1 // Copyright 2014, ARM Limited 2 // All rights reserved. 3 // 4 // Redistribution and use in source and binary forms, with or without 5 // modification, are permitted provided that the following conditions are met: 6 // 7 // * Redistributions of source code must retain the above copyright notice, 8 // this list of conditions and the following disclaimer. 9 // * Redistributions in binary form must reproduce the above copyright notice, 10 // this list of conditions and the following disclaimer in the documentation 11 // and/or other materials provided with the distribution. 12 // * Neither the name of ARM Limited nor the names of its contributors may be 13 // used to endorse or promote products derived from this software without 14 // specific prior written permission. 15 // 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND 17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE 20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 26 27 #include "test-utils-a64.h" 28 29 #include <cmath> 30 31 #include "test-runner.h" 32 #include "vixl/a64/macro-assembler-a64.h" 33 #include "vixl/a64/simulator-a64.h" 34 #include "vixl/a64/disasm-a64.h" 35 #include "vixl/a64/cpu-a64.h" 36 37 #define __ masm-> 38 39 namespace vixl { 40 41 42 // This value is a signalling NaN as both a double and as a float (taking the 43 // least-significant word). 44 const double kFP64SignallingNaN = 45 rawbits_to_double(UINT64_C(0x7ff000007f800001)); 46 const float kFP32SignallingNaN = rawbits_to_float(0x7f800001); 47 48 // A similar value, but as a quiet NaN. 49 const double kFP64QuietNaN = rawbits_to_double(UINT64_C(0x7ff800007fc00001)); 50 const float kFP32QuietNaN = rawbits_to_float(0x7fc00001); 51 52 53 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) { 54 if (result != expected) { 55 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", 56 expected, result); 57 } 58 59 return expected == result; 60 } 61 62 63 bool Equal64(uint64_t expected, const RegisterDump*, uint64_t result) { 64 if (result != expected) { 65 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", 66 expected, result); 67 } 68 69 return expected == result; 70 } 71 72 73 bool Equal128(vec128_t expected, const RegisterDump*, vec128_t result) { 74 if ((result.h != expected.h) || (result.l != expected.l)) { 75 printf("Expected 0x%016" PRIx64 "%016" PRIx64 "\t " 76 "Found 0x%016" PRIx64 "%016" PRIx64 "\n", 77 expected.h, expected.l, result.h, result.l); 78 } 79 80 return ((expected.h == result.h) && (expected.l == result.l)); 81 } 82 83 84 bool EqualFP32(float expected, const RegisterDump*, float result) { 85 if (float_to_rawbits(expected) == float_to_rawbits(result)) { 86 return true; 87 } else { 88 if (std::isnan(expected) || (expected == 0.0)) { 89 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n", 90 float_to_rawbits(expected), float_to_rawbits(result)); 91 } else { 92 printf("Expected %.9f (0x%08" PRIx32 ")\t " 93 "Found %.9f (0x%08" PRIx32 ")\n", 94 expected, float_to_rawbits(expected), 95 result, float_to_rawbits(result)); 96 } 97 return false; 98 } 99 } 100 101 102 bool EqualFP64(double expected, const RegisterDump*, double result) { 103 if (double_to_rawbits(expected) == double_to_rawbits(result)) { 104 return true; 105 } 106 107 if (std::isnan(expected) || (expected == 0.0)) { 108 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", 109 double_to_rawbits(expected), double_to_rawbits(result)); 110 } else { 111 printf("Expected %.17f (0x%016" PRIx64 ")\t " 112 "Found %.17f (0x%016" PRIx64 ")\n", 113 expected, double_to_rawbits(expected), 114 result, double_to_rawbits(result)); 115 } 116 return false; 117 } 118 119 120 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) { 121 VIXL_ASSERT(reg.Is32Bits()); 122 // Retrieve the corresponding X register so we can check that the upper part 123 // was properly cleared. 