Home | History | Annotate | Download | only in linker
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  * All rights reserved.
      4  *
      5  * Redistribution and use in source and binary forms, with or without
      6  * modification, are permitted provided that the following conditions
      7  * are met:
      8  *  * Redistributions of source code must retain the above copyright
      9  *    notice, this list of conditions and the following disclaimer.
     10  *  * Redistributions in binary form must reproduce the above copyright
     11  *    notice, this list of conditions and the following disclaimer in
     12  *    the documentation and/or other materials provided with the
     13  *    distribution.
     14  *
     15  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     16  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     17  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
     18  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
     19  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
     22  * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
     25  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include "linker_phdr.h"
     30 
     31 #include <errno.h>
     32 #include <string.h>
     33 #include <sys/mman.h>
     34 #include <sys/types.h>
     35 #include <sys/stat.h>
     36 #include <unistd.h>
     37 
     38 #include "linker.h"
     39 #include "linker_debug.h"
     40 #include "linker_utils.h"
     41 
     42 #include "private/bionic_prctl.h"
     43 
     44 static int GetTargetElfMachine() {
     45 #if defined(__arm__)
     46   return EM_ARM;
     47 #elif defined(__aarch64__)
     48   return EM_AARCH64;
     49 #elif defined(__i386__)
     50   return EM_386;
     51 #elif defined(__mips__)
     52   return EM_MIPS;
     53 #elif defined(__x86_64__)
     54   return EM_X86_64;
     55 #endif
     56 }
     57 
     58 /**
     59   TECHNICAL NOTE ON ELF LOADING.
     60 
     61   An ELF file's program header table contains one or more PT_LOAD
     62   segments, which corresponds to portions of the file that need to
     63   be mapped into the process' address space.
     64 
     65   Each loadable segment has the following important properties:
     66 
     67     p_offset  -> segment file offset
     68     p_filesz  -> segment file size
     69     p_memsz   -> segment memory size (always >= p_filesz)
     70     p_vaddr   -> segment's virtual address
     71     p_flags   -> segment flags (e.g. readable, writable, executable)
     72 
     73   We will ignore the p_paddr and p_align fields of ElfW(Phdr) for now.
     74 
     75   The loadable segments can be seen as a list of [p_vaddr ... p_vaddr+p_memsz)
     76   ranges of virtual addresses. A few rules apply:
     77 
     78   - the virtual address ranges should not overlap.
     79 
     80   - if a segment's p_filesz is smaller than its p_memsz, the extra bytes
     81     between them should always be initialized to 0.
     82 
     83   - ranges do not necessarily start or end at page boundaries. Two distinct
     84     segments can have their start and end on the same page. In this case, the
     85     page inherits the mapping flags of the latter segment.
     86 
     87   Finally, the real load addrs of each segment is not p_vaddr. Instead the
     88   loader decides where to load the first segment, then will load all others
     89   relative to the first one to respect the initial range layout.
     90 
     91   For example, consider the following list:
     92 
     93     [ offset:0,      filesz:0x4000, memsz:0x4000, vaddr:0x30000 ],
     94     [ offset:0x4000, filesz:0x2000, memsz:0x8000, vaddr:0x40000 ],
     95 
     96   This corresponds to two segments that cover these virtual address ranges:
     97 
     98        0x30000...0x34000
     99        0x40000...0x48000
    100 
    101   If the loader decides to load the first segment at address 0xa0000000
    102   then the segments' load address ranges will be:
    103 
    104        0xa0030000...0xa0034000
    105        0xa0040000...0xa0048000
    106 
    107   In other words, all segments must be loaded at an address that has the same
    108   constant offset from their p_vaddr value. This offset is computed as the
    109   difference between the first segment's load address, and its p_vaddr value.
    110 
    111   However, in practice, segments do _not_ start at page boundaries. Since we
    112   can only memory-map at page boundaries, this means that the bias is
    113   computed as:
    114 
    115        load_bias = phdr0_load_address - PAGE_START(phdr0->p_vaddr)
    116 
    117   (NOTE: The value must be used as a 32-bit unsigned integer, to deal with
    118           possible wrap around UINT32_MAX for possible large p_vaddr values).
    119 
    120   And that the phdr0_load_address must start at a page boundary, with
    121   the segment's real content starting at:
    122 
    123        phdr0_load_address + PAGE_OFFSET(phdr0->p_vaddr)
    124 
    125   Note that ELF requires the following condition to make the mmap()-ing work:
    126 
    127       PAGE_OFFSET(phdr0->p_vaddr) == PAGE_OFFSET(phdr0->p_offset)
    128 
    129   The load_bias must be added to any p_vaddr value read from the ELF file to
    130   determine the corresponding memory address.
