1 /* 2 * Copyright (C) 2012 The Android Open Source Project 3 * All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in 12 * the documentation and/or other materials provided with the 13 * distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 18 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 19 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 22 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 25 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 #include "linker_phdr.h" 30 31 #include <errno.h> 32 #include <string.h> 33 #include <sys/mman.h> 34 #include <sys/types.h> 35 #include <sys/stat.h> 36 #include <unistd.h> 37 38 #include "linker.h" 39 #include "linker_debug.h" 40 #include "linker_utils.h" 41 42 #include "private/bionic_prctl.h" 43 44 static int GetTargetElfMachine() { 45 #if defined(__arm__) 46 return EM_ARM; 47 #elif defined(__aarch64__) 48 return EM_AARCH64; 49 #elif defined(__i386__) 50 return EM_386; 51 #elif defined(__mips__) 52 return EM_MIPS; 53 #elif defined(__x86_64__) 54 return EM_X86_64; 55 #endif 56 } 57 58 /** 59 TECHNICAL NOTE ON ELF LOADING. 60 61 An ELF file's program header table contains one or more PT_LOAD 62 segments, which corresponds to portions of the file that need to 63 be mapped into the process' address space. 64 65 Each loadable segment has the following important properties: 66 67 p_offset -> segment file offset 68 p_filesz -> segment file size 69 p_memsz -> segment memory size (always >= p_filesz) 70 p_vaddr -> segment's virtual address 71 p_flags -> segment flags (e.g. readable, writable, executable) 72 73 We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now. 74 75 The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz) 76 ranges of virtual addresses. A few rules apply: 77 78 - the virtual address ranges should not overlap. 79 80 - if a segment's p_filesz is smaller than its p_memsz, the extra bytes 81 between them should always be initialized to 0. 82 83 - ranges do not necessarily start or end at page boundaries. Two distinct 84 segments can have their start and end on the same page. In this case, the 85 page inherits the mapping flags of the latter segment. 86 87 Finally, the real load addrs of each segment is not p_vaddr. Instead the 88 loader decides where to load the first segment, then will load all others 89 relative to the first one to respect the initial range layout. 90 91 For example, consider the following list: 92 93 [ offset:0, filesz:0x4000, memsz:0x4000, vaddr:0x30000 ], 94 [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ], 95 96 This corresponds to two segments that cover these virtual address ranges: 97 98 0x30000...0x34000 99 0x40000...0x48000 100 101 If the loader decides to load the first segment at address 0xa0000000 102 then the segments' load address ranges will be: 103 104 0xa0030000...0xa0034000 105 0xa0040000...0xa0048000 106 107 In other words, all segments must be loaded at an address that has the same 108 constant offset from their p_vaddr value. This offset is computed as the 109 difference between the first segment's load address, and its p_vaddr value. 110 111 However, in practice, segments do _not_ start at page boundaries. Since we 112 can only memory-map at page boundaries, this means that the bias is 113 computed as: 114 115 load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr) 116 117 (NOTE: The value must be used as a 32-bit unsigned integer, to deal with 118 possible wrap around UINT32_MAX for possible large p_vaddr values). 119 120 And that the phdr0_load_address must start at a page boundary, with 121 the segment's real content starting at: 122 123 phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr) 124 125 Note that ELF requires the following condition to make the mmap()-ing work: 126 127 PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset) 128 129 The load_bias must be added to any p_vaddr value read from the ELF file to 130 determine the corresponding memory address. 