggregate; 1482 } 1483 1484 /// createBasicBlock - Create an LLVM basic block. 1485 llvm::BasicBlock *createBasicBlock(const Twine &name = "", 1486 llvm::Function *parent = nullptr, 1487 llvm::BasicBlock *before = nullptr) { 1488 #ifdef NDEBUG 1489 return llvm::BasicBlock::Create(getLLVMContext(), "", parent, before); 1490 #else 1491 return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before); 1492 #endif 1493 } 1494 1495 /// getBasicBlockForLabel - Return the LLVM basicblock that the specified 1496 /// label maps to. 1497 JumpDest getJumpDestForLabel(const LabelDecl *S); 1498 1499 /// SimplifyForwardingBlocks - If the given basic block is only a branch to 1500 /// another basic block, simplify it. This assumes that no other code could 1501 /// potentially reference the basic block. 1502 void SimplifyForwardingBlocks(llvm::BasicBlock *BB); 1503 1504 /// EmitBlock - Emit the given block \arg BB and set it as the insert point, 1505 /// adding a fall-through branch from the current insert block if 1506 /// necessary. It is legal to call this function even if there is no current 1507 /// insertion point. 1508 /// 1509 /// IsFinished - If true, indicates that the caller has finished emitting 1510 /// branches to the given block and does not expect to emit code into it. This 1511 /// means the block can be ignored if it is unreachable. 1512 void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false); 1513 1514 /// EmitBlockAfterUses - Emit the given block somewhere hopefully 1515 /// near its uses, and leave the insertion point in it. 1516 void EmitBlockAfterUses(llvm::BasicBlock *BB); 1517 1518 /// EmitBranch - Emit a branch to the specified basic block from the current 1519 /// insert block, taking care to avoid creation of branches from dummy 1520 /// blocks. It is legal to call this function even if there is no current 1521 /// insertion point. 1522 /// 1523 /// This function clears the current insertion point. The caller should follow 1524 /// calls to this function with calls to Emit*Block prior to generation new 1525 /// code. 1526 void EmitBranch(llvm::BasicBlock *Block); 1527 1528 /// HaveInsertPoint - True if an insertion point is defined. If not, this 1529 /// indicates that the current code being emitted is unreachable. 1530 bool HaveInsertPoint() const { 1531 return Builder.GetInsertBlock() != nullptr; 1532 } 1533 1534 /// EnsureInsertPoint - Ensure that an insertion point is defined so that 1535 /// emitted IR has a place to go. Note that by definition, if this function 1536 /// creates a block then that block is unreachable; callers may do better to 1537 /// detect when no insertion point is defined and simply skip IR generation. 1538 void EnsureInsertPoint() { 1539 if (!HaveInsertPoint()) 1540 EmitBlock(createBasicBlock()); 1541 } 1542 1543 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1544 /// specified stmt yet. 1545 void ErrorUnsupported(const Stmt *S, const char *Type); 1546 1547 //===--------------------------------------------------------------------===// 1548 // Helpers 1549 //===--------------------------------------------------------------------===// 1550 1551 LValue MakeAddrLValue(Address Addr, QualType T, 1552 AlignmentSource AlignSource = AlignmentSource::Type) { 1553 return LValue::MakeAddr(Addr, T, getContext(), AlignSource, 1554 CGM.getTBAAInfo(T)); 1555 } 1556 1557 LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment, 1558 AlignmentSource AlignSource = AlignmentSource::Type) { 1559 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), 1560 AlignSource, CGM.getTBAAInfo(T)); 1561 } 1562 1563 LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T); 1564 LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T); 1565 CharUnits getNaturalTypeAlignment(QualType T, 1566 AlignmentSource *Source = nullptr, 1567 bool forPointeeType = false); 1568 CharUnits getNaturalPointeeTypeAlignment(QualType T, 1569 AlignmentSource *Source = nullptr); 1570 1571 Address EmitLoadOfReference(Address Ref, const ReferenceType *RefTy, 1572 AlignmentSource *Source = nullptr); 1573 LValue EmitLoadOfReferenceLValue(Address Ref, const ReferenceType *RefTy); 1574 1575 /// CreateTempAlloca - This creates a alloca and inserts it into the entry 1576 /// block. The caller is responsible for setting an appropriate alignment on 1577 /// the alloca. 1578 llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, 1579 const Twine &Name = "tmp"); 1580 Address CreateTempAlloca(llvm::Type *Ty, CharUnits align, 1581 const Twine &Name = "tmp"); 1582 1583 /// CreateDefaultAlignedTempAlloca - This creates an alloca with the 1584 /// default ABI alignment of the given LLVM type. 1585 /// 1586 /// IMPORTANT NOTE: This is *not* generally the right alignment for 1587 /// any given AST type that happens to have been lowered to the 1588 /// given IR type. This should only ever be used for function-local, 1589 /// IR-driven manipulations like saving and restoring a value. Do 1590 /// not hand this address off to arbitrary IRGen routines, and especially 1591 /// do not pass it as an argument to a function that might expect a 1592 /// properly ABI-aligned value. 1593 Address CreateDefaultAlignTempAlloca(llvm::Type *Ty, 1594 const Twine &Name = "tmp"); 1595 1596 /// InitTempAlloca - Provide an initial value for the given alloca which 1597 /// will be observable at all locations in the function. 1598 /// 1599 /// The address should be something that was returned from one of 1600 /// the CreateTempAlloca or CreateMemTemp routines, and the 1601 /// initializer must be valid in the entry block (i.e. it must 1602 /// either be a constant or an argument value). 1603 void InitTempAlloca(Address Alloca, llvm::Value *Value); 1604 1605 /// CreateIRTemp - Create a temporary IR object of the given type, with 1606 /// appropriate alignment. This routine should only be used when an temporary 1607 /// value needs to be stored into an alloca (for example, to avoid explicit 1608 /// PHI construction), but the type is the IR type, not the type appropriate 1609 /// for storing in memory. 1610 /// 1611 /// That is, this is exactly equivalent to CreateMemTemp, but calling 1612 /// ConvertType instead of ConvertTypeForMem. 1613 Address CreateIRTemp(QualType T, const Twine &Name = "tmp"); 1614 1615 /// CreateMemTemp - Create a temporary memory object of the given type, with 1616 /// appropriate alignment. 1617 Address CreateMemTemp(QualType T, const Twine &Name = "tmp"); 1618 Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp"); 1619 1620 /// CreateAggTemp - Create a temporary memory object for the given 1621 /// aggregate type. 1622 AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp") { 1623 return AggValueSlot::forAddr(CreateMemTemp(T, Name), 1624 T.getQualifiers(), 1625 AggValueSlot::IsNotDestructed, 1626 AggValueSlot::DoesNotNeedGCBarriers, 1627 AggValueSlot::IsNotAliased); 1628 } 1629 1630 /// Emit a cast to void* in the appropriate address space. 1631 llvm::Value *EmitCastToVoidPtr(llvm::Value *value); 1632 1633 /// EvaluateExprAsBool - Perform the usual unary conversions on the specified 1634 /// expression and compare the result against zero, returning an Int1Ty value. 1635 llvm::Value *EvaluateExprAsBool(const Expr *E); 1636 1637 /// EmitIgnoredExpr - Emit an expression in a context which ignores the result. 1638 void EmitIgnoredExpr(const Expr *E); 1639 1640 /// EmitAnyExpr - Emit code to compute the specified expression which can have 1641 /// any type. The result is returned as an RValue struct. If this is an 1642 /// aggregate expression, the aggloc/agglocvolatile arguments indicate where 1643 /// the result should be returned. 1644 /// 1645 /// \param ignoreResult True if the resulting value isn't used. 1646 RValue EmitAnyExpr(const Expr *E, 1647 AggValueSlot aggSlot = AggValueSlot::ignored(), 1648 bool ignoreResult = false); 1649 1650 // EmitVAListRef - Emit a "reference" to a va_list; this is either the address 1651 // or the value of the expression, depending on how va_list is defined. 1652 Address EmitVAListRef(const Expr *E); 1653 1654 /// Emit a "reference" to a __builtin_ms_va_list; this is 1655 /// always the value of the expression, because a __builtin_ms_va_list is a 1656 /// pointer to a char. 1657 Address EmitMSVAListRef(const Expr *E); 1658 1659 /// EmitAnyExprToTemp - Similary to EmitAnyExpr(), however, the result will 1660 /// always be accessible even if no aggregate location is provided. 1661 RValue EmitAnyExprToTemp(const Expr *E); 1662 1663 /// EmitAnyExprToMem - Emits the code necessary to evaluate an 1664 /// arbitrary expression into the given memory location. 1665 void EmitAnyExprToMem(const Expr *E, Address Location, 1666 Qualifiers Quals, bool IsInitializer); 1667 1668 void EmitAnyExprToExn(const Expr *E, Address Addr); 1669 1670 /// EmitExprAsInit - Emits the code necessary to initialize a 1671 /// location in memory with the given initializer. 1672 void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1673 bool capturedByInit); 1674 1675 /// hasVolatileMember - returns true if aggregate type has a volatile 1676 /// member. 1677 bool hasVolatileMember(QualType T) { 1678 if (const RecordType *RT = T->getAs<RecordType>()) { 1679 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl()); 1680 return RD->hasVolatileMember(); 1681 } 1682 return false; 1683 } 1684 /// EmitAggregateCopy - Emit an aggregate assignment. 1685 /// 1686 /// The difference to EmitAggregateCopy is that tail padding is not copied. 1687 /// This is required for correctness when assigning non-POD structures in C++. 1688 void EmitAggregateAssign(Address DestPtr, Address SrcPtr, 1689 QualType EltTy) { 1690 bool IsVolatile = hasVolatileMember(EltTy); 1691 EmitAggregateCopy(DestPtr, SrcPtr, EltTy, IsVolatile, true); 1692 } 1693 1694 void EmitAggregateCopyCtor(Address DestPtr, Address SrcPtr, 1695 QualType DestTy, QualType SrcTy) { 1696 EmitAggregateCopy(DestPtr, SrcPtr, SrcTy, /*IsVolatile=*/false, 1697 /*IsAssignment=*/false); 1698 } 1699 1700 /// EmitAggregateCopy - Emit an aggregate copy. 1701 /// 1702 /// \param isVolatile - True iff either the source or the destination is 1703 /// volatile. 