    131 
    132  **/
    133 
    134 #define MAYBE_MAP_FLAG(x, from, to)  (((x) & (from)) ? (to) : 0)
    135 #define PFLAGS_TO_PROT(x)            (MAYBE_MAP_FLAG((x), PF_X, PROT_EXEC) | \
    136                                       MAYBE_MAP_FLAG((x), PF_R, PROT_READ) | \
    137                                       MAYBE_MAP_FLAG((x), PF_W, PROT_WRITE))
    138 
    139 ElfReader::ElfReader()
    140     : did_read_(false), did_load_(false), fd_(-1), file_offset_(0), file_size_(0), phdr_num_(0),
    141       phdr_table_(nullptr), shdr_table_(nullptr), shdr_num_(0), dynamic_(nullptr), strtab_(nullptr),
    142       strtab_size_(0), load_start_(nullptr), load_size_(0), load_bias_(0), loaded_phdr_(nullptr),
    143       mapped_by_caller_(false) {
    144 }
    145 
    146 bool ElfReader::Read(const char* name, int fd, off64_t file_offset, off64_t file_size) {
    147   CHECK(!did_read_);
    148   CHECK(!did_load_);
    149   name_ = name;
    150   fd_ = fd;
    151   file_offset_ = file_offset;
    152   file_size_ = file_size;
    153 
    154   if (ReadElfHeader() &&
    155       VerifyElfHeader() &&
    156       ReadProgramHeaders() &&
    157       ReadSectionHeaders() &&
    158       ReadDynamicSection()) {
    159     did_read_ = true;
    160   }
    161 
    162   return did_read_;
    163 }
    164 
    165 bool ElfReader::Load(const android_dlextinfo* extinfo) {
    166   CHECK(did_read_);
    167   CHECK(!did_load_);
    168   if (ReserveAddressSpace(extinfo) &&
    169       LoadSegments() &&
    170       FindPhdr()) {
    171     did_load_ = true;
    172   }
    173 
    174   return did_load_;
    175 }
    176 
    177 const char* ElfReader::get_string(ElfW(Word) index) const {
    178   CHECK(strtab_ != nullptr);
    179   CHECK(index < strtab_size_);
    180 
    181   return strtab_ + index;
    182 }
    183 
    184 bool ElfReader::ReadElfHeader() {
    185   ssize_t rc = TEMP_FAILURE_RETRY(pread64(fd_, &header_, sizeof(header_), file_offset_));
    186   if (rc < 0) {
    187     DL_ERR("can't read file \"%s\": %s", name_.c_str(), strerror(errno));
    188     return false;
    189   }
    190 
    191   if (rc != sizeof(header_)) {
    192     DL_ERR("\"%s\" is too small to be an ELF executable: only found %zd bytes", name_.c_str(),
    193            static_cast<size_t>(rc));
    194     return false;
    195   }
    196   return true;
    197 }
    198 
    199 bool ElfReader::VerifyElfHeader() {
    200   if (memcmp(header_.e_ident, ELFMAG, SELFMAG) != 0) {
    201     DL_ERR("\"%s\" has bad ELF magic", name_.c_str());
    202     return false;
    203   }
    204 
    205   // Try to give a clear diagnostic for ELF class mismatches, since they're
    206   // an easy mistake to make during the 32-bit/64-bit transition period.
    207   int elf_class = header_.e_ident[EI_CLASS];
    208 #if defined(__LP64__)
    209   if (elf_class != ELFCLASS64) {
    210     if (elf_class == ELFCLASS32) {
    211       DL_ERR("\"%s\" is 32-bit instead of 64-bit", name_.c_str());
    212     } else {
    213       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
    214     }
    215     return false;
    216   }
    217 #else
    218   if (elf_class != ELFCLASS32) {
    219     if (elf_class == ELFCLASS64) {
    220       DL_ERR("\"%s\" is 64-bit instead of 32-bit", name_.c_str());
    221     } else {
    222       DL_ERR("\"%s\" has unknown ELF class: %d", name_.c_str(), elf_class);
    223     }
    224     return false;
    225   }
    226 #endif
    227 
    228   if (header_.e_ident[EI_DATA] != ELFDATA2LSB) {
    229     DL_ERR("\"%s\" not little-endian: %d", name_.c_str(), header_.e_ident[EI_DATA]);
    230     return false;
    231   }
    232 
    233   if (header_.e_type != ET_DYN) {
    234     DL_ERR("\"%s\" has unexpected e_type: %d", name_.c_str(), header_.e_type);
    235     return false;
    236   }
    237 
    238   if (header_.e_version != EV_CURRENT) {
    239     DL_ERR("\"%s\" has unexpected e_version: %d", name_.c_str(), header_.e_version);
    240     return false;
    241   }
    242 
    243   if (header_.e_machine != GetTargetElfMachine()) {
    244     DL_ERR("\"%s\" has unexpected e_machine: %d", name_.c_str(), header_.e_machine);
    245     return false;
    246   }
    247 
    248   return true;
    249 }
    250 
    251 bool ElfReader::CheckFileRange(ElfW(Addr) offset, size_t size, size_t alignment) {
    252   off64_t range_start;
    253   off64_t range_end;
    254 
    255   return safe_add(&range_start, file_offset_, offset) &&
    256          safe_add(&range_end, range_start, size) &&
    257          (range_start < file_size_) &&
    258          (range_end <= file_size_) &&
    259          ((offset % alignment) == 0);
    260 }
    261 
    262 // Loads the program header table from an ELF file into a read-only private
    263 // anonymous mmap-ed block.