124 int64_t result_x = core->xreg(reg.code()); 125 if ((result_x & 0xffffffff00000000) != 0) { 126 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n", 127 expected, result_x); 128 return false; 129 } 130 uint32_t result_w = core->wreg(reg.code()); 131 return Equal32(expected, core, result_w); 132 } 133 134 135 bool Equal64(uint64_t expected, const RegisterDump* core, const Register& reg) { 136 VIXL_ASSERT(reg.Is64Bits()); 137 uint64_t result = core->xreg(reg.code()); 138 return Equal64(expected, core, result); 139 } 140 141 142 bool Equal128(uint64_t expected_h, 143 uint64_t expected_l, 144 const RegisterDump* core, 145 const VRegister& vreg) { 146 VIXL_ASSERT(vreg.Is128Bits()); 147 vec128_t expected = {expected_l, expected_h}; 148 vec128_t result = core->qreg(vreg.code()); 149 return Equal128(expected, core, result); 150 } 151 152 153 bool EqualFP32(float expected, 154 const RegisterDump* core, 155 const FPRegister& fpreg) { 156 VIXL_ASSERT(fpreg.Is32Bits()); 157 // Retrieve the corresponding D register so we can check that the upper part 158 // was properly cleared. 159 uint64_t result_64 = core->dreg_bits(fpreg.code()); 160 if ((result_64 & 0xffffffff00000000) != 0) { 161 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n", 162 float_to_rawbits(expected), expected, result_64); 163 return false; 164 } 165 166 return EqualFP32(expected, core, core->sreg(fpreg.code())); 167 } 168 169 170 bool EqualFP64(double expected, 171 const RegisterDump* core, 172 const FPRegister& fpreg) { 173 VIXL_ASSERT(fpreg.Is64Bits()); 174 return EqualFP64(expected, core, core->dreg(fpreg.code())); 175 } 176 177 178 bool Equal64(const Register& reg0, 179 const RegisterDump* core, 180 const Register& reg1) { 181 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits()); 182 int64_t expected = core->xreg(reg0.code()); 183 int64_t result = core->xreg(reg1.code()); 184 return Equal64(expected, core, result); 185 } 186 187 188 static char FlagN(uint32_t flags) { 189 return (flags & NFlag) ? 'N' : 'n'; 190 } 191 192 193 static char FlagZ(uint32_t flags) { 194 return (flags & ZFlag) ? 'Z' : 'z'; 195 } 196 197 198 static char FlagC(uint32_t flags) { 199 return (flags & CFlag) ? 'C' : 'c'; 200 } 201 202 203 static char FlagV(uint32_t flags) { 204 return (flags & VFlag) ? 'V' : 'v'; 205 } 206 207 208 bool EqualNzcv(uint32_t expected, uint32_t result) { 209 VIXL_ASSERT((expected & ~NZCVFlag) == 0); 210 VIXL_ASSERT((result & ~NZCVFlag) == 0); 211 if (result != expected) { 212 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n", 213 FlagN(expected), FlagZ(expected), FlagC(expected), FlagV(expected), 214 FlagN(result), FlagZ(result), FlagC(result), FlagV(result)); 215 return false; 216 } 217 218 return true; 219 } 220 221 222 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) { 223 for (unsigned i = 0; i < kNumberOfRegisters; i++) { 224 if (a->xreg(i) != b->xreg(i)) { 225 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", 226 i, a->xreg(i), b->xreg(i)); 227 return false; 228 } 229 } 230 231 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { 232 uint64_t a_bits = a->dreg_bits(i); 233 uint64_t b_bits = b->dreg_bits(i); 234 if (a_bits != b_bits) { 235 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n", 236 i, a_bits, b_bits); 237 return false; 238 } 239 } 240 241 return true; 242 } 243 244 245 RegList PopulateRegisterArray(Register* w, Register* x, Register* r, 246 int reg_size, int reg_count, RegList allowed) { 247 RegList list = 0; 248 int i = 0; 249 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) { 250 if (((UINT64_C(1) << n) & allowed) != 0) { 251 // Only assign allowed registers. 