1704 /// \param isAssignment - If false, allow padding to be copied. This often 1705 /// yields more efficient. 1706 void EmitAggregateCopy(Address DestPtr, Address SrcPtr, 1707 QualType EltTy, bool isVolatile=false, 1708 bool isAssignment = false); 1709 1710 /// GetAddrOfLocalVar - Return the address of a local variable. 1711 Address GetAddrOfLocalVar(const VarDecl *VD) { 1712 auto it = LocalDeclMap.find(VD); 1713 assert(it != LocalDeclMap.end() && 1714 "Invalid argument to GetAddrOfLocalVar(), no decl!"); 1715 return it->second; 1716 } 1717 1718 /// getOpaqueLValueMapping - Given an opaque value expression (which 1719 /// must be mapped to an l-value), return its mapping. 1720 const LValue &getOpaqueLValueMapping(const OpaqueValueExpr *e) { 1721 assert(OpaqueValueMapping::shouldBindAsLValue(e)); 1722 1723 llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator 1724 it = OpaqueLValues.find(e); 1725 assert(it != OpaqueLValues.end() && "no mapping for opaque value!"); 1726 return it->second; 1727 } 1728 1729 /// getOpaqueRValueMapping - Given an opaque value expression (which 1730 /// must be mapped to an r-value), return its mapping. 1731 const RValue &getOpaqueRValueMapping(const OpaqueValueExpr *e) { 1732 assert(!OpaqueValueMapping::shouldBindAsLValue(e)); 1733 1734 llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator 1735 it = OpaqueRValues.find(e); 1736 assert(it != OpaqueRValues.end() && "no mapping for opaque value!"); 1737 return it->second; 1738 } 1739 1740 /// getAccessedFieldNo - Given an encoded value and a result number, return 1741 /// the input field number being accessed. 1742 static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts); 1743 1744 llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L); 1745 llvm::BasicBlock *GetIndirectGotoBlock(); 1746 1747 /// EmitNullInitialization - Generate code to set a value of the given type to 1748 /// null, If the type contains data member pointers, they will be initialized 1749 /// to -1 in accordance with the Itanium C++ ABI. 1750 void EmitNullInitialization(Address DestPtr, QualType Ty); 1751 1752 /// Emits a call to an LLVM variable-argument intrinsic, either 1753 /// \c llvm.va_start or \c llvm.va_end. 1754 /// \param ArgValue A reference to the \c va_list as emitted by either 1755 /// \c EmitVAListRef or \c EmitMSVAListRef. 1756 /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise, 1757 /// calls \c llvm.va_end. 1758 llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart); 1759 1760 /// Generate code to get an argument from the passed in pointer 1761 /// and update it accordingly. 1762 /// \param VE The \c VAArgExpr for which to generate code. 1763 /// \param VAListAddr Receives a reference to the \c va_list as emitted by 1764 /// either \c EmitVAListRef or \c EmitMSVAListRef. 1765 /// \returns A pointer to the argument. 1766 // FIXME: We should be able to get rid of this method and use the va_arg 1767 // instruction in LLVM instead once it works well enough. 1768 Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr); 1769 1770 /// emitArrayLength - Compute the length of an array, even if it's a 1771 /// VLA, and drill down to the base element type. 1772 llvm::Value *emitArrayLength(const ArrayType *arrayType, 1773 QualType &baseType, 1774 Address &addr); 1775 1776 /// EmitVLASize - Capture all the sizes for the VLA expressions in 1777 /// the given variably-modified type and store them in the VLASizeMap. 1778 /// 1779 /// This function can be called with a null (unreachable) insert point. 1780 void EmitVariablyModifiedType(QualType Ty); 1781 1782 /// getVLASize - Returns an LLVM value that corresponds to the size, 1783 /// in non-variably-sized elements, of a variable length array type, 1784 /// plus that largest non-variably-sized element type. Assumes that 1785 /// the type has already been emitted with EmitVariablyModifiedType. 1786 std::pair<llvm::Value*,QualType> getVLASize(const VariableArrayType *vla); 1787 std::pair<llvm::Value*,QualType> getVLASize(QualType vla); 1788 1789 /// LoadCXXThis - Load the value of 'this'. This function is only valid while 1790 /// generating code for an C++ member function. 1791 llvm::Value *LoadCXXThis() { 1792 assert(CXXThisValue && "no 'this' value for this function"); 1793 return CXXThisValue; 1794 } 1795 Address LoadCXXThisAddress(); 1796 1797 /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have 1798 /// virtual bases. 1799 // FIXME: Every place that calls LoadCXXVTT is something 1800 // that needs to be abstracted properly. 1801 llvm::Value *LoadCXXVTT() { 1802 assert(CXXStructorImplicitParamValue && "no VTT value for this function"); 1803 return CXXStructorImplicitParamValue; 1804 } 1805 1806 /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a 1807 /// complete class to the given direct base. 1808 Address 1809 GetAddressOfDirectBaseInCompleteClass(Address Value, 1810 const CXXRecordDecl *Derived, 1811 const CXXRecordDecl *Base, 1812 bool BaseIsVirtual); 1813 1814 static bool ShouldNullCheckClassCastValue(const CastExpr *Cast); 1815 1816 /// GetAddressOfBaseClass - This function will add the necessary delta to the 1817 /// load of 'this' and returns address of the base class. 1818 Address GetAddressOfBaseClass(Address Value, 1819 const CXXRecordDecl *Derived, 1820 CastExpr::path_const_iterator PathBegin, 1821 CastExpr::path_const_iterator PathEnd, 1822 bool NullCheckValue, SourceLocation Loc); 1823 1824 Address GetAddressOfDerivedClass(Address Value, 1825 const CXXRecordDecl *Derived, 1826 CastExpr::path_const_iterator PathBegin, 1827 CastExpr::path_const_iterator PathEnd, 1828 bool NullCheckValue); 1829 1830 /// GetVTTParameter - Return the VTT parameter that should be passed to a 1831 /// base constructor/destructor with virtual bases. 1832 /// FIXME: VTTs are Itanium ABI-specific, so the definition should move 1833 /// to ItaniumCXXABI.cpp together with all the references to VTT. 1834 llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase, 1835 bool Delegating); 1836 1837 void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor, 1838 CXXCtorType CtorType, 1839 const FunctionArgList &Args, 1840 SourceLocation Loc); 1841 // It's important not to confuse this and the previous function. Delegating 1842 // constructors are the C++0x feature. The constructor delegate optimization 1843 // is used to reduce duplication in the base and complete consturctors where 1844 // they are substantially the same. 1845 void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor, 1846 const FunctionArgList &Args); 1847 1848 void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type, 1849 bool ForVirtualBase, bool Delegating, 1850 Address This, const CXXConstructExpr *E); 1851 1852 /// Emit assumption load for all bases. Requires to be be called only on 1853 /// most-derived class and not under construction of the object. 1854 void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This); 1855 1856 /// Emit assumption that vptr load == global vtable. 1857 void EmitVTableAssumptionLoad(const VPtr &vptr, Address This); 1858 1859 void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D, 1860 Address This, Address Src, 1861 const CXXConstructExpr *E); 1862 1863 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1864 const ConstantArrayType *ArrayTy, 1865 Address ArrayPtr, 1866 const CXXConstructExpr *E, 1867 bool ZeroInitialization = false); 1868 1869 void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D, 1870 llvm::Value *NumElements, 1871 Address ArrayPtr, 1872 const CXXConstructExpr *E, 1873 bool ZeroInitialization = false); 1874 1875 static Destroyer destroyCXXObject; 1876 1877 void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type, 1878 bool ForVirtualBase, bool Delegating, 1879 Address This); 1880 1881 void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType, 1882 llvm::Type *ElementTy, Address NewPtr, 1883 llvm::Value *NumElements, 1884 llvm::Value *AllocSizeWithoutCookie); 1885 1886 void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType, 1887 Address Ptr); 1888 1889 llvm::Value *EmitLifetimeStart(uint64_t Size, llvm::Value *Addr); 1890 void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr); 1891 1892 llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E); 1893 void EmitCXXDeleteExpr(const CXXDeleteExpr *E); 1894 1895 void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr, 1896 QualType DeleteTy); 1897 1898 RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type, 1899 const Expr *Arg, bool IsDelete); 1900 1901 llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E); 1902 llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE); 1903 Address EmitCXXUuidofExpr(const CXXUuidofExpr *E); 1904 1905 /// \brief Situations in which we might emit a check for the suitability of a 1906 /// pointer or glvalue. 1907 enum TypeCheckKind { 1908 /// Checking the operand of a load. Must be suitably sized and aligned. 1909 TCK_Load, 1910 /// Checking the destination of a store. Must be suitably sized and aligned. 1911 TCK_Store, 1912 /// Checking the bound value in a reference binding. Must be suitably sized 1913 /// and aligned, but is not required to refer to an object (until the 1914 /// reference is used), per core issue 453. 1915 TCK_ReferenceBinding, 1916 /// Checking the object expression in a non-static data member access. Must 1917 /// be an object within its lifetime. 1918 TCK_MemberAccess, 1919 /// Checking the 'this' pointer for a call to a non-static member function. 1920 /// Must be an object within its lifetime. 1921 TCK_MemberCall, 1922 /// Checking the 'this' pointer for a constructor call. 1923 TCK_ConstructorCall, 1924 /// Checking the operand of a static_cast to a derived pointer type. Must be 1925 /// null or an object within its lifetime. 1926 TCK_DowncastPointer, 1927 /// Checking the operand of a static_cast to a derived reference type. Must 1928 /// be an object within its lifetime. 1929 TCK_DowncastReference, 1930 /// Checking the operand of a cast to a base object. Must be suitably sized 1931 /// and aligned. 