    264 bool ElfReader::ReadProgramHeaders() {
    265   phdr_num_ = header_.e_phnum;
    266 
    267   // Like the kernel, we only accept program header tables that
    268   // are smaller than 64KiB.
    269   if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(ElfW(Phdr))) {
    270     DL_ERR("\"%s\" has invalid e_phnum: %zd", name_.c_str(), phdr_num_);
    271     return false;
    272   }
    273 
    274   // Boundary checks
    275   size_t size = phdr_num_ * sizeof(ElfW(Phdr));
    276   if (!CheckFileRange(header_.e_phoff, size, alignof(ElfW(Phdr)))) {
    277     DL_ERR_AND_LOG("\"%s\" has invalid phdr offset/size: %zu/%zu",
    278                    name_.c_str(),
    279                    static_cast<size_t>(header_.e_phoff),
    280                    size);
    281     return false;
    282   }
    283 
    284   if (!phdr_fragment_.Map(fd_, file_offset_, header_.e_phoff, size)) {
    285     DL_ERR("\"%s\" phdr mmap failed: %s", name_.c_str(), strerror(errno));
    286     return false;
    287   }
    288 
    289   phdr_table_ = static_cast<ElfW(Phdr)*>(phdr_fragment_.data());
    290   return true;
    291 }
    292 
    293 bool ElfReader::ReadSectionHeaders() {
    294   shdr_num_ = header_.e_shnum;
    295 
    296   if (shdr_num_ == 0) {
    297     DL_ERR_AND_LOG("\"%s\" has no section headers", name_.c_str());
    298     return false;
    299   }
    300 
    301   size_t size = shdr_num_ * sizeof(ElfW(Shdr));
    302   if (!CheckFileRange(header_.e_shoff, size, alignof(const ElfW(Shdr)))) {
    303     DL_ERR_AND_LOG("\"%s\" has invalid shdr offset/size: %zu/%zu",
    304                    name_.c_str(),
    305                    static_cast<size_t>(header_.e_shoff),
    306                    size);
    307     return false;
    308   }
    309 
    310   if (!shdr_fragment_.Map(fd_, file_offset_, header_.e_shoff, size)) {
    311     DL_ERR("\"%s\" shdr mmap failed: %s", name_.c_str(), strerror(errno));
    312     return false;
    313   }
    314 
    315   shdr_table_ = static_cast<const ElfW(Shdr)*>(shdr_fragment_.data());
    316   return true;
    317 }
    318 
    319 bool ElfReader::ReadDynamicSection() {
    320   // 1. Find .dynamic section (in section headers)
    321   const ElfW(Shdr)* dynamic_shdr = nullptr;
    322   for (size_t i = 0; i < shdr_num_; ++i) {
    323     if (shdr_table_[i].sh_type == SHT_DYNAMIC) {
    324       dynamic_shdr = &shdr_table_ [i];
    325       break;
    326     }
    327   }
    328 
    329   if (dynamic_shdr == nullptr) {
    330     DL_ERR_AND_LOG("\"%s\" .dynamic section header was not found", name_.c_str());
    331     return false;
    332   }
    333 
    334   if (dynamic_shdr->sh_link >= shdr_num_) {
    335     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid sh_link: %d",
    336                    name_.c_str(),
    337                    dynamic_shdr->sh_link);
    338     return false;
    339   }
    340 
    341   const ElfW(Shdr)* strtab_shdr = &shdr_table_[dynamic_shdr->sh_link];
    342 
    343   if (strtab_shdr->sh_type != SHT_STRTAB) {
    344     DL_ERR_AND_LOG("\"%s\" .dynamic section has invalid link(%d) sh_type: %d (expected SHT_STRTAB)",
    345                    name_.c_str(), dynamic_shdr->sh_link, strtab_shdr->sh_type);
    346     return false;
    347   }
    348 
    349   if (!CheckFileRange(dynamic_shdr->sh_offset, dynamic_shdr->sh_size, alignof(const ElfW(Dyn)))) {
    350     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of .dynamic section", name_.c_str());
    351     return false;
    352   }
    353 
    354   if (!dynamic_fragment_.Map(fd_, file_offset_, dynamic_shdr->sh_offset, dynamic_shdr->sh_size)) {
    355     DL_ERR("\"%s\" dynamic section mmap failed: %s", name_.c_str(), strerror(errno));
    356     return false;
    357   }
    358 
    359   dynamic_ = static_cast<const ElfW(Dyn)*>(dynamic_fragment_.data());
    360 
    361   if (!CheckFileRange(strtab_shdr->sh_offset, strtab_shdr->sh_size, alignof(const char))) {
    362     DL_ERR_AND_LOG("\"%s\" has invalid offset/size of the .strtab section linked from .dynamic section",
    363                    name_.c_str());
    364     return false;
    365   }
    366 
    367   if (!strtab_fragment_.Map(fd_, file_offset_, strtab_shdr->sh_offset, strtab_shdr->sh_size)) {
    368     DL_ERR("\"%s\" strtab section mmap failed: %s", name_.c_str(), strerror(errno));
    369     return false;
    370   }
    371 
    372   strtab_ = static_cast<const char*>(strtab_fragment_.data());
    373   strtab_size_ = strtab_fragment_.size();
    374   return true;
    375 }
    376 
    377 /* Returns the size of the extent of all the possibly non-contiguous
    378  * loadable segments in an ELF program header table. This corresponds
    379  * to the page-aligned size in bytes that needs to be reserved in the
    380  * process' address space. If there are no loadable segments, 0 is
    381  * returned.