252 if (r) { 253 r[i] = Register(n, reg_size); 254 } 255 if (x) { 256 x[i] = Register(n, kXRegSize); 257 } 258 if (w) { 259 w[i] = Register(n, kWRegSize); 260 } 261 list |= (UINT64_C(1) << n); 262 i++; 263 } 264 } 265 // Check that we got enough registers. 266 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count); 267 268 return list; 269 } 270 271 272 RegList PopulateFPRegisterArray(FPRegister* s, FPRegister* d, FPRegister* v, 273 int reg_size, int reg_count, RegList allowed) { 274 RegList list = 0; 275 int i = 0; 276 for (unsigned n = 0; (n < kNumberOfFPRegisters) && (i < reg_count); n++) { 277 if (((UINT64_C(1) << n) & allowed) != 0) { 278 // Only assigned allowed registers. 279 if (v) { 280 v[i] = FPRegister(n, reg_size); 281 } 282 if (d) { 283 d[i] = FPRegister(n, kDRegSize); 284 } 285 if (s) { 286 s[i] = FPRegister(n, kSRegSize); 287 } 288 list |= (UINT64_C(1) << n); 289 i++; 290 } 291 } 292 // Check that we got enough registers. 293 VIXL_ASSERT(CountSetBits(list, kNumberOfFPRegisters) == reg_count); 294 295 return list; 296 } 297 298 299 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) { 300 Register first = NoReg; 301 for (unsigned i = 0; i < kNumberOfRegisters; i++) { 302 if (reg_list & (UINT64_C(1) << i)) { 303 Register xn(i, kXRegSize); 304 // We should never write into sp here. 305 VIXL_ASSERT(!xn.Is(sp)); 306 if (!xn.IsZero()) { 307 if (!first.IsValid()) { 308 // This is the first register we've hit, so construct the literal. 309 __ Mov(xn, value); 310 first = xn; 311 } else { 312 // We've already loaded the literal, so re-use the value already 313 // loaded into the first register we hit. 314 __ Mov(xn, first); 315 } 316 } 317 } 318 } 319 } 320 321 322 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) { 323 FPRegister first = NoFPReg; 324 for (unsigned i = 0; i < kNumberOfFPRegisters; i++) { 325 if (reg_list & (UINT64_C(1) << i)) { 326 FPRegister dn(i, kDRegSize); 327 if (!first.IsValid()) { 328 // This is the first register we've hit, so construct the literal. 329 __ Fmov(dn, value); 330 first = dn; 331 } else { 332 // We've already loaded the literal, so re-use the value already loaded 333 // into the first register we hit. 334 __ Fmov(dn, first); 335 } 336 } 337 } 338 } 339 340 341 void Clobber(MacroAssembler* masm, CPURegList reg_list) { 342 if (reg_list.type() == CPURegister::kRegister) { 343 // This will always clobber X registers. 344 Clobber(masm, reg_list.list()); 345 } else if (reg_list.type() == CPURegister::kVRegister) { 346 // This will always clobber D registers. 347 ClobberFP(masm, reg_list.list()); 348 } else { 349 VIXL_UNREACHABLE(); 350 } 351 } 352 353 354 void RegisterDump::Dump(MacroAssembler* masm) { 355 VIXL_ASSERT(__ StackPointer().Is(sp)); 356 357 // Ensure that we don't unintentionally clobber any registers. 358 UseScratchRegisterScope temps(masm); 359 temps.ExcludeAll(); 360 361 // Preserve some temporary registers. 362 Register dump_base = x0; 363 Register dump = x1; 364 Register tmp = x2; 365 Register dump_base_w = dump_base.W(); 366 Register dump_w = dump.W(); 367 Register tmp_w = tmp.W(); 368 369 // Offsets into the dump_ structure. 