1932 TCK_Upcast, 1933 /// Checking the operand of a cast to a virtual base object. Must be an 1934 /// object within its lifetime. 1935 TCK_UpcastToVirtualBase 1936 }; 1937 1938 /// \brief Whether any type-checking sanitizers are enabled. If \c false, 1939 /// calls to EmitTypeCheck can be skipped. 1940 bool sanitizePerformTypeCheck() const; 1941 1942 /// \brief Emit a check that \p V is the address of storage of the 1943 /// appropriate size and alignment for an object of type \p Type. 1944 void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V, 1945 QualType Type, CharUnits Alignment = CharUnits::Zero(), 1946 bool SkipNullCheck = false); 1947 1948 /// \brief Emit a check that \p Base points into an array object, which 1949 /// we can access at index \p Index. \p Accessed should be \c false if we 1950 /// this expression is used as an lvalue, for instance in "&Arr[Idx]". 1951 void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index, 1952 QualType IndexType, bool Accessed); 1953 1954 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1955 bool isInc, bool isPre); 1956 ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV, 1957 bool isInc, bool isPre); 1958 1959 void EmitAlignmentAssumption(llvm::Value *PtrValue, unsigned Alignment, 1960 llvm::Value *OffsetValue = nullptr) { 1961 Builder.CreateAlignmentAssumption(CGM.getDataLayout(), PtrValue, Alignment, 1962 OffsetValue); 1963 } 1964 1965 //===--------------------------------------------------------------------===// 1966 // Declaration Emission 1967 //===--------------------------------------------------------------------===// 1968 1969 /// EmitDecl - Emit a declaration. 1970 /// 1971 /// This function can be called with a null (unreachable) insert point. 1972 void EmitDecl(const Decl &D); 1973 1974 /// EmitVarDecl - Emit a local variable declaration. 1975 /// 1976 /// This function can be called with a null (unreachable) insert point. 1977 void EmitVarDecl(const VarDecl &D); 1978 1979 void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue, 1980 bool capturedByInit); 1981 void EmitScalarInit(llvm::Value *init, LValue lvalue); 1982 1983 typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D, 1984 llvm::Value *Address); 1985 1986 /// \brief Determine whether the given initializer is trivial in the sense 1987 /// that it requires no code to be generated. 1988 bool isTrivialInitializer(const Expr *Init); 1989 1990 /// EmitAutoVarDecl - Emit an auto variable declaration. 1991 /// 1992 /// This function can be called with a null (unreachable) insert point. 1993 void EmitAutoVarDecl(const VarDecl &D); 1994 1995 class AutoVarEmission { 1996 friend class CodeGenFunction; 1997 1998 const VarDecl *Variable; 1999 2000 /// The address of the alloca. Invalid if the variable was emitted 2001 /// as a global constant. 2002 Address Addr; 2003 2004 llvm::Value *NRVOFlag; 2005 2006 /// True if the variable is a __block variable. 2007 bool IsByRef; 2008 2009 /// True if the variable is of aggregate type and has a constant 2010 /// initializer. 2011 bool IsConstantAggregate; 2012 2013 /// Non-null if we should use lifetime annotations. 2014 llvm::Value *SizeForLifetimeMarkers; 2015 2016 struct Invalid {}; 2017 AutoVarEmission(Invalid) : Variable(nullptr), Addr(Address::invalid()) {} 2018 2019 AutoVarEmission(const VarDecl &variable) 2020 : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr), 2021 IsByRef(false), IsConstantAggregate(false), 2022 SizeForLifetimeMarkers(nullptr) {} 2023 2024 bool wasEmittedAsGlobal() const { return !Addr.isValid(); } 2025 2026 public: 2027 static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); } 2028 2029 bool useLifetimeMarkers() const { 2030 return SizeForLifetimeMarkers != nullptr; 2031 } 2032 llvm::Value *getSizeForLifetimeMarkers() const { 2033 assert(useLifetimeMarkers()); 2034 return SizeForLifetimeMarkers; 2035 } 2036 2037 /// Returns the raw, allocated address, which is not necessarily 2038 /// the address of the object itself. 2039 Address getAllocatedAddress() const { 2040 return Addr; 2041 } 2042 2043 /// Returns the address of the object within this declaration. 2044 /// Note that this does not chase the forwarding pointer for 2045 /// __block decls. 2046 Address getObjectAddress(CodeGenFunction &CGF) const { 2047 if (!IsByRef) return Addr; 2048 2049 return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false); 2050 } 2051 }; 2052 AutoVarEmission EmitAutoVarAlloca(const VarDecl &var); 2053 void EmitAutoVarInit(const AutoVarEmission &emission); 2054 void EmitAutoVarCleanups(const AutoVarEmission &emission); 2055 void emitAutoVarTypeCleanup(const AutoVarEmission &emission, 2056 QualType::DestructionKind dtorKind); 2057 2058 void EmitStaticVarDecl(const VarDecl &D, 2059 llvm::GlobalValue::LinkageTypes Linkage); 2060 2061 class ParamValue { 2062 llvm::Value *Value; 2063 unsigned Alignment; 2064 ParamValue(llvm::Value *V, unsigned A) : Value(V), Alignment(A) {} 2065 public: 2066 static ParamValue forDirect(llvm::Value *value) { 2067 return ParamValue(value, 0); 2068 } 2069 static ParamValue forIndirect(Address addr) { 2070 assert(!addr.getAlignment().isZero()); 2071 return ParamValue(addr.getPointer(), addr.getAlignment().getQuantity()); 2072 } 2073 2074 bool isIndirect() const { return Alignment != 0; } 2075 llvm::Value *getAnyValue() const { return Value; } 2076 2077 llvm::Value *getDirectValue() const { 2078 assert(!isIndirect()); 2079 return Value; 2080 } 2081 2082 Address getIndirectAddress() const { 2083 assert(isIndirect()); 2084 return Address(Value, CharUnits::fromQuantity(Alignment)); 2085 } 2086 }; 2087 2088 /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl. 2089 void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo); 2090 2091 /// protectFromPeepholes - Protect a value that we're intending to 2092 /// store to the side, but which will probably be used later, from 2093 /// aggressive peepholing optimizations that might delete it. 2094 /// 2095 /// Pass the result to unprotectFromPeepholes to declare that 2096 /// protection is no longer required. 2097 /// 2098 /// There's no particular reason why this shouldn't apply to 2099 /// l-values, it's just that no existing peepholes work on pointers. 2100 PeepholeProtection protectFromPeepholes(RValue rvalue); 2101 void unprotectFromPeepholes(PeepholeProtection protection); 2102 2103 //===--------------------------------------------------------------------===// 2104 // Statement Emission 2105 //===--------------------------------------------------------------------===// 2106 2107 /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info. 2108 void EmitStopPoint(const Stmt *S); 2109 2110 /// EmitStmt - Emit the code for the statement \arg S. It is legal to call 2111 /// this function even if there is no current insertion point. 2112 /// 2113 /// This function may clear the current insertion point; callers should use 2114 /// EnsureInsertPoint if they wish to subsequently generate code without first 2115 /// calling EmitBlock, EmitBranch, or EmitStmt. 2116 void EmitStmt(const Stmt *S); 2117 2118 /// EmitSimpleStmt - Try to emit a "simple" statement which does not 2119 /// necessarily require an insertion point or debug information; typically 2120 /// because the statement amounts to a jump or a container of other 2121 /// statements. 2122 /// 2123 /// \return True if the statement was handled. 2124 bool EmitSimpleStmt(const Stmt *S); 2125 2126 Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false, 2127 AggValueSlot AVS = AggValueSlot::ignored()); 2128 Address EmitCompoundStmtWithoutScope(const CompoundStmt &S, 2129 bool GetLast = false, 2130 AggValueSlot AVS = 2131 AggValueSlot::ignored()); 2132 2133 /// EmitLabel - Emit the block for the given label. It is legal to call this 2134 /// function even if there is no current insertion point. 2135 void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt. 2136 2137 void EmitLabelStmt(const LabelStmt &S); 2138 void EmitAttributedStmt(const AttributedStmt &S); 2139 void EmitGotoStmt(const GotoStmt &S); 2140 void EmitIndirectGotoStmt(const IndirectGotoStmt &S); 2141 void EmitIfStmt(const IfStmt &S); 2142 2143 void EmitWhileStmt(const WhileStmt &S, 2144 ArrayRef<const Attr *> Attrs = None); 2145 void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = None); 2146 void EmitForStmt(const ForStmt &S, 2147 ArrayRef<const Attr *> Attrs = None); 2148 void EmitReturnStmt(const ReturnStmt &S); 2149 void EmitDeclStmt(const DeclStmt &S); 2150 void EmitBreakStmt(const BreakStmt &S); 2151 void EmitContinueStmt(const ContinueStmt &S); 2152 void EmitSwitchStmt(const SwitchStmt &S); 2153 void EmitDefaultStmt(const DefaultStmt &S); 2154 void EmitCaseStmt(const CaseStmt &S); 2155 void EmitCaseStmtRange(const CaseStmt &S); 2156 void EmitAsmStmt(const AsmStmt &S); 2157 2158 void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S); 2159 void EmitObjCAtTryStmt(const ObjCAtTryStmt &S); 2160 void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S); 2161 void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S); 2162 void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S); 2163 2164 void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2165 void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false); 2166 2167 void EmitCXXTryStmt(const CXXTryStmt &S); 2168 void EmitSEHTryStmt(const SEHTryStmt &S); 2169 void EmitSEHLeaveStmt(const SEHLeaveStmt &S); 2170 void EnterSEHTryStmt(const SEHTryStmt &S); 2171 void ExitSEHTryStmt(const SEHTryStmt &S); 2172 2173 void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter, 2174 const Stmt *OutlinedStmt); 2175 2176 llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF, 2177 const SEHExceptStmt &Except); 2178 2179 llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF, 2180 const SEHFinallyStmt &Finally); 2181 2182 void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF, 2183 llvm::Value *ParentFP, 2184 llvm::Value *EntryEBP); 2185 llvm::Value *EmitSEHExceptionCode(); 2186 llvm::Value *EmitSEHExceptionInfo(); 2187 llvm::Value *EmitSEHAbnormalTermination(); 2188 2189 /// Scan the outlined statement for captures from the parent function. For 2190 /// each capture, mark the capture as escaped and emit a call to 2191 /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap. 2192 void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt, 2193 bool IsFilter); 2194 2195 /// Recovers the address of a local in a parent function. ParentVar is the 2196 /// address of the variable used in the immediate parent function. It can 2197 /// either be an alloca or a call to llvm.localrecover if there are nested 2198 /// outlined functions. ParentFP is the frame pointer of the outermost parent 2199 /// frame. 