    382  *
    383  * If out_min_vaddr or out_max_vaddr are not null, they will be
    384  * set to the minimum and maximum addresses of pages to be reserved,
    385  * or 0 if there is nothing to load.
    386  */
    387 size_t phdr_table_get_load_size(const ElfW(Phdr)* phdr_table, size_t phdr_count,
    388                                 ElfW(Addr)* out_min_vaddr,
    389                                 ElfW(Addr)* out_max_vaddr) {
    390   ElfW(Addr) min_vaddr = UINTPTR_MAX;
    391   ElfW(Addr) max_vaddr = 0;
    392 
    393   bool found_pt_load = false;
    394   for (size_t i = 0; i < phdr_count; ++i) {
    395     const ElfW(Phdr)* phdr = &phdr_table[i];
    396 
    397     if (phdr->p_type != PT_LOAD) {
    398       continue;
    399     }
    400     found_pt_load = true;
    401 
    402     if (phdr->p_vaddr < min_vaddr) {
    403       min_vaddr = phdr->p_vaddr;
    404     }
    405 
    406     if (phdr->p_vaddr + phdr->p_memsz > max_vaddr) {
    407       max_vaddr = phdr->p_vaddr + phdr->p_memsz;
    408     }
    409   }
    410   if (!found_pt_load) {
    411     min_vaddr = 0;
    412   }
    413 
    414   min_vaddr = PAGE_START(min_vaddr);
    415   max_vaddr = PAGE_END(max_vaddr);
    416 
    417   if (out_min_vaddr != nullptr) {
    418     *out_min_vaddr = min_vaddr;
    419   }
    420   if (out_max_vaddr != nullptr) {
    421     *out_max_vaddr = max_vaddr;
    422   }
    423   return max_vaddr - min_vaddr;
    424 }
    425 
    426 // Reserve a virtual address range big enough to hold all loadable
    427 // segments of a program header table. This is done by creating a
    428 // private anonymous mmap() with PROT_NONE.
    429 bool ElfReader::ReserveAddressSpace(const android_dlextinfo* extinfo) {
    430   ElfW(Addr) min_vaddr;
    431   load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr);
    432   if (load_size_ == 0) {
    433     DL_ERR("\"%s\" has no loadable segments", name_.c_str());
    434     return false;
    435   }
    436 
    437   uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
    438   void* start;
    439   size_t reserved_size = 0;
    440   bool reserved_hint = true;
    441   bool strict_hint = false;
    442   // Assume position independent executable by default.
    443   void* mmap_hint = nullptr;
    444 
    445   if (extinfo != nullptr) {
    446     if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS) {
    447       reserved_size = extinfo->reserved_size;
    448       reserved_hint = false;
    449     } else if (extinfo->flags & ANDROID_DLEXT_RESERVED_ADDRESS_HINT) {
    450       reserved_size = extinfo->reserved_size;
    451     }
    452 
    453     if (addr != nullptr && (extinfo->flags & ANDROID_DLEXT_FORCE_FIXED_VADDR) != 0) {
    454       mmap_hint = addr;
    455     } else if ((extinfo->flags & ANDROID_DLEXT_LOAD_AT_FIXED_ADDRESS) != 0) {
    456       mmap_hint = extinfo->reserved_addr;
    457       strict_hint = true;
    458     }
    459   }
    460 
    461   if (load_size_ > reserved_size) {
    462     if (!reserved_hint) {
    463       DL_ERR("reserved address space %zd smaller than %zd bytes needed for \"%s\"",
    464              reserved_size - load_size_, load_size_, name_.c_str());
    465       return false;
    466     }
    467     int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS;
    468     start = mmap(mmap_hint, load_size_, PROT_NONE, mmap_flags, -1, 0);
    469     if (start == MAP_FAILED) {
    470       DL_ERR("couldn't reserve %zd bytes of address space for \"%s\"", load_size_, name_.c_str());
    471       return false;
    472     }
    473     if (strict_hint && (start != mmap_hint)) {
    474       munmap(start, load_size_);
    475       DL_ERR("couldn't reserve %zd bytes of address space at %p for \"%s\"",
    476              load_size_, mmap_hint, name_.c_str());
    477       return false;
    478     }
    479   } else {
    480     start = extinfo->reserved_addr;
    481     mapped_by_caller_ = true;
    482   }
    483 
    484   load_start_ = start;
    485   load_bias_ = reinterpret_cast<uint8_t*>(start) - addr;
    486   return true;
    487 }
    488 
    489 bool ElfReader::LoadSegments() {
    490   for (size_t i = 0; i < phdr_num_; ++i) {
    491     const ElfW(Phdr)* phdr = &phdr_table_[i];
    492 
    493     if (phdr->p_type != PT_LOAD) {
    494       continue;
    495     }
    496 
    497     // Segment addresses in memory.