131 132 **/ 133 134 #define MAYBE_MAP_FLAG(x, from, to) (((x) & (from)) ? (to) : 0) 135 #define PFLAGS_TO_PROT(x) (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \ 136 MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \ 137 MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE)) 138 139 ElfReader::ElfReader() 140 : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0), 141 phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr), 142 strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr), 143 mapped_by_caller_(false) { 144 } 145 146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) { 147 CHECK(!did_read_); 148 CHECK(!did_load_); 149 name_ = name; 150 fd_ = fd; 151 file_offset_ = file_offset; 152 file_size_ = file_size; 153 154 if (ReadElfHeader() && 155 VerifyElfHeader() && 156 ReadProgramHeaders() && 157 ReadSectionHeaders() && 158 ReadDynamicSection()) { 159 did_read_ = true; 160 } 161 162 return did_read_; 163 } 164 165 bool ElfReader::Load(const android_dlextinfo* extinfo) { 166 CHECK(did_read_); 167 CHECK(!did_load_); 168 if (ReserveAddressSpace(extinfo) && 169 LoadSegments() && 170 FindPhdr()) { 171 did_load_ = true; 172 } 173 174 return did_load_; 175 } 176 177 const char* ElfReader::get_string(ElfW(Word) index) const { 178 CHECK(strtab_ != nullptr); 179 CHECK(index < strtab_size_); 180 181 return strtab_ + index; 182 } 183 184 bool ElfReader::ReadElfHeader() { 185 ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_)); 186 if (rc < 0) { 187 DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno)); 188 return false; 189 } 190 191 if (rc != sizeof(header_)) { 192 DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(), 193 static_cast<size_t>(rc)); 194 return false; 195 } 196 return true; 197 } 198 199 bool ElfReader::VerifyElfHeader() { 200 if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) { 201 DL_ERR("\"%s\" has bad ELF magic", name_.c_str()); 202 return false; 203 } 204 205 // Try to give a clear diagnostic for ELF class mismatches, since they're 206 // an easy mistake to make during the 32-bit/64-bit transition period. 207 int elf_class = header_.e_ident[EI_CLASS]; 208 #if defined(__LP64__) 209 if (elf_class != ELFCLASS64) { 210 if (elf_class == ELFCLASS32) { 211 DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str()); 212 } else { 213 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); 214 } 215 return false; 216 } 217 #else 218 if (elf_class != ELFCLASS32) { 219 if (elf_class == ELFCLASS64) { 220 DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str()); 221 } else { 222 DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class); 223 } 224 return false; 225 } 226 #endif 227 228 if (header_.e_ident[EI_DATA] != ELFDATA2LSB) { 229 DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]); 230 return false; 231 } 232 233 if (header_.e_type != ET_DYN) { 234 DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type); 235 return false; 236 } 237 238 if (header_.e_version != EV_CURRENT) { 239 DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version); 240 return false; 241 } 242 243 if (header_.e_machine != GetTargetElfMachine()) { 244 DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine); 245 return false; 246 } 247 248 return true; 249 } 250 251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) { 252 off64_t range_start; 253 off64_t range_end; 254 255 return safe_add(&range_start, file_offset_, offset) && 256 safe_add(&range_end, range_start, size) && 257 (range_start < file_size_) && 258 (range_end <= file_size_) && 259 ((offset % alignment) == 0); 260 } 261 262 // Loads the program header table from an ELF file into a read-only private 263 // anonymous mmap-ed block. 264 bool ElfReader::ReadProgramHeaders() { 265 phdr_num_ = header_.e_phnum; 266 267 // Like the kernel, we only accept program header tables that 268 // are smaller than 64KiB. 269 if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) { 270 DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_); 271 return false; 272 } 273 274 // Boundary checks 275 size_t size = phdr_num_ * sizeof(ElfW(Phdr)); 276 if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) { 277 DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu", 278 name_.c_str(), 279 static_cast<size_t>(header_.e_phoff), 280 size); 281 return false; 282 } 283 284 if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) { 285 DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno)); 286 return false; 287 } 288 289 phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data()); 290 return true; 291 } 292 293 bool ElfReader::ReadSectionHeaders() { 294 shdr_num_ = header_.e_shnum; 295 296 if (shdr_num_ == 0) { 297 DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str()); 298 return false; 299 } 300 301 size_t size = shdr_num_ * sizeof(ElfW(Shdr)); 302 if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) { 303 DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu", 304 name_.c_str(), 305 static_cast<size_t>(header_.e_shoff), 