2200 Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF, 2201 Address ParentVar, 2202 llvm::Value *ParentFP); 2203 2204 void EmitCXXForRangeStmt(const CXXForRangeStmt &S, 2205 ArrayRef<const Attr *> Attrs = None); 2206 2207 LValue InitCapturedStruct(const CapturedStmt &S); 2208 llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K); 2209 llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S); 2210 Address GenerateCapturedStmtArgument(const CapturedStmt &S); 2211 llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S); 2212 void GenerateOpenMPCapturedVars(const CapturedStmt &S, 2213 SmallVectorImpl<llvm::Value *> &CapturedVars); 2214 /// \brief Perform element by element copying of arrays with type \a 2215 /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure 2216 /// generated by \a CopyGen. 2217 /// 2218 /// \param DestAddr Address of the destination array. 2219 /// \param SrcAddr Address of the source array. 2220 /// \param OriginalType Type of destination and source arrays. 2221 /// \param CopyGen Copying procedure that copies value of single array element 2222 /// to another single array element. 2223 void EmitOMPAggregateAssign( 2224 Address DestAddr, Address SrcAddr, QualType OriginalType, 2225 const llvm::function_ref<void(Address, Address)> &CopyGen); 2226 /// \brief Emit proper copying of data from one variable to another. 2227 /// 2228 /// \param OriginalType Original type of the copied variables. 2229 /// \param DestAddr Destination address. 2230 /// \param SrcAddr Source address. 2231 /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has 2232 /// type of the base array element). 2233 /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of 2234 /// the base array element). 2235 /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a 2236 /// DestVD. 2237 void EmitOMPCopy(QualType OriginalType, 2238 Address DestAddr, Address SrcAddr, 2239 const VarDecl *DestVD, const VarDecl *SrcVD, 2240 const Expr *Copy); 2241 /// \brief Emit atomic update code for constructs: \a X = \a X \a BO \a E or 2242 /// \a X = \a E \a BO \a E. 2243 /// 2244 /// \param X Value to be updated. 2245 /// \param E Update value. 2246 /// \param BO Binary operation for update operation. 2247 /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update 2248 /// expression, false otherwise. 2249 /// \param AO Atomic ordering of the generated atomic instructions. 2250 /// \param CommonGen Code generator for complex expressions that cannot be 2251 /// expressed through atomicrmw instruction. 2252 /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was 2253 /// generated, <false, RValue::get(nullptr)> otherwise. 2254 std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr( 2255 LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart, 2256 llvm::AtomicOrdering AO, SourceLocation Loc, 2257 const llvm::function_ref<RValue(RValue)> &CommonGen); 2258 bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D, 2259 OMPPrivateScope &PrivateScope); 2260 void EmitOMPPrivateClause(const OMPExecutableDirective &D, 2261 OMPPrivateScope &PrivateScope); 2262 /// \brief Emit code for copyin clause in \a D directive. The next code is 2263 /// generated at the start of outlined functions for directives: 2264 /// \code 2265 /// threadprivate_var1 = master_threadprivate_var1; 2266 /// operator=(threadprivate_var2, master_threadprivate_var2); 2267 /// ... 2268 /// __kmpc_barrier(&loc, global_tid); 2269 /// \endcode 2270 /// 2271 /// \param D OpenMP directive possibly with 'copyin' clause(s). 2272 /// \returns true if at least one copyin variable is found, false otherwise. 2273 bool EmitOMPCopyinClause(const OMPExecutableDirective &D); 2274 /// \brief Emit initial code for lastprivate variables. If some variable is 2275 /// not also firstprivate, then the default initialization is used. Otherwise 2276 /// initialization of this variable is performed by EmitOMPFirstprivateClause 2277 /// method. 2278 /// 2279 /// \param D Directive that may have 'lastprivate' directives. 2280 /// \param PrivateScope Private scope for capturing lastprivate variables for 2281 /// proper codegen in internal captured statement. 2282 /// 2283 /// \returns true if there is at least one lastprivate variable, false 2284 /// otherwise. 2285 bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D, 2286 OMPPrivateScope &PrivateScope); 2287 /// \brief Emit final copying of lastprivate values to original variables at 2288 /// the end of the worksharing or simd directive. 2289 /// 2290 /// \param D Directive that has at least one 'lastprivate' directives. 2291 /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if 2292 /// it is the last iteration of the loop code in associated directive, or to 2293 /// 'i1 false' otherwise. If this item is nullptr, no final check is required. 2294 void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D, 2295 llvm::Value *IsLastIterCond = nullptr); 2296 /// \brief Emit initial code for reduction variables. Creates reduction copies 2297 /// and initializes them with the values according to OpenMP standard. 2298 /// 2299 /// \param D Directive (possibly) with the 'reduction' clause. 2300 /// \param PrivateScope Private scope for capturing reduction variables for 2301 /// proper codegen in internal captured statement. 2302 /// 2303 void EmitOMPReductionClauseInit(const OMPExecutableDirective &D, 2304 OMPPrivateScope &PrivateScope); 2305 /// \brief Emit final update of reduction values to original variables at 2306 /// the end of the directive. 2307 /// 2308 /// \param D Directive that has at least one 'reduction' directives. 2309 void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D); 2310 /// \brief Emit initial code for linear variables. Creates private copies 2311 /// and initializes them with the values according to OpenMP standard. 2312 /// 2313 /// \param D Directive (possibly) with the 'linear' clause. 2314 void EmitOMPLinearClauseInit(const OMPLoopDirective &D); 2315 2316 void EmitOMPParallelDirective(const OMPParallelDirective &S); 2317 void EmitOMPSimdDirective(const OMPSimdDirective &S); 2318 void EmitOMPForDirective(const OMPForDirective &S); 2319 void EmitOMPForSimdDirective(const OMPForSimdDirective &S); 2320 void EmitOMPSectionsDirective(const OMPSectionsDirective &S); 2321 void EmitOMPSectionDirective(const OMPSectionDirective &S); 2322 void EmitOMPSingleDirective(const OMPSingleDirective &S); 2323 void EmitOMPMasterDirective(const OMPMasterDirective &S); 2324 void EmitOMPCriticalDirective(const OMPCriticalDirective &S); 2325 void EmitOMPParallelForDirective(const OMPParallelForDirective &S); 2326 void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S); 2327 void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S); 2328 void EmitOMPTaskDirective(const OMPTaskDirective &S); 2329 void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S); 2330 void EmitOMPBarrierDirective(const OMPBarrierDirective &S); 2331 void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S); 2332 void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S); 2333 void EmitOMPFlushDirective(const OMPFlushDirective &S); 2334 void EmitOMPOrderedDirective(const OMPOrderedDirective &S); 2335 void EmitOMPAtomicDirective(const OMPAtomicDirective &S); 2336 void EmitOMPTargetDirective(const OMPTargetDirective &S); 2337 void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S); 2338 void EmitOMPTeamsDirective(const OMPTeamsDirective &S); 2339 void 2340 EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S); 2341 void EmitOMPCancelDirective(const OMPCancelDirective &S); 2342 void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S); 2343 void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S); 2344 void EmitOMPDistributeDirective(const OMPDistributeDirective &S); 2345 2346 /// \brief Emit inner loop of the worksharing/simd construct. 2347 /// 2348 /// \param S Directive, for which the inner loop must be emitted. 2349 /// \param RequiresCleanup true, if directive has some associated private 2350 /// variables. 2351 /// \param LoopCond Bollean condition for loop continuation. 2352 /// \param IncExpr Increment expression for loop control variable. 2353 /// \param BodyGen Generator for the inner body of the inner loop. 2354 /// \param PostIncGen Genrator for post-increment code (required for ordered 2355 /// loop directvies). 2356 void EmitOMPInnerLoop( 2357 const Stmt &S, bool RequiresCleanup, const Expr *LoopCond, 2358 const Expr *IncExpr, 2359 const llvm::function_ref<void(CodeGenFunction &)> &BodyGen, 2360 const llvm::function_ref<void(CodeGenFunction &)> &PostIncGen); 2361 2362 JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind); 2363 2364 private: 2365 2366 /// Helpers for the OpenMP loop directives. 2367 void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit); 2368 void EmitOMPSimdInit(const OMPLoopDirective &D); 2369 void EmitOMPSimdFinal(const OMPLoopDirective &D); 2370 /// \brief Emit code for the worksharing loop-based directive. 2371 /// \return true, if this construct has any lastprivate clause, false - 2372 /// otherwise. 2373 bool EmitOMPWorksharingLoop(const OMPLoopDirective &S); 2374 void EmitOMPForOuterLoop(OpenMPScheduleClauseKind ScheduleKind, 2375 const OMPLoopDirective &S, 2376 OMPPrivateScope &LoopScope, bool Ordered, 2377 Address LB, Address UB, Address ST, 2378 Address IL, llvm::Value *Chunk); 2379 /// \brief Emit code for sections directive. 