    498     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
    499     ElfW(Addr) seg_end   = seg_start + phdr->p_memsz;
    500 
    501     ElfW(Addr) seg_page_start = PAGE_START(seg_start);
    502     ElfW(Addr) seg_page_end   = PAGE_END(seg_end);
    503 
    504     ElfW(Addr) seg_file_end   = seg_start + phdr->p_filesz;
    505 
    506     // File offsets.
    507     ElfW(Addr) file_start = phdr->p_offset;
    508     ElfW(Addr) file_end   = file_start + phdr->p_filesz;
    509 
    510     ElfW(Addr) file_page_start = PAGE_START(file_start);
    511     ElfW(Addr) file_length = file_end - file_page_start;
    512 
    513     if (file_size_ <= 0) {
    514       DL_ERR("\"%s\" invalid file size: %" PRId64, name_.c_str(), file_size_);
    515       return false;
    516     }
    517 
    518     if (file_end > static_cast<size_t>(file_size_)) {
    519       DL_ERR("invalid ELF file \"%s\" load segment[%zd]:"
    520           " p_offset (%p) + p_filesz (%p) ( = %p) past end of file (0x%" PRIx64 ")",
    521           name_.c_str(), i, reinterpret_cast<void*>(phdr->p_offset),
    522           reinterpret_cast<void*>(phdr->p_filesz),
    523           reinterpret_cast<void*>(file_end), file_size_);
    524       return false;
    525     }
    526 
    527     if (file_length != 0) {
    528       void* seg_addr = mmap64(reinterpret_cast<void*>(seg_page_start),
    529                             file_length,
    530                             PFLAGS_TO_PROT(phdr->p_flags),
    531                             MAP_FIXED|MAP_PRIVATE,
    532                             fd_,
    533                             file_offset_ + file_page_start);
    534       if (seg_addr == MAP_FAILED) {
    535         DL_ERR("couldn't map \"%s\" segment %zd: %s", name_.c_str(), i, strerror(errno));
    536         return false;
    537       }
    538     }
    539 
    540     // if the segment is writable, and does not end on a page boundary,
    541     // zero-fill it until the page limit.
    542     if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
    543       memset(reinterpret_cast<void*>(seg_file_end), 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end));
    544     }
    545 
    546     seg_file_end = PAGE_END(seg_file_end);
    547 
    548     // seg_file_end is now the first page address after the file
    549     // content. If seg_end is larger, we need to zero anything
    550     // between them. This is done by using a private anonymous
    551     // map for all extra pages.
    552     if (seg_page_end > seg_file_end) {
    553       size_t zeromap_size = seg_page_end - seg_file_end;
    554       void* zeromap = mmap(reinterpret_cast<void*>(seg_file_end),
    555                            zeromap_size,
    556                            PFLAGS_TO_PROT(phdr->p_flags),
    557                            MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
    558                            -1,
    559                            0);
    560       if (zeromap == MAP_FAILED) {
    561         DL_ERR("couldn't zero fill \"%s\" gap: %s", name_.c_str(), strerror(errno));
    562         return false;
    563       }
    564 
    565       prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, zeromap, zeromap_size, ".bss");
    566     }
    567   }
    568   return true;
    569 }
    570 
    571 /* Used internally. Used to set the protection bits of all loaded segments
    572  * with optional extra flags (i.e. really PROT_WRITE). Used by
    573  * phdr_table_protect_segments and phdr_table_unprotect_segments.
    574  */
    575 static int _phdr_table_set_load_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
    576                                      ElfW(Addr) load_bias, int extra_prot_flags) {
    577   const ElfW(Phdr)* phdr = phdr_table;
    578   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
    579 
    580   for (; phdr < phdr_limit; phdr++) {
    581     if (phdr->p_type != PT_LOAD || (phdr->p_flags & PF_W) != 0) {
    582       continue;
    583     }
    584 
    585     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
    586     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    587 
    588     int prot = PFLAGS_TO_PROT(phdr->p_flags);
    589     if ((extra_prot_flags & PROT_WRITE) != 0) {
    590       // make sure we're never simultaneously writable / executable
    591       prot &= ~PROT_EXEC;
    592     }
    593 
    594     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
    595                        seg_page_end - seg_page_start,
    596                        prot | extra_prot_flags);
    597     if (ret < 0) {
    598       return -1;
    599     }
    600   }
    601   return 0;
    602 }
    603 
    604 /* Restore the original protection modes for all loadable segments.
    605  * You should only call this after phdr_table_unprotect_segments and
    606  * applying all relocations.
    607  *
    608  * Input:
    609  *   phdr_table  -> program header table
    610  *   phdr_count  -> number of entries in tables
    611  *   load_bias   -> load bias
    612  * Return:
    613  *   0 on error, -1 on failure (error code in errno).
    614  */
    615 int phdr_table_protect_segments(const ElfW(Phdr)* phdr_table,
    616                                 size_t phdr_count, ElfW(Addr) load_bias) {
    617   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, 0);
    618 }
    619 
    620 /* Change the protection of all loaded segments in memory to writable.