306 size); 307 return false; 308 } 309 310 if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) { 311 DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno)); 312 return false; 313 } 314 315 shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data()); 316 return true; 317 } 318 319 bool ElfReader::ReadDynamicSection() { 320 // 1. Find .dynamic section (in section headers) 321 const ElfW(Shdr)* dynamic_shdr = nullptr; 322 for (size_t i = 0; i < shdr_num_; ++i) { 323 if (shdr_table_[i].sh_type == SHT_DYNAMIC) { 324 dynamic_shdr = &shdr_table_ [i]; 325 break; 326 } 327 } 328 329 if (dynamic_shdr == nullptr) { 330 DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str()); 331 return false; 332 } 333 334 if (dynamic_shdr->sh_link >= shdr_num_) { 335 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d", 336 name_.c_str(), 337 dynamic_shdr->sh_link); 338 return false; 339 } 340 341 const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link]; 342 343 if (strtab_shdr->sh_type != SHT_STRTAB) { 344 DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)", 345 name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type); 346 return false; 347 } 348 349 if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) { 350 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str()); 351 return false; 352 } 353 354 if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) { 355 DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno)); 356 return false; 357 } 358 359 dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data()); 360 361 if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) { 362 DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section", 363 name_.c_str()); 364 return false; 365 } 366 367 if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) { 368 DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno)); 369 return false; 370 } 371 372 strtab_ = static_cast<const char*>(strtab_fragment_.data()); 373 strtab_size_ = strtab_fragment_.size(); 374 return true; 375 } 376 377 /* Returns the size of the extent of all the possibly non-contiguous 378 * loadable segments in an ELF program header table. This corresponds 379 * to the page-aligned size in bytes that needs to be reserved in the 380 * process' address space. If there are no loadable segments, 0 is 381 * returned. 382 * 383 * If out_min_vaddr or out_max_vaddr are not null, they will be 384 * set to the minimum and maximum addresses of pages to be reserved, 385 * or 0 if there is nothing to load. 386 */ 387 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count, 388 ElfW(Addr)* out_min_vaddr, 389 ElfW(Addr)* out_max_vaddr) { 390 ElfW(Addr) min_vaddr = UINTPTR_MAX; 391 ElfW(Addr) max_vaddr = 0; 392 393 bool found_pt_load = false; 394 for (size_t i = 0; i < phdr_count; ++i) { 395 const ElfW(Phdr)* phdr = &phdr_table[i]; 396 397 if (phdr->p_type != PT_LOAD) { 398 continue; 399 } 400 found_pt_load = true; 401 402 if (phdr->p_vaddr < min_vaddr) { 403 min_vaddr = phdr->p_vaddr; 404 } 405 406 if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) { 407 max_vaddr = phdr->p_vaddr + phdr->p_memsz; 408 } 409 } 410 if (!found_pt_load) { 411 min_vaddr = 0; 412 } 413 414 min_vaddr = PAGE_START(min_vaddr); 415 max_vaddr = PAGE_END(max_vaddr); 416 417 if (out_min_vaddr != nullptr) { 418 *out_min_vaddr = min_vaddr; 419 } 420 if (out_max_vaddr != nullptr) { 421 *out_max_vaddr = max_vaddr; 422 } 423 return max_vaddr - min_vaddr; 424 } 425 426 // Reserve a virtual address range big enough to hold all loadable 427 // segments of a program header table. This is done by creating a 428 // private anonymous mmap() with PROT_NONE. 429 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) { 430 ElfW(Addr) min_vaddr; 431 load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); 432 if (load_size_ == 0) { 433 DL_ERR("\"%s\" has no loadable segments", name_.c_str()); 434 return false; 435 } 436 437 uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr); 438 void* start; 439 size_t reserved_size = 0; 440 bool reserved_hint = true; 441 bool strict_hint = false; 442 // Assume position independent executable by default. 