2380 OpenMPDirectiveKind EmitSections(const OMPExecutableDirective &S); 2381 2382 public: 2383 2384 //===--------------------------------------------------------------------===// 2385 // LValue Expression Emission 2386 //===--------------------------------------------------------------------===// 2387 2388 /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type. 2389 RValue GetUndefRValue(QualType Ty); 2390 2391 /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E 2392 /// and issue an ErrorUnsupported style diagnostic (using the 2393 /// provided Name). 2394 RValue EmitUnsupportedRValue(const Expr *E, 2395 const char *Name); 2396 2397 /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue 2398 /// an ErrorUnsupported style diagnostic (using the provided Name). 2399 LValue EmitUnsupportedLValue(const Expr *E, 2400 const char *Name); 2401 2402 /// EmitLValue - Emit code to compute a designator that specifies the location 2403 /// of the expression. 2404 /// 2405 /// This can return one of two things: a simple address or a bitfield 2406 /// reference. In either case, the LLVM Value* in the LValue structure is 2407 /// guaranteed to be an LLVM pointer type. 2408 /// 2409 /// If this returns a bitfield reference, nothing about the pointee type of 2410 /// the LLVM value is known: For example, it may not be a pointer to an 2411 /// integer. 2412 /// 2413 /// If this returns a normal address, and if the lvalue's C type is fixed 2414 /// size, this method guarantees that the returned pointer type will point to 2415 /// an LLVM type of the same size of the lvalue's type. If the lvalue has a 2416 /// variable length type, this is not possible. 2417 /// 2418 LValue EmitLValue(const Expr *E); 2419 2420 /// \brief Same as EmitLValue but additionally we generate checking code to 2421 /// guard against undefined behavior. This is only suitable when we know 2422 /// that the address will be used to access the object. 2423 LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK); 2424 2425 RValue convertTempToRValue(Address addr, QualType type, 2426 SourceLocation Loc); 2427 2428 void EmitAtomicInit(Expr *E, LValue lvalue); 2429 2430 bool LValueIsSuitableForInlineAtomic(LValue Src); 2431 bool typeIsSuitableForInlineAtomic(QualType Ty, bool IsVolatile) const; 2432 2433 RValue EmitAtomicLoad(LValue LV, SourceLocation SL, 2434 AggValueSlot Slot = AggValueSlot::ignored()); 2435 2436 RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc, 2437 llvm::AtomicOrdering AO, bool IsVolatile = false, 2438 AggValueSlot slot = AggValueSlot::ignored()); 2439 2440 void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit); 2441 2442 void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO, 2443 bool IsVolatile, bool isInit); 2444 2445 std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange( 2446 LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, 2447 llvm::AtomicOrdering Success = llvm::SequentiallyConsistent, 2448 llvm::AtomicOrdering Failure = llvm::SequentiallyConsistent, 2449 bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored()); 2450 2451 void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO, 2452 const llvm::function_ref<RValue(RValue)> &UpdateOp, 2453 bool IsVolatile); 2454 2455 /// EmitToMemory - Change a scalar value from its value 2456 /// representation to its in-memory representation. 2457 llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty); 2458 2459 /// EmitFromMemory - Change a scalar value from its memory 2460 /// representation to its value representation. 2461 llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty); 2462 2463 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2464 /// care to appropriately convert from the memory representation to 2465 /// the LLVM value representation. 2466 llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty, 2467 SourceLocation Loc, 2468 AlignmentSource AlignSource = 2469 AlignmentSource::Type, 2470 llvm::MDNode *TBAAInfo = nullptr, 2471 QualType TBAABaseTy = QualType(), 2472 uint64_t TBAAOffset = 0, 2473 bool isNontemporal = false); 2474 2475 /// EmitLoadOfScalar - Load a scalar value from an address, taking 2476 /// care to appropriately convert from the memory representation to 2477 /// the LLVM value representation. The l-value must be a simple 2478 /// l-value. 2479 llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc); 2480 2481 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2482 /// care to appropriately convert from the memory representation to 2483 /// the LLVM value representation. 2484 void EmitStoreOfScalar(llvm::Value *Value, Address Addr, 2485 bool Volatile, QualType Ty, 2486 AlignmentSource AlignSource = AlignmentSource::Type, 2487 llvm::MDNode *TBAAInfo = nullptr, bool isInit = false, 2488 QualType TBAABaseTy = QualType(), 2489 uint64_t TBAAOffset = 0, bool isNontemporal = false); 2490 2491 /// EmitStoreOfScalar - Store a scalar value to an address, taking 2492 /// care to appropriately convert from the memory representation to 2493 /// the LLVM value representation. The l-value must be a simple 2494 /// l-value. The isInit flag indicates whether this is an initialization. 2495 /// If so, atomic qualifiers are ignored and the store is always non-atomic. 2496 void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false); 2497 2498 /// EmitLoadOfLValue - Given an expression that represents a value lvalue, 2499 /// this method emits the address of the lvalue, then loads the result as an 2500 /// rvalue, returning the rvalue. 2501 RValue EmitLoadOfLValue(LValue V, SourceLocation Loc); 2502 RValue EmitLoadOfExtVectorElementLValue(LValue V); 2503 RValue EmitLoadOfBitfieldLValue(LValue LV); 2504 RValue EmitLoadOfGlobalRegLValue(LValue LV); 2505 2506 /// EmitStoreThroughLValue - Store the specified rvalue into the specified 2507 /// lvalue, where both are guaranteed to the have the same type, and that type 2508 /// is 'Ty'. 2509 void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false); 2510 void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst); 2511 void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst); 2512 2513 /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints 2514 /// as EmitStoreThroughLValue. 2515 /// 2516 /// \param Result [out] - If non-null, this will be set to a Value* for the 2517 /// bit-field contents after the store, appropriate for use as the result of 2518 /// an assignment to the bit-field. 2519 void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst, 2520 llvm::Value **Result=nullptr); 2521 2522 /// Emit an l-value for an assignment (simple or compound) of complex type. 2523 LValue EmitComplexAssignmentLValue(const BinaryOperator *E); 2524 LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E); 2525 LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 2526 llvm::Value *&Result); 2527 2528 // Note: only available for agg return types 2529 LValue EmitBinaryOperatorLValue(const BinaryOperator *E); 2530 LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E); 2531 // Note: only available for agg return types 2532 LValue EmitCallExprLValue(const CallExpr *E); 2533 // Note: only available for agg return types 2534 LValue EmitVAArgExprLValue(const VAArgExpr *E); 2535 LValue EmitDeclRefLValue(const DeclRefExpr *E); 2536 LValue EmitStringLiteralLValue(const StringLiteral *E); 2537 LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E); 2538 LValue EmitPredefinedLValue(const PredefinedExpr *E); 2539 LValue EmitUnaryOpLValue(const UnaryOperator *E); 2540 LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E, 2541 bool Accessed = false); 2542 LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E, 2543 bool IsLowerBound = true); 2544 LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E); 2545 LValue EmitMemberExpr(const MemberExpr *E); 2546 LValue EmitObjCIsaExpr(const ObjCIsaExpr *E); 2547 LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E); 2548 LValue EmitInitListLValue(const InitListExpr *E); 2549 LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E); 2550 LValue EmitCastLValue(const CastExpr *E); 2551 LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); 2552 LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e); 2553 2554 Address EmitExtVectorElementLValue(LValue V); 2555 2556 RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc); 2557 2558 Address EmitArrayToPointerDecay(const Expr *Array, 2559 AlignmentSource *AlignSource = nullptr); 2560 2561 class ConstantEmission { 2562 llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference; 2563 ConstantEmission(llvm::Constant *C, bool isReference) 2564 : ValueAndIsReference(C, isReference) {} 2565 public: 2566 ConstantEmission() {} 2567 static ConstantEmission forReference(llvm::Constant *C) { 2568 return ConstantEmission(C, true); 2569 } 2570 static ConstantEmission forValue(llvm::Constant *C) { 2571 return ConstantEmission(C, false); 2572 } 2573 2574 explicit operator bool() const { 2575 return ValueAndIsReference.getOpaqueValue() != nullptr; 2576 } 2577 2578 bool isReference() const { return ValueAndIsReference.getInt(); } 2579 LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const { 2580 assert(isReference()); 2581 return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(), 2582 refExpr->getType()); 2583 } 2584 2585 llvm::Constant *getValue() const { 2586 assert(!isReference()); 2587 return ValueAndIsReference.getPointer(); 2588 } 2589 }; 2590 2591 ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr); 2592 2593 RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e, 2594 AggValueSlot slot = AggValueSlot::ignored()); 2595 LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e); 2596 2597 llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface, 2598 const ObjCIvarDecl *Ivar); 2599 LValue EmitLValueForField(LValue Base, const FieldDecl* Field); 2600 LValue EmitLValueForLambdaField(const FieldDecl *Field); 2601 2602 /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that 2603 /// if the Field is a reference, this will return the address of the reference 2604 /// and not the address of the value stored in the reference. 