    621  * This is useful before performing relocations. Once completed, you
    622  * will have to call phdr_table_protect_segments to restore the original
    623  * protection flags on all segments.
    624  *
    625  * Note that some writable segments can also have their content turned
    626  * to read-only by calling phdr_table_protect_gnu_relro. This is no
    627  * performed here.
    628  *
    629  * Input:
    630  *   phdr_table  -> program header table
    631  *   phdr_count  -> number of entries in tables
    632  *   load_bias   -> load bias
    633  * Return:
    634  *   0 on error, -1 on failure (error code in errno).
    635  */
    636 int phdr_table_unprotect_segments(const ElfW(Phdr)* phdr_table,
    637                                   size_t phdr_count, ElfW(Addr) load_bias) {
    638   return _phdr_table_set_load_prot(phdr_table, phdr_count, load_bias, PROT_WRITE);
    639 }
    640 
    641 /* Used internally by phdr_table_protect_gnu_relro and
    642  * phdr_table_unprotect_gnu_relro.
    643  */
    644 static int _phdr_table_set_gnu_relro_prot(const ElfW(Phdr)* phdr_table, size_t phdr_count,
    645                                           ElfW(Addr) load_bias, int prot_flags) {
    646   const ElfW(Phdr)* phdr = phdr_table;
    647   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
    648 
    649   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    650     if (phdr->p_type != PT_GNU_RELRO) {
    651       continue;
    652     }
    653 
    654     // Tricky: what happens when the relro segment does not start
    655     // or end at page boundaries? We're going to be over-protective
    656     // here and put every page touched by the segment as read-only.
    657 
    658     // This seems to match Ian Lance Taylor's description of the
    659     // feature at http://www.airs.com/blog/archives/189.
    660 
    661     //    Extract:
    662     //       Note that the current dynamic linker code will only work
    663     //       correctly if the PT_GNU_RELRO segment starts on a page
    664     //       boundary. This is because the dynamic linker rounds the
    665     //       p_vaddr field down to the previous page boundary. If
    666     //       there is anything on the page which should not be read-only,
    667     //       the program is likely to fail at runtime. So in effect the
    668     //       linker must only emit a PT_GNU_RELRO segment if it ensures
    669     //       that it starts on a page boundary.
    670     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
    671     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    672 
    673     int ret = mprotect(reinterpret_cast<void*>(seg_page_start),
    674                        seg_page_end - seg_page_start,
    675                        prot_flags);
    676     if (ret < 0) {
    677       return -1;
    678     }
    679   }
    680   return 0;
    681 }
    682 
    683 /* Apply GNU relro protection if specified by the program header. This will
    684  * turn some of the pages of a writable PT_LOAD segment to read-only, as
    685  * specified by one or more PT_GNU_RELRO segments. This must be always
    686  * performed after relocations.
    687  *
    688  * The areas typically covered are .got and .data.rel.ro, these are
    689  * read-only from the program's POV, but contain absolute addresses
    690  * that need to be relocated before use.
    691  *
    692  * Input:
    693  *   phdr_table  -> program header table
    694  *   phdr_count  -> number of entries in tables
    695  *   load_bias   -> load bias
    696  * Return:
    697  *   0 on error, -1 on failure (error code in errno).
    698  */
    699 int phdr_table_protect_gnu_relro(const ElfW(Phdr)* phdr_table,
    700                                  size_t phdr_count, ElfW(Addr) load_bias) {
    701   return _phdr_table_set_gnu_relro_prot(phdr_table, phdr_count, load_bias, PROT_READ);
    702 }
    703 
    704 /* Serialize the GNU relro segments to the given file descriptor. This can be
    705  * performed after relocations to allow another process to later share the
    706  * relocated segment, if it was loaded at the same address.
    707  *
    708  * Input:
    709  *   phdr_table  -> program header table
    710  *   phdr_count  -> number of entries in tables
    711  *   load_bias   -> load bias
    712  *   fd          -> writable file descriptor to use
    713  * Return:
    714  *   0 on error, -1 on failure (error code in errno).
    715  */
    716 int phdr_table_serialize_gnu_relro(const ElfW(Phdr)* phdr_table,
    717                                    size_t phdr_count,
    718                                    ElfW(Addr) load_bias,
    719                                    int fd) {
    720   const ElfW(Phdr)* phdr = phdr_table;
    721   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
    722   ssize_t file_offset = 0;
    723 
    724   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    725     if (phdr->p_type != PT_GNU_RELRO) {
    726       continue;
    727     }
    728 
    729     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
    730     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    731     ssize_t size = seg_page_end - seg_page_start;
    732 
    733     ssize_t written = TEMP_FAILURE_RETRY(write(fd, reinterpret_cast<void*>(seg_page_start), size));
    734     if (written != size) {
    735       return -1;
    736     }
    737     void* map = mmap(reinterpret_cast<void*>(seg_page_start), size, PROT_READ,
    738                      MAP_PRIVATE|MAP_FIXED, fd, file_offset);
    739     if (map == MAP_FAILED) {
    740       return -1;
    741     }
    742     file_offset += size;
    743   }
    744   return 0;
    745 }
    746 
    747 /* Where possible, replace the GNU relro segments with mappings of the given
    748  * file descriptor. This can be performed after relocations to allow a file
    749  * previously created by phdr_table_serialize_gnu_relro in another process to
    750  * replace the dirty relocated pages, saving memory, if it was loaded at the
    751  * same address. We have to compare the data before we map over it, since some
    752  * parts of the relro segment may not be identical due to other libraries in
    753  * the process being loaded at different addresses.