443 void* mmap_hint = nullptr; 444 445 if (extinfo != nullptr) { 446 if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) { 447 reserved_size = extinfo->reserved_size; 448 reserved_hint = false; 449 } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) { 450 reserved_size = extinfo->reserved_size; 451 } 452 453 if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) { 454 mmap_hint = addr; 455 } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) { 456 mmap_hint = extinfo->reserved_addr; 457 strict_hint = true; 458 } 459 } 460 461 if (load_size_ > reserved_size) { 462 if (!reserved_hint) { 463 DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"", 464 reserved_size - load_size_, load_size_, name_.c_str()); 465 return false; 466 } 467 int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; 468 start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0); 469 if (start == MAP_FAILED) { 470 DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str()); 471 return false; 472 } 473 if (strict_hint && (start != mmap_hint)) { 474 munmap(start, load_size_); 475 DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"", 476 load_size_, mmap_hint, name_.c_str()); 477 return false; 478 } 479 } else { 480 start = extinfo->reserved_addr; 481 mapped_by_caller_ = true; 482 } 483 484 load_start_ = start; 485 load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; 486 return true; 487 } 488 489 bool ElfReader::LoadSegments() { 490 for (size_t i = 0; i < phdr_num_; ++i) { 491 const ElfW(Phdr)* phdr = &phdr_table_[i]; 492 493 if (phdr->p_type != PT_LOAD) { 494 continue; 495 } 496 497 // Segment addresses in memory. 498 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; 499 ElfW(Addr) seg_end = seg_start + phdr->p_memsz; 500 501 ElfW(Addr) seg_page_start = PAGE_START(seg_start); 502 ElfW(Addr) seg_page_end = PAGE_END(seg_end); 503 504 ElfW(Addr) seg_file_end = seg_start + phdr->p_filesz; 505 506 // File offsets. 507 ElfW(Addr) file_start = phdr->p_offset; 508 ElfW(Addr) file_end = file_start + phdr->p_filesz; 509 510 ElfW(Addr) file_page_start = PAGE_START(file_start); 511 ElfW(Addr) file_length = file_end - file_page_start; 512 513 if (file_size_ <= 0) { 514 DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_); 515 return false; 516 } 517 518 if (file_end > static_cast<size_t>(file_size_)) { 519 DL_ERR("invalid ELF file \"%s\" load segment[%zd]:" 520 " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")", 521 name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset), 522 reinterpret_cast<void*>(phdr->p_filesz), 523 reinterpret_cast<void*>(file_end), file_size_); 524 return false; 525 } 526 527 if (file_length != 0) { 528 void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start), 529 file_length, 530 PFLAGS_TO_PROT(phdr->p_flags), 531 MAP_FIXED|MAP_PRIVATE, 532 fd_, 533 file_offset_ + file_page_start); 534 if (seg_addr == MAP_FAILED) { 535 DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno)); 536 return false; 537 } 538 } 539 540 // if the segment is writable, and does not end on a page boundary, 541 // zero-fill it until the page limit. 542 if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) { 543 memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end)); 544 } 545 546 seg_file_end = PAGE_END(seg_file_end); 547 548 // seg_file_end is now the first page address after the file 549 // content. If seg_end is larger, we need to zero anything 550 // between them. This is done by using a private anonymous 551 // map for all extra pages. 552 if (seg_page_end > seg_file_end) { 553 size_t zeromap_size = seg_page_end - seg_file_end; 554 void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end), 555 zeromap_size, 556 PFLAGS_TO_PROT(phdr->p_flags), 557 MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE, 558 -1, 559 0); 560 if (zeromap == MAP_FAILED) { 561 DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno)); 562 return false; 563 } 564 565 prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss"); 566 } 567 } 568 return true; 569 } 570 571 /* Used internally. Used to set the protection bits of all loaded segments 572 * with optional extra flags (i.e. really PROT_WRITE). Used by 573 * phdr_table_protect_segments and phdr_table_unprotect_segments. 574 */ 575 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, 576 ElfW(Addr) load_bias, int extra_prot_flags) { 577 const ElfW(Phdr)* phdr = phdr_table; 578 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 579 580 for (; phdr < phdr_limit; phdr++) { 581 if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) { 582 continue; 583 } 584 585 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 586 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 587 588 int prot = PFLAGS_TO_PROT(phdr->p_flags); 589 if ((extra_prot_flags & PROT_WRITE) != 0) { 590 // make sure we're never simultaneously writable / executable 591 prot &= ~PROT_EXEC; 592 } 593 594 int ret = mprotect(reinterpret_cast<void*>(seg_page_start), 595 seg_page_end - seg_page_start, 596 prot | extra_prot_flags); 597 if (ret < 0) { 598 return -1; 599 } 600 } 601 return 0; 602 } 603 604 /* Restore the original protection modes for all loadable segments. 