2605 LValue EmitLValueForFieldInitialization(LValue Base, 2606 const FieldDecl* Field); 2607 2608 LValue EmitLValueForIvar(QualType ObjectTy, 2609 llvm::Value* Base, const ObjCIvarDecl *Ivar, 2610 unsigned CVRQualifiers); 2611 2612 LValue EmitCXXConstructLValue(const CXXConstructExpr *E); 2613 LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E); 2614 LValue EmitLambdaLValue(const LambdaExpr *E); 2615 LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E); 2616 LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E); 2617 2618 LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E); 2619 LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E); 2620 LValue EmitStmtExprLValue(const StmtExpr *E); 2621 LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E); 2622 LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E); 2623 void EmitDeclRefExprDbgValue(const DeclRefExpr *E, llvm::Constant *Init); 2624 2625 //===--------------------------------------------------------------------===// 2626 // Scalar Expression Emission 2627 //===--------------------------------------------------------------------===// 2628 2629 /// EmitCall - Generate a call of the given function, expecting the given 2630 /// result type, and using the given argument list which specifies both the 2631 /// LLVM arguments and the types they were derived from. 2632 RValue EmitCall(const CGFunctionInfo &FnInfo, llvm::Value *Callee, 2633 ReturnValueSlot ReturnValue, const CallArgList &Args, 2634 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2635 llvm::Instruction **callOrInvoke = nullptr); 2636 2637 RValue EmitCall(QualType FnType, llvm::Value *Callee, const CallExpr *E, 2638 ReturnValueSlot ReturnValue, 2639 CGCalleeInfo CalleeInfo = CGCalleeInfo(), 2640 llvm::Value *Chain = nullptr); 2641 RValue EmitCallExpr(const CallExpr *E, 2642 ReturnValueSlot ReturnValue = ReturnValueSlot()); 2643 2644 void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl); 2645 2646 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2647 const Twine &name = ""); 2648 llvm::CallInst *EmitRuntimeCall(llvm::Value *callee, 2649 ArrayRef<llvm::Value*> args, 2650 const Twine &name = ""); 2651 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2652 const Twine &name = ""); 2653 llvm::CallInst *EmitNounwindRuntimeCall(llvm::Value *callee, 2654 ArrayRef<llvm::Value*> args, 2655 const Twine &name = ""); 2656 2657 llvm::CallSite EmitCallOrInvoke(llvm::Value *Callee, 2658 ArrayRef<llvm::Value *> Args, 2659 const Twine &Name = ""); 2660 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2661 ArrayRef<llvm::Value*> args, 2662 const Twine &name = ""); 2663 llvm::CallSite EmitRuntimeCallOrInvoke(llvm::Value *callee, 2664 const Twine &name = ""); 2665 void EmitNoreturnRuntimeCallOrInvoke(llvm::Value *callee, 2666 ArrayRef<llvm::Value*> args); 2667 2668 llvm::Value *BuildAppleKextVirtualCall(const CXXMethodDecl *MD, 2669 NestedNameSpecifier *Qual, 2670 llvm::Type *Ty); 2671 2672 llvm::Value *BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD, 2673 CXXDtorType Type, 2674 const CXXRecordDecl *RD); 2675 2676 RValue 2677 EmitCXXMemberOrOperatorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2678 ReturnValueSlot ReturnValue, llvm::Value *This, 2679 llvm::Value *ImplicitParam, 2680 QualType ImplicitParamTy, const CallExpr *E); 2681 RValue EmitCXXStructorCall(const CXXMethodDecl *MD, llvm::Value *Callee, 2682 ReturnValueSlot ReturnValue, llvm::Value *This, 2683 llvm::Value *ImplicitParam, 2684 QualType ImplicitParamTy, const CallExpr *E, 2685 StructorType Type); 2686 RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E, 2687 ReturnValueSlot ReturnValue); 2688 RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE, 2689 const CXXMethodDecl *MD, 2690 ReturnValueSlot ReturnValue, 2691 bool HasQualifier, 2692 NestedNameSpecifier *Qualifier, 2693 bool IsArrow, const Expr *Base); 2694 // Compute the object pointer. 2695 Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base, 2696 llvm::Value *memberPtr, 2697 const MemberPointerType *memberPtrType, 2698 AlignmentSource *AlignSource = nullptr); 2699 RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E, 2700 ReturnValueSlot ReturnValue); 2701 2702 RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E, 2703 const CXXMethodDecl *MD, 2704 ReturnValueSlot ReturnValue); 2705 2706 RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E, 2707 ReturnValueSlot ReturnValue); 2708 2709 2710 RValue EmitBuiltinExpr(const FunctionDecl *FD, 2711 unsigned BuiltinID, const CallExpr *E, 2712 ReturnValueSlot ReturnValue); 2713 2714 RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue); 2715 2716 /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call 2717 /// is unhandled by the current target. 2718 llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2719 2720 llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty, 2721 const llvm::CmpInst::Predicate Fp, 2722 const llvm::CmpInst::Predicate Ip, 2723 const llvm::Twine &Name = ""); 2724 llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2725 2726 llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID, 2727 unsigned LLVMIntrinsic, 2728 unsigned AltLLVMIntrinsic, 2729 const char *NameHint, 2730 unsigned Modifier, 2731 const CallExpr *E, 2732 SmallVectorImpl<llvm::Value *> &Ops, 2733 Address PtrOp0, Address PtrOp1); 2734 llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID, 2735 unsigned Modifier, llvm::Type *ArgTy, 2736 const CallExpr *E); 2737 llvm::Value *EmitNeonCall(llvm::Function *F, 2738 SmallVectorImpl<llvm::Value*> &O, 2739 const char *name, 2740 unsigned shift = 0, bool rightshift = false); 2741 llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx); 2742 llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty, 2743 bool negateForRightShift); 2744 llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt, 2745 llvm::Type *Ty, bool usgn, const char *name); 2746 llvm::Value *vectorWrapScalar16(llvm::Value *Op); 2747 llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2748 2749 llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops); 2750 llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2751 llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2752 llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2753 llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2754 llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E); 2755 llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID, 2756 const CallExpr *E); 2757 2758 llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E); 2759 llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E); 2760 llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E); 2761 llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E); 2762 llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E); 2763 llvm::Value *EmitObjCCollectionLiteral(const Expr *E, 2764 const ObjCMethodDecl *MethodWithObjects); 2765 llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E); 2766 RValue EmitObjCMessageExpr(const ObjCMessageExpr *E, 2767 ReturnValueSlot Return = ReturnValueSlot()); 2768 2769 /// Retrieves the default cleanup kind for an ARC cleanup. 2770 /// Except under -fobjc-arc-eh, ARC cleanups are normal-only. 2771 CleanupKind getARCCleanupKind() { 2772 return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions 2773 ? NormalAndEHCleanup : NormalCleanup; 2774 } 2775 2776 // ARC primitives. 2777 void EmitARCInitWeak(Address addr, llvm::Value *value); 2778 void EmitARCDestroyWeak(Address addr); 2779 llvm::Value *EmitARCLoadWeak(Address addr); 2780 llvm::Value *EmitARCLoadWeakRetained(Address addr); 2781 llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored); 2782 void EmitARCCopyWeak(Address dst, Address src); 2783 void EmitARCMoveWeak(Address dst, Address src); 2784 llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value); 2785 llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value); 2786 llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value, 2787 bool resultIgnored); 2788 llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value, 2789 bool resultIgnored); 2790 llvm::Value *EmitARCRetain(QualType type, llvm::Value *value); 2791 llvm::Value *EmitARCRetainNonBlock(llvm::Value *value); 2792 llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory); 2793 void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise); 2794 void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise); 2795 llvm::Value *EmitARCAutorelease(llvm::Value *value); 2796 llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value); 2797 llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value); 2798 llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value); 2799 2800 std::pair<LValue,llvm::Value*> 2801 EmitARCStoreAutoreleasing(const BinaryOperator *e); 2802 std::pair<LValue,llvm::Value*> 2803 EmitARCStoreStrong(const BinaryOperator *e, bool ignored); 2804 2805 llvm::Value *EmitObjCThrowOperand(const Expr *expr); 2806 llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr); 2807 llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr); 2808 2809 llvm::Value *EmitARCExtendBlockObject(const Expr *expr); 2810 llvm::Value *EmitARCRetainScalarExpr(const Expr *expr); 2811 llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr); 2812 2813 void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values); 2814 2815 static Destroyer destroyARCStrongImprecise; 2816 static Destroyer destroyARCStrongPrecise; 2817 static Destroyer destroyARCWeak; 2818 2819 void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr); 2820 llvm::Value *EmitObjCAutoreleasePoolPush(); 2821 llvm::Value *EmitObjCMRRAutoreleasePoolPush(); 2822 void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr); 2823 void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr); 2824 2825 /// \brief Emits a reference binding to the passed in expression. 2826 RValue EmitReferenceBindingToExpr(const Expr *E); 2827 2828 //===--------------------------------------------------------------------===// 2829 // Expression Emission 2830 //===--------------------------------------------------------------------===// 2831 2832 // Expressions are broken into three classes: scalar, complex, aggregate. 