    754  *
    755  * Input:
    756  *   phdr_table  -> program header table
    757  *   phdr_count  -> number of entries in tables
    758  *   load_bias   -> load bias
    759  *   fd          -> readable file descriptor to use
    760  * Return:
    761  *   0 on error, -1 on failure (error code in errno).
    762  */
    763 int phdr_table_map_gnu_relro(const ElfW(Phdr)* phdr_table,
    764                              size_t phdr_count,
    765                              ElfW(Addr) load_bias,
    766                              int fd) {
    767   // Map the file at a temporary location so we can compare its contents.
    768   struct stat file_stat;
    769   if (TEMP_FAILURE_RETRY(fstat(fd, &file_stat)) != 0) {
    770     return -1;
    771   }
    772   off_t file_size = file_stat.st_size;
    773   void* temp_mapping = nullptr;
    774   if (file_size > 0) {
    775     temp_mapping = mmap(nullptr, file_size, PROT_READ, MAP_PRIVATE, fd, 0);
    776     if (temp_mapping == MAP_FAILED) {
    777       return -1;
    778     }
    779   }
    780   size_t file_offset = 0;
    781 
    782   // Iterate over the relro segments and compare/remap the pages.
    783   const ElfW(Phdr)* phdr = phdr_table;
    784   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
    785 
    786   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    787     if (phdr->p_type != PT_GNU_RELRO) {
    788       continue;
    789     }
    790 
    791     ElfW(Addr) seg_page_start = PAGE_START(phdr->p_vaddr) + load_bias;
    792     ElfW(Addr) seg_page_end   = PAGE_END(phdr->p_vaddr + phdr->p_memsz) + load_bias;
    793 
    794     char* file_base = static_cast<char*>(temp_mapping) + file_offset;
    795     char* mem_base = reinterpret_cast<char*>(seg_page_start);
    796     size_t match_offset = 0;
    797     size_t size = seg_page_end - seg_page_start;
    798 
    799     if (file_size - file_offset < size) {
    800       // File is too short to compare to this segment. The contents are likely
    801       // different as well (it's probably for a different library version) so
    802       // just don't bother checking.
    803       break;
    804     }
    805 
    806     while (match_offset < size) {
    807       // Skip over dissimilar pages.
    808       while (match_offset < size &&
    809              memcmp(mem_base + match_offset, file_base + match_offset, PAGE_SIZE) != 0) {
    810         match_offset += PAGE_SIZE;
    811       }
    812 
    813       // Count similar pages.
    814       size_t mismatch_offset = match_offset;
    815       while (mismatch_offset < size &&
    816              memcmp(mem_base + mismatch_offset, file_base + mismatch_offset, PAGE_SIZE) == 0) {
    817         mismatch_offset += PAGE_SIZE;
    818       }
    819 
    820       // Map over similar pages.
    821       if (mismatch_offset > match_offset) {
    822         void* map = mmap(mem_base + match_offset, mismatch_offset - match_offset,
    823                          PROT_READ, MAP_PRIVATE|MAP_FIXED, fd, match_offset);
    824         if (map == MAP_FAILED) {
    825           munmap(temp_mapping, file_size);
    826           return -1;
    827         }
    828       }
    829 
    830       match_offset = mismatch_offset;
    831     }
    832 
    833     // Add to the base file offset in case there are multiple relro segments.
    834     file_offset += size;
    835   }
    836   munmap(temp_mapping, file_size);
    837   return 0;
    838 }
    839 
    840 
    841 #if defined(__arm__)
    842 
    843 #  ifndef PT_ARM_EXIDX
    844 #    define PT_ARM_EXIDX    0x70000001      /* .ARM.exidx segment */
    845 #  endif
    846 
    847 /* Return the address and size of the .ARM.exidx section in memory,
    848  * if present.
    849  *
    850  * Input:
    851  *   phdr_table  -> program header table
    852  *   phdr_count  -> number of entries in tables
    853  *   load_bias   -> load bias
    854  * Output:
    855  *   arm_exidx       -> address of table in memory (null on failure).
    856  *   arm_exidx_count -> number of items in table (0 on failure).
    857  * Return:
    858  *   0 on error, -1 on failure (_no_ error code in errno)
    859  */
    860 int phdr_table_get_arm_exidx(const ElfW(Phdr)* phdr_table, size_t phdr_count,
    861                              ElfW(Addr) load_bias,
    862                              ElfW(Addr)** arm_exidx, size_t* arm_exidx_count) {
    863   const ElfW(Phdr)* phdr = phdr_table;
    864   const ElfW(Phdr)* phdr_limit = phdr + phdr_count;
    865 
    866   for (phdr = phdr_table; phdr < phdr_limit; phdr++) {
    867     if (phdr->p_type != PT_ARM_EXIDX) {
    868       continue;
    869     }
    870 
    871     *arm_exidx = reinterpret_cast<ElfW(Addr)*>(load_bias + phdr->p_vaddr);
    872     *arm_exidx_count = phdr->p_memsz / 8;
    873     return 0;
    874   }
    875   *arm_exidx = nullptr;
    876   *arm_exidx_count = 0;
    877   return -1;
    878 }
    879 #endif
    880 
    881 /* Return the address and size of the ELF file's .dynamic section in memory,
    882  * or null if missing.