605 * You should only call this after phdr_table_unprotect_segments and 606 * applying all relocations. 607 * 608 * Input: 609 * phdr_table -> program header table 610 * phdr_count -> number of entries in tables 611 * load_bias -> load bias 612 * Return: 613 * 0 on error, -1 on failure (error code in errno). 614 */ 615 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table, 616 size_t phdr_count, ElfW(Addr) load_bias) { 617 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0); 618 } 619 620 /* Change the protection of all loaded segments in memory to writable. 621 * This is useful before performing relocations. Once completed, you 622 * will have to call phdr_table_protect_segments to restore the original 623 * protection flags on all segments. 624 * 625 * Note that some writable segments can also have their content turned 626 * to read-only by calling phdr_table_protect_gnu_relro. This is no 627 * performed here. 628 * 629 * Input: 630 * phdr_table -> program header table 631 * phdr_count -> number of entries in tables 632 * load_bias -> load bias 633 * Return: 634 * 0 on error, -1 on failure (error code in errno). 635 */ 636 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table, 637 size_t phdr_count, ElfW(Addr) load_bias) { 638 return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE); 639 } 640 641 /* Used internally by phdr_table_protect_gnu_relro and 642 * phdr_table_unprotect_gnu_relro. 643 */ 644 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count, 645 ElfW(Addr) load_bias, int prot_flags) { 646 const ElfW(Phdr)* phdr = phdr_table; 647 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 648 649 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 650 if (phdr->p_type != PT_GNU_RELRO) { 651 continue; 652 } 653 654 // Tricky: what happens when the relro segment does not start 655 // or end at page boundaries? We're going to be over-protective 656 // here and put every page touched by the segment as read-only. 657 658 // This seems to match Ian Lance Taylor's description of the 659 // feature at http://www.airs.com/blog/archives/189. 660 661 // Extract: 662 // Note that the current dynamic linker code will only work 663 // correctly if the PT_GNU_RELRO segment starts on a page 664 // boundary. This is because the dynamic linker rounds the 665 // p_vaddr field down to the previous page boundary. If 666 // there is anything on the page which should not be read-only, 667 // the program is likely to fail at runtime. So in effect the 668 // linker must only emit a PT_GNU_RELRO segment if it ensures 669 // that it starts on a page boundary. 670 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 671 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 672 673 int ret = mprotect(reinterpret_cast<void*>(seg_page_start), 674 seg_page_end - seg_page_start, 675 prot_flags); 676 if (ret < 0) { 677 return -1; 678 } 679 } 680 return 0; 681 } 682 683 /* Apply GNU relro protection if specified by the program header. This will 684 * turn some of the pages of a writable PT_LOAD segment to read-only, as 685 * specified by one or more PT_GNU_RELRO segments. This must be always 686 * performed after relocations. 687 * 688 * The areas typically covered are .got and .data.rel.ro, these are 689 * read-only from the program's POV, but contain absolute addresses 690 * that need to be relocated before use. 691 * 692 * Input: 693 * phdr_table -> program header table 694 * phdr_count -> number of entries in tables 695 * load_bias -> load bias 696 * Return: 697 * 0 on error, -1 on failure (error code in errno). 698 */ 699 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table, 700 size_t phdr_count, ElfW(Addr) load_bias) { 701 return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ); 702 } 703 704 /* Serialize the GNU relro segments to the given file descriptor. This can be 705 * performed after relocations to allow another process to later share the 706 * relocated segment, if it was loaded at the same address. 707 * 708 * Input: 709 * phdr_table -> program header table 710 * phdr_count -> number of entries in tables 711 * load_bias -> load bias 712 * fd -> writable file descriptor to use 713 * Return: 714 * 0 on error, -1 on failure (error code in errno). 