370 const int x_offset = offsetof(dump_t, x_); 371 const int w_offset = offsetof(dump_t, w_); 372 const int d_offset = offsetof(dump_t, d_); 373 const int s_offset = offsetof(dump_t, s_); 374 const int q_offset = offsetof(dump_t, q_); 375 const int sp_offset = offsetof(dump_t, sp_); 376 const int wsp_offset = offsetof(dump_t, wsp_); 377 const int flags_offset = offsetof(dump_t, flags_); 378 379 __ Push(xzr, dump_base, dump, tmp); 380 381 // Load the address where we will dump the state. 382 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_)); 383 384 // Dump the stack pointer (sp and wsp). 385 // The stack pointer cannot be stored directly; it needs to be moved into 386 // another register first. Also, we pushed four X registers, so we need to 387 // compensate here. 388 __ Add(tmp, sp, 4 * kXRegSizeInBytes); 389 __ Str(tmp, MemOperand(dump_base, sp_offset)); 390 __ Add(tmp_w, wsp, 4 * kXRegSizeInBytes); 391 __ Str(tmp_w, MemOperand(dump_base, wsp_offset)); 392 393 // Dump X registers. 394 __ Add(dump, dump_base, x_offset); 395 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { 396 __ Stp(Register::XRegFromCode(i), Register::XRegFromCode(i + 1), 397 MemOperand(dump, i * kXRegSizeInBytes)); 398 } 399 400 // Dump W registers. 401 __ Add(dump, dump_base, w_offset); 402 for (unsigned i = 0; i < kNumberOfRegisters; i += 2) { 403 __ Stp(Register::WRegFromCode(i), Register::WRegFromCode(i + 1), 404 MemOperand(dump, i * kWRegSizeInBytes)); 405 } 406 407 // Dump D registers. 408 __ Add(dump, dump_base, d_offset); 409 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { 410 __ Stp(FPRegister::DRegFromCode(i), FPRegister::DRegFromCode(i + 1), 411 MemOperand(dump, i * kDRegSizeInBytes)); 412 } 413 414 // Dump S registers. 415 __ Add(dump, dump_base, s_offset); 416 for (unsigned i = 0; i < kNumberOfFPRegisters; i += 2) { 417 __ Stp(FPRegister::SRegFromCode(i), FPRegister::SRegFromCode(i + 1), 418 MemOperand(dump, i * kSRegSizeInBytes)); 419 } 420 421 // Dump Q registers. 422 __ Add(dump, dump_base, q_offset); 423 for (unsigned i = 0; i < kNumberOfVRegisters; i += 2) { 424 __ Stp(VRegister::QRegFromCode(i), VRegister::QRegFromCode(i + 1), 425 MemOperand(dump, i * kQRegSizeInBytes)); 426 } 427 428 // Dump the flags. 429 __ Mrs(tmp, NZCV); 430 __ Str(tmp, MemOperand(dump_base, flags_offset)); 431 432 // To dump the values that were in tmp amd dump, we need a new scratch 433 // register. We can use any of the already dumped registers since we can 434 // easily restore them. 435 Register dump2_base = x10; 436 Register dump2 = x11; 437 VIXL_ASSERT(!AreAliased(dump_base, dump, tmp, dump2_base, dump2)); 438 439 // Don't lose the dump_ address. 440 __ Mov(dump2_base, dump_base); 441 442 __ Pop(tmp, dump, dump_base, xzr); 443 444 __ Add(dump2, dump2_base, w_offset); 445 __ Str(dump_base_w, MemOperand(dump2, dump_base.code() * kWRegSizeInBytes)); 446 __ Str(dump_w, MemOperand(dump2, dump.code() * kWRegSizeInBytes)); 447 __ Str(tmp_w, MemOperand(dump2, tmp.code() * kWRegSizeInBytes)); 448 449 __ Add(dump2, dump2_base, x_offset); 450 __ Str(dump_base, MemOperand(dump2, dump_base.code() * kXRegSizeInBytes)); 451 __ Str(dump, MemOperand(dump2, dump.code() * kXRegSizeInBytes)); 452 __ Str(tmp, MemOperand(dump2, tmp.code() * kXRegSizeInBytes)); 453 454 // Finally, restore dump2_base and dump2. 455 __ Ldr(dump2_base, MemOperand(dump2, dump2_base.code() * kXRegSizeInBytes)); 456 __ Ldr(dump2, MemOperand(dump2, dump2.code() * kXRegSizeInBytes)); 457 458 completed_ = true; 459 } 460 461 } // namespace vixl 462