    883  *
    884  * Input:
    885  *   phdr_table  -> program header table
    886  *   phdr_count  -> number of entries in tables
    887  *   load_bias   -> load bias
    888  * Output:
    889  *   dynamic       -> address of table in memory (null on failure).
    890  *   dynamic_flags -> protection flags for section (unset on failure)
    891  * Return:
    892  *   void
    893  */
    894 void phdr_table_get_dynamic_section(const ElfW(Phdr)* phdr_table, size_t phdr_count,
    895                                     ElfW(Addr) load_bias, ElfW(Dyn)** dynamic,
    896                                     ElfW(Word)* dynamic_flags) {
    897   *dynamic = nullptr;
    898   for (size_t i = 0; i<phdr_count; ++i) {
    899     const ElfW(Phdr)& phdr = phdr_table[i];
    900     if (phdr.p_type == PT_DYNAMIC) {
    901       *dynamic = reinterpret_cast<ElfW(Dyn)*>(load_bias + phdr.p_vaddr);
    902       if (dynamic_flags) {
    903         *dynamic_flags = phdr.p_flags;
    904       }
    905       return;
    906     }
    907   }
    908 }
    909 
    910 /* Return the program interpreter string, or nullptr if missing.
    911  *
    912  * Input:
    913  *   phdr_table  -> program header table
    914  *   phdr_count  -> number of entries in tables
    915  *   load_bias   -> load bias
    916  * Return:
    917  *   pointer to the program interpreter string.
    918  */
    919 const char* phdr_table_get_interpreter_name(const ElfW(Phdr) * phdr_table, size_t phdr_count,
    920                                             ElfW(Addr) load_bias) {
    921   for (size_t i = 0; i<phdr_count; ++i) {
    922     const ElfW(Phdr)& phdr = phdr_table[i];
    923     if (phdr.p_type == PT_INTERP) {
    924       return reinterpret_cast<const char*>(load_bias + phdr.p_vaddr);
    925     }
    926   }
    927   return nullptr;
    928 }
    929 
    930 // Sets loaded_phdr_ to the address of the program header table as it appears
    931 // in the loaded segments in memory. This is in contrast with phdr_table_,
    932 // which is temporary and will be released before the library is relocated.
    933 bool ElfReader::FindPhdr() {
    934   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
    935 
    936   // If there is a PT_PHDR, use it directly.
    937   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    938     if (phdr->p_type == PT_PHDR) {
    939       return CheckPhdr(load_bias_ + phdr->p_vaddr);
    940     }
    941   }
    942 
    943   // Otherwise, check the first loadable segment. If its file offset
    944   // is 0, it starts with the ELF header, and we can trivially find the
    945   // loaded program header from it.
    946   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    947     if (phdr->p_type == PT_LOAD) {
    948       if (phdr->p_offset == 0) {
    949         ElfW(Addr)  elf_addr = load_bias_ + phdr->p_vaddr;
    950         const ElfW(Ehdr)* ehdr = reinterpret_cast<const ElfW(Ehdr)*>(elf_addr);
    951         ElfW(Addr)  offset = ehdr->e_phoff;
    952         return CheckPhdr(reinterpret_cast<ElfW(Addr)>(ehdr) + offset);
    953       }
    954       break;
    955     }
    956   }
    957 
    958   DL_ERR("can't find loaded phdr for \"%s\"", name_.c_str());
    959   return false;
    960 }
    961 
    962 // Ensures that our program header is actually within a loadable
    963 // segment. This should help catch badly-formed ELF files that
    964 // would cause the linker to crash later when trying to access it.
    965 bool ElfReader::CheckPhdr(ElfW(Addr) loaded) {
    966   const ElfW(Phdr)* phdr_limit = phdr_table_ + phdr_num_;
    967   ElfW(Addr) loaded_end = loaded + (phdr_num_ * sizeof(ElfW(Phdr)));
    968   for (const ElfW(Phdr)* phdr = phdr_table_; phdr < phdr_limit; ++phdr) {
    969     if (phdr->p_type != PT_LOAD) {
    970       continue;
    971     }
    972     ElfW(Addr) seg_start = phdr->p_vaddr + load_bias_;
    973     ElfW(Addr) seg_end = phdr->p_filesz + seg_start;
    974     if (seg_start <= loaded && loaded_end <= seg_end) {
    975       loaded_phdr_ = reinterpret_cast<const ElfW(Phdr)*>(loaded);
    976       return true;
    977     }
    978   }
    979   DL_ERR("\"%s\" loaded phdr %p not in loadable segment",
    980          name_.c_str(), reinterpret_cast<void*>(loaded));
    981   return false;
    982 }
    983