2833 2834 /// EmitScalarExpr - Emit the computation of the specified expression of LLVM 2835 /// scalar type, returning the result. 2836 llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false); 2837 2838 /// Emit a conversion from the specified type to the specified destination 2839 /// type, both of which are LLVM scalar types. 2840 llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy, 2841 QualType DstTy, SourceLocation Loc); 2842 2843 /// Emit a conversion from the specified complex type to the specified 2844 /// destination type, where the destination type is an LLVM scalar type. 2845 llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy, 2846 QualType DstTy, 2847 SourceLocation Loc); 2848 2849 /// EmitAggExpr - Emit the computation of the specified expression 2850 /// of aggregate type. The result is computed into the given slot, 2851 /// which may be null to indicate that the value is not needed. 2852 void EmitAggExpr(const Expr *E, AggValueSlot AS); 2853 2854 /// EmitAggExprToLValue - Emit the computation of the specified expression of 2855 /// aggregate type into a temporary LValue. 2856 LValue EmitAggExprToLValue(const Expr *E); 2857 2858 /// EmitExtendGCLifetime - Given a pointer to an Objective-C object, 2859 /// make sure it survives garbage collection until this point. 2860 void EmitExtendGCLifetime(llvm::Value *object); 2861 2862 /// EmitComplexExpr - Emit the computation of the specified expression of 2863 /// complex type, returning the result. 2864 ComplexPairTy EmitComplexExpr(const Expr *E, 2865 bool IgnoreReal = false, 2866 bool IgnoreImag = false); 2867 2868 /// EmitComplexExprIntoLValue - Emit the given expression of complex 2869 /// type and place its result into the specified l-value. 2870 void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit); 2871 2872 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 2873 void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit); 2874 2875 /// EmitLoadOfComplex - Load a complex number from the specified l-value. 2876 ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc); 2877 2878 Address emitAddrOfRealComponent(Address complex, QualType complexType); 2879 Address emitAddrOfImagComponent(Address complex, QualType complexType); 2880 2881 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the 2882 /// global variable that has already been created for it. If the initializer 2883 /// has a different type than GV does, this may free GV and return a different 2884 /// one. Otherwise it just returns GV. 2885 llvm::GlobalVariable * 2886 AddInitializerToStaticVarDecl(const VarDecl &D, 2887 llvm::GlobalVariable *GV); 2888 2889 2890 /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++ 2891 /// variable with global storage. 2892 void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::Constant *DeclPtr, 2893 bool PerformInit); 2894 2895 llvm::Constant *createAtExitStub(const VarDecl &VD, llvm::Constant *Dtor, 2896 llvm::Constant *Addr); 2897 2898 /// Call atexit() with a function that passes the given argument to 2899 /// the given function. 2900 void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::Constant *fn, 2901 llvm::Constant *addr); 2902 2903 /// Emit code in this function to perform a guarded variable 2904 /// initialization. Guarded initializations are used when it's not 2905 /// possible to prove that an initialization will be done exactly 2906 /// once, e.g. with a static local variable or a static data member 2907 /// of a class template. 2908 void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr, 2909 bool PerformInit); 2910 2911 /// GenerateCXXGlobalInitFunc - Generates code for initializing global 2912 /// variables. 2913 void GenerateCXXGlobalInitFunc(llvm::Function *Fn, 2914 ArrayRef<llvm::Function *> CXXThreadLocals, 2915 Address Guard = Address::invalid()); 2916 2917 /// GenerateCXXGlobalDtorsFunc - Generates code for destroying global 2918 /// variables. 2919 void GenerateCXXGlobalDtorsFunc(llvm::Function *Fn, 2920 const std::vector<std::pair<llvm::WeakVH, 2921 llvm::Constant*> > &DtorsAndObjects); 2922 2923 void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn, 2924 const VarDecl *D, 2925 llvm::GlobalVariable *Addr, 2926 bool PerformInit); 2927 2928 void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest); 2929 2930 void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp); 2931 2932 void enterFullExpression(const ExprWithCleanups *E) { 2933 if (E->getNumObjects() == 0) return; 2934 enterNonTrivialFullExpression(E); 2935 } 2936 void enterNonTrivialFullExpression(const ExprWithCleanups *E); 2937 2938 void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true); 2939 2940 void EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Dest); 2941 2942 RValue EmitAtomicExpr(AtomicExpr *E); 2943 2944 //===--------------------------------------------------------------------===// 2945 // Annotations Emission 2946 //===--------------------------------------------------------------------===// 2947 2948 /// Emit an annotation call (intrinsic or builtin). 2949 llvm::Value *EmitAnnotationCall(llvm::Value *AnnotationFn, 2950 llvm::Value *AnnotatedVal, 2951 StringRef AnnotationStr, 2952 SourceLocation Location); 2953 2954 /// Emit local annotations for the local variable V, declared by D. 2955 void EmitVarAnnotations(const VarDecl *D, llvm::Value *V); 2956 2957 /// Emit field annotations for the given field & value. Returns the 2958 /// annotation result. 2959 Address EmitFieldAnnotations(const FieldDecl *D, Address V); 2960 2961 //===--------------------------------------------------------------------===// 2962 // Internal Helpers 2963 //===--------------------------------------------------------------------===// 2964 2965 /// ContainsLabel - Return true if the statement contains a label in it. If 2966 /// this statement is not executed normally, it not containing a label means 2967 /// that we can just remove the code. 2968 static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false); 2969 2970 /// containsBreak - Return true if the statement contains a break out of it. 2971 /// If the statement (recursively) contains a switch or loop with a break 2972 /// inside of it, this is fine. 2973 static bool containsBreak(const Stmt *S); 2974 2975 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2976 /// to a constant, or if it does but contains a label, return false. If it 2977 /// constant folds return true and set the boolean result in Result. 2978 bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result); 2979 2980 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 2981 /// to a constant, or if it does but contains a label, return false. If it 2982 /// constant folds return true and set the folded value. 2983 bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result); 2984 2985 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an 2986 /// if statement) to the specified blocks. Based on the condition, this might 2987 /// try to simplify the codegen of the conditional based on the branch. 2988 /// TrueCount should be the number of times we expect the condition to 2989 /// evaluate to true based on PGO data. 2990 void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock, 2991 llvm::BasicBlock *FalseBlock, uint64_t TrueCount); 2992 2993 /// \brief Emit a description of a type in a format suitable for passing to 2994 /// a runtime sanitizer handler. 2995 llvm::Constant *EmitCheckTypeDescriptor(QualType T); 2996 2997 /// \brief Convert a value into a format suitable for passing to a runtime 2998 /// sanitizer handler. 2999 llvm::Value *EmitCheckValue(llvm::Value *V); 3000 3001 /// \brief Emit a description of a source location in a format suitable for 3002 /// passing to a runtime sanitizer handler. 3003 llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc); 3004 3005 /// \brief Create a basic block that will call a handler function in a 3006 /// sanitizer runtime with the provided arguments, and create a conditional 3007 /// branch to it. 3008 void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked, 3009 StringRef CheckName, ArrayRef<llvm::Constant *> StaticArgs, 3010 ArrayRef<llvm::Value *> DynamicArgs); 3011 3012 /// \brief Emit a slow path cross-DSO CFI check which calls __cfi_slowpath 3013 /// if Cond if false. 3014 void EmitCfiSlowPathCheck(llvm::Value *Cond, llvm::ConstantInt *TypeId, 3015 llvm::Value *Ptr); 3016 3017 /// \brief Create a basic block that will call the trap intrinsic, and emit a 3018 /// conditional branch to it, for the -ftrapv checks. 3019 void EmitTrapCheck(llvm::Value *Checked); 3020 3021 /// \brief Emit a call to trap or debugtrap and attach function attribute 3022 /// "trap-func-name" if specified. 3023 llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID); 3024 3025 /// \brief Create a check for a function parameter that may potentially be 3026 /// declared as non-null. 3027 void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc, 3028 const FunctionDecl *FD, unsigned ParmNum); 3029 3030 /// EmitCallArg - Emit a single call argument. 3031 void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType); 3032 3033 /// EmitDelegateCallArg - We are performing a delegate call; that 3034 /// is, the current function is delegating to another one. Produce 3035 /// a r-value suitable for passing the given parameter. 3036 void EmitDelegateCallArg(CallArgList &args, const VarDecl *param, 3037 SourceLocation loc); 3038 3039 /// SetFPAccuracy - Set the minimum required accuracy of the given floating 3040 /// point operation, expressed as the maximum relative error in ulp. 3041 void SetFPAccuracy(llvm::Value *Val, float Accuracy); 3042 3043 private: 3044 llvm::MDNode *getRangeForLoadFromType(QualType Ty); 3045 void EmitReturnOfRValue(RValue RV, QualType Ty); 3046 3047 void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New); 3048 3049 llvm::SmallVector<std::pair<llvm::Instruction *, llvm::Value *>, 4> 3050 DeferredReplacements; 3051 3052 /// Set the address of a local variable. 