715 */ 716 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table, 717 size_t phdr_count, 718 ElfW(Addr) load_bias, 719 int fd) { 720 const ElfW(Phdr)* phdr = phdr_table; 721 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 722 ssize_t file_offset = 0; 723 724 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 725 if (phdr->p_type != PT_GNU_RELRO) { 726 continue; 727 } 728 729 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 730 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 731 ssize_t size = seg_page_end - seg_page_start; 732 733 ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size)); 734 if (written != size) { 735 return -1; 736 } 737 void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ, 738 MAP_PRIVATE|MAP_FIXED, fd, file_offset); 739 if (map == MAP_FAILED) { 740 return -1; 741 } 742 file_offset += size; 743 } 744 return 0; 745 } 746 747 /* Where possible, replace the GNU relro segments with mappings of the given 748 * file descriptor. This can be performed after relocations to allow a file 749 * previously created by phdr_table_serialize_gnu_relro in another process to 750 * replace the dirty relocated pages, saving memory, if it was loaded at the 751 * same address. We have to compare the data before we map over it, since some 752 * parts of the relro segment may not be identical due to other libraries in 753 * the process being loaded at different addresses. 754 * 755 * Input: 756 * phdr_table -> program header table 757 * phdr_count -> number of entries in tables 758 * load_bias -> load bias 759 * fd -> readable file descriptor to use 760 * Return: 761 * 0 on error, -1 on failure (error code in errno). 762 */ 763 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table, 764 size_t phdr_count, 765 ElfW(Addr) load_bias, 766 int fd) { 767 // Map the file at a temporary location so we can compare its contents. 768 struct stat file_stat; 769 if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) { 770 return -1; 771 } 772 off_t file_size = file_stat.st_size; 773 void* temp_mapping = nullptr; 774 if (file_size > 0) { 775 temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0); 776 if (temp_mapping == MAP_FAILED) { 777 return -1; 778 } 779 } 780 size_t file_offset = 0; 781 782 // Iterate over the relro segments and compare/remap the pages. 783 const ElfW(Phdr)* phdr = phdr_table; 784 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 785 786 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 787 if (phdr->p_type != PT_GNU_RELRO) { 788 continue; 789 } 790 791 ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias; 792 ElfW(Addr) seg_page_end = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias; 793 794 char* file_base = static_cast<char*>(temp_mapping) + file_offset; 795 char* mem_base = reinterpret_cast<char*>(seg_page_start); 796 size_t match_offset = 0; 797 size_t size = seg_page_end - seg_page_start; 798 799 if (file_size - file_offset < size) { 800 // File is too short to compare to this segment. The contents are likely 801 // different as well (it's probably for a different library version) so 802 // just don't bother checking. 803 break; 804 } 805 806 while (match_offset < size) { 807 // Skip over dissimilar pages. 808 while (match_offset < size && 809 memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) { 810 match_offset += PAGE_SIZE; 811 } 812 813 // Count similar pages. 814 size_t mismatch_offset = match_offset; 815 while (mismatch_offset < size && 816 memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) { 817 mismatch_offset += PAGE_SIZE; 818 } 819 820 // Map over similar pages. 821 if (mismatch_offset > match_offset) { 822 void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset, 823 PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset); 824 if (map == MAP_FAILED) { 825 munmap(temp_mapping, file_size); 826 return -1; 827 } 828 } 829 830 match_offset = mismatch_offset; 831 } 832 833 // Add to the base file offset in case there are multiple relro segments. 834 file_offset += size; 835 } 836 munmap(temp_mapping, file_size); 837 return 0; 838 } 839 840 841 #if defined(__arm__) 842 843 # ifndef PT_ARM_EXIDX 844 # define PT_ARM_EXIDX 0x70000001 /* .ARM.exidx segment */ 845 # endif 846 847 /* Return the address and size of the .ARM.exidx section in memory, 848 * if present. 