3053 void setAddrOfLocalVar(const VarDecl *VD, Address Addr) { 3054 assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!"); 3055 LocalDeclMap.insert({VD, Addr}); 3056 } 3057 3058 /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty 3059 /// from function arguments into \arg Dst. See ABIArgInfo::Expand. 3060 /// 3061 /// \param AI - The first function argument of the expansion. 3062 void ExpandTypeFromArgs(QualType Ty, LValue Dst, 3063 SmallVectorImpl<llvm::Argument *>::iterator &AI); 3064 3065 /// ExpandTypeToArgs - Expand an RValue \arg RV, with the LLVM type for \arg 3066 /// Ty, into individual arguments on the provided vector \arg IRCallArgs, 3067 /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand. 3068 void ExpandTypeToArgs(QualType Ty, RValue RV, llvm::FunctionType *IRFuncTy, 3069 SmallVectorImpl<llvm::Value *> &IRCallArgs, 3070 unsigned &IRCallArgPos); 3071 3072 llvm::Value* EmitAsmInput(const TargetInfo::ConstraintInfo &Info, 3073 const Expr *InputExpr, std::string &ConstraintStr); 3074 3075 llvm::Value* EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 3076 LValue InputValue, QualType InputType, 3077 std::string &ConstraintStr, 3078 SourceLocation Loc); 3079 3080 /// \brief Attempts to statically evaluate the object size of E. If that 3081 /// fails, emits code to figure the size of E out for us. This is 3082 /// pass_object_size aware. 3083 llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type, 3084 llvm::IntegerType *ResType); 3085 3086 /// \brief Emits the size of E, as required by __builtin_object_size. This 3087 /// function is aware of pass_object_size parameters, and will act accordingly 3088 /// if E is a parameter with the pass_object_size attribute. 3089 llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type, 3090 llvm::IntegerType *ResType); 3091 3092 public: 3093 #ifndef NDEBUG 3094 // Determine whether the given argument is an Objective-C method 3095 // that may have type parameters in its signature. 3096 static bool isObjCMethodWithTypeParams(const ObjCMethodDecl *method) { 3097 const DeclContext *dc = method->getDeclContext(); 3098 if (const ObjCInterfaceDecl *classDecl= dyn_cast<ObjCInterfaceDecl>(dc)) { 3099 return classDecl->getTypeParamListAsWritten(); 3100 } 3101 3102 if (const ObjCCategoryDecl *catDecl = dyn_cast<ObjCCategoryDecl>(dc)) { 3103 return catDecl->getTypeParamList(); 3104 } 3105 3106 return false; 3107 } 3108 3109 template<typename T> 3110 static bool isObjCMethodWithTypeParams(const T *) { return false; } 3111 #endif 3112 3113 /// EmitCallArgs - Emit call arguments for a function. 3114 template <typename T> 3115 void EmitCallArgs(CallArgList &Args, const T *CallArgTypeInfo, 3116 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3117 const FunctionDecl *CalleeDecl = nullptr, 3118 unsigned ParamsToSkip = 0) { 3119 SmallVector<QualType, 16> ArgTypes; 3120 CallExpr::const_arg_iterator Arg = ArgRange.begin(); 3121 3122 assert((ParamsToSkip == 0 || CallArgTypeInfo) && 3123 "Can't skip parameters if type info is not provided"); 3124 if (CallArgTypeInfo) { 3125 #ifndef NDEBUG 3126 bool isGenericMethod = isObjCMethodWithTypeParams(CallArgTypeInfo); 3127 #endif 3128 3129 // First, use the argument types that the type info knows about 3130 for (auto I = CallArgTypeInfo->param_type_begin() + ParamsToSkip, 3131 E = CallArgTypeInfo->param_type_end(); 3132 I != E; ++I, ++Arg) { 3133 assert(Arg != ArgRange.end() && "Running over edge of argument list!"); 3134 assert((isGenericMethod || 3135 ((*I)->isVariablyModifiedType() || 3136 (*I).getNonReferenceType()->isObjCRetainableType() || 3137 getContext() 3138 .getCanonicalType((*I).getNonReferenceType()) 3139 .getTypePtr() == 3140 getContext() 3141 .getCanonicalType((*Arg)->getType()) 3142 .getTypePtr())) && 3143 "type mismatch in call argument!"); 3144 ArgTypes.push_back(*I); 3145 } 3146 } 3147 3148 // Either we've emitted all the call args, or we have a call to variadic 3149 // function. 3150 assert((Arg == ArgRange.end() || !CallArgTypeInfo || 3151 CallArgTypeInfo->isVariadic()) && 3152 "Extra arguments in non-variadic function!"); 3153 3154 // If we still have any arguments, emit them using the type of the argument. 3155 for (auto *A : llvm::make_range(Arg, ArgRange.end())) 3156 ArgTypes.push_back(getVarArgType(A)); 3157 3158 EmitCallArgs(Args, ArgTypes, ArgRange, CalleeDecl, ParamsToSkip); 3159 } 3160 3161 void EmitCallArgs(CallArgList &Args, ArrayRef<QualType> ArgTypes, 3162 llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange, 3163 const FunctionDecl *CalleeDecl = nullptr, 3164 unsigned ParamsToSkip = 0); 3165 3166 /// EmitPointerWithAlignment - Given an expression with a pointer 3167 /// type, emit the value and compute our best estimate of the 3168 /// alignment of the pointee. 3169 /// 3170 /// Note that this function will conservatively fall back on the type 3171 /// when it doesn't 3172 /// 3173 /// \param Source - If non-null, this will be initialized with 3174 /// information about the source of the alignment. Note that this 3175 /// function will conservatively fall back on the type when it 3176 /// doesn't recognize the expression, which means that sometimes 3177 /// 3178 /// a worst-case One 3179 /// reasonable way to use this information is when there's a 3180 /// language guarantee that the pointer must be aligned to some 3181 /// stricter value, and we're simply trying to ensure that 3182 /// sufficiently obvious uses of under-aligned objects don't get 3183 /// miscompiled; for example, a placement new into the address of 3184 /// a local variable. In such a case, it's quite reasonable to 3185 /// just ignore the returned alignment when it isn't from an 3186 /// explicit source. 3187 Address EmitPointerWithAlignment(const Expr *Addr, 3188 AlignmentSource *Source = nullptr); 3189 3190 private: 3191 QualType getVarArgType(const Expr *Arg); 3192 3193 const TargetCodeGenInfo &getTargetHooks() const { 3194 return CGM.getTargetCodeGenInfo(); 3195 } 3196 3197 void EmitDeclMetadata(); 3198 3199 BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType, 3200 const AutoVarEmission &emission); 3201 3202 void AddObjCARCExceptionMetadata(llvm::Instruction *Inst); 3203 3204 llvm::Value *GetValueForARMHint(unsigned BuiltinID); 3205 }; 3206 3207 /// Helper class with most of the code for saving a value for a 3208 /// conditional expression cleanup. 3209 struct DominatingLLVMValue { 3210 typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type; 3211 3212 /// Answer whether the given value needs extra work to be saved. 3213 static bool needsSaving(llvm::Value *value) { 3214 // If it's not an instruction, we don't need to save. 3215 if (!isa<llvm::Instruction>(value)) return false; 3216 3217 // If it's an instruction in the entry block, we don't need to save. 3218 llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent(); 3219 return (block != &block->getParent()->getEntryBlock()); 3220 } 3221 3222 /// Try to save the given value. 3223 static saved_type save(CodeGenFunction &CGF, llvm::Value *value) { 3224 if (!needsSaving(value)) return saved_type(value, false); 3225 3226 // Otherwise, we need an alloca. 3227 auto align = CharUnits::fromQuantity( 3228 CGF.CGM.getDataLayout().getPrefTypeAlignment(value->getType())); 3229 Address alloca = 3230 CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save"); 3231 CGF.Builder.CreateStore(value, alloca); 3232 3233 return saved_type(alloca.getPointer(), true); 3234 } 3235 3236 static llvm::Value *restore(CodeGenFunction &CGF, saved_type value) { 3237 // If the value says it wasn't saved, trust that it's still dominating. 3238 if (!value.getInt()) return value.getPointer(); 3239 3240 // Otherwise, it should be an alloca instruction, as set up in save(). 3241 auto alloca = cast<llvm::AllocaInst>(value.getPointer()); 3242 return CGF.Builder.CreateAlignedLoad(alloca, alloca->getAlignment()); 3243 } 3244 }; 3245 3246 /// A partial specialization of DominatingValue for llvm::Values that 3247 /// might be llvm::Instructions. 3248 template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue { 3249 typedef T *type; 3250 static type restore(CodeGenFunction &CGF, saved_type value) { 3251 return static_cast<T*>(DominatingLLVMValue::restore(CGF, value)); 3252 } 3253 }; 3254 3255 /// A specialization of DominatingValue for Address. 3256 template <> struct DominatingValue<Address> { 3257 typedef Address type; 3258 3259 struct saved_type { 3260 DominatingLLVMValue::saved_type SavedValue; 3261 CharUnits Alignment; 3262 }; 3263 3264 static bool needsSaving(type value) { 3265 return DominatingLLVMValue::needsSaving(value.getPointer()); 3266 } 3267 static saved_type save(CodeGenFunction &CGF, type value) { 3268 return { DominatingLLVMValue::save(CGF, value.getPointer()), 3269 value.getAlignment() }; 3270 } 3271 static type restore(CodeGenFunction &CGF, saved_type value) { 3272 return Address(DominatingLLVMValue::restore(CGF, value.SavedValue), 3273 value.Alignment); 3274 } 3275 }; 3276 3277 /// A specialization of DominatingValue for RValue. 3278 template <> struct DominatingValue<RValue> { 3279 typedef RValue type; 3280 class saved_type { 3281 enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral, 3282 AggregateAddress, ComplexAddress }; 3283 3284 llvm::Value *Value; 3285 unsigned K : 3; 3286 unsigned Align : 29; 3287 saved_type(llvm::Value *v, Kind k, unsigned a = 0) 3288 : Value(v), K(k), Align(a) {} 3289 3290 public: 3291 static bool needsSaving(RValue value); 3292 static saved_type save(CodeGenFunction &CGF, RValue value); 3293 RValue restore(CodeGenFunction &CGF); 3294 3295 // implementations in CGCleanup.cpp 3296 }; 3297 3298 static bool needsSaving(type value) { 3299 return saved_type::needsSaving(value); 3300 } 3301 static saved_type save(CodeGenFunction &CGF, type value) { 3302 return saved_type::save(CGF, value); 3303 } 3304 static type restore(CodeGenFunction &CGF, saved_type value) { 3305 return value.restore(CGF); 3306 } 3307 }; 3308 3309 } // end namespace CodeGen 3310 } // end namespace clang 3311 3312 #endif 3313