849 * 850 * Input: 851 * phdr_table -> program header table 852 * phdr_count -> number of entries in tables 853 * load_bias -> load bias 854 * Output: 855 * arm_exidx -> address of table in memory (null on failure). 856 * arm_exidx_count -> number of items in table (0 on failure). 857 * Return: 858 * 0 on error, -1 on failure (_no_ error code in errno) 859 */ 860 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count, 861 ElfW(Addr) load_bias, 862 ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) { 863 const ElfW(Phdr)* phdr = phdr_table; 864 const ElfW(Phdr)* phdr_limit = phdr + phdr_count; 865 866 for (phdr = phdr_table; phdr < phdr_limit; phdr++) { 867 if (phdr->p_type != PT_ARM_EXIDX) { 868 continue; 869 } 870 871 *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr); 872 *arm_exidx_count = phdr->p_memsz / 8; 873 return 0; 874 } 875 *arm_exidx = nullptr; 876 *arm_exidx_count = 0; 877 return -1; 878 } 879 #endif 880 881 /* Return the address and size of the ELF file's .dynamic section in memory, 882 * or null if missing. 883 * 884 * Input: 885 * phdr_table -> program header table 886 * phdr_count -> number of entries in tables 887 * load_bias -> load bias 888 * Output: 889 * dynamic -> address of table in memory (null on failure). 890 * dynamic_flags -> protection flags for section (unset on failure) 891 * Return: 892 * void 893 */ 894 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count, 895 ElfW(Addr) load_bias, ElfW(Dyn)** dynamic, 896 ElfW(Word)* dynamic_flags) { 897 *dynamic = nullptr; 898 for (size_t i = 0; i<phdr_count; ++i) { 899 const ElfW(Phdr)& phdr = phdr_table[i]; 900 if (phdr.p_type == PT_DYNAMIC) { 901 *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr); 902 if (dynamic_flags) { 903 *dynamic_flags = phdr.p_flags; 904 } 905 return; 906 } 907 } 908 } 909 910 /* Return the program interpreter string, or nullptr if missing. 911 * 912 * Input: 913 * phdr_table -> program header table 914 * phdr_count -> number of entries in tables 915 * load_bias -> load bias 916 * Return: 917 * pointer to the program interpreter string. 918 */ 919 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count, 920 ElfW(Addr) load_bias) { 921 for (size_t i = 0; i<phdr_count; ++i) { 922 const ElfW(Phdr)& phdr = phdr_table[i]; 923 if (phdr.p_type == PT_INTERP) { 924 return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr); 925 } 926 } 927 return nullptr; 928 } 929 930 // Sets loaded_phdr_ to the address of the program header table as it appears 931 // in the loaded segments in memory. This is in contrast with phdr_table_, 932 // which is temporary and will be released before the library is relocated. 933 bool ElfReader::FindPhdr() { 934 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; 935 936 // If there is a PT_PHDR, use it directly. 937 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 938 if (phdr->p_type == PT_PHDR) { 939 return CheckPhdr(load_bias_ + phdr->p_vaddr); 940 } 941 } 942 943 // Otherwise, check the first loadable segment. If its file offset 944 // is 0, it starts with the ELF header, and we can trivially find the 945 // loaded program header from it. 946 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 947 if (phdr->p_type == PT_LOAD) { 948 if (phdr->p_offset == 0) { 949 ElfW(Addr) elf_addr = load_bias_ + phdr->p_vaddr; 950 const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr); 951 ElfW(Addr) offset = ehdr->e_phoff; 952 return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset); 953 } 954 break; 955 } 956 } 957 958 DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str()); 959 return false; 960 } 961 962 // Ensures that our program header is actually within a loadable 963 // segment. This should help catch badly-formed ELF files that 964 // would cause the linker to crash later when trying to access it. 965 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) { 966 const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_; 967 ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr))); 968 for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) { 969 if (phdr->p_type != PT_LOAD) { 970 continue; 971 } 972 ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_; 973 ElfW(Addr) seg_end = phdr->p_filesz + seg_start; 974 if (seg_start <= loaded && loaded_end <= seg_end) { 975 loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded); 976 return true; 977 } 978 } 979 DL_ERR("\"%s\" loaded phdr %p not in loadable segment", 980 name_.c_str(), reinterpret_cast<void*>(loaded)); 981 return false; 982 } 983